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a b s t r a c t

The presence of tipping points in ecological systems implies abrupt changes in the dynamics of the
ecosystem. In these piecewise-smooth dynamical systems sliding dynamics, i.e., dynamics on the
switching boundary, have been reported for population models. However, the question whether or
not, and if so under which conditions, sliding dynamics may occur in an optimally controlled system
have not yet been studied. We explore this issue in a simple harvesting model with two regimes, and
find that optimal sliding may occur if regular steady states do not exist. Hence, sliding dynamics may
be part of an optimal policy.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Environmental economists have been paying a lot of attention
o problems of optimal harvesting a renewable bio-resource,1
hile a parallel branch investigates dynamic harvesting games
layed by several players.2 Models from both branches usually
dmit a smooth system, where the dynamics of the resource are
escribed by a differential equation without jumps. At the same
ime, in the field of population dynamics there is a growing lit-
rature on applications of piecewise-smooth dynamical systems
o the evolution of some species; recent examples are Tan, Qin,
iu, Yang, and Jiang (2016), Tang, Qin, and Tang (2014a), Tang,

✩ The work of A. Bondarev was supported by the Key Program Special Fund
of Xi’an Jiaotong-Liverpool University, China (grant no. KSF-E-63). The material
in this paper was partially presented at None. This paper was recommended for
publication in revised form by Associate Editor Kok Lay Teo under the direction
of Editor Ian R. Petersen.

∗ Corresponding author at: Helmholtz-Institute for Functional Marine Biodi-
ersity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231,
3129 Oldenburg, Germany.

E-mail addresses: anton.bondarev@xjtlu.edu.cn (A. Bondarev),
upmann@hifmb.de (T. Upmann).
1 Recent examples are Aniţa, Behringer, and Moşneagu (2019), Behringer
nd Upmann (2014), Belyakov, Davydov, and Veliov (2015), Belyakov and Veliov
2014), Cruz-Rivera, Ramirez, and Vasilieva (2019), Dubey, Agarwal, and Kumar
2018), Grass, Uecker, and Upmann (2019), Moberg, Pinsky, and Fenichel (2019),
pmann and Behringer (2020).
2 Notable recent contributions are Dasgupta, Mitra, and Sorger (2019), de
rutos and Martin-Herran (2019), Fabbri, Faggian, and Freni (2020), Herrera,
oeller, and Neubert (2016), Mitra and Sorger (2014), among others.
https://doi.org/10.1016/j.automatica.2022.110487
0005-1098/© 2022 The Authors. Published by Elsevier Ltd. This is an open access a
nc-nd/4.0/).
Tang, and Qin (2014b), Zhang and Tang (2013), among others.
While these papers disregard optimal behaviour in any form, they
show, applying Filippov’s sliding flow (Filippov, 1988), that in
standard dynamical systems, the presence of a threshold on the
stock variable may lead to sliding dynamics: that is, the stock may
evolve for some time along the threshold.

Two recent examples where the authors study sliding mode
dynamics in a Filippov system are Bhattacharyya, Roelke, Pal,
and Banerjee (2019) and Bhattacharyya, Piiroinen, and Banerjee
(2021). These authors analyse predator–prey interactions of fish
species in 2D and 3D dynamical systems, respectively, demon-
strating the existence of sliding modes and the convergence of
dynamics to the pseudo-equilibrium of the system. However, the
harvesting policies in these papers follow simple, exogenously
determined threshold strategies: once the resource stock ex-
ceeds a critical level, a given harvesting policy is implemented;
otherwise, no harvesting takes place. That is, the specified a
piecewise-continuous harvesting policy is not determined in an
optimal way with respect to some criterion, and thus does not
satisfy the Maximum Principle.

Hence, while sliding dynamics have been reported for many
population systems, the conditions under which sliding dynamics
may occur in an optimally controlled system have, as far as our
knowledge extends, not yet been studied. In this paper, we aim
to explore this issue and therefore combine both approaches:
Applying methods known from hybrid control systems and the
theory of piecewise-smooth systems (PWS system) to optimally
controlled population dynamics, we explore the optimal harvest-
ing strategy when the dynamics of a renewable natural resource
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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bruptly change at some stock level (threshold). To this end, we
eliberately adapt a standard single-species, optimal harvesting
odel, and extend the stock dynamics to a PWS system. This,
ompared to, for example, the predator–prey model of Bhat-
acharyya et al. (2021, 2019), rather simple framework allows us
o derive closed form solutions for the optimal harvesting policies
nd to algebraically study the emergence of optimal sliding in a
D dynamical system.
We demonstrate that sliding dynamics may be a constituent of

n optimal harvesting policy, even in a simple harvesting model.
pecifically, we demonstrate that in optimally controlled systems
Filippov’s sliding flow can be the only feasible optimal outcome,
f regular steady states are not feasible, a phenomenon to which
e refer as optimal sliding; in this case, a novel steady state at the
hreshold level emerges, called pseudo-equilibrium in accordance
ith the literature on PWS systems (Colombo & Jeffrey, 2011;
i Bernardo, et al., 2008; Jacquemard, Teixeira, & Tonon, 2013),
hich is part of an optimal solution.

. The theory of piecewise-smooth systems

For the case of a single switching condition, a PWS system for
∈ Rn may be defined as

˙ =

{
f−(x), if α(x) < 0,
f+(x), if α(x) > 0,

(1)

here α : Rn
→ R and f− ̸= f+. We refer to the vector

ields f− and f+ as the lower and the upper vector fields. Follow-
ng Filippov (1988), the solution of (1) at the switching manifold

≡ {x | α(x) = 0} is formally defined as a differential inclusion

˙ ∈ fℓ ≡ f− + ϕ(f+ − f−) (2)

here ϕ = 0 when α(x) < 0, ϕ = 1 when α(x) > 0, and
ϕ ∈ (0, 1) when α(x) = 0. The flow through a point x̂ at time
t is given by all points x(t + τ ) with x(τ ) = x̂ for some τ ∈ R and
x(t) satisfying (2).

