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OPTIMAL HARVESTING OF A SPATIALLY DISTRIBUTED

RENEWABLE RESOURCE WITH ENDOGENOUS PRICING

S. Anita1,2,*, S. Behringer3, A.-M. Mosneagu1 and T. Upmann4,5,6

Abstract. In this paper, we focus on the exploitation of a renewable resource in a spatial setting.
Building upon the spatial harvesting model of [Behringer and Upmann, J. Econ. Dyn. Control 42
(2014) 105–120], we endogenize the price for the resource assuming that after harvesting the good
is non-durable, i.e. the harvesting yield must be supplied on the market instantaneously. We find
necessary optimality conditions and use them to derive an iterative algorithm to improve at each step
the harvesting effort. We find that with endogenous prices the full exploitation result of [Behringer and
Upmann, J. Econ. Dyn. Control 42 (2014) 105–120] may cease to hold.
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1. Introduction

While classical microeconomic theory deals with homogenous consumption goods in a stationary framework,
we consider a dynamic setting. More precisely, we consider the harvesting and sale of a renewable natural
resource (fish, timber, etc.) the stock of which obeys a given law of growth. We consider the resources to be
spatially distributed, thereby following extended taking into consideration demands from the discipline and
policy makers (see [11]).

Recently [7] investigated optimal harvesting of a renewable resource that is spatially distributed over a
continuous domain. Since in their model the agent is required to move in space, an optimal policy consists of
an optimal choice of both, harvesting and movement. This approach, which has been generalized in [17] for a
fully independent control choice, contrasts with previous analyses of discrete spaces, e.g. [14], but is similar to
[8] who also consider a continuous spatial setting (see [15, 16], or [10] for early economic analyses). Harvesting
models have also been intensively studied in [1, 12], or [2]. For optimal control problems for some economics
models see [4], and [13].

The dynamic optimization problem in the model of [7] consists of a simultaneous choice of the speed of
movement {v(t)}t∈T and the harvesting rate {h(t)}t∈T . More precisely, the harvesting agent moves on a unit
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circle on which the resource, with stock f(·), is growing according to growth function g(·). The agent’s location
s is therefore on S = [0, 2π]. T denotes the harvesting period or season [0, T ] and harvesting comes at a cost
C(·), which may depend on the speed of the agent and the harvesting rate.

As the agent cannot harvest more than the entire resource stock at any particular location, we have h(t) ≤
min{h̄, f(t, s(t))}, where h̄ denotes the harvesting capacity of the agent. Harvesting takes place only at the
actual location of the agent x = s(t) and implies a downward jump in the stock of the resource f(·, x) at the
set of arrival times of the agent at that location x : J(x) = {t1(x), t2(x), . . .}. Therefore, the law of motion for
the stock is

∂f

∂t
(t, x) = g(f(t, x)), ∀t ∈ T \J(x), x ∈ S (1.1)

f(t−, x)− f(t+, x) = h(t), ∀t ∈ J(x), x ∈ S (1.2)

with initial level f(0, x) = f0(x) for all x ∈ S.
By discounting the future at a rate ρ ≥ 0, the agent’s problem is

max
{v,h}

∫ T

0

e−ρt (h(t)− C(v(t), h(t))) dt

such that

ṡ(t) = v(t), ∀t ∈ T
∂f

∂t
(t, x) = g(f(t, x)), ∀t ∈ T \J(x), x ∈ S

f(t−, x)− f(t+, x) = h(t), ∀t ∈ J(x), x ∈ S
h(t) ∈ H(t) ∀t ∈ T
f(0, x) = f0(x), ∀x ∈ S
s(0) = 0,

where H(t) = [0,min{h̄, f(t, s(t))}]. The last line implies that without loss of generality we let the agent start
at x = 0 on the unit circle.

Let F be the solution of the set of differential equation (1.1) between two consecutive impulses, with F(f, 0) =
f . Note that (1.1) is autonomous and does not depend on time t directly but only via f(·). Hence, if we integrate
(1.1) over the time of two consecutive rounds ti−1(x) and ti(x) we get

f(ti(x)−, x) = F(f(ti−1(x)+, x), ti(x)− ti−1(x)).

