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Abstract. This thesis covers a stochastic approach on fast ice detection on simulated satellite

observations. The main focus lies on the usage of the time dependence of the data points, and how

to correct defective and noisy inputs. Monte Carlo simulation is the method of choice, utilizing its
versatility. Another approach briefly looks at linear stochastic programming and its similarities to a

weighted average in the context of the problem. The numerical comparison shows the predominant

performance of the Monte Carlo approach with an average of over 86.5% accuracy in detecting the
fast ice, at least on the simulated data.
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List of Variables

All non-local variables are outlined in this section. Functions and variables specific for the approach
Stochastic Programming are found on top of the corresponding section E.

Main Variables and Spaces.

X0:t Not yet made decisions from time 0 to t.
x0:t Made decisions from time 0 to t.
X Space of the decision variable

Y0:t Unobserved observations from time 0 to t.
y0:t Observed observations from time 0 to t.
Y Space of the observation variable
T The maximal time point, it is always 0 ≤ t ≤ T .

Mathematical Symbols (Mostly for Section 2).

← Notation for a backwards step (Used on kernels, probability distributions, etc.).

State Spaces:

P0 Initial distribution of X0.
Pt Transition kernels for the distribution of Xt given xt−1.
ft transition density, likelihood for yt given xt.

Feyman-Kac Formalism:

M0 Initial distribution of X0.
Mt Transition kernels for the distribution of Xt given xt−1.
G0 Potential function at time 0.
Gt Potential function at time t.
Qt Feyman-Kac model, defined through (2.19).
Lt Normalizing constant at time t, defined through (2.20).
lt Normalizing ratios, lt := Lt/Lt−1.

Ht:T Cost-to-go functions, defined in (2.25).
γt Required probability distribution for backwards filtering, eq. (2.50).

w
(n)
t Weight of particle number n at time t.

W
(n)
t Normalized weight of particle number n at time t.

Model Functions and Parameters (Mostly Section 3).

cs Convolution matrix to gather neighbourhood information in a decision xt.
ζt The neighbourhood information: ζt := (c2 ∗ xt)

g0,1 Likelihood function for the fast ice evolution (Introduced in (2.62)).
αk Splits gk in three parts (k = 0, 1).
βk Determines the point wise evaluation at αk.
ρk Exponent of gk.
εu,l Minimal chance for fast ice / drift ice in a single evolution.
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σ Constant element of the transition density ft.
r1,2 Linear and quadratic factors for the transition density ft.
t0,1 the two time steps for seasonal changes (to winter / summer).

Notation

We will base our notation on the book An Introduction to Sequential Monte Carlo by N. Chopin and
O. Papaspiliopoulos, 2020 [4] as it has a versatile usage, it is later introduced and referenced (see
chapter 2). The upper case X stands for random variables, and the corresponding lower case x for
their realizations. Further, the notation dx stands for a set of the underlying algebra, mostly used in
probability Kernels. As an example, P (x, dy) relies on the random variable y in the second argument,
an arbitrary set A ∈ B(Y) is avoided this way. Subscripts indicate a time dependence and for an
array of variables we define the shortcut x0:t := (x1, x2, . . . , xt). The extension of the subscript with
|T indicates the dependence on the time T , it is used for probability kernels/distribution, since they
may differ throughout time. An example: Pt|T (xt) is the distribution of xt in step t, factoring in the
information available until time T , so this distribution might change for a different choice S < T .

Cooperations

This bachelor thesis is written in cooperation with the Alfred-Wegener-Institut (AWI). The AWI is a
german institute for climate research, with a focus on sea and polar research. My contact person and
supervisor is Dr. Lars Kaleschke from the climate sciences and sea ice physics department.
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Introduction

Fast ice is close to motionless sea ice, mostly found in coastal areas attached to land. There, it has
a multitude of important properties, ranging from providing habitat to wildlife [26] and humans [8],
to regulating temperature exchanges and balancing ice sheet masses [10]. It also appears to be very
sensitive to climate change, making it a good indicator of its progression.[17]. In climate sciences
sea ice is modeled to infer behavior of nature and to compute possible scenarios. Considering these
important properties of fast ice, it is not accurately simulated in many models [14]. For both practical
and simulation purposes, fast ice needs to be accurately described in past and (more or less) real
time. Today’s approaches rely mostly on manually inscribed fast ice on a bi-weekly to weekly basis,
sometimes supported by semi-automatic algorithms that flag/mark areas which do not show any
movement [24]. As an example, one of the most recent works (mid-2022) is on simulating fast ice in
deeper waters (See [16]). Here, as well as in earlier attempts at simulating fast ice the satellite data
used for comparison is a two-week average ice concentration with flagged fast ice pixels on a square
grid with a resolution of 25 km. Limiting factors in these approaches are the time lags between two
data points as well as the resolution. The quality of the input data is crucial, as a simulation can only
be as accurate as the used data allows.

More frequent satellite images are available, e.g., with the AWI ice concentration product, providing
an image every 12 hours. It is a passive microwave sensor that yields desired results independent of
clouds and other weather conditions, making it a useful tool in real time analysis. However, with a
grid of approximately 5km it does not offer a huge improvement in terms of resolution. The aim of this
work is to formulate and implement a mathematical model to automatically and reliably determine
fast ice on a sequence of such satellite images. The ultimate goal would be to establish an autonomous
procedure, not needing any human verification. In this thesis we will look at a new method for fast ice
detection. How accurate can these new stochastic approaches get?

The structure of the thesis reflects the work process. Chapter 1 starts with the introduction of basic
vocabulary and a general concept of fast ice detection. We move on to simulated data points to
illustrate many of the practical challenges. The main problem of this thesis is stated and put into a
mathematical framework. In the chapter 2 the main mathematical concept is presented: Bayesian
Analysis in the context of Monte Carlo Simulations. In the appendix D a different approach based
on Stochastical Programming is looked at. Following these two methods, chapter 3 gives a numerical
comparison in terms of their performance in detecting the fast ice. Chapter 4 discusses further ideas
and different concepts, and finally chapter 5 concludes this thesis with a summary.
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1. Fast Ice Detection

Beginning in autumn, fast ice forms along coastlines. Sea ice gets pushed toward land by onshore
winds. There, it remains attached to the shore, frozen up and/or pinned down to the seabed until
spring, when it slowly unfreezes and breaks up. Other types of fast ice are glacier tongues and the sea
ice thats surrounds them, fixing them in place; in rarer cases, icebergs can ground and become fast ice
without any connection to land. In Antarctica the phenomenon of grounded icebergs - either on their
own or as anchors for landfast ice - can be found in waters up to 500m deep. [18].

The general classification of fast ice is a bit loose, so we will stick to the one made in the paper
mentioned in the introduction: “We classify sea ice as landfast ice when the biweekly average sea
ice drift velocity is below a critical value of 5 × 10−4 ms−1 [..] This corresponds to a displacement
of approximately 600 m in 2 weeks.” [16]. More important than the amount of movement allowed is
the number of days that sea ice must remain stationary to be considered fast ice. Here, we take the
suggested 14 days, for landfast and other types of fast ice.

1.1. General Idea of Fast Ice Detection. There is not a lot of work on fully automatic fast ice
detection, almost everything relies on human verification / support. A recent paper builds upon
a drift algorithm established for sea ice drift detection and simply classifies fast ice as non-moving
pixels [24]. A different and more complex attempt is made by classifying the fast ice based on its
microwave characteristics [28]. Both discuss shortcomings of their methodology, the latter one citing
the close to indistinguishable difference of fast ice to thin ice and the complicating effects of atmospheric
conditions. In the drift-ice detection approach, the results depend solely on the output of the algorithm
on two consecutive images without taking into account its uncertainty and the benefit of combining
time-dependent information. This is where we are addressing the problem.

Let us go over the general idea of automatic fast ice detection that is followed in this thesis. The input
is satellite data given in a timeline and as a first step a drift detection algorithm is used to determine
the movement of the ice. Depending on the attributes of the data there are a lot of different algorithms
to choose from. The movement vectorfield produced by the drift ice algorithm is assumed to have a
form of likelihood attached to it, along with a land mask. This result can than be used to determine
the fast ice, from now on the ’data’ refers to this movement vectorfield or their corresponding absolute
value-field (see figure 2 for an example). There is no fixed way to tackle the problem of classifying the
fast ice given such a vectorfield. The simplest one is to assume that the drift ice is identified (almost)
perfectly. The necessary approach would then be to check each pixel in the timeline to see whether it
has moved or not and mark it as fast ice in a suitable timeframe. In practice this assumption is clearly
not the case (as shortly discussed in 1.3), hence we need some kind of data reconstruction or a model
which accounts for incorrect or missing data. Assuming there is a method to reconstruct or correct
wrong data points, it would be plausible to add this method into the drift algorithm itself1. Thus,
there should be no such method, if we assume our (in practice used) drift algorithm to be optimized.
This leads to the approach of building a model that handles incorrect or missing data points.

As an exception to this derivation there is a certain uniform and biased error along the coastlines of
our data which we want to account for. This error is due to the overlap of (possibly) moving sea ice
and a static coast region. We now cover the data we use as reference.

1As an example: one could look at the flow of the drift ice and use a flow field correction algorithm on the received
vectors. One such approach is described in [7]. Here our initial guess of the flow field is the pre-computed one.
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Figure 1. Images of original AMSR2 data. Shown is the whole arctic with computed
sea ice concentration. the left image corresponds to the data from 03.11.2019, the
right is from 12.03.2020.

1.2. Description of the Original Data Set. The images originally intended for use are from the
AWI AMSR2 data product (see Cooperations). The data is created from the Advanced Microwave
Scanning Radiometer 2 (AMSR2) provided by the Japan Aerospace Exploration Agency’s (JAXA) and
provide an upsampled resolution of 3125 m

pixel , , corresponding to a grid about 5000m in size. In the

product the ice concentration is depicted with enhanced ice-leads, these are water or newly formed
channels of ice in between older sea icesea ice. It also includes a landmask. [27][22]. This allows for
easy land classification and better image correlation as the ice leads offer nice structural points. Two
times a day an image is produced. There are rarely any time lags.

Weather changes and melting in the summer season can cause errors and a lot of noise in the product,
especially along the coastlines. Example images are shown in figure 1.

1.3. Simulated Data Points. To overcome issues like data size, complicated adjustments (e.g., the
incorporation of the true fast ice) and a way to reliably control the outcomes, the fast ice and the
speed of the ice will be simulated. Notice only the speed is simulated not the direction, a likelihood of
data is simulated with a threshold of either given data or a lack of data points. In detecting fast ice
the direction of movement is way less important since the main feature is the absence of any movement
to distinguish it from any other ice. Especially thinking about boundaries (e.g., for thresholding) one
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needs to look at the speed. The raw data has no difference from fast to non-fast ice (see figure 2 below).
Furthermore, only sea ice will be modeled. Pixels where no ice is available (e.g., black to blue areas in
original data are neglected (see figure 1).

Reference Set. As reference for this simulation a correlation algorithm is used to detect movement on
the AMSR2 product. The yielded vectorfield is then transformed into a velocity field as described
above. The basis of the used algorithm is given by fast normalized cross correlation (FNCC) [15]. Two
ascending images are cut into pre-defined chunks and then each chunk from the first image is fitted
into the area around it in the second image, while taking the most likely path the chunk could’ve taken.
This is iterated over the whole first image and followed by further refining steps which include filtering
vectors and outliers as well as computing all kinds of meta data (e.g., divergence, curl, shearing, etc.).
A full description of the procedure is found in this paper: [24]. It is adapted to our products specifics
and a simplified, as we do not need many features. Running this adapted algorithm on a reduced
region in the Laptev Sea gives a good impression of the velocity fields to simulate and also shows the
great error rate in certain areas (see figure 2).

The Simulation. The simulation of the speed relies on the use of Perlin noise, a ’homogeneous’ noise
developed for mimicking the randomness of nature [20]. It allows (given the right parameters) for
smooth transitions in a randomly generated grid. An implementation and in depth description of
Perlin noise is found in appendix A.1. to achieve a reasonable product the simulated data should
include the following important aspects:

(i) Changing fast ice cover, extending and shrinking with time.
(ii) Changing velocities around the fast ice, simulating the drift ice.
(iii) Noise and missing data with local coherence (e.g., replicate effects of rain).
(iv) Land-mass with strong noise / few information along the coastlines.

To stay consistent the fast ice should be the most concentrated along the coastlines and less frequent
the further we go out to sea. A description and implementation of the simulation methods is found in
appendix A.2. With recommended parameters from A.2 we achieve results close to what the raw data
(1.3) would yield using the mentioned FNCC algorithm (see figure 3). This simulation is representing a
local area of ice sheets, meaning all the ice freezes and breaks together. A practical comparison would
be to split an actual satellite image into chunks of known fast ice regions, with each region having
their own characteristic (melting / freezing time, land connection, etc.). For this reason some of these
are a bit randomized for different scenarios (e.g., the freezing time starts at t0 sampled from a normal
distribution).

1.4. Mathematical Framing of the Problem. Given T total observations of velocities, the goal is
to deduce the fast ice. Throughout, the observations are referred as Y0:T and the final choices of fast
ice X0:T are called decisions or hidden process if seen as the true data. Both lie in the space of real
matrices

Yt ∈Matm×n (R)
Xt ∈Matm×n (R+) or Matm×n ({0, 1})

with n,m ∈ N. The procedure is stepwise, so for every t ≤ T a new observation Yt is made and then
decisions can be made (multiple or just one), so in that point in time future observations are unknown.
The other unknown is the regular noise and lack of data points in the observations. Everything else
about the structure of the problem is adapted in and onto the upcoming models, this includes time
dependencies and simplifying properties of distributions.
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Figure 2. This figure shows a result of the drift algorithm, in the upper image
with enhanced vector length for better visualization and in the bottom image with
a computed velocity field. BEWARE, the colors don’t match in these images, in
the top one the color represents the likelihood of the given vector, whereas is the
bottom one the color shows the speed in pixels. It is noticeable that in the regions
of clearer ice (less structures) there is a deficit of data points caused by the almost
homogeneous texture, as seen on the left and in the center. These uniform areas are
mostly new sea ice, whereas older ice is a lot more spotted due to leads. Also notice
the non-moving line along the coast in the lower image. This is a composition of fast
ice, the minimum filter mentioned in section 1.2 and a less reliable output of the drift
algorithm in coastal regions due to less information. See section 1.3 (Reference Set)
for a description of the procedure to compute such images.
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Figure 3. Timeline of a generated simulation (Seed=24) where the increase and
decrease of fast ice is visible (the cycle length is 150 steps). The more dark and
reddish the color is the faster the measured velocity, regular blue is the (close to not
moving) fast ice. Extra colors are dark blue and white displaying land and errors
respectively. Notice the stronger noise along the coastlines, making it very challenging
to tell whether it is fast ice or not without looking at the neighbours.
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1.5. The Different Approaches. Having introduced the problem and its formalities the next step is
to take a look at some approaches to solve our fast ice problem. The main task is to make a decision
taking all available information into account, but most importantly respecting the great amount of
uncertainty. In this framework many approaches have been introduced differing in how they model
this uncertainty.

The first of the two ideas is called Stochastic Programming, a way of modeling uncertainty in the future
through minimizing a cost function and an expected value of an upcoming event. Unfortunately, this
approach ended up being not too applicable and a linear implementation coincides with a weighted
average. All the details can be found in appendix E.