In general, the switching manifold Σ is an n − 1 dimensional
manifold, and we henceforth denote the generic element of Σ ,
i.e. the generic root of α(x) = 0, by xs. Correspondingly, the
(generic) steady states of f− and f+ are denoted by x∞

−
and x∞

+
.

ither f− or f+ may have unique or multiple steady states; these
teady states can be classified as follows.

efinition 1. A steady state x∞
+

of an upper vector field is called
(i) regular if α(x∞

+
) > 0, (ii) virtual if α(x∞

+
) < 0, (iii) boundary if

α(x∞
+
) = 0. Similarly, a steady state x∞

−
of a lower vector field is

called (i) regular if α(x∞
−
) < 0, (ii) virtual if α(x∞

−
) > 0, and (iii)

boundary if α(x∞
−
) = 0.

We denote by Lf α ≡ ⟨f ,∇α⟩ the Lie derivative of α along the
vector field f . The topology of the switching manifold Σ consists
of three regions (see, e.g. Jacquemard et al., 2013):

Definition 2. The disjoint subsets ΣCR,ΣES,ΣSL of the switching
anifold Σ are called

• the crossing region:
ΣCR ≡ {x ∈ Σ : (Lf+α)(x)(Lf−α)(x) > 0}, where the
trajectory may cross the switching manifold from one vector
field to the other;

• the escaping region: ΣES ≡ {x ∈ Σ : (Lf+α)(x) >

0, (Lf−α)(x) < 0}, where both vector fields are bounced off
the switching manifold;

• the sliding region:ΣSL ≡ {x ∈ Σ : (Lf+α)(x) < 0, (Lf−α)(x) >
0}, where both vector fields point into the switching mani-

fold.

2

If ΣSL ̸= ∅, the sliding vector field may be defined on ΣSL
specifying the dynamics on this part of the switching manifold.
This can be done via Utkin’s method (see Utkin, 1992) or Filip-
pov’s method (see Filippov, 1988). When f− and f+ have opposite
directions at Σ (escaping and/or sliding regions exist), there
exists a solution that lies on the switching manifold and satisfies
ẋ = fℓ(x) where fℓ is a sliding vector field:

fℓ ≡ f− +
Lf−α

Lf−α − Lf+α
(f+ − f−). (3)

he dynamics at ẋ ≡ fℓ is also known as Filippov’s flow (see
olombo & Jeffrey, 2011), which possesses its own steady states,
resuming their existence, x∞

ℓ : fℓ(x∞

ℓ ) = 0. This type of a steady
tate is called a pseudo-equilibrium of the PWS system (1) since
∞

ℓ is neither a steady state of the field f− nor of f+. Still, a steady
tate x∞

ℓ can be stable or unstable, based on the properties of the
liding vector field fℓ alone.

. A simple harvesting model

We start with a basic optimal harvesting model which we then
xtend to an optimal control (OC) problem with PWS dynamics.
ssume an agent who seeks to maximise the utility stream from
arvesting a renewable natural resource net of the associated
arvesting cost, over an infinite time horizon T ≡ [0,∞). Let
∈ R+ denote the stock (or abundance) of the resource, and
∈ U ⊂ R+ the harvesting effort. We assume that t ↦→ x(t)

s absolutely continuous, t ↦→ u(t) is piecewise continuous, and
hat U is compact.

The growth of the stock is governed by the logistic growth
unction rx

(
1 −

x
K

)
, where r > 0 and K > 0 denote the

growth rate and the carrying capacity of the stock. We specify
the harvesting yield as a bilinear function of the harvesting effort
and the stock: h(x, u) = qxu; here q is the catchability coefficient,
defined as the fraction of the stock harvested per unit of effort u.
For convenience, we normalise the units of effort to set q = 1, so
that h(x, u) = xu. Then, the resulting growth process of the stock
s governed by

˙(t) = f (x(t), u(t)) ≡ x(t)
[
r
(
1 −

x(t)
K

)
− u(t)

]
, (4a)

or all t ∈ T and x(0) = x0. For constant u, there are two
teady state stocks: 0 and K

(
1 −

u
r

)
, the latter being positive if

he growth rate exceeds the constant depletion rate, i.e. if r > u.
ence, the steady state harvesting rate is bounded by the natural
rowth rate of the stock.
The instantaneous payoff of the agent equals revenue mi-

us the associated cost of harvesting. Specifically, let p be the
constant) price of one unit of the harvested resource, then the
evenue of the harvest is ph(x, u) = pxu. Moreover, the associ-
ted harvesting costs are assumed to be quadratic in the catch,
c/2)h(x, u)2 = (c/2) (xu)2, with 0 ≤ c < p. Then, instantaneous
rofit of the agent amounts to

c(x(t), u(t)) ≡ px(t)u(t) −
1
2
cu(t)2x(t)2, ∀t ∈ T

and the problem for the agent becomes to maximise the (dis-
counted) profit stream for the planning period T , subject to the
growth of the stock:

max
u(•)

J ≡

∫
∞

0
e−ρt Jc (x(t), u(t)) dt, (4b)

subject to (4a). where ρ > 0 denotes the discount rate. Apply-
ing Pontryagin’s maximum principle yields the optimal control
u∗(x(t), λ(t)) ≡ (p − λ(t))/(cx(t)). Inserting u∗ into the state and
the costate equation gives, together with the initial condition
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(0) = x0 and the transversality condition limt→∞ e−ρtλ(t) = 0,
he canonical system (CS). Using the notation X ≡ (x, λ) ∈ X ≡

+ × R, the CS becomes

˙ ≡

(
ẋ
λ̇

)
≡

( (λ(t)−p)
c +

rx(t)(K−x(t))
K

λ(t)
(
r
( 2x(t)

K − 1
)
+ ρ

)) , (5)

hich we henceforth compactly write as Ẋ = G(X). Assuming
hat (5) is a continuous differential equation system, it represents
smooth ODE system, i.e. G : X → X : X ↦→ G(X) is a
ifferentiable function which we want to solve over the planning
orizon T . Yet, (5) is not an initial value problem, as it provides
nitial data only for the state variable, but gives a terminal con-
ition, viz. the transversality condition for the costate variable.
his becomes a numerical issue when we compute the canonical
ath (CP) t ↦→ X(t) ≡ (x(t), λ(t)) connecting a given initial state

x0 to some steady state X∞
≡ (x∞, λ∞) of the CS (5), to which

we refer as canonical steady state (CSS). (We next show that (5)
possesses a CSS.) Such a path from some x0 to a CSS X∞ exists
only if X∞ has the saddlepoint property (SPP), which may or may
not be the case.3

We begin with the calculation of the CSSs and an analysis
of their stability. Here, the unique real valued (non-trivial) CSS
X∞

= (x∞, λ∞) of (5) is

X∞
=

(
K (r − ρ)

2r
, p +

cK
4r

(
ρ2

− r2
))

nd an associated optimal steady-state control u∞
= (ρ+r)/2. In

order to have an economically meaningful model, we henceforth
presuppose

Assumption 3. Let r > 0, ρ > 0 and 0 < r2 − ρ2 < (4pr)/(cK ),
hich, in particular, implies r > ρ > 0.