For any fixed location equation (1.2) gives a mapping

f(ti(x)+, x) = F(f(ti−1(x)+, x), ti(x)− ti−1(x))− h(ti(x)).

We thus have a problem where time and space of impulses are related, that is, we have an impure impulse
control problem.

Behringer and Upmann [7] find that with exponential growth and constant speed, the resource will be fully
extinguished by the agent by the end of the planning horizon. As in the early literature on Walrasian economics,
this work treats prices as exogenous, though. In order to fully explore the welfare economic consequences of
trading renewable resource commodities, we endogenize prices in this paper.
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2. Optimal harvesting policy

Consider a fixed location x ∈ S. Instead of letting the agent control the harvest h(t), we assume that the
agent controls the harvesting share α(t) (e.g., think of a fisher using a fishing net with a given mesh size) so
that the harvest amounts to h(t) = α(t)f(t−). This is the common formulation in the resource literature. When
fishing nets are used, fish is harvested as a share α(t) of the stock and so the yield from fishing is multiplicative
in the stock.

We assume that the commodity, i.e. the harvested resource (fish caught), is non-durable, and so it cannot be
stored but has to be consumed immediately after purchase. Therefore, the quantities supplied to the market do
not accumulate over time. Let R denote the instantaneous profit, then the optimal control problem is:

max
α∈A

∫ T

0

e−ρtR(α(t), fα(t))dt, (2.1)

where A = {α ∈ L∞(0, T ); 0 ≤ α(t) ≤ 1 a.e.} is the set of admissible controls, and fα is the function f in the
previous section corresponding to h(t) = α(t)ft−). Here f0 ∈ L∞(0, 2π), f0(t) ≥ 0 a.e., ρ ∈ (0,+∞). As in [7]
we assume exponential growth from here onwards as this simplifies the presence of an economic discounting
factor ρ.

Assume from now on that the speed v is a fixed positive constant. Let us consider some arbitrary but fixed
location x = mod (vt, 2π), where mod (vt, 2π) = vt − 2kπ, with 2kπ ≤ vt < 2(k + 1)π, k ∈ N. We see that
the location of the harvesting device is actually a function of t (x = mod (vt, 2π)).

Then, we denote by fα(t−) the level of the renewable resource at location x = mod (vt, 2π) just before
harvesting. Likewise the level of the resource immediately after harvesting is denoted fα(t+).

Assume there are k completed rounds until T , such that

k
2π

v
< T ≤ (k + 1)

2π

v
, k ∈ N.

For convenience, we extend the time horizon beyond the end of the harvesting period as

α(t) = 0 on

[
T, (k + 1)

2π

v

]
to allow for k complete rounds of supply and a possibly incomplete round on the circle with the density after T
being zero. This is equivalent to letting the stock collapse after time T . This convention notionally extends the
time horizon but does not affect the optimization problem. It only relaxes the effect that the fixed time horizon
has on the possibility to treat only integer rounds.1

We use the index variable l = 0, 1, . . . , k to refer to the rounds of harvesting. Then, l = 0 refers to the first
round, l = 1 to the second round, etc. and eventually l = k refers to the last, possibly incomplete, round k + 1.

For any fixed location x, the travelling time for one complete round on the circle equals the duration between
any two consecutive arrivals times. With constant speed v, the time necessary to circle around the periphery
once equals θ = 2π/v. Since this θ equals the time between two subsequent harvesting times, it also represents
the growth time of the resource between two subsequent harvesting times. Hence, the stock (and more generally
the density) is a function of the travelling time θ (or equivalently of speed v).

Then, using the above definitions we obtain

fα(t+) = (1− α(t))fα(t−)

1This slight divergency between the notation and the semantics, viz. the counting variable l and the wording, helps facilitate
the analysis. In addition, the notional extension of the density function beyond the fixed time horizon makes our analysis much less
cumbersome than it otherwise would be.
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and because of exponential growth at r it also follows that

fα ((t+ θ)−) = erθ(1− α(t))fα(t−). (2.2)

Equation (2.2) thus states that the density at time t+ θ just before harvesting equals the original density at t
before harvesting, of which the harvesting share at t has been deducted and which has since grown according
to the exponential growth rate.