A more promising approach is using Monte Carlo Simulation, it attempts to reconstruct a hidden
state (the fast ice) through clever sampling possible scenarios. The underlying mathematical idea is
Bayesian analysis, which is introduced in the upcoming chapter 2.
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2. Approach Two: Bayesian Analysis

Bayesian Analysis works with the principal of conditional probabilities, having two distinct events y
and x one can relate them in the following way:

(2.1) p (x | y) = p (y |x) p(x)
p(y)

In many cases the y is seen as a fixed random variable, allowing to write a proportionality instead of
an equality in the equation (2.1)

(2.2) p (x | y) ∝ p (y |x) p(x)

Exactly this relationship in (2.2) is what we try to exploit. The y models the observation and when
observed they stay fixed, whereas the x is a random variable representing the true fast ice distribution.
The probability of the fast ice given the observations is the quantity needed, or to be more exact the
expected valued of the fast ice given the observations, is of interest to us. To come up with an explicit
solution or an approximation for this expected value is out of reach, instead the Bayesian approach
rephrases the problem to where the order of events makes sense. It is more natural to formulate a
relationship from true data into a noisy and error afflicted observation than the other way around. Still,
this is not obvious and needs some kind of mathematical model to not only describe this relationship
between the x and y, but also to compute the values of p (y |x) and p(x), which is not trivial.

A well established method is to use Monte Carlos Simulations within the framework of State-Space
models. Both are described in the book An Introduction to Sequential Monte Carlo by N. Chopin and
O. Papaspiliopoulos, 2020 [4] which serves as reference for the next chapters presenting these concepts.

2.1. State Space Models and Markov Processes. We start by introducing State-Space models, the
underlying concept for this approach. The usage of State-Space models is wide spread through different
fields of science and the formalities differ slightly from one to another. Universally, a State-Space
model is made up of two random sequences (Xt)t, (Yt)t in their respective (Euclidean) spaces X , Y
with a relation shown in figure 4. The Xt represent an underlying Markov process where in every
step t only the direct ancestor Xt−1 influences the upcoming variable Xt. The Yt are a kind of noisy
abstraction of Xt often observed in practice (true fast ice and their satellite images, or in our case, the
velocity values).

Definition 1 (Markov Property). A sequence (Xt)t of random variables (r.v.) has the Markov
property when the dependence only lies between two consecutive variables.

pt (Xt |X1:t−1) = pt (Xt |Xt−1)

pt is the probability for Xt in step t (Recall the notation for X1:t−1 = (X1, . . . , Xt−1)).

2.1.1. Probability Kernels. To adequately describe the mathematical relationships in State Space models
a more rigorous background is in need. Having two, potentially equal measure spaces (X ,B(X )),
(Y,B(Y)) (B(·) being the σ-algebra) we define the probability and the backwards kernel.

Definition 2 (Probability Kernel). A function P (x, dy) : (X ,B(Y)) → [0, 1] is called a probability
kernel from (X ,B(X )) to (Y,B(Y)), if

(i) ∀x ∈ X , P (x, ·) is a probability measure on (Y,B(Y)),
(ii) ∀A ∈ B(X ), P (·, A) is a measurable function in X .
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The kernels allow for a nice way of writing conditional distributions. Assume P0(dx) is a probability
measure on (X ,B(X )) and P1(x0, dx1) a probability kernel from (X ,B(X )) to (X ,B(X )), then the
defined

(2.3) P1(dx0:1) := P0(dx0)P1(x0, dx1)

is again a probability measure on the product space (X 2,B(X )2), (Recall, dx is the notation for a
subset of X ). More important now, if we have a r.v. X0:1 that is distributed according to P1, then the
conditional distribution of X1 for X0 = x0 is exactly given by P1(x0, ·), proof is given in C.12.

In the same way we split the distribution of X0:1 into the marginal of X0 and the conditional part we
could also decompose it in the other backwards order. Starting with the distribution of P1(dx1) we

define the backwards kernel
←
P 0 via

(2.4) P0(dx0)P1(x0, dx1) = P1(dx1)
←
P 0(x1, dx0)

If now P1(dx1) dominates P1(x0, dx1) the backwards kernel can be written as a change of measure

(2.5)
←
P 0(x1, dx0) =

P1(x0, dx1)

P1(dx1)
P0(dx0).

Change of measure implies that
←
P 0 is defined through

(2.6)

∫
A

d
←
P 0(x1, dx0) =

∫
A

P1(x0, dx1)

P1(dx1)
dP0(dx0), A ⊂ X

2.1.2. From Markov Processes to State Space Models. After introducing the probability kernels a
Markov process can be defined through the chaining of such.

Definition 3 (Definition and Lemma, Markov Process). Let X0:T be a sequence of r.v. distributed
after

(2.7) PT (X0:T ∈ dx0:T ) = P0(dx0)

T∏
s=1

Ps(xs−1, dxs),

then X0:T is called a Markov process and fulfills the Markov property stated in definition 1 with the
kernels being the conditional probabilities

(2.8) PT (Xt ∈ dxt|X0:t−1 ∈ dx0:t−1) = PT (Xt ∈ dxt|Xt−1 ∈ dxt−1) = Pt(xt−1, dxt).

Proof. Works in the fashion of proof C.1 (see above or appendix), but instead of T = 1, one splits
recursively the distribution into

PT (X0:T ∈ dx0:T ) = PT−1(X0:T−1 ∈ dx0:T−1)PT (xT−1, dxT )

Pt(X0:t ∈ dx0:t) = Pt−1(X0:t−1 ∈ dx0:t−1)Pt(xt−1, dxt), t = 1, . . . , T − 1

□

From here, some useful properties can be deduced, by e.g., integrating (2.7) over xt+1:T we get

(2.9) PT (dx0:t) = Pt(dx0:t).

2A little side note: if a prove is given here it is either (i) not given in the book or (ii) unclear in the way it is presented
(needs extra explanation or steps). Else there is always a notation to where exactly find a prove of a given statement.
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X0 X1 X2
. . . XT

Y0 Y1 Y2
. . . YT

F0 F1 F2 Ft FT

P0 P1 P2 P3 PT

Figure 4. Visual representation of the process model.

Using this and the backwards kernel presents us with the other direction

(2.10) PT (X0:T ∈ dx0:T ) = PT (dxT )

T∏
s=1

←
P T−s(xT−s+1, dxT−s)

where
←
P t is defined as (2.4), but with distribution PT and time step t.

Stopping here would allow us to describe the evolution of the true fast ice X0:T , but we are interested
in adding the observations to our model. To do so, we look at the combined stochastic process of
{(Xt, Yt)t} with starting distribution P0(dx0) and transitional kernels Pt(xt−1, dxt) and Ft(xt, dyt)
for the conditional distributions Xt given Xt−1 = xt−1 and Yt given X = xt respectively. The joint
distribution is then computed as

PT (X0:T ∈ dx0:T , Y0:T ∈ dy0:T ) = P0(dx0)

T∏
t=1

Pt(xt−1, dxt)

T∏
t=0

Ft(xt, dyt)(2.11)

= PT (dx0:T )

T∏
t=0

Ft(xt, dyt),

here the term PT (dx0:T ) can be seen as a marginal Markov process, a visualization is seen in figure 4.

In many, but certainly not all practical cases, the transition kernels provide densities (see examples of
chapter 2 in [4]). It is assumed (and in our case given) that for the kernel F a so-called transition
density exists, relative to some measure ν(dy):

(2.12) Ft(xt, dyt) = ft(yt|xt)ν(dyt), ∀t.

Inserting this into (2.11) yields

(2.13) PT (X0:T ∈ dx0:T , Y0:T ∈ dy0:T ) = PT (dx0:T )

T∏
t=0

ft(yt|xt)

T∏
t=0

ν(dyt).

This expression (2.13) encompasses all the parts used in the upcoming chapters.

2.1.3. First Equations. From above one can conclude further relations such as marginal distributions.
Some are now derived and presented. A direct way to compute the distribution of Y0:t is to integrate
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(2.13) (until step t instead of T , since this holds for all t ≤ T ) over X0:t

Pt(Y0:t ∈ dy0:t) =

∫
X t

PT (x0:t, Y0:t ∈ dy0:t) dx0:t(2.14)

use (2.13)→ =

[
t∏

s=0

ν(dys)

]∫
X t

[
t∏

s=0

ft(ys|xs)

]
Pt(x0:t) dx0:t

Definition of expected value→ = EPt

[
t∏

s=0

fs(ys|Xs)

]
t∏

s=0

ν(dys)

This distribution (2.14) has a density (with respect to ν) called the likelihood, denoted as

(2.15) pt(y0:t) := EPt

[
t∏

s=0

fs(ys|Xs)

]
.

This leads to the likelihood factors.

Definition 4 (Definition and Lemma, Likelihood Factors). The conditional densities

(2.16) pt (yt | y0:t−1) =
pt(y0:t)

pt−1(y0:t−1)

are called the likelihood factors.

Proof (of the equality). C.2 □

Thinking back to our starting point of the Bayesian approach, we can now formulate a way of computing
the value of interest, X given Y .

Pt(X0:t ∈ dx0:t |Y0:t ∈ y0:t) =
Pt(X0:t ∈ dx0:t, Y0:t ∈ y0:t)

pt(y0:t)
∏t

s=0 ν(dys)
(2.17)

=
1

pt(y0:t)

[
t∏

s=0

fs(ys|xs)

]
Pt(dx0:t)

2.1.4. A Small Recap. Before going over into Feyman-Kac models, a more convenient and comprehensive
mathematical framework, here a short recap of the previous calculations and an outlook on the goals.
Recall, the idea is to compute the fast ice distribution given some observations we make. To do so, a
reformulation of the problem is needed as a direct calculation of this quantity is more or less impossible.
Here the Bayes’ theorem is utilized, yielding the relation (2.17). It is described through an initial
distribution (guess) P0 of the fast ice distribution and then probability kernels Pt to describe the
evolution of it. In every time step there is a transition density ft that specifies the relationship between
the fast ice and the velocity observations we make. Two values are of most interest; filtering and
smoothing, the prior describes the distribution of the newest fast ice given all the past data and the
latter is the distribution of some to all fast ice given all the observations.

• filtering: Pt(Xt ∈ dxt |Y0:t ∈ dy0:t), t ≤ T
• smoothing: PT (Xs:t ∈ dxs:t |Y0:T ∈ dy0:T ), 0 ≤ s ≤ t ≤ T
• likelihood: pt(y0:t)

There are more quantities of concern that can be derived using state space models (e.g., state prediction)
but they are of no importance to our problem.
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2.2. Feyman-Kac Models. Before entering the abstract world of Feyman-Kac models we will shortly
talk about the idea of how to actually compute any of the named categories (filtering, smoothing, etc.).
This should also give some insights into why we chose this model in the beginning.

The most important distribution is Pt(X0:t ∈ dx0:t), which can be computed recursively with (2.7).
This equation allows for particle trajectories, they start by sampling initial particles (in our case fast
ice distributions) from P0 and then evolve them corresponding to the kernels P1:t. If now an expected
value is required (as in the likelihood densities or the filtering solutions; we are more interested in the
expected value of Xt), N such trajectories are generated to approximate these via Monte Carlo

EPt
[ϕ(X0:T )] ≈

1

N

N∑
i=1

ϕ
(
X

(i)
0:T

)
.

How to sample and optimize this method in terms of variance and convergence is a big discussion in
and of itself, hence we will only cover the main ideas.

Coming back to Feyman-Kac models, they provide a theoretical basis to simulate random paths for
stochastic processes and can be viewed as the underlying structure. So, after translating a process
model into this mathematical frame different algorithms can be easily obtained and applied. Initially it
looks identically to our already defined Markov process (2.7) for X0:T , including a starting distribution
M0 and transition kernels Mt

(2.18) MT (dx0:T ) = M0(dx0)

T∏
t=1

Mt(xt−1, dxt).

Now, a resemblance of the transition densities ft is added. Define the potential functions

G0 : X → R+

Gt : X 2 → R+.

Definition 5 (Feyman-Kac). A Feyman-Kac model is defined through the functions G0, Gs, the
distribution M0 and the kernels Ms, s = 1, . . . , t and is represented as a change of measure from Mt

(2.19) Qt(dx0:t) =
1

Lt
G0(x0)

{
t∏

s=1

Gs(xs−1, xx)

}
Mt(dx0:t).

Lt is the normalizing constant for Qt and can be obtained by integrating over the potential functions

(2.20) Lt = EMt

[
G0(X0)

t∏
s=1

Gs(xs−1, xx)

]
.

The ratios of normalizing constants are denoted as

(2.21) lt := Lt/Lt−1.

Two important classes of Feyman-Kac models, in terms of application to state space models, will be
presented now.

2.2.1. Bootstrap and Guided Model. In the last chapter we defined a Feyman-Kac model through M0,
G0, Mt and Gt. Hence, different Feyman-Kac formalisms depend on the way these parameters are
chosen. In practice one could image they describe how a particle is chosen in its evolutionary trajectory
(in reference to the starting explanation of this chapter 2.2). One of such formalisms is the Bootstrap.
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Definition 6 (Boostrap). Given a state space model as in (2.11), so initial distribution P0(dx0),
transition kernels Pt(xt−1, dxt) and transition densities ft(yt |xt), the bootstrap Feyman-Kac formalism
is defined through

M0(dx0) = P0(dx0), G0(x0) = f0(y0 |x0),

Mt(xt−1, dxt) = Pt(xt−1, dxt), Gt(xt−1, xt) = ft(yt |xt).

Plugging in the corresponding formulas from the last chapter yields:

Qt(dx0:t) = Pt(X0:t ∈ dx0:t |Y0:t = y0:t)

Lt = pt(y0:t)

lt = pt(yt | y0:t−1)

Notice the potential functions Gt, t ≤ T only depend on xt and implicit on the observation yt, which is
seen as fixed (after observation). Also, the quantity Qt is exactly what we want to compute. Another
bigger family is the guided Feyman-Kac formalism, it includes the Bootstrap.

Definition 7 (Guided). Given a state space model as in (2.11), so initial distribution P0(dx0),
transition kernels Pt(xt−1, dxt) and transition densities ft(yt |xt), the guided Feyman-Kac formalism
is defined through

G0(x0)M0(dx0) = f0(y0 |x0)P0(dx0),

Gt(xt−1, xt)Mt(xt−1, dxt) = ft(yt |xt)Pt(xt−1, dxt).

Again, we get

Qt(dx0:t) = Pt(X0:t ∈ dx0:t |Y0:t = y0:t)

Lt = pt(y0:t)

lt = pt(yt | y0:t−1)

Clearly, the bootstrap is the trivial case of the guided formalism. The differences and the advantages
of the wider family of guided Feyman-Kac models will be covered in the section of their application
2.4 (mainly in the filtering section 2.4.1). To get to the applications, relations between different steps
should be constructed (e.g., t→ t+ 1), this is covered in the next section.

2.2.2. Recursions. Before we can state generic algorithms to compute the quantities of interest, the
theoretical relations are required. Most of them rely on some kind of recursion. A particularly
important one for filtering is the relation of Qt−1(dxt−1) and Qt(dxt). Here, the starting point is the
change of measure

(2.22) Qt(dx0:t) =
1

lt
Gt(xt−1, xt)Mt(xt−1, dxt)Qt−1(dx0:t−1),

which directly follows from the definition 5 (equation (2.19)). To end up with the marginal distributions
we split apart the last equation (2.22), realise

Qt−1(dxt−1:t) =

∫
X t−2

Mt(xt−1, dxt)Qt−1(dx0:t−1), integrating over x0:t−2(2.23)

= Mt(xt−1, dxt)Qt−1(dxt−1).