Intuitively, Assumption 3 says that (i) the growth rate must
xceed the discount rate (or that future is not discounted too
trongly compared to the growth of the stock; (ii) the (market)
rice of the resource must be high enough compared to the
arvesting cost. If so, then under Assumption 3, the steady state
s positive, i.e. X∞

∈ R2
++

. More generally, we shall limit both
he state and the costate variable to be non-negative, i.e. X(t) ∈

≡ R2
+
. While negative values of the state variable are au-

omatically excluded by the formulation of the model, negative
ostate variables are excluded because they make little sense
conomically.
It is straightforward to show that the Jacobian of (5) has

wo real eigenvalues, with the larger one being positive and the
ower one, under Assumption 3, being negative. Hence, under
ssumption 3, X∞ is a saddle point of the CS (5), with the stable
anifold Ws(X∞) approaching X∞ from the north-west and from

he south-east. Since X∞ is the unique CSS and it has the SPP, it is
lso globally optimal. That is, given some x0, the optimal solution
s unique and converges to X∞.

. Optimal harvesting with PWS dynamics

We now consider the harvesting problem when the growth
ate of the stock r experiences an upward (downward) jump
hen the stock passes some fixed threshold level xs ∈ (0, K ).
hile the growth rate experiences a discrete change, the stock

3 In general, a CSS X∞
∈ R2n has the SPP if the dimension of the stable man-

fold equals the dimension of the unstable manifold of X∞ , i.e. dimWs(X∞) =

imWu(X∞) = n. The number d(X∞) ≡ n − dimWs(X∞) is called the defect of
he CSS X∞; and a CSS X∞ with d(X∞) > 0 is called defective, whereas a CSS X∞

ith d(X∞) = 0 has the SPP. For more details on the SPP for OC problems see,
or example, Grass, Caulkins, Feichtinger, Tragler, and Behrens (2008, p. 238)
nd Upmann, Uecker, Hammann, and Blasius (2021, p. 4f).
3

ariable, though, does not experience any discontinuity at xs. This
model describes an ecological situation where the growth rate
of the species is endogenous, depending on the stock size. A
primary example is a fish stock the growth rate of which rises
or falls once some critical level of abundance is reached. A rise
describes situation of exploding growth when external resources
are abundant and do not limit the population; a fall, when over-
population of fish leads to severe competition for scarce resources
resulting in strong overcrowding effects. Other examples may
include pollution management (with runaway climate change
being the motivating idea), forest resources, and more broadly
any renewable resource management model.

Let the subscripts minus (-) and plus (+) refer to the two
egimes — the lower and the upper regime. Then the correspond-
ng state dynamics can be written as

˙(t) =

{
f−(x(t), u(t)) if α(x(t)) < 0,
f+(x(t), u(t)) if α(x(t)) > 0.

(6a)

here f± ≡ r±x(t)
(
1 −

x(t)
K

)
− x(t)u(t) and α(x) ≡ x − xs. Here,

α(x) = 0 represents the switching condition, and Σ ≡ {x ∈ R+ :

(x) = 0} the corresponding switching manifold of system (6a).
ith the stock dynamics (6a), the problem of the agent becomes

max
u(•)

∫
∞

0
e−ρt Jc(x(t), u(t)) dt, s. t. (6a). (6b)

To derive a solution for problem (6), we need to construct
Hamiltonian for each regime and to specify an appropriate

ump condition for the costate variable on Σ . So, we define the
amiltonian functions H±(x, u, λ) ≡ Jc(x, u) + λf±(x, u), and
pply the standard maximum principle to each of them. Using
he optimality conditions ∂H±(x, u∗

±
, λ)/∂u = 0, we obtain the

ptimal controls u∗
±

= u∗(t) = (p − λ(t))/(cx(t)). Substituting
hese into the corresponding state and the costate equations, we
rrive at the two corresponding CSs, viz. CS+ and CS−:(
ẋ(t)
λ̇(t)

)
=

( (λ(t)−p)
c +

r±x(t)(K−x(t))
K

λ(t)
(
r±

( 2x(t)
K − 1

)
+ ρ

)) . (7)

We henceforth write (7) more compactly as Ẋ = G±(X) :=

(f±, g±), where, with minor sloppiness, we write f± for f±(x, u∗).
We then refer to Ẋ = G−(X) as the vector field of the lower regime,
and to Ẋ = G+(X) as the vector field of the upper regime of (7) –
and the switching condition α(x(t)) = 0 defines which of these
systems applies. We then have the CS of the original problem
described by the PWS system

Ẋ(t) =

{
G−(X(t)) if α(x(t)) < 0,
G+(X(t)) if α(x(t)) > 0,

(8)

together with the transversality condition limt→∞ e−ρt λ(t) = 0.
The transversality condition stays the same as for the standard
model (see Shaikh & Caines, 2007), but an additional condition
at each time there is a jump between the two stages is required.
Let ts denote the (generic) time when the switching manifold is
eached. Then, the matching conditions for the optimal switching
ime t∗s are (see Bondarev & Gromov, 2021, for details):

1(t∗s ) =
∂ J1
∂x

(t∗s , xs) = λ2(t∗s ), (9a)