Now for some round l on the circle that takes place at some time interval t ∈ [lθ, (l + 1)θ] , we define

fαl ((t− θl)) ≡ fα(t−), l ∈ {0, 1, . . . , k} ,

the stock of the resource just before harvesting extended l ∈ {0, 1, 2, . . . , k} periods into the past. We can then
also define the stock of the resource l periods into the future (by adding time θl to the above) as

fαl (t) ≡ fα ((t+ θl)−) .

for any round l ∈ {0, 1, 2, . . . , k}.
Adding time θl to (2.2) we find

fα ((t+ θ + θl)−) = fαl+1 (t) = erθ(1− α(t+ θl))fα((t+ θl)−)

= erθ(1− α(t+ θl))fαl (t)

which holds for all l ∈ {0, 1, 2, . . . , k} as α does not impact f differently over rounds and we make use of the
extended time horizon. We thus have for the time interval t ∈ [0, θ] that

fαl+1 (t) = erθ(1− α(t+ θl))fαl (t)

i.e. the density just before harvesting at any round l + 1 is given by the original density in round l just before
harvesting, of which the harvesting share in that round has been deducted and which since then has grown (for
one round of time) according to the exponential growth rate. For the first period, where previous harvesting
trivially cannot have a consequence for present harvest and hence α is not an argument to be considered, this
reduces to

fα0 (t) = ertf0(tv),

where x =mod(vt, 2π) = vt if t ∈ [0, θ) gives the location in the first round. Thus, we find the relation between
round l ∈ {0, 1, 2, . . . , k} densities and the following round densities for t ∈ [0, θ] as:{

fαl+1 (t) = erθ(1− α(t+ θl))fαl (t)

fα0 (t) = ertf0(tv).
(2.3)

2.1. Market demand

As the harvesting yield is a non-durable good, it must be sold instantaneously on the market. We assume
that market demand is characterized by a downward sloping inverse demand function of the form

P (h) =
1

1 + C0h
, C0 > 0, (2.4)

implying that the demand elasticity equals η(h) ≡ hP ′(h)/P (h) = −C0h/(1 + C0h).
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For the purpose of tractability, we assume that the harvesting cost only depends on the harvest but not on
the stock. Moreover, assuming constant marginal cost of harvesting, the cost function reads as

C(v, h) = C1 + C2h, C1, C2 > 0. (2.5)

Using equations (2.4) and (2.5), and taking into account that h(t) = α(t)fα(t−), the optimal control problem (3)
is then given as maximizing the total discounted profit from harvesting:

max
α∈A

G(α) = max
α∈A

∫ T

0

e−ρt
[
p0

α(t)fα(t−)

1 + C0α(t)fα(t−)
− C1 − C2α(t)fα(t−)

]
dt, (2.6)

where A = {α ∈ L∞(0, T ); 0 ≤ α(t) ≤ 1 a.e.} is the set of admissible controls and p0 is a positive constant
representing, for example, taxes or subsidies on revenue. Since the agent acknowledges the effects of its supply
on the market price, our analysis basically represents the case of a monopoly.

This objective can be rewritten as the sum of k completed and a possibly incomplete round on the circle as

G(α) =

k−1∑
l=0

∫ θ

0

e−ρ(t+θl)
[
p0

α(t+ θl)fαl (t)

1 + C0α(t+ θl)fαl (t)
− C2α(t+ θl)fαl (t)

]
dt

+

∫ T−θk

0

e−ρ(t+θk)
[
p0

α(t+ θk)fαk (t)

1 + C0α(t+ θk)fαk (t)
− C2α(t+ θk)fαk (t)

]
dt

−C1
1

ρ
(1− e−ρT ).

The following Theorem gives the directional derivative of G.