With the same idea one gets

(2.24) Qt(dxt−1:t) =
1

lt
Gt(xt−1, xt)Qt−1(dxt−1:t).
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This separation leads to an algorithm enabling us to compute the marginal filtering distributions of Qt

called forward recursion 1.

Algorithm 1 Forward Recursion (Feyman-Kac Formalism)

1: Input
2: Feyman-Kac model: M0, G0, Mt and Gt

3: Initialize
4: Q−1(dx0) = M0(dx0)

5: for t = 0, . . . , T do
6: Qt−1(dxt−1:t) = Mt(xt−1, dxt)Qt−1(dxt−1) ▷ Extension
7: Qt(dxt−1:t) =

1
lt
Gt(xt−1, xt)Qt−1(dxt−1:t) ▷ Change of measure

8: Qt(dxt) =
∫
xt−1∈X Qt(dxt−1:t) ▷ Marginalization

9: end for
10:

11: l0 = L0 =
∫
X G0(x0)M0(dx0)

12: lt =
Lt

Lt−1
=
∫
X 2 Gt(xt−1, xt)Qt−1(dxt−1:t) ▷ Likelihood values for line 7

From here, we are also interested in evaluating the smoothing distribution QT (dx0:T ) = P(X0:T ∈
dx0:T |Y0:T = x0:T ) or marginal smoothing distributions QT (dxs:t) = P(Xs:t ∈ dxs:t |Y0:T = x0:T ),
s ≤ t. There are different ideas to do so, the two covered here will first identify the backwards kernels
of Qt, after showing it to be a Markov measure. Then, one strategy is to do a forward recursion to get
to QT (dxT ) and use the backwards kernel to generate paths going in reversed direction through the
sampled particles. This method is called Forward Filtering, Backward Smoothing (FFBS), figure 5
visualizes this concept. The other approach relies on a backward filtering step, essentially the same as
a forward filtering but with reversed order of observations. Therefor, its name is two-filter smoothing.

To show that QT is a Markov process it is beneficial to impose one more helping function Ht:T (xt)
named cost-to-go function 3.

HT :T (xT ) := 1,(2.25)

Ht:T (xt) :=

∫
XT−t

T∏
s=t+1

Gs(xs−1, xs)Ms(xs−1, dxs), t < T.

Applying Tonelli (Gs and Ms are both positive and so is Hs:T for all s) on (2.25) with inserting Ht+1:T

into Ht:T allows us to change the order of integration to yield the recursion

(2.26) Ht:T (xt) =

∫
X
Gt+1(xt, xt+1)Ht+1:T (xt+1)Mt+1(xt, dxt+1), t < T.

In the Bootstrap formalism this quantity is

(2.27) Ht:T (xt) = pT (yt+1:T |xt),

the likelihood of future observations conditional on the current decision (see appendix C.3 for details).

This lemma shows the transition kernels.

3The name cost-to-go comes from the field of dynamic programming and is intuitively a bit off in this context, since
Ht:T represents more a chance-to-go value.
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Figure 5. Visualizes the concept of Forward Filtering Backward Smoothing. Each
grey line represents a sampled trajectory. The color scheme of the points represent
their weights (corresponding to the distance to the reference in blue; See figure 6 for
more details). The red line is a generated path corresponding to a backwards kernel
and starts on the right side (t = 9). It chooses between likelihood of the ancestor and
the weight of each particle.
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Lemma 8. QT is a Markov process with initial distribution

(2.28) Q0|T (dx0) =
1

LT
G0(x0)H0:T (x0)M0(dx0)

and forward/ backward transition kernel

Qt|T (xt−1, dxt) =
Ht:T (xt)

Ht−1:T (xt−1)
Gt(xt−1, xt)Mt(xt−1, dxt),(2.29)

QT (dxt)
←
Qt−1|T (xt, dxt−1) = QT (dxt−1)Qt|T (xt−1, dxt).(2.30)

Proof. Proof is found in [4], page 59. □

Remark. Recall, Qt|T indicates the dependence on T .

With lemma 8 and equation (2.9) one can deduce the partial distributions necessary for smoothing.

Lemma 9. For all t < T

(2.31) QT (dx0:t) =
Lt

LT
Ht:T (xt)Qt(dx0:t),

integrating over x0:t−1 leads to the marginal distributions

(2.32) QT (dxt) =
Lt

LT
Ht:T (xt)Qt(dxt).

Proof. C.4. □

At last, to complete the smoothing idea we rewrite the backwards kernel of Q defined in Lemma 8
utilizing this Lemma 9 to get (see appendix C.5 for computation)

(2.33) Qt(dxt)
←
Qt−1|t(xt, dxt−1) =

1

lt
Gt(xt−1, xt)Qt−1(dxt−1)Mt(xt−1, dxt),

(under the assumption that Mt admits a probability density mt) that leaves us with

(2.34)
←
Qt−1|t(xt, dxt−1) ∝ Gt(xt−1, xt)mt(xt |xt−1)Qt−1(dxt−1)

(Proof is found in [4], page 62).

This reconstruction gives space to the following idea, start by a forward filtering and save the Qt(dxt),
then sample from QT (dxT ) and compute backward trajectories with the backward kernels represented
in (2.34) for the smoothing quantity QT (dx0:T ), it is the earlier described FFBS algorithm.

For the two-filter smoothing we write out equality (2.32) from Lemma 9 and insert the Bootstrap
formalism to end up with

(2.35) PT (Xt ∈ dxt |Y0:T = y0:t) =
pT (yt+1:T |xt)

pT (yt+1:T | y0:t)
P(Xt ∈ dxt |Y0:t = y0:t).

Every part is simply replaced by their Bootstrap relative (using Def. 6 and equation (2.27)). Clearly
this represents a change of measure from the filtering distribution with a proportional relation to
pT (yt+1:T |xt) (The pT (yt+1:T | y0:t) in the denominator is not depended on the decisions xt and can
be handled as a normalization constant. Remember the observations are seen as fixed). Now, to obtain
this proportionality a backward filtering step is performed. In our case the idea is to follow the freezing
and melting process backwards, meaning we start when the ice un-melts in summer and end when it
un-freezes towards the beginning of winter.
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2.3. Sampling and Resampling. Every filtering or smoothing distribution has to be approximated
in some way, since any distribution not given by default can in practice not be computed analytically
(e.g., given the starting distribution and the transition kernels, in many practical cases the filtering
distribution is intractable). Here, different sampling and resampling methods are used, to obtain a
sufficient convergence in terms of exactness and speed. As mentioned in the introduction of section 2.2,
the main idea is an approximation with Monte Carlo in what is called Importance Sampling/Resampling.
Importance sampling is a way of weighting sampled particles according to their fit in a model, so
instead of

(2.36) EPt [ϕ(X)] ≈ 1

N

N∑
i=1

ϕ
(
X(i)

)
.

for X(i) ∼ Q the following expression is evaluated

(2.37)

∑N
i=1 w

(
X(i)

)
ϕ
(
X(i)

)∑N
i=1 w

(
X(i)

) , w
(
X(i)

)
∝

Q
(
X(i) ∈ dx

)
M
(
X(i) ∈ dx

) , X(i) ∼M.

Here, it is assumed that the Radon-Nikodym derivative of Q/M exists. The w is the weighting term
and the sum of w in the denominator is for normalization, to shorten the expression we define

(2.38) W (i) =
w
(
X(i)

)∑N
m=1 w

(
X(m)

)
The reason for the reformulation (2.37) is a simple identity, when the respective densities m and q
exist.

(2.39)

∫
X
ϕ(x)q(x) =

∫
X
ϕ(x)

q(x)

m(x)
m(x)

The idea behind it is to sample from M instead of Q which can be way easier in most cases. In relation
to our problem, it is more convenient to define and sample from the initial distribution P0 and the
transitions kernels Pt defining our Mt (so to sample some way of fast ice evolution) compared to the
conditional distribution Qt (the fast ice evolution, conditional on the observations Yt). As we will see
in the section 2.4 describing the algorithms used, the weighting values w are exactly the functions Gt

from our Feyman-Kac model.

2.3.1. Importance Resampling. Assume you have a decent model for the fast ice evolution and you use
importance sampling (or any other sampling method) to generate (independent) trajectories based
on this model. The variance of any particle grows with every step, since every transition kernel Pt

introduces more. Even with the approach of weighting every particle to filter out4 the ones, which
deviate too much it can take a lot of particles to achieve a reasonable convergence.

To accommodate for this, a method called importance resampling is utilized. In every new step, instead
of sampling from the past states of a particle, the particles are put in a pool along with their weight.
Now, N new particles are sampled from this pool of ancestors, according to the weight of the particles.
This procedure can reduce the variance of the full sample, but for the cost of introducing dependence
along the originally independent trajectories. Figure 6 illustrates the difference.

On the actual sampling methods (what kind of resampling scheme to use and e.g., mc, smc, qsmc,
so the choice of how to actually pick a new sample) more in depth information can be found in [4]
(Chapters 8, 9 and 13) and will not be covered here.

4There is no filtering happening, but the weight gets so small, that the corresponding particles are neglectable



26

Figure 6. Sampling (left) vs. Resampling (right) visualization. The blue line and
points are a reference. Grey lines connect to corresponding particles sampled, while
their color display their given weight w ∝ 1

distance to reference with the color coding
presented in the top right legend. In every step 5 particles are sampled corresponding
to N (Xp, σ), where Xp is the value of the chosen ancestor. Notice, when particles
have low weights they are not used to sample the next generation of particles in the
resampling scheme.

2.3.2. When to Resample and the EES. Resampling is more costly than sampling, since one also has
to choose from which particles to sample. Further, the introduction of dependence and the resampling
of ancestors can yield to increased variance in past steps. The trade-off is always good and only using
importance sampling is not recommended, but a mix of sampling and resampling steps seems to be
working well in practice for a more efficient computation time.

The choice of when to resample is not that well studied. An idea is to look at the effective sample size,
a measure of the efficiency of importance sampling

(2.40) ESS(W (1:N)) :=
1∑N

n=1

(
W (n)

)2 .
Clearly, we have the following properties

• ESS(W (1:N)) ∈ [1, N ]
• ESS(W (1:N)) ≈ N , for W (i) ≈W (j), i, j ≤ N .
• ESS(W (1:N))→ 1, when there is an i ≤ N with W (i) → 1

In general, one can interpret that if ESS(W (1:N)) ≈ k, then there are about k particles which are relevant
(whose weights are not neglectable). Subsequently, when the ESS gets too low (e.g., ESS < N/2)
one should perform a resampling step to ensure not too many particles degenerate. Take a look at
the importance sampling from figure 6 again, time step 2 would be a reasonable point for the first
resampling scheme (Even though step 3 is quite good again in this example).

2.4. Filtering and Smoothing. Putting everything together, it is now possible to describe the actual
filtering and smoothing algorithms. We will use the Feyman-Kac formalisms from chapter 2.2 and
their theoretical framework, introduced in section 2.2.2, as well as the sampling/resampling ideas from
the last chapter 2.3 for the required approximations.
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2.4.1. Filtering Algorithm. For the filtering algorithm the goal is to practically implement the already
defined algorithm 1 from section 2.2.2. Recall, in any Feyman-Kac model we are given an initial
distribution and potential function M0, G0 as well as the transition kernels and potential functions
M1:T , G1:T . The analytically defined functions Q0:T will be approximated through the procedure of
algorithm 1 using Monte Carlo. N particles are sampled from M0 and weighted according to G0.
Subsequently N new particles are sampled (importance sampling or resampling) using Mt with a
weight of Gt. In every step the weight is normalized (this normalization constant corresponds to the
likelihood factors Lt (2.20)). Algorithm 2 illustrates the concept with the addition of an adaptive
resampling regulated by the Effective Sample Size (ESS, introduced in (2.40)).

Algorithm 2 Particle Filtering (with adaptive resampling)

1: Input
2: Feyman-Kac model: M0, G0, Mt and Gt,
3: Amount of particles: N

4:

5: X1:N
0 ∼M0(dx0) ▷ N initial samples of our fast ice

6: w1:N
0 = G0(X

1:N
0 )

7: W 1:N
0 = w1:N

0 /
∑N

m wm
0 ▷ Normalizing initial weights

8:

9: for t=1, . . . , T do ▷ Generating trajectories through time
10: if ESS(W 1:N

t−1 ) < ESSmin then ▷ Checking the ESS

11: A1:N
t ← resample(W 1:N

t−1 ) ▷ Resample step, pick ancestors

12: ŵ1:N
t−1 = 1 ▷ No recursive weighting

13: else
14: A1:N

t = 1 : N ▷ Importance Sampling
15: ŵ1:N

t−1 = w1:N
t−1 ▷ Keep weights for recursive weighting

16: end if
17: Xn

t ∼Mt(X
An

t
t−1, dxt) ▷ Sample successor

18: w1:N
t = ŵ1:N

t−1 Gt(X
A1:N

t
t−1 , X1:N

t ) ▷ Compute weights

19: W 1:N
t = w1:N

t /
∑N

m wm
t ▷ Normalizing weights

20: end for

The outputs of algorithm 2 are:

E [Qt(Xt)] =

N∑
n=1

Wn
t ϕ(X

n
t ), Filtering(2.41)

lNt =


1
N

∑N
n=1 w

n
t , if resampled in step t∑N

n=1 wn
t∑N

n=1 wn
t−1

, else
, Likelihood f.(2.42)

Applying this algorithm to a state space model with distributions P0:T and transition kernels p1:T and
f0:T is fairly straight forward in the Bootstrap formalism, simply substitute the corresponding functions.
More interesting is the Guided Feyman-Kac model. Here, we first have to define our M0,M1:T (G0:T

is then defined with the equations from definition 7). But why would it be preferable to first define
and compute a new starting distribution, transition kernels and weighting functions?

In every step the new particles are sampled from Mt, so the performance of the algorithm strongly
depends on the quality of these transition kernels. In the context of the Bootstrap formalism these
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kernels only describe the evolution of the observations themselves. In the Guided formalism we can
directly influence the progression , e.g. by making the next particles also depended on the given
observation and by doing so nudging them in a more likely scenario. Of course the potentional functions
Gt have to be addressed too, to not unintentionally modify proportionality. Essentially, the part of
taking a next guess is altered, so that they lie in a better proximity to the real value. If chosen well,
the performance of the filtering increases immensely.

There is no best transition kernel Mt for every scenario, but it is possible to formulate an optimal
transition kernel, at least in some sense. The next lemma shows, that the compromise between choosing
a next Xt from Xt−1 and accounting for the observation yt minimizes certain variances.

Lemma 10. Let P0, Pt, ft be given (the defining functions for a State Space model). For every t ≤ T
the set Γt := {(Mt, Gt) |Mt, Gt fulfill the Guided formalism} contains an optimal kernel

(2.43) Mopt
t (xt−1, dxt) :=

ft(yt |xt)∫
X ft(yt |x′)Pt(xt−1, dx′)

Pt(xt−1, dxt),

optimal in the sense, that it minimizes the variance of the weights wn
t , the incremental weights

Gt(X
An

t
t−1, X

n
t ) and the likelihood factors lt.