1(t∗s ) =
∂ J1
∂ts

(t∗s , xs) = H2(t∗s ). (9b)

here J1(0, x0) ≡
∫ ts
0 e−ρt Jc(x(t), u(t))dt + J1(ts, xs) is the value

f the objective functional in one of the regimes with J2(ts, xs) ≡∫
∞

ts
e−ρt Jc(x(t), u(t))dt being the terminal cost entering that func-

tional from the other regime; and an analogous condition for λ
2
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nd H2. This condition requires that the opportunity cost (costate
alue) before reaching the switching condition equals the
arginal revenue accumulated in the following dynamic in the
pper regime. We thus obtain two CSs: one for each regime, and
he solution of control problem (6) consists of two parts: the
olution of the lower and of the upper regime. The two solutions
re connected via the continuity of the state variable(s) at the
witching manifold Σ .
The unique CSS for each regime, i.e. the root of G±(X), denoted

y X∞
±

=
(
x∞
±
, λ∞

±

)
, is given by

∞

±
=

(
K (r± − ρ)

2r±
, p −

cK
4r±

(
r2
±

− ρ2)) , (10)

nd the associated optimal control by u∞
±

= (ρ + r±)/2, yielding
he steady state profit rate

∞

c = −
K

32r2±
(r± − ρ)(r± + ρ)

(
8pr± − cK

(
r2
±

− ρ2)) .
ssumption 3 is a sufficient condition for J∞c to be positive; also,
∂ J∞c /∂r is positive if, and only if, Assumption 3 holds.

Lemma 4. Consider the hybrid system (8).

(1) If r− < r+, then x∞
−
< x∞

+
and at least one of the CSS is

regular, and sliding dynamics of type (3) cannot emerge. In
particular:

(i) If xs < x∞
−
, the unique CSS is X∞

+
;

(ii) If xs > x∞
+
, the unique CSS is X∞

−
;

(iii) If x∞
−
< xs < x∞

+
, there are two CSS, X∞

−
and X∞

+
.

(2) If r− > r+, then x∞
−
> x∞

+
, and sliding dynamics may emerge.

In particular:

(i) If xs < x∞
+
, the unique CSS is X∞

+
;

(ii) If xs > x∞
−
, the unique CSS is X∞

−
;

(iii) If x∞
+
< xs < x∞

−
, none of the X∞

±
are feasible.

The proof of Lemma 4 is, as are the proofs of all other results,
relegated to the Appendix.

Fig. 1 illustrates the case of Lemma 4 part 1, i.e. the situation
r− < r+. Therein, the left and the right diagrams illustrate the
cases of a unique saddle-type CSS in the upper and in lower
regime, respectively. In either of the two cases, any optimal tra-
jectory will converge to the unique steady state. More precisely,
if xs < x∞

−
< x∞

+
, see diagram Fig. 1(a), the optimal path is to

follow the stable saddle path of X∞
+
, unless x(t) < xs where we

have to follow the stable saddle path (red path) of X∞
−

until xs
is reached. Upon arrival at xs at time τ , i.e., when x(τ ) = xs,
the costate variable experiences an upward-jump from λ(τ−) to
λ(τ+). In the case when x∞

−
< x∞

+
< xs, see diagram Fig. 1(c),

the optimal path is analogous: it coincides with the stable saddle
path of X∞

−
, unless x(t) > xs where we have to follow the

stable saddle path (red path) of X∞
+

until xs is reached. Here, the
costate variable jumps upwards from λ(τ+) to λ(τ−). In the centre
diagram Fig. 1(b), though, there exist two saddle-type CSS, one
for the lower and one for the upper regime, and depending on
x0, either of them may be reached by following the stable saddle
path either of X∞

−
if x(t) < xs, or of X∞

+
if x(t) > xs. In all three

cases, the optimal solution is obtained via a suitable version of the
maximum principle (standard or hybrid), and the optimal path
is given by the stable manifold of X∞

−
if x(t) < xs and of X∞

+
if

x(t) > xs, with a jump in the costate upon arrival at xs.
Fig. 2 illustrates Lemma 4 part 2, i.e. the situation r− > r+,

implying x∞
+
< x∞

−
. The situation when the switching level of

the stock is low, such that xs < x∞
+
, is illustrated in diagram

Fig. 2(a), with x = 0.2; in this case, only X∞, indicated by the
s +
p

4

Fig. 1. Phase diagram for the case r+ = 2 > 0.05 = r− , with xs = 0.2 (left) and
xs = 0.4 (centre) and xs = 0.6 (right). The stable saddle paths (in red) represent
he optimal path for the respective region of the state variable.

lue point, is a regular CSS. The case when the switching level
f the stock is high, such that xs > x∞

−
, is illustrated in diagram

ig. 2(c), with xs = 0.6; in this case, only X∞
−
, indicated by the

ed point, is a regular CSS. As before, in both cases the optimal
ath is given by the stable manifold of X∞ if x(t) < x , and of
− s
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t

f

0

Fig. 2. Phase diagram for the case r+ = 0.05 < 2 = r− , with xs = 0.2 (left) and
xs = 0.4 (centre) and xs = 0.6 (right).

X∞
+

if x(t) > xs, with a jump in the costate upon arrival at xs.
In the intermediate case, though, where the switching level lies
between the two steady state stocks, i.e. x∞

+
< xs < x∞

−
, both

X∞
−

and X∞
+

are virtual, so that neither of them is feasible. This
is illustrated in diagram Fig. 2(b) with xs = 0.4; it shows why
sliding dynamics may be an optimal outcome: With both CSS
5

being virtual, there is no trajectory leading to either of them; in
particular, there is no trajectory crossing the manifold that leads
to a CSS. However, there exists a region in the neighbourhood of
the switching manifold where G−(X)x=xs > 0 and G+(X)|x=xs < 0,
indicating the existence of sliding dynamics as in Definition 2.4
And since neither of the CSS can be reached, the only candidate
for an optimal path is to follow the stable manifold of either X∞

−
,

if x(t) < xs, or X∞
+
, if x(t) > xs, entering the switching manifold

in finite time. We will now elaborate on the optimality of sliding
in more detail.

5. Optimal sliding

Since the sliding surface is reachable for r+ < r−, we have
o define the dynamics along the switching manifold Σ . Follow-
ing Filippov (1988), the flow on Σ is a linear combination of the
flows from both sides evaluated at the threshold, the codimension
of which equals 2n − 1 = 1 as we have n = 1. Applying
formula (3) and taking into account that Σ does not depend on
λ but is vertical line at xs, we obtain a 1D flow of the costate
variable

λ̇ ≡

[
g− +

f−
f− − f+

(g+ − g−)

]
x=xs

, (11)

where G− = (f−, g−) and G+ = (f+, g+), as defined in (8). Since
the sliding flow happens at xs, the crossing, the escaping and
the sliding regions are intervals of the line (xs, ·). To emphasise
this, we denote these intervals by ΛCR, ΛSL and ΛES . Specifically,
the sliding region ΣSL is given by all pairs (xs, λ) with λ ∈

ΛSL ≡ (λmin, λmax), where λmin and λmax define the lower and
the upper boundary of the sliding region. That is, the interval ΛSL
representing the general sliding region ΣSL is defined from the
geometry of both vector fields G− and G+, whereas points (xs, λ)
with λ ̸∈ ΛSL lie outside the sliding region.

If there is an optimal trajectory leading to the sliding region
ΣSL, then it is unique due to the geometry of the sliding region,
where both the lower and the upper vector fields are pointing
to Σ , i.e., G−(X)x=xs > 0 and G+(X)|x=xs < 0. Once a trajectory
has entered the sliding region ΣSL, the dynamics are governed by
the 1D sliding flow λℓ, where x is fixed at xs. Eventually though,
the sliding solution λℓ reaches the boundary of ΛSL, and the tra-
jectory exits ΛSL; and upon exit, the trajectory enters the vector
field of either the lower or the upper regime, depending on the
particular geometry of both vector fields in the neighbourhood
of the respective exit point (xs, λmin) or (xs, λmax) — and it will
never enter the sliding region ΣSL again. As a consequence, if the
optimal trajectory enters the sliding region, and therefore sliding
is part of the optimal solution, this entry is unique and the sliding
mode is optimal only for a single time interval [τ1, τ2] ∈ T , unless
the optimal trajectory enters the sliding region at the steady state
of the sliding vector field, i.e. either λ−(τ1) = λ∞

ℓ or λ+(τ1) = λ∞

ℓ .
Since the 2D sliding dynamics Ẋ = Gℓ(X) are defined for a

fixed value of the first variable, x = xs, it suffices to define these
dynamics in one dimension: λ̇(t) = gℓ(λ), where gℓ is the second
component of Gℓ:

λ̇(t) = gℓ (λ(t)) = λ(t)ρ + λ(t)
(λ(t) − p)

cxsψ
, (12)

or all λ ∈ ΛSL, with ψ ≡ (K − xs)/(K − 2xs). We denote the
(general) solution of this ODE by λℓ, referring to it as the sliding
flow. While the sliding flow of the costate variable is given by (12),

4 In our case α(X) = x−xs , so the general definition {α(X) = 0 : (LG+
α)(X) <

, (LG−
α)(X) > 0} reduces to G−(xs, λ)∇α(xs) > 0, G+(xs, λ)∇α(xs) < 0 with

∇α(xs) = {1, 0}, simply yielding G−(xs, λ) > 0, G+(xs, λ) < 0 for any λ, or more
compactly, G (X) > 0, G (X)| < 0.
− x=xs + x=xs
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he stock variable is fixed at xs. Taking the time derivative of u∗

nd evaluating terms at xs, the flow of the optimal control u∗

long the switching manifold is given by

˙
∗(t) = −

a
cxs
λ̇(t) = −

a
cxs

gℓ (λ(t)) . (13)

ence, during times of sliding, the change in u∗ is linearly but
egatively related to the change in λ: Any increase (decrease) in
implies decrease (increase) in u∗ leaving stock at the constant

evel xs. Now we study whether such sliding control can be
ptimal. To this end, we make the following

efinition 5. A trajectory of CS (8) exhibits optimal sliding if
here exists an interval [τ1, τ2] ⊂ T such that ∀t ∈ [τ1, τ2] :

˙ (t) = Gℓ and this trajectory maximises the objective payoff
f (6b) among the admissible ones.

Since the right hand side of (12) is quadratic in λ(t), this
quation has at most two regular steady states:
∞

ℓ ∈ {0, p − ρcxsψ} (14)

or xs ̸= K/2. While the first root is trivial and of no economic
alue (and hence is subsequently ignored), only the second is
conomically meaningful, provided it is positive. To this end,
e henceforth assume that the market price of the harvested
esource is sufficiently large:

ssumption 6. Let p > ρcxsψ and xs ̸= K/2.

Assumption 6 says that for xs < K/2, there is a lower bound
n p, increasing in xs, for the resource to be valuable, i.e. λ > 0,
t the steady state of the sliding flow. (For xs > K/2 this bound
s negative and thus irrelevant.) Now, the non-trivial root λ∞

ℓ

ay be feasible or infeasible, depending on the values of the
arameters.

efinition 7. A point X∞

ℓ ≡
(
xs, λ∞

ℓ

)
, where λ∞

ℓ is the steady
tate of the sliding vector field gℓ, is called a pseudo-equilibrium
f the PWS system (8).

orollary 8. There exists a unique non-trivial pseudo-equilibrium
or (8), which is feasible if λ∞

ℓ ∈ ΛSL, and infeasible (i.e. virtual)
therwise.

Thus, for a sliding motion to be a candidate for optimal dynam-
cs, both (original) CSSs, i.e. X∞

−
and X∞

+
, must be virtual, and the

seudo-equilibrium X∞

ℓ must be feasible. The latter requirement
as two versions, which we provide as a formal definition:

efinition 9. The pseudo-equilibrium X∞

ℓ is

1. weakly feasible if λ∞

ℓ ∈ ΛSL is an unstable steady state of gℓ
and the pseudo-equilibrium X∞

ℓ has the SPP;
2. strongly feasible if λ∞

ℓ ∈ ΛSL is a locally stable steady state
of gℓ and the pseudo-equilibrium X∞

ℓ has the SPP;
3. infeasible if λ∞

ℓ /∈ ΛSL (i.e. the steady state of gℓ is virtual).