Proof. Proof is found in [4], page 142. □

We can see, Mopt
t is exactly Xt given yt and xt−1. In a general application it may not be possible

to directly determine this optimal kernel, or it could be quite hard to sample from. In any case it is
recommended to find a transition kernel which is easy to use and close to the here formulated optimal.

2.4.2. Smoothing Algorithms. For the smoothing we will compare two different approaches, both
mentioned in the section 2.2.2 in Feyman-Kac Models. We start by looking into the Forward-Filtering
Backward-Smoothing algorithm.

Forward Filtering Backward Smoothing (FFBS). The idea of FFBS is an initial filtering step into
a backwards transition kernel generating trajectories through the sampled particles. For the FFBS
method we want to translate the results of the theoretical section 2.3.2 from the Feyman-Kac formalism
back into the realm of State Spaces. First, from (2.33) we get

Pt(X0:t ∈ dx0:t)
←
P t−1|t(xt, dxt−1) =

1

pt(yt | y0:t−1)
ft(yt |xt)Pt(xt−1, dxt)Pt−1(X0:t−1 ∈ dx0:t−1 |Y0:t−1 ∈ dy0:t−1),

which gives with (2.34)

(2.44)
←
P t−1|t(xt, dxt−1) ∝ Pt(xt−1, dxt)Pt−1(X0:t−1 ∈ dx0:t−1 |Y0:t−1 ∈ dy0:t−1)

where the normalizing constant is the integral over the density5 of Pt with measure Pt−1. In these two
equations the index t− 1|t shows the dependence of this backwards kernel on the t first observations,
whereas the normal kernel (e.g., with index t− 1) does not depend on any observed data. If we want
to approximate this backwards kernel it is necessary to run a filtering step first to obtain

Pt(Xt ∈ dxt |Y0:t = y0:t) ≈
N∑

n=1

Wn
t δXn

t
(dxt),

5We have to assume from this step on, that this density exists. In our application it does, luckily.
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and then plugging it into (2.44) (along with the normalizing constant)

(2.45)
←
P

N

t|t(xt+1, dxt) =

∑N
n=1 W

n
t pt+1(xt+1 |Xn

t )δXn
t
(dxt)∑N

m=1 W
m
t pt+1(xt+1 |Xm

t )
.

Now, computing the full smoothing distribution is simply the task of substituting the approximations
into

PT (dx0:T |Y0:T = y0:T ) = PT (dxT |Y0:T = y0:T )

T−1∏
t=0

←
P t|t(xt+1, dxt),(2.46)

PN
T (dx0:T |Y0:T = y0:T ) =

[
N∑

n=1

Wn
T δXn

T
(dxT )

]
T−1∏
t=0

←
P

N

t|t(xt+1, dxt).(2.47)

The first equation is computed through recursion, a proof is found in appendix C.7. This approach has
different variations, i.e. it can also compute just marginal distributions. Its advantage is that it is
quite easy to implement, but it is afflicted with two levels of approximations. Firstly, every distribution
and kernel is approximated (this is the case for every algorithm here), but secondly and more severely,
the different trajectories itself approximate PN

T . We now cover a more complicated, but in practice
outperforming algorithm for marginal distributions.

Two-Filter Smoothing. The starting point is the derived smoothing distribution (2.35) using a change
of measure from the filtering distribution.

(2.48) PT (Xt ∈ dxt |Y0:T = y0:t) ∝ pT (yt+1:T |xt)P(Xt ∈ dxt |Y0:t = y0:t).

To obtain this proportionality factor we take a look at some of the theoretical steps from that chapter,
most importantly from the cost-to-go function. Inserting the Bootstrap or Guided formalism into
(2.26) and the State Space counter part of Ht:T described in (2.27) we obtain

(2.49) pT (yt+1:T |xt) =

∫
X
ft+1(yt+1 |xt+1) pT (yt+2:T |xt+1)Pt+1(xt, dxt+1).

In that section it was already mentioned that this quantity can be computed using backwards filtering,
here it becomes clear why. Equation (2.49) is just like the forward recursion used for filtering, but
with two differences. Firstly, it works backwards, hence the backward filtering. And secondly, the right
hand side can integrate to infinity. To overcome this issue the Feyman-Kac model designated for the
backwards filtering is chosen in a way, so that it approximates

(2.50) γt|T (dxt) ∝ γt(dxt) pT (yt:T |xt) = γt(dxt) ft(yt |xt) pT (yt+1:T |xt),

γt is a probability distribution and needs to be given. The following lemma gives the recipe for the
Feyman-Kac model. To differ the forward and backward model we will use the arrow notation, already
used for the backwards kernel notation.

Lemma 11. When taking

←
GT (xT ) =

fT (yT |xT ) γT (dxT )
←
MT (dxT )

,(2.51)

←
Gt(xt+1, dxt) =

ft(yt |xt) γt(dxt)Pt+1(xt, dxt+1)

γt+1(dxt+1)
←
M t(xt+1, dxt)

,

the defined Feyman-Kac model fits the required (2.50). It is assumed that the Radon-Nikodym derivative
exists.

Proof. C.6. □
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The remaining part is to choose appropriate γt and
←
M t. Since we have the same problem as in the

filtering distribution just with a different formulation, we again have an optimal transition kernel:

(2.52)
←
M

opt

t (xt+1, dxt) =
ft(yt |xt)∫

X ft(yt |x′)
←
P t+1(xt+1, dx′)

←
P t+1(xt+1, dxt).

For γt it is recommended6 to get as close to Mt as possible, if feasible γt(dxt) = Mt(dxt).

The actual two filter algorithm is the composition of the two filtering approximations

• Forward Filtering
∑N

n=1 W
n
t δXn

t
(dxt) ≈ P(Xt ∈ dxt | y0:t)

• Backward Filtering
∑M

m=1

←
W

m

t+1δ←X
m

t+1

(dxt+1) ≈ γt+1|T (dxt+1)

plugged into (2.48) with the addition of the transition density pt+1(
←
Xt+1 |Xt), this is required because

the simulated particles do not overlap in the forward and backward filtering, hence can not be used for
the same computation. Instead the probability for the transition is used to determine the likelihoods.
Hereby our final smoothing distribution is

(2.53) E [Xt |Y0:T = y0:T ] ≈
∑N

n,m=1 ω
n,mδXn

t
(dxt)∑N

n,m=1 ω
n,m

with

(2.54) ωn,m := Wn
t

←
W

m

t+1

pt+1(
←
X

m

t+1 |Xn
t )

γt+1(
←
X

m

t+1)
.

2.4.3. A Small Word on Convergence. The convergence of particles filters follow the central limit
argument, but the requirements and complexity changes depending on the sampling schemes used. We
did not introduce these for obvious space and scope reasons, a reference is found at the end of chapter
2.3.1. This way, only the main results are presented from the main book chapter 11.

The first, important result is, that particle filter converge for N →∞ almost surely, meaning for fixed
t ≤ T

(2.55)

N∑
n=1

Wn
t δXn

t
(dxt)

a.s.→ Qt(dxt)

under the assumption of Gt being upper bounded. The error has a convergence rate of N−
1
2

(2.56)
√
N

(
N∑

n=1

Wn
t δXn

t
(dxt)−Qt(dxt)

)
⇒ N (0, νt).

νt is the cumulative error introduced in every time step. Under very strong assumptions it is possible
to bound this error uniformly, the idea behind is to somehow forget errors of the past. The first
assumption is, that Gt is uniformly bounded in time (strictly larger then 0) and the second one is on
Mt admitting probability densities mt with

(2.57)
mt(xt |xt−1)

mt(xt |x′t−1)
≤ cM ,

6referring to the reference book [4], chapter 12, page 208f.
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for some cM ≥ 1. These assumptions are more or less never met in practice.

Remember, all the convergences are towards Qt, meaning our result can not get better than the
distribution we try to approximate. Sounds trivial, but this brings an arbitrary barrier into any particle
filter, since in practice these distributions are not the given truth.

2.5. Creating our Fast Ice Model. After introducing all the theory we need to compute a distribution
depending on some kind of observation, we are now ready to create our fast ice model. Recall, the
following distributions and densities must be given by our side:

• P0(dx0) : the starting distribution to sample initial fast ice guesses,
• Pt(xt−1, dxt) : the transition kernel to evolve the fast ice through time,
• ft(yt |xt) : the transition densities for a likelihood of sampled fast ice.

Also, the result from any filtering/smoothing has its values continuously7 in [0, 1], from which the fast
ice (0,1) is still to be concluded. This step is covered at last.

2.5.1. The Idea. We start by defining the decision space X := Matm×n ({0, 1}), every element of the
matrix is a small region of the image with the meaning

• 0: Fast ice or land,
• 1: Drift ice.

The double assignment of 0 is advantageous in a later stage and does not confuse anything as the land
pixels are fixed and known. Assuming there is a given state xt ∈ X the next state xt+1 should be an
evolution of the previous one following a cleverly chosen distribution. The strategy is to look in a
neighbouring region of any pixel to determine how likely it will become or stay fast ice. Essentially it
is a bit like Conway’s Game of Life [11], where a two dimensional field evolves over time according to
set rules, but instead of these strict rules there are given probabilities for each pixel to ensure different
outcomes. Also, the choice of likelihoods change over time to assure a fast growth at first and then
a sharp decline of fast ice towards summer. From this point of view it is quite clear why a guided
Feyman-Kac formalism is superior over a Bootstrap formalism, it is unclear in what direction fast ice
should grow without any input of the observations.

For guiding and weighting the particles the transition density is defined through a pixel wise comparison
of a scaled particle to the observation. The scaling νt is an interpolated and convoluted version of the
corresponding observation to achieve a error free and more continuous factor. It is apparent that the
scaled particle is simply

(2.58) νt xt︸︷︷︸
Pointwise

=

{
0, if xt = 0

νt, if xt = 1
.

Lastly, the initial distribution can be based on a −1’st observation along with an evolution step using
the transition kernel. The decision x−1 is described through a randomly (but small) chosen threshold
on y−1. This achieves a random but reasonable first guess. In practice one may need to take more
than 1 observation due to a lack of data points, the idea remains the same.

7Continuously in the sense of as continuous as the amount of particles N allow, every value is a fraction with
denominator N .

https://playgameoflife.com/
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2.5.2. Parameters and Functions. We start by defining the transition kernels Pt(xt−1, dxt), our goal is
to have a pixel by pixel Bernoulli distribution. Having state xt the first step is to run a convolution
over the xt to obtain neighbourhood information about each pixel. Here are two example operators,
one rather simple and one a bit more sophisticated

c1 =
1

8

1 1 1
1 0 1
1 1 1

 ,(2.59)

c2 =
1

α


1
4

1√
5

1
2

1√
5

1
4

1√
5

1√
2

1 1√
2

1√
5

1
2 1 0 1 1

2
1√
5

1√
2

1 1√
2

1√
5

1
4

1√
5

1
2

1√
5

1
4

 , alpha = 4

(
7

4
+

1√
2
+

2√
5

)
(2.60)

In practice there are many different to try out (none, euclidean, exponential decreases and different
sizes), empirically it seems to be beneficial to use a bigger and decreasing matrix, so in the numerical
part we use c2.

This yields a new matrix ζt with the neighbourhood information

(2.61) ζt := (c2 ∗ xt) , ⇒ ζt ∈Matm×n ([0, 1])

Values closer to 0 imply land or fast ice in the surroundings whereas values closer to 1 show a lot of
movement in the close environment. We define two (possibly non-surjective) functions

g0,1 : [0, 1]× 0, 1, . . . , T → [0, 1](2.62)

(ζ
(i,j)
t , t) 7→ f0,1(ζ

(i,j)
t , t)

which take in the values from ζt and the the time t to determine the probabilities p(i,j) of all the
Bernoulli distributions (i ≤ n and j ≤ m).

(2.63) Pt(xt−1, dxt) ∼
(
Bin

[
1, p̃

(i,j)
t

(
x
(i,j)
t−1

)])
i≤n,j≤m

with p̃
(i,j)
t

(
x
(i,j)
t−1

)
= g

x
(i,j)
t−1

(ζ
(i,j)
t , t). Essentially, f0 computes the chance for fast ice to become drift

ice and f1 the chance for drift ice to stay drift ice. Remember, the higher the value p(i,j), the higher
the chance for Drift-ice. The most important and critical is the definition of g0 and g1. Intuitively, it
makes sense to split both into three parts depending on the time t and transition from one to another
trough time. These three parts separated by t0, t1 ∈ {0, 1, . . . , T} are the same for both functions and
are round about

• beginning of winter, when a lot of fast ice develops.
• winter, when the ice is fairly stable.
• spring, when fast ice melts.

See figure 19 from the simulation appendix A for reference.

Another crucial part is the evaluation of the neighbourhood values ζt, for what amount of relative
movement is it reasonable to, in a sense, project a certain outcome by giving a high (drift ice) or low
(fast ice) likelihood. For this effort, we introduce two functions depending on t (mostly defined through
t0, t1) for each function α0

k(t), α
1
k(t) ∈ [0, 1], k = 0, 1 which act as thresholds. To the left of α0

k the
values stay quite low to increase the likelihood of fast ice and on the right of α1

k the values are close to
1 to achieve a good chance of drift ice. In between α0

k and α1 the two values are interpolated.
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(a) t ≤ t0 (b) t ≥ t1

Figure 7. Example g0 function for values t ≤ t0 (left) and t ≥ t1 (right). The
parameters in this case are:

• β0:1
0 = 0.05, 0.90

• ρ0 = 1.04
• εu = 0.0001
• εl = 0.0005

The functions α0:1
0 (t) are later described in the parameter optimization section 2.5.4,

equation (2.76). The there defined parameters lie between 0.2 and 0.9.

And finally, most significantly are the values of g0, g1 themselves. Here we use five parameters for each
function, one βl

k ∈ [0, 1] for each αl
k, l = 0, 1 (the values of gk at the threshold values), an exponent

ρk ∈ (0,∞) which controls the general behavior of the function and εu, εl ≥ 0 to have a minimal
chance for every point to change to drift ice and fast ice respectively (l stands for lower and u for
upper bound, also in practice εl, εu value will always be > 0). These two are also the only parameters
for both functions simultaneously. ρk is mostly used for the optimization of the functions, as it changes
their whole appearance.

Definition 12. For a defined set of parameters t0:1, β0:1
k , ρk, ε

u, εl, a function α0:1
k (t) and a convolution

matrix cs the transition kernels Pt are defined for k = 0, 1 through (2.63) with

gk(ζ
(i,j)
t , t) =

(
hk(ζ

(i,j)
t , t)

)ρk (
1− (εu + εl)

)
+ εl, with(2.64)

hk(ζ
(i,j)
t , t) =


ζ
(i,j)
t

α0
k(t)

β0
k , ζ

(i,j)
t ∈ [0, α0

k(t))

(α1
k(t)−ζ

(i,j)
t )

α1
k(t)−α

0
k(t)

β0
k +

ζ
(i,j)
t −α0

k(t))

α1
k(t)−α

0
k(t)

β1
k , ζ

(i,j)
t ∈ [α0

k(t), α
1
k(t))

β1
k +

(ζ
(i,j)
t −α1

k(t))

1−α1
k(t)

(1− β1
k) , ζ

(i,j)
t ∈ [α1

k(t), 1]

Figure 7 shows an example function for a set of parameters.