In the case of weak feasibility, the pseudo-equilibrium X∞

ℓ of
the 2D PWS system is feasible only from the outside of the sliding
region ΣSL. More precisely, X∞

ℓ can be reached from a 1D mani-
fold, and thus has the SPP. In the case of strong feasibility, though,
X∞

ℓ can be reached from a stable 1D manifold lying outside ofΣSL,
and from ΣSL. Hence, strong feasibility allows X∞

ℓ to be reached
from two stable 1D manifolds: one that is unbounded and lies
outside ofΣ , and another one that is bounded and coincides with
Σ .
SL

6

Fig. 3. Boundaries of the sliding domain (in yellow), for K = 1, p = 1, c = 1/2,
ρ = 0.05, r− = 0.2, r+ = 0.1. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Lemma 10. Assume that the CSS of (8) satisfies x∞
−
> xs > x∞

+
. A

necessary condition for the sliding flow gℓ to be part of the optimal
solution (optimal trajectory) is that λ∞

ℓ ∈ ΛSL.

In order to establish the feasibility of a pseudo-equilibrium, we
first define the bounds of the sliding region ΛSL, and then explore
the stability of the pseudo-equilibrium. The bounds of the sliding
region can be found via Definition 2. For the CS (8), these bounds
are given by a single inequality for λ:

Lemma 11. For the CS (8), the set ΛSL ≡ (λmin, λmax) is defined by
all values of λ satisfying

λmin ≡ p − γs(r−) ≤ λ ≤ p − γs(r+) ≡ λmax. (15)

here γs(r) := (crxs(K − xs)) /K .

Inequality (15) shows that for r+ < r−, the sliding region
s non-empty provided that both sides of inequality (15) are
on-negative. Now we can check whether or not the condition

min ≤ λ∞

ℓ ≤ λmax, (16)

olds. Specifically, this gives the following.

emma 12. When xs converges to zero, the sliding region ΛSL
anishes, and we have λmin = λmax = p. Hence, the trivial
seudo-equilibrium (xs, 0) is never feasible.

Since (16) represents a parametric condition in xs, we can
rovide a condition for the switching level xs such that sliding
merges. To this end, define κ(r) ≡

K
2

(r−ρ)
r , with κ(r) ∈ (0, K/2)

since r > ρ, and κ ′(r) > 0.

Lemma 13. Let r− > r+ > ρ. The non-trivial pseudo-equilibrium
X∞

ℓ is feasible (for 0 < xs < K) if, and only if, κ(r+) < xs < κ(r−).

Fig. 3 illustrates Lemmas 11 and 13. Setting the parameters
K = 1, p = 1, c = 1/2, ρ = 0.05, r− = 0.2, r+ = 0.1, we find
that for all xs ∈ (0.25, 0.375) the condition λmin < λ∞

ℓ < λmax
is satisfied. Hence, there is a non-vanishing interval of switching
values for which sliding emerges (see yellow marked interval in
Fig. 3).

Since κ(r) ∈ (0, K/2), and thus κ(r−) < K/2, sliding emerges
if the switching level xs is relatively low, viz. below half of the
carrying capacity K . Intuitively, sliding only emerges if (i) the
growth rate of the stock is lower for higher than for lower
abundances, and if (ii) this drop of the growth rate emerges
at relatively low abundances. Only if this drop emerges at a
low stock level, is the growth path of the resource substantially
impaired, so that the agent chooses a ‘‘precautionary’’ harvesting
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olicy by maintaining the stock exactly at the switching level.
f, however, the growth rate drops at abundances close to the
arrying capacity, such a precautionary harvesting policy is not
equired, since the opportunity cost of the foregone growth (in
bsolute terms) is rather low.
The stability of a pseudo-equilibrium is defined by the sign of

he derivative of the flow w. r. t. its variables at the steady state.
n our case, this is a scalar, since the flow is 1D. The linearisation
f (12), viz the scalar ‘‘Jacobian’’, evaluated at λ∞

ℓ equals

dgℓ
dλ

(λ∞

ℓ ) =
p

cxψ
− ρ. (17)

nder Assumption 6, this derivative is non-negative, and hence
e obtain the following lemma.

emma 14. Let xs ∈ (κ(r+), κ(r−)). The pseudo-equilibrium X∞

ℓ is
weakly (strongly) feasible if, and only if, Assumption 6 holds (does
not hold).

We know from Lemma 14 that, under Assumption 6, a pseudo-
equilibrium X∞

ℓ is weakly feasible but not strongly feasible, pro-
vided that X∞

ℓ exists. Let XF denote the set of feasible steady
states, XWF the set of weakly feasible steady states, and XSF the
et of strongly feasible steady states, with XF ≡ XWF ∪ XSF and
WF ∩ XSF = ∅. Now, by Lemma 13 we know that λ∗

ℓ ∈ XF if, and
nly if, xs ∈ (κ(r+), κ(r−)).

orollary 15. Let Assumption 6 hold. The pseudo-equilibrium X∞

ℓ

s weakly feasible but not strongly feasible, i.e. XF ≡ XWF and thus
SF = ∅.

So, the only possibility to reach the pseudo-equilibrium is
rom the outside of the sliding region. Specifically, the sliding
low (12), where the co-state varies while the stock remains
onstant, can only be a part of an optimal solution when the
seudo-equilibrium is reached via the associated 1D manifold
rom either the upper or the lower regime, but not from the
liding flow itself. Moreover, these are the only trajectories that
o not lead to either zero or infinity in finite time, so only
hese are candidates for a solution. Lastly, for the case of weak
easibility, we get uniqueness of the solution by replacing the
tandard transversality condition by the following one:

emma 16. If the pseudo-equilibrium X∞

ℓ is weakly feasible and
oth steady states are virtual (i.e. steady state stock values are x∞

−
>

s > x∞
+
), then:

1. The standard and hybrid maximum principles do not yield an
optimal control;

2. The control associated with CS±, adjoined by the condition

lim
t→ts

λ(t) = λ∞

ℓ (18)

is the only optimal one, with ts ≡ mint{t | x±(t) = xs} being
the time of first contact of x±(t) with the switching manifold.

emark. The condition (18) is sufficient and necessary for both
he upper and the lower regime, depending on the location of x0.
t requires the costate to approach a given constant value, since
y (14) the pseudo-equilibrium value is defined for the given xs.

In order to illustrate the optimal trajectories leading into the
seudo-equilibrium, we have employed a numerical analysis. Us-
ng the parameter specification K = 1, ρ = 0.025, p = 2, c =

1, r = 1, Fig. 4 illustrates the optimal solution converging to
the pseudo-equilibrium for both x0 < xs and x0 > xs. The
pseudo-equilibrium is the point (0.4, 1.97).
7

Fig. 4. Phase diagram for the case r+ = 0.05 < 2 = r− with xs = 0.4.
he bounds λmin = 1.52 and λmax = 1.988 are indicated by black points on
he switching manifold; the pseudo-equilibrium

(
xs, λ∞

ℓ

)
= (0.4, 1.97) and the

ssociated paths from the left and the right are all displayed in purple.. (For
nterpretation of the references to colour in this figure legend, the reader is
eferred to the web version of this article.)

Since neither of the CSS can be reached, the only candidate for
n optimal path is to follow the stable manifold of either X∞

−
, if

(t) < xs, or X∞
+
, if x(t) > xs, entering the switching manifold in

inite time. Fig. 4, which is a zoom of Fig. 2(b), reveals that for
oints on the switching manifold (xs, λ) ∈ Σ , with λ ∈ ΛSL ≡

λmin, λmax], where λmin is the solution of ẋ− = 0 and λmax is the
olution of ẋ+ = 0, there are trajectories entering the switching
anifold from both sides.
Hence, we find that, unlike the uncontrolled dynamical sys-

ems considered in Qin, Tan, Shi, Chen, and Liu (2019), Tan, et al.
2016), Tang, Liang, Xiao, and Cheke (2012), Tang et al. (2014b),
hang and Tang (2013), among others, where sliding dynamics is
temporary phenomenon, here optimality requires that once we
nter the sliding region, the system remains there. This happens
ecause there are no other viable options for the long-run dynam-
cs when all CSS are virtual. In order to show this more formally,
e first confirm, in the next section, that the sliding region ΣSL

s non-empty; then, we determine the parameter values that
ring about sliding dynamics, and we then characterise sliding
ynamics in λ by means of Filippov’s method (see, for example,
tkin, 2015).

roposition 17. In the harvesting model with regime-dependent
rowth rates (6), the following outcomes are optimal:

(1) Once r− < r+, it follows x∞
+
> x∞

−
and:

(a) If x∞
+

> xs > x∞
−
, either X∞

+
or X∞

−
are reached,

depending on x0;
(b) If x∞

+
> x∞

−
> xs, only X∞

+
is optimal;

(c) If xs > x∞
+
> x∞

−
, only X∞

−
is optimal;

(2) Once r− > r+, it follows x∞
+
< x∞

−
and:

(a) If x∞
−
> x∞

+
> xs, only X∞

+
is optimal;

(b) If xs > x∞
−
> x∞

+
, only X∞

−
is optimal;

(c) If x∞
−
> xs > x∞

+
and the pseudo-equilibrium is weakly

feasible, then convergence to the boundary stock value
xs at the (unstable) steady state of λℓ, and thus to
X∞

= (x , λ ), is the only possible optimal outcome.
ℓ s ℓ
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e

Weak feasibility is an essential condition for this result. If
the pseudo-equilibrium were strongly feasible, which according
to Corollary 15 cannot be the case here, there is more than
one way to reach X∞

ℓ . In particular, one could reach X∞

ℓ by
ntering the sliding region at an arbitrary point (xs, λ) with λ ∈

ΛSL, and then proceed via the Filippov’s flow gℓ(λ) towards the
pseudo-equilibrium. We thus would have a continuum of poten-
tial trajectories leading to X∞

ℓ , and the selection of the optimal
trajectory needs to be based on an evaluation of the objective
function. Moreover, in this situation we would have to deal with
possibility of chattering dynamics in the neighbourhood of the
switching manifold. These questions are left for future extensions
of the current study.

6. Conclusions

In this paper we contribute to the theory of optimal har-
vesting of a renewable resource. Examples may include natural
bio-resources (e.g. fish, forest), but this type of model may be
also applied to problems of groundwater mining, hydropower
and other issues. We extend a standard harvesting model to a
piecewise-smooth (PWS) system, where the switch is supposed to
occur in the growth rate of the stock, once a specified stock level
is exceeded. We find that there are at least two novel types of
behaviour, not previously studied in the literature, which emerge
due to the hybrid nature of the control problem we study: First,
we may have tipping points, similar to the well-known Skiba (or
DNSS) points for smooth systems (see Wagener, 2003, for exam-
ple), yet with the difference that here these points do not result
from the non-linearity of the dynamics, but are due to the fact
that each of the two regimes of the system dynamics has its own
steady states: Even if each of the two regimes has a unique steady
state with the saddle-point property, the extended piecewise-
smooth system (PWS system) might have multiple steady states —
and if at least two of them are regular, we might observe this type
of pseudo-Skiba (pseudo DNSS) point. Secondly, if each of the
two regimes has only a virtual steady state, implying that none
of steady states can be reached from either regime, then a slid-
ing flow at the switching manifold (threshold level) exists; this
sliding flow preserves the threshold level of the stock, yet with a
varying costate variable (shadow price of the stock), and thus has
its own steady state, to which we refer as a pseudo-equilibrium of
the system. We show that whenever a steady state of the PWS
system cannot be reached, this type of a pseudo-equilibrium is
the unique optimal outcome — even if it is unstable. Yet, the
actual optimal harvesting policy depends on the initial stock.
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Appendix. Proofs

Proof of Lemma 4

(1) If r− < r+, then by (10) x∞
−
< x∞

+
, and we have:

(i) If x∞
−
< xs < x∞

+
, both CSS are regular and can be

reached. One of them is selected, depending on the
location of the initial stock x0 relative to the loca-
tion of the switching level xs; moreover, no hybrid
limit cycles may emerge (see Reddy, Schumacher, &
Engwerda, 2020).
8

(ii) If x∞
−
< xs and x∞

+
< xs, only X∞

−
is regular, and it

can be reached either without a switch if x0 < xs, or
with a single switch if x0 > xs.

(iii) If x∞
−
> xs and x∞

+
> xs, only X∞

+
is regular, and it can

be reached either without a switch or with a single
switch.