The next step for the initial distribution P0(dx0) is rather straight forward after defining Pt.

Definition 13. We define the starting distribution with threshold range (0, ϵ] as

(2.65) P0(dx0) = P0(x−1, dx0)



34

(a) yt

➡

(b) ỹt

➡

(c) νt

Figure 8. The process of transforming an observation into a usable matrix for
the observation density function. First is a barycentric interpolation followed by a
Gaussian filter.

with

(2.66) x−1 :=
(
δ(0,ϵ](y

(i,j)
−1 )

)
i,j

.

ϵ is chosen in a random environment close to 0 for every new particle as it is not clear which threshold
is the best to start with. Also as mentioned before, in practice one might need to use multiple initial
observations to achieve a satisfying cover of the area. In the case of our simulation we simply imitate
this by choosing the first (and last for backwards filtering) observation to have only a little amount of
lacking data points.

Lastly, for the observation density ft(yt |xt) it is necessary to manipulate the t’s observation. First,
a linear interpolation fills the holes in the data point. This linear interpolation is made through
triangulation, so finding the three nearest points of a triangle enclosing the points of interest and then
performing a linear barycentric interpolation as described in the scipy package [29] under the method
scipy.interpolate.LinearNDInterpolator8. After this, a Gaussian filter reduces sharp edges and allows
for a more smooth comparison, this is done by doing a convolution with a two dimensional Gaussian
function G with variance σG.

(2.67) νt = (G× ỹt),

where ỹt is the interpolated observation yt

(2.68) ỹt =
(
I(y

(i,j)
t )

)
i≤n,j≤m

.

I is the barycentric interpolation of a single point mentioned above. Figure 8 shows a sample process.

At last, a normal distribution with expectation νt and variances σ
(i,j)
t is used to weight the particles.

The variances adapts depending on the quality of information in a point (e.g., lack of data point and
how far is the nearest information). We define this variance as a quadratic approximation

(2.69) σ
(i,j)
t := σ̂ + r1h(t)

(i,j) + r2

(
h(t)(i,j)

)2
where h(t) ∈Matm×n ([0, 1]) reflects the quality of the neighbouring information and is derived from a
convolution of 1

913×3 with δNaN(yt) (a matrix derived from yt, where pixels are 1 if they are defective,
0 otherwise). σ̂ is a constant.

8The scipy package is an extension for Python and is also used in the numerical part for efficient and exact numerical
computations.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.LinearNDInterpolator.html
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Definition 14. Given a Gaussian variance σG and local variances σ
(i,j)
t we define the transition

density point wise

(2.70) ft(y
(i,j)
t |x(i,j)

t ) ∼ N (νtxt, σ
(i,j)
t ).

Another parameter is the chance for a pixel to be defective, a chance between 0 and 1. This however,
has no theoretical advantages, as defective pixels are simply ignored. Still, it is found in the code to
make sure it is expected to obtain such values [25]. As a last note, for both the Gaussian filter and the
convolutions we need to make a choice on how to handle the edge case. We simply choose an extension
of the border values. In a one dimensional case it would look like(

a︸︷︷︸
extension

| a b c d | d︸︷︷︸
extension

)
,

and it introduces artificial errors along the edges making our model less reliable there.

2.5.3. Fitting it into the Feyman-Kac Model. For the filtering and smoothing we first need to translate
the described functions into the Feyman formalism. The Bootstrap model (def 6) is straight forward,

for the Guided model (def 7) we implement the recommended optimal kernel Mopt
t from Lemma 10. It

is sufficient to compute the probabilities for xt = 1 given xt−1, since Mt is a Bernoulli distribution by
construction. We get

Mopt
t (xt−1, 1) =(2.71)

=
ft(yt | 1)∫

X ft(yt |x′)Pt(xt−1, dx′)
Pt(xt−1, 1)

=
ft(yt | 1)∑

x∈{0,1} ft(yt |x)Pt(xt−1, x)
Pt(xt−1, 1)

=

exp

{
− 1

2

(
yt−νt

σt

)2}
exp

{
− 1

2

(
yt−νt

σt

)2}
p̃t(xt−1) + exp

{
− 1

2

(
yt

σt

)2}
(1− p̃t(xt−1))

p̃t(xt−1)

and

(2.72) Gopt
t (xt−1, xt) =

Pt(xt−1, dxt)ft(yt |xt)

Mopt
t (xt−1, dxt)

which is well defined, again, by construction. From here it is possible to Filter and use the FFBS
algorithm. At last we also want to implement the Two-Filter smoothing, thus requiring a bit more
work.

At first it is necessary to create a backwards filtering model. The theoretical optimal backwards kernel

stated in equation (2.52) is not feasible since the backwards transition kernel
←
P t+1(xt+1, dxt) depend

on the marginal distributions of Pt(dxt) and Pt+1(dxt+1) which are approximated with the forward
filtering, but since they are discrete distributions it does not work for newly sampled particles from
backwards filtering. Option two is to approximate this optimal kernel, we do so by using the developed
theory for forward filtering with adapted parameters. Finally, to obtain γt(dxt) ≈Mt(dxt) we sample
M particles from xt using the backwards kernel and use the average weighting to decision yt−1

(2.73) γt(xt) =
1

M

M∑
m=1

ft−1(yt−1 |X(m)
t−1 ), X

(m)
t−1 ∼

←
P t(xt, dxt−1).
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Name Space Description

α0:1
k [0, T ] →

[0, 1]
splits gk into 3 parts: low, transition, high likelihood

β0:1
k [0, 1] determines the point wise evaluation of gk at α0:1

k

ρk (0,∞) parameter to change appearance of gk (close to 1)
εu, εl [0,1] minimal chance for fast/drift ice
σG (0,∞) variance of the Gaussian filter
σ̂ (0,∞) constant variance for the transition density ft
r1, r2 R coefficients of the quadratic variance function

Table 1. System Parameters (for k = 0, 1), the parameters which emerge from the
model choice itself and need to be optimized using a kind of performance test.

Name Space Description

t0:1 {0, 1, . . . , T} time stamps with important changes: development
of stable and melting of fast ice

Table 2. World Parameters, the parameters which have a resemblance in the real
world and can be optimized (or even computed) referencing the data.

This of course does not explicitly approximate Mt(dxt), but is indirectly assessing the different xt, and
after normalizing the weights over all t it is a significant quantity. A check of the pre-requirement for

the potential functions
←
Gt for Lemma 11 is found in appendix C.8, we now go over into the numerical

part.

2.5.4. Optimizing the Parameters. The first numerical part is to optimize the parameters introduced in
the last sections to strive for a well working model. For this, we first sort the parameters into system
parameters and world parameters, tables 1 and 2 explain the difference.

World Parameters. The world parameters t0 and t1 can be chosen after an approximated total fast
ice on the observations, and can change tremendously from one to the next case, in contrast to the
system parameters. The idea is to find a resemblance of the function (A.1) used in the simulation of
the fast ice (appendix A), basically we want to identify the two slopes in the graph 19. To this end, a
threshold τ is used to determine the relative fast ice in every observation, relative to the non-error
pixels. We call this ratio

(2.74) st =
τ(yt)

T (yt)

with τ(yt) being the amount of pixels < τ , and T (yt) the total amount of error-free pixels. Figure 9
shows such ratios for an example. It is clearly quite noisy, so a moving average (step size 3) is used to
reduce the volatility. Notice the similarity to graph 19.

This exemplary image also shows the empirically chosen value for τ to lie in [0.1, 0.3], if not said
otherwise this value is 0.2. To obtain the two slopes we use the fundamental theorem of calculus and
assume the plotted function in figure 9 to be a rectangle (along the time axis). For that matter we
choose a threshold ε̂ = 0.025 and get two starting values for the bump, one from the left a and one
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(a) True values

➡

(b) Running mean

Figure 9. This figure shows the ratio values st for different thresholds τ (y-axis)
though time t (x-axis). Left is the true value, whereas right is a running mean of the
values (step size 3).

from the right b. After numerically integrating the area under the graph for a chosen τ we get

(2.75) A =

∫ b

a

c dx = c(b− a) ⇒ c =
A

b− a
,

and use the computed c to obtain two new values â, b̂ which define our two time steps t0 = â, t1 = b̂.
This principle is visualized in figure 10.

System Parameters. The idea for the system parameters is to find a general region for every parameter
and only adapt any parameters within that region in different practical scenarios. Also, to optimize
these parameters mostly benefits the convergence of any of the filtering/smoothing algorithm and is
not necessary for it to work. Nevertheless, any kind of optimization can result in a better performance
over all (qualitatively and time effectively).

Any of the real valued system parameters (so all but the functions α0:1
k (t)) can be set as a distribution

instead of a fixed value. The idea is to then sample such parameters and compute the likelihood values
through a filtering step (introduced in equation 2.15), this is repeated for M times, where after every
repetition the parameters get changed slightly. In the end a weighted mean consisting of the likelihood
values and the sampling density determines the average value for one observation cycle. This algorithm
is called Particle Marginal Metropolis-Hastings (PMMH) and can be implemented easily after assigning
starting distributions. A more in depth description (both methodically and mathematically), as well
as other procedures for parameter estimation can be found in source [4] in chapter 16.To obtain a not
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Figure 10. Conceptual visualization of the computation for the parameters t0, t1. r̂
is the value obtained through the running mean.
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Distributions (starting expc)

Sampling Start Values

PMMH

Compute new ExpcIntermediate results

Results

parallel for chunk c

Figure 11. This flowchart shows the optimization process using the PMMH algorithm.
The blue arrows symbolize the repeated executed action. The black, dotted rectangle
signifies the execution of multiple (chunks of size c) optimizations at once.

to complex expression for α0:1
k (t) we introduce (even more) parameters, 2 for each function, denoted as

α̂0:1
k,0:1

9, with 0 ≤ α̂0:1
k,1 ≤ α̂0:1

k,0 ≤ 1. The order is inverted since for lower t these threshold are higher

(towards winter we want more fast ice and the further right the thresholds are the likelier it gets). We
then define the functions as a linear interpolation as follows

(2.76) α0:1
k (t) =


α̂0:1
k,0 , t ≤ t0

(t−t0)α̂0:1
k,1+(t1−t)α̂0:1

k,0

t1−t0 , t ∈ (t0, t1)

α̂0:1
k,1 , t ≥ t1

Now, we want to optimize the 18 parameters (see table 1, in total 8 for the α functions and 4 for the
β values), excluding the σG for the Gaussian variance which we set to 1. The optimization works as
follows: first an initial expectation for every parameter is chosen as well as a fixed variance for a normal
distribution (truncated normal to [0, 1] if necessary). Then, a set chunk of parameters get optimized
by sampling the starting value from the distributions and running the PMMH algorithm on a sequence
of observations. Hereon, the expectation in the distributions get adapted according to the already
existing results and the next chunk is optimized. This is repeated. A visualization of this process is
shown in figure 11. In our case the parameters for the PMMH algorithm are chosen as follows

9I apologize for the confusing notation! As a reminder: the k stands for the original g function, so k=0,1. It clarifies if

the predecessor of a pixel was fast ice (0) or drift ice (1). The index next to k shows that there are 2 different parameters
(the two we just introduced). The last 0 : 1 expresses the two functions for each of the original g function. So in total,
there are 4 functions α0:1

k (t) with each 2 parameters, called α̂0:1
k,0:1
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• N = 512, total amount of scenarios,
• c = 64, chunk size for parallel computing,
• iter = 45, number of iterations in any PMMH cycle,
• part = 100, amount of particles per filtering step (per iteration),
• seed0 = 1000, starting seed for the fast ice generation,
• T = 50, the cycle length for the generated fast ice,
• grid = (65, 50), the image size for any observation in pixels.

The paramters T being only 50 is of course not the best choice if the original data has over 100
observations (so way more data points), but they suffice regardless. The main reason for reducing the
amount of observations is the cap on computational power.10.The final results are depicted in the figure
12 for an estimated defective percentage of 0.3 and a medium to low noise level on the observations.
The red line in the graphs depicts the initial starting guess. In the appendix B.1 two further results
are shown for different observation scenarios. In the beginning the exponential parameters p0 and
p1 decreased rapidly, spoiling all the other parameters; In a second round of optimization they were
limited close to 1 and the results look more promising. Interestingly all the optimizations yield similar
values for the different parameters independent of the error and noise level. Most of the parameters
did not move too far away from the initial guess, probably because of the method itself when using
normal distributions. It seems though, that the function thresholds α̂ (on the x-axis) moved close to a
point on the lower side (controlling the fast ice) and further apart on the higher side (controlling the
drift ice). This effect I can not explain. Also, in small numerical tests the differences in performance
are vague and not really noticeable compared to the starting parameters.

2.5.5. Transformation of the Results. At last, we need to transform the results into a comparable state,
values of either 0 or 1. A classification with a hard break is made, all values over 0.8 are drift ice, all
others fast ice (except for Bootstrap). This value is chosen using the ROC-curve depicted in the next
section Numerical Experiments (figure 14).

10This optimization took over 8 hours on 64 cores on a HCP server. And the observation amount does not factor
linearly.
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Figure 12. Results from the parameter optimization for 30% errors and low noise
level. (A) are the parameters for the variance computation in the transition density.
(B) shows the two global function parameters for g0 and g1. (C) and (D) are the
unique parameters for each of the fast ice likelihood functions. The red line is the
initial starting guess.
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(a) (b) (c)

Figure 13. The three different scenarious described in the list above. A normal (A),
a strongly defective (B) and a very noisy (C) setting.

3. Numerical Experiments

In this chapter, we will numerically test the two distinct smoothing algorithms (FFBS and Two-Filter)
for the Guided model against a trivial weighted mean function11 as well as a Bootstrap approach for
comparison. In total we will look at three different scenarios showcased in the parameter optimization
section 2.5.4 and appendix B.1

(A) normal error rate (30%) with little noise,
(B) strong error rate (60%) with little noise,
(C) low error rate (20%) with strong noise.

Figure 13 shows a sample image for an observation on the same seed.

These tests will run on different seeds in relation to the parameter optimization. The parameters are
chosen as the mean from the optimization.

A big thanks to Prof. Dr. N. Chopin for his python implementation of most of the different filtering /
smoothing algorithms, GitHub: [3].

3.1. A Normal Scenario (A). Figure 14 shows the different methods on the standard scenario (A)
in its performance depicting their balanced accuracy as well as the ROC-curve. The balanced accuracy
is

(3.1) BA =
TPR+ TNR

2
,

where TPR is the true-positive-rate and TNR the true-negative-rate. This metric shows the proportion
of correctly identified pixels and gives a good overview about the altogether performance through time.
The ROC-curve illustrates the relationship of true positives to false positives, the time dependence is
lost in this representation. All methods had a sample size of 512 with a particle amount of N = 1000
(the moving average had length of 11 time steps). One can clearly see the superior performance of the
Monte Carlo approach in comparison to the moving average. Particularly in the beginning and end
they deviate a lot. Interestingly the Bootstrap does achieve very good results in the beginning, even
outperforming the Guided approaches, but then dramatically decreases with time. This behaviour was
predicted in the mathematical part.