(2) If r− > r+, then by (10) x∞
−
> x∞

+
, and we have:

(i) If both X∞
−

and X∞
+

are located above the threshold,
i.e. x∞

−
> x∞

+
> xs, only X∞

+
is regular, and it can be

reached either without a switch (if x0 > xs) or with
a single switch (if x0 < xs).

(ii) If both X∞
−

and X∞
+

are located below the threshold,
i.e. xs > x∞

−
> x∞

+
, only X∞

−
is regular, and it can be

reached either without a switch (if x0 < xs) or with
a single switch (if x0 > xs).

(iii) If x∞
−
> xs > x∞

+
, then both X∞

−
and X∞

+
are virtual

and thus neither of them can be reached.

Proof of Corollary 8

By (14) there are only two equilibria for gℓ, one of which is
trivial and cannot lie within the sliding region. Hence there is a
unique positive steady state λ∞

ℓ . Moreover, λ∞

ℓ cannot be reached
from any x0 if λ∞

ℓ /∈ ΛSL; i.e. if λ∞

ℓ /∈ ΛSL, λ∞

ℓ is a virtual steady
state.

Proof of Lemma 10

It follows from the preceding analysis that the steady states
of (8), X∞

−
and X∞

+
, are both virtual if x∞

−
> xs > x∞

+
. Then, if

λ∞

ℓ ̸∈ ΛSL, the pseudo-equilibrium cannot be reached from either
the outside or from the inside of the sliding dynamics. Thus, even
if a sliding region exists and the sliding dynamics is well-defined,
there is no reachable steady state, and thus optimal dynamics do
not exist, except from trivial ones.

Proof of Lemma 11

By definition of λmin and λmax as the bounds of the sliding
region, we have either ẋ = f+ > 0, ẋ = f− > 0 or ẋ = f+ < 0, ẋ =

f− < 0 in the neighbourhood of λmin and λmax, since the escaping
region cannot co-exist with the sliding region for a 1D switching
manifold (see, e.g. Di Bernardo, et al., 2008, for a detailed proof).
It follows that the exit can be accomplished only via entering the
crossing region. Also, we must have r+ < r−, since otherwise
there is no sliding dynamics for the CS (8). Using r+ < r−, it
follows from the state dynamics in (8) that f+ > 0 ⇒ f− > 0,
while f− < 0 ⇒ f+ < 0. Hence, in the crossing region we have

(f+ > 0 ∧ f− > 0) ∨ (f+ < 0 ∧ f− < 0)
⇔ f+ > 0 ∨ f− < 0
⇔ λ(t) > p − γ (r+) ∨ λ(t) < p − γ (r−).

where γ (r) := (crx(t)(K − x(t))) /K .

Proof of Lemma 12

Replacing λ by zero in (15), we get an inconsistent inequality
with both sides being positive (for 0 < xs < K ). So, the trivial
pseudo-equilibrium is not feasible.
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roof of Lemma 13

(i) Since r− > r+ > ρ by assumption, it follows from the fact
that κ is single-valued and monotonously increasing that
the interval [κ(r+), κ(r−)] ⊂ [0, K/2] exists and is unique.

(ii) λmin < λ∞

ℓ : Substituting λ∞

ℓ from (14) into (16) yields

λmin < λ∞

ℓ ⇔ (K − 2xs) (K (r− − ρ)− 2r−xs) > 0
⇔ (xs < K/2 ∧ xs < κ(r−))

∨ (xs > K/2 ∧ xs > κ(r−))
⇔xs < κ(r−) ∨ xs > K/2,

where we used κ(r−) < K/2.
(iii) λmax > λ∞

ℓ : Similarly, we have

λmax > λ∞

ℓ ⇔ (K − 2xs) (K (r+ − ρ)− 2r+xs) < 0
⇔ (xs < K/2 ∧ xs > κ(r+))

∨ (xs > K/2 ∧ xs < κ(r+))
⇔κ(r+) < xs < K/2,

where we used κ(r+) < K/2, and the fact that xs > K/2 ∧

xs < κ(r+) is contradictory.
(iv) Combining (ii) and (iii), it follows that

λmin < λ∞

ℓ < λmax

⇔ xs < κ(r−) ∨ xs > K/2 ∧ κ(r+) < xs < K/2
⇔ xs < κ(r−) ∧ κ(r+) < xs < K/2
⇔ κ(r+) < xs < κ(r−).

Combining (i) and (iv) completes the proof since by definition,
X∞

ℓ is a pseudo-equilibrium for any xs.

Proof of Lemma 14

By Lemma 13, for any xs ∈ (κ(r+), κ(r−)) ⊂ [0, K/2], the
pseudo-equilibrium X∞

ℓ is feasible. From (14) we obtain

p ⪌ ρcxsψ ⇔
p

cxsψ
− ρ ⪌ 0.

onsequently, if Assumption 6 holds, the derivative (17) is pos-
tive, rendering λ∞

ℓ unstable, which combined with Lemma 13
roves that X∞

ℓ is weakly feasible. In contrast, if Assumption fails,
he derivative (17) is negative, rendering λ∞

ℓ stable, and thus by
emma 13, X∞

ℓ is strongly feasible.

roof of Corollary 15

Assumption 6 implies that the pseudo-equilibrium X∞

ℓ has a
ositive λ∞

ℓ value, and that it is weakly feasible if, and only if,
s ∈ (κ(r−), κ(r+)), due to Lemma 14. Hence, X∞

ℓ ∈ XWF and
SF = ∅.

roof of Lemma 16

The condition (18) requires the optimal trajectory x(t) to con-
act the switching manifold at time ts at the pseudo-equilibrium
oint. Assume this is not the case. Then if x∞

−
> xs > x∞

+
, any

trajectory of either CS+ or CS− will diverge either to infinity or
to zero for any control candidate from the maximum principle
with transversality condition. This proves part 1. The value of
the objective applied to a candidate trajectory must be finite
and positive. Once we require a finite non-zero value, the only
way to achieve this is to select the trajectory leading to λ∞

ℓ .
Condition (18) is sufficient and necessary for this: for any x0, it
would select the (unique) trajectory of the associated flow which
leads into pseudo-equilibrium.
9

Proof of Proposition 17

Amounts to the application of Lemmas 4–16.
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