11This trivial weighted mean can be seen as the result of the linear Stochastical Programming.
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Figure 14. Shows the Balanced Accuracy (left) and ROC-curve (right) of the different
methods used on the normal scenario. The black line in the balanced accuracy is the
average over time of the Two-Filter / FFBS (Guided). The dots in the ROC-curve
shows the optimal threshold value (closest to (0, 1)).
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Figure 15. This figure shows the two single components of the BA. The True-Positive-
Rate left and True-Negative-Rate right, expected value with one standard deviation.

The mediocre outcomes of the Two-Filter and FFBS algorithms at about t ≈ 85 are a bit unexpected.
Also, the relative rate is a bit misleading in this context. Other than that they seem to be performing
more or less identically. A bit more insight is given by the single parts (true-positive and true-negative)
of the BA, 15.

Indeed, FFBS and Two-Filter smoothing do perform identically. The Bootstrap overshoots, catching
most of the true fast ice but also classifies way too much of the rest as fast ice. Let us look at the
absolute values for comparison, figure 16.
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Figure 16. Absolute error of the True-Positive (left) and True-Negativ (right).

As a first observation, the absolute errors go down on each side, which makes sense since there is just
a bit of fast ice in the beginning and end of each cycle; most of it being at the coast and afflicted by
a biased error. The little bump in left graph at t ≈ 70 is due to the melting of fast ice There, the
smoothing algorithms show some troubles, it is first gone in the model and then in the actual data.
This makes it a bit hard to determine a correct timing of the breaking of fast ice. In comparison to
the Bootstrap the other methods undershoot a bit, but achieve an averaged accuracy of 87%.

3.2. Defective and Noisy Scenario (B) (C). The two other scenarios (B) and (C) are compared
using the two-filter method with the same specifications to the first scenario (A) and are shown in
figure 17.

The noisy and defective observations perform quite similar, with the defective scenario (B) being a
bit more accurate. Both loose their accuracy towards t→ T , probably because they can not find the
remaining fast ice pixels spread along the coastlines. Interestingly, the defective scenario yields a bit
better results at the start, this is a bit mysterious. The ROC-curve also hints to a more common false
positive classification in (B). This we can see in figure 18.
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Figure 17. Shows the Balanced Accuracy (left) and ROC-curve (right) of the Two-
Filter algorithm in the different scenarios. For the BA the thick line is the mean with
the shaded area being one standard deviation.
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Figure 18. Shows the False-Positive-Rate of the different scenarios.
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4. Further Ideas and Follow Ups

Building upon the Monte Carlo approach, there are plenty more ideas and adaptations to be tried,
some of those bringing a definite improvement. One of those would be the use of Markov Chain Monte
Carlo, to speed up the smoothing using Metropolis-kernels [5]. This would allow for more particles12 or
simply more numerical tests. There is also more on parameter optimization than I stated here. Also,
there are probably other ways of describing the fast ice evolution than to use pixel by pixel Bernoulli
distributions, e.g., using matrix transformations.

Of course the next step would be to use this approach on real data points, all the groundwork is
done. The biggest task is the preparation of the data itself, as described in 1.3. Looking into that the
following things could be added to the model (and maybe to the simulated training data):

(i) add water depth information,
(ii) spontaneous ice breaks,
(iii) error bias along the coast lines,
(iv) current and weather data,
(v) an extension from a single fast ice region towards multiple with local changes.

Most of these informations can probably be integrated into the transition kernels through gk.

A completely different approach would to frame the fast ice using a curve and finding the best fit to do
so in every step. This idea comes from weather forecasting and utilizes variational data assimilation
to track curves through (sometimes missing) noisy data points. Since this approach relies on visual
boundaries (e.g., of clouds) the idea of using the velocity of ice suggests itself for the same reason
stated in this work. I pondered to go for this idea but ultimately decided together with my supervisors
on Monte Carlo Simulations. A good reference for this alternative procedure can be found here [19] or
here [2].

Last but not least, one could definitely try to utilize convolutional neural networks, training it on the
same simulated data I optimized my method on.

12This time effect is huge, in some test up to 50 times faster (half an hour instead of 24), but describing everything
mathematical goes beyond the scope of this thesis. So it is implemented in the code, but not used or described.
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5. Conclusions

The proposed ideas operate in a promising way on detecting fast ice under uncertainty while benefiting
from the time dependency. An average balanced accuracy of about 87% is not yet sufficient to work
without human verification, but shows the potential of the presented approach. The two smoothing
algorithms presented in the Monte Carlo simulation perform identically well and outperform the linear
Stochastical Programming (weighted mean) by a lot. The variance of any iteration stays stable over
time and only affects outcomes by up to 3 − 5% (absolute). Especially through the main phase of
fast ice the results convince, having an (balanced) accuracy of over 93%. Problematic are the two
(time) edges (starting and end-time), notably the dent on the right. The relative findings drop down
to a True-Positive-Rate of about 60%. This is caused by fast ice only remaining at the coast, if at
all. There, a biased error makes it hard for the algorithms to find the fast ice. In the end, all results
except the Bootstrap undershoot the actual fast ice, this means that if a pixel is flagged for fast ice it
most definitely is fast ice. This outcome can be adapted in next steps, e.g., by decreasing likelihoods
of gt and increasing thresholds for the classification.

Changing the incoming data points in terms of defectiveness does not influence the results too much,
surprisingly even after doubling the error rate to 60%. A noticeable effect is only felt after t > 3

5T ,
when the noisy and defective scenario diverge with a linear decrease in accuracy. However, only a
small decrease in performance is seen in the ROC-curve.

In summary: even though the here particular implementation has room for slight improvement (ideas
and examples given in Further Ideas and Follow Ups), the framework of Monte Carlo Simulations
has potential in the application of fast ice detection and shows promising results for a new stochastic
approach.
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Appendix A. Simulation

In this segment you will find everything about the simulation of the data.

A.1. Perlin Noise. Perlin Noise is playing a huge role in the fast ice simulation, which is why we will
do a rough coverage. It is named after its creator Ken Perlin and is the first ever implemented gradient
noise published in a paper by 1985 [20]. The original idea has since been adapted and optimized to
the so-called Simplex Noise [21], this we will not cover here as the standard Perlin Noise is sufficient.

For (2D) gradient noise one fixes a grid size and sets each integer knot to 0. To determine the values in
between the grid points, each integer grid point is assigned a (pseudo-)random gradient. These gradients
are then dot multiplied with the vectors going from the grid point to the point in question. At last, an
interpolation between each corner point yields the final value [6]. In the case of Perlin noise the random
gradients are pseudo-random to allow the same computation by repeated assignments. A standard
choice are eight unit vectors evenly distributed around the points, e.g.,: gi = [Re

(
eiϕ
)
, Im

(
eiϕ
)
] with

ϕ = kπ/4 , k = 0, . . . , 7. For interpolation the polynomial function13 f(t) = 6t5 − 15t4 + 10t3 is used
as it has zero first and second derivative at both ends t = 0, t = 1, being the integer lattice points[21].
Here a scheme for computing Perlin noise in a single point P = [x, y], algorithm 3.

Algorithm 3 Perlin for a single point

1: [xi, yi] = floor([x, y]) ▷ Using top left corner as reference for vector
2: [xf , yf ] = [x, y]− [xi, yi] ▷ Vector to point P
3: g0, . . . , g3 = randomV ec(ix, iy) ▷ Generating the Pseudo-Random gradients at each vertex around

P
4: di = gi · [xf , yf ] ▷ Computing the dot product with the vector
5: Return inter(d0, . . . , d3) ▷ Interpolating the values d0, . . . , d3 according to f and distances xf , yf

In practice this computation is vectorized over all points in the grid [25], the python implementation is
found in the GitHub.

A.2. Description of the Velocity Simulation. The simulated data should be constructed forward
in time, so in every new step the velocity field is derived from the last few steps according to the rules
and ideas stated below. In general these points should be acquired:

(i) Changing fast ice cover, extending and shrinking with time.
(ii) Changing velocities around the fast ice, simulating the drift ice.
(iii) Noise and missing data with local coherence (e.g., replicate effects of rain).
(iv) Land-mass with strong noise / few information along the coastlines.

Starting with point (i) and (iv) we generate an initial Perlin noise grid. Interpreting the values as a
height map we set the sea level at the α-quantile of all pixels, giving a land mass of intended size.
For the fast ice we use a threshold function depending on the time step, allowing for a controlled
but random extension of the fast ice cover and later a reduction in similar matter, the values of this
function lie in between a lower bound and the α-quantile of the land. Here, the lower bound fixes the
maximal amount of fast ice reachable as it is filled in in between the α-quantile14 and the yielded value
of the function.

13Here the original posted interpolation function f(t) = 3t2 − 2t3 would get by as well, the second order continuities
are not needed.

14In practice the upper bound is below the land threshold to assure at least a bit of fast ice all year long.
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Figure 19. Example of the threshold-function f with parameters bl = 0, bu = 1,
α = 23, T = 50 and a variance of σ = 0.05.

Consequently most of the fast ice will be generated along the coastlines ’reaching’ into the sea, the
way it is aimed to be. The choice on the threshold function is not that relevant as long as it grows
and shrinks in a rapid way towards winter and summer respectively, this is because most of the
characteristic of fast ice is already obtained from the original Perlin noise. In our case two hyperbolic
tangents are utilized:

(A.1) f(t) = bl +
tanh

(
α( t

T − t0)
)
− tanh

(
α( t

T − t1)
)

2
(bl − bu) + Φt

with t being the time step, T the cycle length determining how long a winter period is (in observation
steps), t0 and t1 the beginning and ending of the fast ice (relative to T ), bu and bl the upper and lower
bound, α a factor to control the steepness of the slopes and Φt a normal distribution with scaled down
variance. All pixels falling into these bounds get a speed of zero, all the land pixels an identifiable
constant (in practice −1) and along the coastline of the land the pixels are sampled from a scaled
uniform random distribution to obtain a biased error (e.g.,. ∼ U ([ϵl, ϵu]) , 0 < ϵl < ϵu < 1).

Looking at point (ii), simulating the velocities around the fast ice and land pixels, it is fairly easy to
see the usage of (again) a Perlin noise, the grouped but continuously (in space) changing speeds are
natural features, both in drift ice and Perlin noise. So in every step a new Perlin noise is generated
representing the velocities of each pixel, for that matter it is affinely transformed by simply offsetting
all values until they are non-negative and then scaling it by the maximal speed v̂ drift ice should attain.
Let vmin < 0 be the minimum of the values generated 15, then the point wise transformation looks like

(A.2) h(x) = (x− vmin) v̂

In order to imitate some correlation in the drift speeds (e.g., the movement of ice in a direction) the
newly generated Perlin noise is (randomly) linearly interpolated with the last one, this creates mild
effects of moving ice as different spots stay loosely consistent in time and also seem to drift in some
direction, see figure 20.

15it is always < 0 in Perlin noise which has more than one grid-square, this is a direct result of the computation of
the values inside them, see A.1.
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Figure 20. This figure emphasizes the velocities of the drift ice. The land pixels are
dark blue, the fast ice is in a lighter blue shade vel ≈ 0. The values from the drift ice
are in between 0 to 5 from light blue to dark red. Notice how the the different velocity
regions stay more or less consistent but also move around and i.e. diffuse a bit. At
other times there will also be jumps in speeds due to weather and current changes.
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Parameters
Name Description Range16

shape Size of grid to simulate in pixels (30,40) to (100,120)
cycleLength The number of observations for a winter cycle 100 to 200
amounFI Percentage of the maximal amount of fast ice .2 to .4
amountLand Percentage of land .05 to .15
fluctuation Fluctuation of fast ice and error rates per step .005 to .05
noise Variance of the normal distribution for noise .01 to .2
errorRate Expected percentage of missing data points 0 to .5
arealError Relative size of grouped errors .5 to .95
clustered How clustered the fast ice and land is 1.5 to 3
maxSpeed17 Maximal velocity of the drift ice 2 to 10
steepness The tilt of the slopes in fig 19 > 15
seed The seed to generate the data any integer

Table 3. Parameters for the simulation

Lastly, the noise and errors are added (iii). The noise is fairly basic and only consists of a pointwise
normal distribution with low variance added onto all the speed values, including the fast ice, especially
here we need to be aware of any negative values arising.

For the errors two different kinds are modeled, pointwise and grouped errors. The idea being that the
first simulates the computational errors of drift ice, e.g., outliers of vectors which get filtered out, the
latter covers broader regions and aims to reproduce the effects of larger smooth ice regions with little
to no texture where no real drifts can be computed. Pointwise errors are sampled from a binomial
distribution bin(n, p) with n the amount of pixels and p indirectly chosen through the parameter
errorRate and arealError describing how many total expected errors there are and the relative amount
of grouped errors. Every pixel has an independent error chance, independent not only in space, but
also in time. Again the natural look of Perlin noise is used to produce the grouped errors. It also uses
a linear interpolation as the drift ice simulation for some consistency in time, but in a more agitated
way. In every step a threshold is computed to again choose which parts of the Perlin noise count as
errors. The errors are then masked over everything except the land pixels.

Putting all of this together we get an algorithm seen in figure 21.

In total we end up with 12 parameters to customize the simulation, from cover percentages to structural
changes. In table 3 the parameters are named and described, further the in the numerical part used
ranges of these parameters are denoted. Putting everything together a simulated observation sequence
is shown in figure 3 (in the main body of this thesis). The code implementing this simulation is found
in the GitHub [25].

16These are the values for which the simulated data makes sense (meaning: it fits what we try to achieve).
17This parameter mostly changes the visualization as the values are spread further apart or closer together.
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(ii) Compute Noise
(iii) Compute Errors

Fast Ice step

Landmass

data

Output step t

Thresholding

Use in Interpolation

Figure 21. Flowchart of the simulation. Blue arrows indicate the repeated action
in every time step t. A green box implies some kind of saved data, orange means a
heavy computational step whereas the gray box only computes a little bit. Starting
with the parameters the landmass and the full fast ice computed, then in every step
the fast ice gets reduced by a threshold and every other part is computed. In the end
of every step t everything is combined as an output. For the next step the last results
get reused as described in the text.
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Appendix B. Results and further Graphs

In this appendix further results are shown and discussed and more graphics are presented.

B.1. Parameter Optimization. Three scenarios are covered, the most important one in the main
text (section 2.5.4), here stated as number (i)

(i) normal error rate (30%) with little noise,
(ii) strong error rate (60%) with little noise,
(iii) low error rate (20%) with strong noise.

The results for the other two settings yield the following results, depicted in figures 22 and 23.
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Figure 22. Results from the parameter optimization for (ii), 60% errors and low
noise level. (A) are the parameters for the variance computation in the transition
density. (B) shows the two global function parameters for g0 and g1. (C) and (D) are
the unique parameters for each of the fast ice likelihood functions. The red line is the
initial starting guess.
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Figure 23. Results from the parameter optimization for (iii), 20% errors and a strong
noise level. (A) are the parameters for the variance computation in the transition
density. (B) shows the two global function parameters for g0 and g1. (C) and (D) are
the unique parameters for each of the fast ice likelihood functions. The red line is the
initial starting guess.
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Appendix C. Proofs and Further Computations

In this segment the proofs will be stated and further computations are made.

C.1. Lemma, Transition Kernels as Conditional Distributions. Found in section 2.1

Lemma. Let X0:1 be distributed according to P1(dx0:1) = P0(dx0)P1(x0, dx1), then the conditional
distribution of X1 given X0 = x0 is exactly given by P1(x0, ·).

To proof this Lemma we will use a helping Theorem from Foundations of modern probability by O.
Kallenberg 1997 [12] (Theorem 5.3, page 84).

Theorem. For two Borel spaces (X ,B(X )), (Y,B(Y)) and x̂ ∈ X , dy ∈ B(Y) there exists a probability
kernel P from (X ,B(X )) to (Y,B(Y)) s.t. P(y ∈ dy | x̂) = P (x̂, dy) a.s., P is unique.

Proof. Proof is found on page 84 of [12]. □

Proof of Lemma. The conditional probability of X1 given X0 = x0 can be written in the decomposition
of P1

P1(dx0:1) = P0(dx0)P(dx1 |x0).

Given by the theorem above, there exists a kernel P s.t. P(dx1 |x0) = P (x0, dx1). From the distribution
of X0:1 (P0(dx0)P(dx1 |x0) = P0(dx0)P1(x0, dx1)) and the uniqueness of P follows P = P1. □

C.2. Lemma 4, Likelihood Factors.

Lemma. The conditional densities are given as the ratios of two consecutive likelihood densities:

pt(yt|y0:t−1) =
pt(y0:t)

pt−1(y0:t−1)

Proof. We start by expanding the likelihood pt(y0:t) in terms of conditional densities using Bayes’
Theorem.

pt(y0:t) = pt (y1:t | y0) pt(y0)
= pt (y2:t | y0:1) pt (y1 | y0) pt(y0)

= pt(y0)

t∏
s=0

pt (ys | y0:s−1)

= pt(y0)

t∏
s=0

ps (ys | y0:s−1)

The last equality follows from pt(y0:s) = ps(y0:s), ∀s ≤ t, which is a direct application of (2.9) in
(2.15). This last line directly shows the claim in the lemma. □
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C.3. cost-to-go Function. Computation of the equality (2.27)

Ht:T (xt) = pT (yt+1:T |xt)

from section 2.2.2 for the Bootstrap formalism (def 6). We start by showing (2.25) for t = T − 1 and
then prove the induction step t→ t− 1.

HT−1:T (xT−1) =

∫
X
GT (xT−1, xT )MT (xT−1, dxT )

Boostrap formalism→ =

∫
X
fT (yT |xT )PT (xT−1, dxT )

def. of kernel→ =

∫
X
fT (yT |xT , xT−1) pT (xT |xT−1) dxT

yT |xT independent of xT−1 → =

∫
X
pT (yT , xT |xT−1) dxT

= pT (yT |xT−1).

Assume, the statement holds for a t < T , then:

(2.26)→ Ht:T (xt) =

∫
X
Gt+1(xt, xt+1)Ht+1:T (xt+1)Mt+1(xt, dxt+1)

induction step→ =

∫
X
Gt+1(xt, xt+1) pT (yt+2:T |xt+1)Mt+1(xt, dxt+1)

Bootstrap formalism→ =

∫
X
ft+1(yt+1 |xt+1) pT (yt+2:T |xt+1) pt+1(xt+1 |xt) dxt+1

yt+1 |xt+1 indep. of yt+2:T |xt+1 → =

∫
X
pT (yt+1:T |xt+1) pt+1(xt+1 |xt) dxt+1

yt+1:T |xt+1 independent of xt → =

∫
X
pT (yt+1:T , xt+1 |xt) dxt+1

= pT (yt+1:T |xt).

C.4. Lemma 9, Marginal Distributions of QT .

Lemma. For all t < T

QT (dx0:t) =
Lt

LT
Ht:T (xt)Qt(dx0:t),

integrating over x0:t−1 leads to the marginal distributions

QT (dxt) =
Lt

LT
Ht:T (xt)Qt(dxt).

Proof. We use Lemma 8 and equation (2.9).

Markov process→ QT (dx0:t) = Q0|T (dx0)

t∏
s=1

Qs|T (xs−1, dxs)

Lemma 8 & telescope Hs:T → =
1

LT
G0(x0)Ht:T (xt)M0(dx0)

t∏
s=1

Gs(xs−1, xs)Ms(xs−1, dxs)

def. of Qt → =
Lt

LT
Ht:T (xt)Qt(dx0:t)

The integration to reach the marginal distribution is straight forward. □
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C.5. Backward Kernels for Smoothing. Computation of the equality (2.33)

Qt(dxt)
←
Qt−1|T (xt, dxt−1) =

1

lt
Gt(xt−1, xt)Qt−1(dxt−1)Mt(xt−1, dxt)

from section 2.2.2. Starting point is the defining equality (2.30) for the backward kernel

QT (dxt)
←
Qt−1|T (xt, dxt−1)

(2.30)
= QT (dxt−1)Qt|T (xt−1, dxt)

Lt

LT
Ht:T (xt)Qt(dxt)

←
Qt−1|T (xt, dxt−1)

(2.32)
=

Lt−1

LT
Ht−1:T (xt−1)Qt−1(dxt−1)Qt|T (xt−1, dxt)

Qt(dxt)
←
Qt−1|T (xt, dxt−1)

(2.21)
=

1

lt

Ht−1:T (xt−1)

Ht:T (xt)
Qt−1(dxt−1)Qt|T (xt−1, dxt)

Qt(dxt)
←
Qt−1|T (xt, dxt−1)

(2.29)
=

1

lt
Gt(xt−1, xt)Qt−1(dxt−1)Mt(xt−1, dxt).

C.6. Lemma 11, Backwards Feyman-Kac Model.

Lemma. When taking

←
GT (xT ) =

fT (yT |xT ) γT (dxT )
←
MT (dxT )

,

←
Gt(xt+1, dxt) =

ft(yt |xt) γt(dxt)Pt+1(xt, dxt+1)

γt+1(dxt+1)
←
M t(xt+1, dxt)

,

the defined Feyman-Kac model fits the required (2.50). It is assumed that the Radon-Nikodym derivative
exists.

Proof. We have (up to a normalization constant)

Qt(dxt) ∝
∫
XT−t−1

←
MT (dxT )

←
GT (xT )

T−1∏
s=t

←
Ms(xs+1, dxs)

←
Gs(xs+1, xs)

when integrating over xt+1:T . Inserting the defined Gt from the lemma yields

Qt(dxt) ∝
∫
XT−t−1

fT (yT |xT ) γT (dxT )

T−1∏
s=t

fs(ys, xs) γs(dxs)Ps+1(xs, dxs+1)

γs+1(dxs+1)

=

∫
XT−t−1

γt(dxt) ft(yt |xt)

T∏
s=t+1

fs(ys, xs)Ps(xs, dxs+1)

= γt(dxt) ft(yt |xt)

∫
XT−t−1

T∏
s=t+1

fs(ys, xs)Ps(xs, dxs+1)

(2.25)
= γt(dxt) ft(yt |xt)Ht:T (xt)

(2.27)
= γt(dxt) ft(yt |xt) pT (yt+1:T |xt)

□
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C.7. Full Smoothing Distribution. Computation of the equality (2.46)

PT (dx0:T |Y0:T = y0:T ) = PT (dxT |Y0:T = y0:T )

T−1∏
t=0

←
P t|t(xt+1, dxt)

using basic independence rules:

RHS = PT (dxT |Y0:T = y0:T )

T−1∏
t=0

pt(xt |xt+1, y0:t)

Ind. of yt+1:T → = PT (dxT |Y0:T = y0:T )

T−1∏
t=0

pt(xt |xt+1, y0:T )

Def. trans. kernel→ = PT (dxT , dxT−1 |Y0:T = y0:T )

T−2∏
t=0

pt(xt |xt+1, y0:T )

= . . .

= PT (dx0:T |Y0:T = y0:T )

C.8. Pre-Requirements. Checking the pre-requirements for Lemma 11.

←
GT (xT ) =

fT (yT |xT ) γT (dxT )
←
MT (dxT )

is well defined by definition, since
←
MT (dxT ) is defined through the forward filtering and all particles

either have weight > 0, or when a weight is = 0 for a particle it will not be chosen.

Taking a look at the next steps

←
Gt(xt+1, dxt) =

ft(yt |xt) γt(dxt)Pt+1(xt, dxt+1)

γt+1(dxt+1)
←
M t(xt+1, dxt)

it is the case that γt+1(dxt+1) can theoretically not be = 0 (in practice it can through underflow),

as the transition density ft is by construction > 0 for all xt, yt. Since we did not chose
←
M t as the

optimal kernel we miss the direct connection to the forward kernel Pt+1. This would have given us the
domination needed, instead we have to make sure that our εu, εl (see def 12) are > 0 to assure us, that
←
M t > 0 as well (again, only theoretical, in practice underflows are a real possibility, which we need to
handle properly).
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Variables and Parameters, Stochastic Programming

All variables specific for Stochastic Programming.

Functions and Variables.

f Objective function we try to minimize.
J Minimization of f and its expected value.
X̂ Set of feasible decisions.
gk Constraint functions.
ϕ infimum of the objective function.
Φ argument infimum of the objective function.
Ft empirical Cumulative Distribution Function with t given observations.

Appendix D. Approach One: Stochastic Programming

Stochastic Programming aims to minimize a given cost function to make the next decision depending
on the past decisions and observations as well as constraints on the decision vector. Important in
each decision step is the modeling of the future decision, also impacting the minimization process.
Here a probability distribution of our observations is needed [23]. In the following the basic model is
described, as reference the book Stochastic Programming Models by A. Ruszczyński et al., 2003 is
used [23]. We then cover a special case of stochastic programming, linear stochastic programming,
including a numerical example. In the end we go into the flaws of the named approach related to our
specific conceptual formulation.

D.1. Method Description.

D.1.1. Basic Framework. First, a space for decisions and observations is needed, denoted by X and Y
respectively. Both spaces may change from one step to the next, but are (here) always considered to be
real and finite dimensional, e.g., Rn. The observations Yt ∈ Y(t) are thought to be distributed according
to a probability measure P (t) (the (t) indicates a possible alternation in space/distribution) and do not

need to be independent of one another. In the same way the decisions Xt ∈ X̂ (t) ⊂ X (t) are allowed to
differ in space, where X̂ (t) is the set of feasible decisions in iteration t. At last we need an objective
function f(x1:t, y1:t) which we assume to be convex in x1:t, this function also defines our standard

set of feasible decisions if no constraints are given X̂ (t)
0 (y1:t) := {xt ∈ X (t) | f(x1:t, y1:t) < +∞}. This

objective function rises costs on the decisions and should be apportionable into parts which cover
single decisions (e.g., f(x0, x1, y) = f0(x0) + f1,(x0,y)(x1)).

The goal of minimizing f(x1:t, y1:t) leads directly to the idea of Stochastic Optimization, because when
Y1:t is only partly or not at all observed yet there is no real minimum of f . In order to achieve a
meaningful solution the expectation of f is minimized, so we get:

(D.1) min
x1:t∈X̂ (1:t)

J(x1:t), J(x1:t) := Eyk:t
[f(x1:t, yk:t)]
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which is an integral of the form18

(D.2) J(x1:t) =

∫
Y(k:t)

f(x1:t, yk:t) dP (yk:t).

The general feasibility criteria from above is not adequate to guarantee finiteness of J in the occurrence
of a continuous random variable, but in our case only discrete random variables are employed dictated
by an empirical Cumulative Distribution Function (eCDF). One property we can directly deduce is
convexity.

Lemma 15. The expected cost function J(x) is convex.

Proof. D.4 □

We now want to add constraints.

D.1.2. Modeling Constraints. To introduce constraints is to shrink our set of feasible decisions. In a
standard way the feasible set is written as

(D.3) X̂ (t) := {xt ∈ X̂ (t)
0 | gk(xt) ≤ 0, k = 1, . . . ,m}

with X̂0 being the standard feasible set and gk(x) real valued functions.

And how is set of feasible decisions in an uncertain scenario defined?

Xt depends on the observations Y1:t and can therefore meet or fail constraints under certain observations.
A simple way of dealing with this is to neglect that fact and wait for the realization of y1:t if possible,
thus the problem to solve is not fully known until all observations are made. A different idea is to
consider the expected value of the constraints, this is often used when some objectives of the program
are put into the constraints. 19

D.1.3. The Two Stage Program. The two stage program covers the fundamental structure and can
then be easily extended into a multistage problem. We have two decisions X0, X1 to make, x0 being
an initial decision and X1 the decision depending on the only observation Y . The problem reads as in
equation D.1 but just with X0, X1:

(D.4) min
x0∈X̂ (0)

x1∈X̂ (1)

Ey [f(x0, x1, y)] .

The set X̂ (1) depends on the Y as well. Splitting this problem (D.4) into the parts of before and
after the observation yields as a second step (in which y is already observed and x0 already set) the
parametric optimization problem

(D.5) min
x1∈X̂ (1)

f1(x0, x1, y),

18Here the P (yk:t) is either a marginal distribution (e.g., the next observation in the future with k = t) or the joint
distribution of multiple/all (k < t).

19In my problem I can easily wait for the observation, in others, e.g., flood prevention as in example 2 Reservoir
Capacity of [23] this is not possible, a decision must be made well before the observation of the flood.
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with solution and solution arguments (if existing)

φ(x0, y) := inf
x1∈X̂ (1)

{f1(x0, x1, y)}(D.6a)

Φ(x0, y) := argmin
x1∈X̂ (1)

{f1(x0, x1, y)}(D.6b)

The first part has Y still in random state and hereby introduces the known expected value. It is a
minimization of the expectation of the next step summated with the cost of the initial decision

(D.7) min
x0∈X̂ (0)

f0(x0) + Ey [φ(x0, y)] .

The optimal solution of this deconstruction indeed accords with the original two stage problem (D.4):

Lemma 16. The optimal values of equation (D.4) and equation (D.7) coincide. If in addition this
value is finite then the decision x̄(dy) = (x̄0, x̄1(dy)) is optimal for (D.4) iff

• x0 is an optimal solution to (D.7), and
• x̄1(y) ∈ Φ(x̄0, y) almost surely.

Proof. D.5 □

D.2. The Stochastic Programming Model (Linear). Coming up with a suitable stochastic
programming model is a challenge in and of itself, knowing how to solve it a completely different
and (most often) way more complicated one. Luckily, under certain preconditions general solving
mechanisms exist, hence it is logical to try to formulate the problem under these conditions first to not
only guarantee a working program, but also check if stochastic programming may be a viable strategy
for modeling (methodically). Two basic models are the linear and the quadratic one, here also the
existence of optimizing solutions are given. In the linear programming model the objective function
and the constraints need to be affine. The only difference to the quadratic program is the usage of a
quadratic objective function in the latter. In the following construction it gets evident why in our case
the linear suffices over the quadratic program.

D.2.1. The construction. We start by listing the inherent factors of the upcoming model and then go
over to cover the key properties which are required to be included in the model. Thereafter different
ideas of how to translate these properties into the model are discussed, and finally the program is
formulated and implemented.

The observations yt in every time step are real valued (non-negative), two dimensional matrices
representing the velocity of the ice on the water. Every value is positive except the land value which
can be seen more as a mask and the error values being −∞. The size and amount of the matrices
depend solely on the selected values in the simulation part and should be chosen representatively. Since
we are interested in the fast ice (zero velocity over a period of time) the decisions are also matrices
of the same size, containing a speed value as well, in a sense the averaged expected value. This is
easier to translate but more importantly leaves a broader range of options on how to use the data,
e.g., thresholding into a (0, 1) choice or a more continuous allocation of likelihood. So here we get the
explicit spaces:

yt ∈Matm×n (R+) , t = 1, . . . , T

xt ∈Matm×n (R+) , t = 0, . . . , T
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In the danger of repeating, these are the main features of fast ice. Fast ice is only seen as fast ice
if it does stay in the same spot over a longer period, thus every new decision made should greatly
depend (in the way of being close to it) on past decisions and observations. Also, the spatial relation
is important, but it gets really awkward when directly included in the linear case. Instead, a certain
behavior from the observation distribution indirectly introduces this important attribute.

So how does this distribution look like?

That is a really tough question to answer, so in short: No idea! The real distribution is based on a
natural occurrence with varying characteristics and topological changes over time. These dynamics
consist, even if we only focus on the static ice and neglect (in thought) the values in the other parts of
the matrix20. Crucial is also the resemblance in spatial coherence of the fast ice, satisfying this point
institutes the indirect areal relation we want. All this leads to what the simulation (A.2) is trying to
mimic, but to simulate data does not infer the existence of a corresponding probability distribution
to it. A rather simple idea to still have a distribution to work with is to use an eCDF based on the
observations themselves. Of course this has major flaws, they will be discussed in section D.3.

(D.8) Fn(r) =
1

t

t∑
i

1{yi≤r}︸ ︷︷ ︸
Pointwise

, t = 1, . . . , T

Using this distribution captures almost all of the wanted behaviors of fast ice and does not only
make sense in a point wise manner but even asks for a point wise sampling since the neighbourhood
relations are already contained in the observations and this way in the drawn samples as well. Same
goes for the computational aspects, in any sampled or measured pixel of the matrix most necessary
regional information is accorded for. One weakness is the arising of missing or defective measurements,
but I argue that any deviations in velocity will be filtered out over time (an advantage of stochastic
approaches) and since missing data points mostly cover wider regions (As derived in A.2) there is no
advantage in checking neighbouring pixels for information. Moreover by using neighbouring pixels
there will be no distinct edges on the deduced fast ice, it is basically an interpolation. In this sense,
the eCDF is a pretty good choice.

And how is the temporal context introduced?

To achieve in time consistent decisions we have to utilize the affine cost and constraint functions in a
way that reflects the behavior of fast ice. If a piece of ice (i.e. one pixel) does not move in the latest
observation but did move (≫ 0) in the last observation and/or decision then it is not really qualified for
being fast ice. Only when the velocity stays below the defined margin of error for the chosen two weeks
time it qualifies. This means, when making a decision either the constraints or the objective function
(or both) need to be accommodated for not just the last, but n last decisions and observations. Looking
at the objective function in any step t ≤ T we try to minimize a linear combination of the values in
the possible decisions Xt(dy1:t), if translated into a vector of length mn, f can be represented21 as a
standard scalar product ft(xt(y1:t), y1:t) = ct(y1:t) · xt(y1:t) where ct(y1:t) ∈ Rnm also depends on the
past decisions x0:t−1. There are two main ideas now, either to minimize every element in xt(y1:t) by
setting ct(y1:t) ≡ 1 and letting the constraints (from below) do the work, or to set ct(y1:t) element-wise
≥ or < 0 depending on the observations in the attempt to nudge the values in the right direction (< 0
favors bigger and ≥ 0 smaller speeds). The mathematical embodiment of the first idea is described in

20Meaning, it does not really matter what velocity values non-fast ice pixels get as long as they are distinguishable
from the actual fast ice.

21This is an direct application of functional analysis, Riesz representation theorem[1].
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appendix E and is (after a bit of work) equivalent to a weighted average, though not really exciting it
still delivers quite a reasonable result to use as a basis for comparison, see chapter 3. It also gives a
new perspective into a standard weighted average. Viewing these two concepts, it is fairly obvious that
a quadratic objective function does not add any noteworthy value, if it were possible to reach a notion
of distance there would be plenty more options, this however, is sadly not possible here. Before we go
any further, let us first take a look at the downsides of stochastic programming.

D.3. Non-Linear Cases and Problems with the Approach. In the derivation of a linear problem
it became quite clear that to achieve a thorough description of our scenario we need more a complex
mathematical scope, exceeding linear or quadratic formulation. Especially the part of constructing
an objective function to minimize is challenging and requires e.g., some notion of distance between
two time-consecutive or space-related points to allow for a noteworthy objective function. There are
methods to solve particular non-linear programming problems by iterating over linear ones (see e.g.,
[13]) and also more general methods for specific classes of stochastic programming (see [9], here there
are no constraints intended but the objective function can be non-convex and non-linear as long as its
gradient exists in a noisy, point wise matter and also fulfills a Lipschitz inequality). Coming up with a
function which has a general solving method has huge limits and supposing we find a good one, three
essential problems remain:

Viewing our frame conditions again one, can notice having uncertainty in the future observations is
not the key problem to solve here, it is rather to optimize for the uncertainty in the already occurred
observations. Instead of guessing part of the upcoming observation the goal should be to guess the
correct velocity measurement, assuming they exists in some all known universe. Exactly this is the
major flaw in the stochastic programming approach, independent of the individual program itself (let it
be linear, quadratic or a more complicated approach). Secondly, there is no natural way of altering the
already made decision when new information is available, e.g., changing decision xi when observation
wi+1 is made. This is actually quite important but would need further mathematical extensions, doing
for example some kind of back propagation. Lastly, finding a suitable distribution for the fast ice or
velocity distribution is not in reach (as discussed above D.2.1), but using an eCDF has some drawbacks
on its own. First, it is rather imprecise with a few observations and only gradually gets better (if at
all with merely 150 observations). In addition our situation is a bit unique and imposes a changing
distribution depending on the time, an eCDF will always lack behind the actual distribution. As an
example, towards summer the fast ice starts melting and breaking while the eCDF only just learned
that fast ice grows steadily and/or remains consistent.

Thus in the upcoming chapter we take a look at a different idea, but try to stick to the same notation,
to not deviate too far from already introduced vocabulary.

D.4. Lemma 15, Convex Cost Function J(x).

Lemma. The expected cost function J(x) is convex.
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Proof. Let x, x̂ ∈ X̂ (i) be two feasible decisions for y ∈ Y. Then for any t ∈ [0, 1] the decision
z(t) = tx+ (1− t)x̂ fulfills:

J(z(t)) = Ey [f(z(t), y)]

= Ey [f(tx+ (1− t)x̂, y)]

≤ Ey [tf(x, y) + (1− t)f(x̂, y)]

= tEy [f(x, y)] + (1− t)Ey [f(x̂, y)]

= tJ(x) + (1− t)J(x̂)

where we used the convexity of f and monotonicity of the expectation in the third line and the linearity
of the expectation for the rest. □

D.5. Lemma 16, Optimal Solution. The two main equations for this Lemma:

(D.4) min
x0∈X̂ (0)

x1∈X̂ (1)

Ey [f(x0, x1, y)]

(D.7) min
x0∈X̂ (0)

f0(x0) + Ey [φ(x0, y)] .

Lemma. The optimal values of equation (D.4) and equation (D.7) coincide. If in addition this value
is finite then the decision x̄(dy) = (x̄0, x̄1(dy)) is optimal for (D.4) iff

• x0 is an optimal solution to (D.7), and
• x̄1(y) ∈ Φ(x̄0, y) almost surely.

Proof. Note with p, p0 the optimal values of (D.4) and (D.7), assume they are finite. For any pointwise

feasible decision x0:1 = (x0, x1(y)) ∈ X̂ (0:1) we always get

(D.9) f1(x0, x1(Y ), Y ) ≥ inf
x1∈X̂ (1)

{f1(x0, x1, y) = φ(x0, y).

When x1(y) ∈ Φ(x0, y) this inequality is in fact an equality by definition. Integrating now over all y
gives the expected value and by adding f0(x0) we get

J(x(dy)) = f0(x0) + Ey [f1(x0, x1(y), y)]

≥ f0(x0) + Ey [φ(x0, y)]

≥ p0

If now x̄1(y) ∈ Φ(x0, y) a.s. then the first inequality must be an equality as before. Moreover, if
the first inequality is in fact an equality then x̄1(y) ∈ Φ(x0, y), else there would be a non empty
set over which (D.9) is a strict inequality contravening the equality after integration. Denote with
x(dy) := (x0, x̄1(dy)) the partly optimal decision, then

J(x(dy)) = f0(x0) + Ey [f1(x0, x̄1(y), y)]

= f0(x0) + Ey [φ(x0, y)]

≥ p0

where the inequality becomes an equality when x̄0 is an optimal solution to (D.7) (exists since we p0
is finite). So the infimum p is, if finite, equal to p0. Further, we get the equivalence of the optimal
decision as stated in the lemma. □

Remark. This proof only shows the statement for observations which are discretely distributed (as it is
in our case), for the continuous case more assumptions on f1 are needed.
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Appendix E. Linear Stochastical Programm - Weighted Average

The first of the two linear stochastic programs relies only on the constraints with the intention to
minimize the velocity of every pixel in a decision and reach thereby the most amount of fast ice possible.
The corresponding objective function looks like

(E.1) ft(xt(y1:t), y1:t) =
∑
j,k

x
(j,k)
t (y1:t)︸ ︷︷ ︸
≥0 ∀t,j,k

, t = 0, . . . , T

with the possible minimum of f(0, y1:t) = 0 which is always attained with no constraints. We don’t
mind if any fast ice pixels get set to 0, but every other pixel is in need of a lower bound which fixes a
least possible velocity. So the constraint functions in step t ≤ T are of the form

(E.2) gt(xt(y1:t)) = αt + βt(y1:t)− xt(y1:t),

creating the feasible sets

(E.3) X̂ (t)(y1:t) = {xt(y1:t) ∈Matm×n (R+) | xt(y1:t) ≥ αt + βt(y1:t)︸ ︷︷ ︸
Pointwise

}.

αt and βt(y1:t) are both real valued matrices generated by a linear combination of past decisions and
the observations respectively. This could very well be a non-linear combination, i.e. taking different
moments of the values, but even when this enhances the difference between moving and stationary
pixels, it also creates huge jumps and errors when a mis-measured movement is evaluated. Still, this
leaves some room for experimentation.

Choosing the weights is conditioned on the results we try to achieve and definitely needs to be argued,
especially the choice of using older decisions in the bound. A decision in any step should in most
events be strongly influenced by the newest observation, and for temporal consistency also older ones.
I aver, that the decision to make should stay consistent with the last decisions, at least to some part.
In theory there is no noise and no missing data points in them which adds a reliable base to which
to build upon. That we can not just count on the latest observation but some older ones should be
evident.

All together the weights sum up to 1, so we fix the primary split into the observations r
(t)
y and decision

r
(t)
x part to then define the weights for each individual observation/decision.

r(t)y ∈ [0, 1],(E.4a)

r(t)x = 1− r(t)y(E.4b)

In the time t ≤ T the observation weights vy(j) and the decision weights vx(j) fulfill the inequalities

r(t)y =
∑
j≤t

v(t)y (j), v(t)y (t) ≥ v(t)y (t− 1) ≥ · · · ≥ v(t)y (0) ≥ 0(E.5a)

r(t)x =
∑
j<t

v(t)x (j), v(t)x (t− 1) ≥ v(t)x (t− 2) ≥ · · · ≥ v(t)x (0) ≥ 0(E.5b)

Notice, there is a 0’th observation. Before any observation there is no base for a decision to make,
besides there is no observation distribution at all. The strategy is to use the first observation directly
as the first decision and start of the eCDF, afterwards it could be ignored for the sake of compliance
to the formulated program, but why waste useful information. we can now write down our constraint
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matrices

αt =
∑
j≤t

vy(j) yj(E.6a)

βt(y1:t) =
∑
j<t

vx(j)xj(E.6b)

With this, all the needed information is formulated and the next step is to solve the problem. In
every step t a decision is made via the formulated two step approach (D.7), where instead of an initial
decision the first part resembles a parameterized minimization problem (here a simple point wise
minimization)

(E.7) min
xt∈X̂ (t)

ft(xt) + Eyt+1
[φt(xt, yt+1)] , φ(xt, yk) = infimum

xt+1∈X̂ (t+1)(y1:k)

{ft+1(xt, xt+1, y1:k)}

This is our finalized linear stochastic programming problem. In practice there is one other challenge to
consider, the lack of data points: How are they handled? For traceability reasons we first rewrite the
program into a weighted average and then cover the approach for the missing data points22.

All our fj ’s are point wise minimizations only reliant on the positive sum of the (non-negative) past
decisions and observations, therefore the expression (E.7) can be simplified to

(E.8) min
xt∈X̂ (t)

ft(xt)

as the point wise minimization of ft(xt) is also the minimum of Eyt+1
[φt(xt, yt+1)]. Now introducing

the constraints in (E.8) we get the decision in step t

(E.9) xt(y1:t) = αt + βt(y1:t)

Following this with the definitions from (E.6) yields

xt(y1:t) =

t∑
j=0

v(t)y (j) yj +
t−1∑
j=0

v(t)x (j)xj(E.10)

=

t∑
j=0

v(t)y (j) yj +

t−1∑
j=0

v(t)x (j)

[
j∑

k=0

v(j)y (k) yk +

j−1∑
k=0

v(j)x (k)xk

]

=

t∑
j=0

v(i)y (j) yj +

t−1∑
j=0

v(t)x (j)

[
j∑

k=0

v(j)y (k) yk +

j−1∑
k=0

v(j)x (k) [. . . ]

]

=

t∑
j=0

l
(t)
j yj

22Depending on the formulation, the process of working with lacking data points may be altered.
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with (after expanding and rearranging)

l
(t)
j = v(t)y (j) + v(t−1)y (j)

(
v(t)x (t− 1)

)
(E.11)

+ v(t−2)y (j)
(
v(t)x (t− 1) v(t−1)x (t− 2) + v(t)x (t− 2)

)
+ . . .

+ v(t−k)y (j)

[
k∑

h=1

k−h∏
s=0

v(t−s)x (t− h− s))

]
+ . . .

+ v(j)y (j)

[
t−j∑
h=1

t−j−h∏
s=0

v(t−s)x (t− h− s)

]
which can be written in a more compact form

(E.12) l
(t)
j = v(t)y (j) +

t−j∑
k=1

v(t−k)y (j)

[
k∑

h=1

k−h∏
s=0

v(t−s)x (t− h− s)

]
ending us with a closed form of an weighted average over the observations

(E.13) xt(y) =

t∑
j=0

(
v(t)y (j) +

t−j∑
k=1

v(t−k)y (j)

[
k∑

h=1

k−h∏
s=0

v(t−s)x (t− h− s)

])
yj

Assigning weights to the average has now a different interpretation, giving more mass to the past deci-
sions emphasizes an intended smooth transitions between them, more mass for the direct observations
supports quick adjustments. Also the way the weights are distributed within one of these categories
stresses different intentions, i.e. the more distributed the more coherent the decisions seem. This all
gives the weighted average a different viewpoint which is not accessible without this derivation and
computation.

Before the implementation can be done, one last key question must be answered: How to handle the
missing data points in this context?

Since all the computations are point wise the whole algorithm can be seen as point wise and therefore
allows to ignore missing values all together. If in a given step a pixel is missing it simply gets skipped
in the process and ignored in the future steps. This approach is sound following the arguments in
chapter D.2.1.
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