Theorem 2.1. For any α ∈ L∞(0, T ), 0 ≤ α(t) ≤ 1 a.e. and w ∈ L∞(0, T ) such that 0 ≤ α(t) + εw(t) ≤ 1 a.e.,
for sufficiently small ε > 0, we have that

dG(α)(w) =

k∑
l=0

∫ θ

0

e−ρ(t+θl)
[
p0
w(t+ θl)fαl (t) + α(t+ θl)zl(t)

(1 + C0α(t+ θl)fαl (t))2

−C2 (w(t+ θl)fαl (t) + α(t+ θl)zl(t))

]
dt (2.7)

with 
zl+1(t) = erθ [−w (t+ θl) fαl (t) + (1− α (t+ θl)) zl(t)] ,

t ∈ [0, θ) , l = 0, 1, . . . , k − 1,

z0(t) = 0, t ∈ [0, θ) .

(2.8)

Here

α(t) = 0, w(t) = 0, a.e. t ∈ [T, (k + 1)θ],

and

zl = lim
ε→0

fα+εwl − fαl
ε

in L∞(0, T ). (2.9)
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Proof. For any α, w satisfying the hypotheses we have

G(α+ εw)−G(α) =

k∑
l=0

∫ θ

0

e−ρ(t+θl)
[
p0

(α+ εw)(t+ θl)fα+εwl (t)

1 + C0(α+ εw)(t+ θl)fα+εwl (t)

−C2(α+ εw)(t+ θl)fα+εwl (t)

]
dt

−
k∑
l=0

∫ θ

0

e−ρ(t+θl)
[
p0

α(t+ θl)fαl (t)

1 + C0α(t+ θl)fαl (t)
− C2α(t+ θl)fαl (t)

]
dt.

Dividing by ε > 0, taking ε→ 0 and using (2.9) we get

lim
ε→0

G(α+ εw)−G(α)

ε
=

k∑
l=0

∫ θ

0

e−ρ(t+θl)
[
p0
w(t+ θl)fαl (t) + α(t+ θl)zl(t)

(1 + C0α(t+ θl)fαl (t))2

−C2 (w(t+ θl)fαl (t) + α(t+ θl)zl(t))

]
dt.

Let us denote by q the adjoint state, i.e. q satisfies



ql(t) = erθ (1− α (t+ θl)) ql+1(t)

+ e−ρ(t+θl)
[
p0

α(t+ θl)

(1 + C0α(t+ θl)fαl (t))2
− C2α(t+ θl)

]
,

t ∈ [0, θ) , l = 0, 1, . . . , k − 1,

qk(t) =


e−ρ(t+θk)

[
p0

α(t+ θk)

(1 + C0α∗(t+ θk)fαk (t))2
− C2α(t+ θk)

]
,

t ∈ [0, T − θk) ,
0, t ∈ [T − θk, θ] .

(2.10)

For the construction of the adjoint problems in optimal control theory we refer to [3, 5, 6].

Theorem 2.2. For any α ∈ L∞(0, T ), 0 ≤ α(t) ≤ 1 a.e. we have that

dG(α)(w) =

k−1∑
l=0

∫ θ

0

w (t+ θl)

[
e−ρ(t+θl)

(
p0

1

(1 + C0α(t+ θl)fαl (t))2
− C2

)
− erθql+1(t)

]
fαl (t)dt

+

∫ θ

0

w (t+ θk) e−ρ(t+θk)
(
p0

1

(1 + C0α(t+ θk)fαk (t))2
− C2

)
fαk (t)dt, (2.11)

for any w ∈ L∞(0, T ) such that 0 ≤ α + εw ≤ 1, a.e., for sufficiently small ε > 0 (we extend α and w by the
value 0 on [T, (k + 1)θ]).
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Proof. We multiply the first equation in (2.10) by zl(t), integrate on [0, θ) and add up over l to k − 1. We get
that

k−1∑
l=0

∫ θ

0

ql(t)zl(t)dt =

k−1∑
l=0

∫ θ

0

[
erθ (1− α (t+ θl)) ql+1(t)zl(t)

+e−ρ(t+θl)
(
p0

α(t+ θl)

(1 + C0(t+ θl)fαl (t))2
− C2α(t+ θl)

)
zl(t)

]
dt.

Rewritting (2.8) as

erθ (1− α (t+ θl)) zl(t) = zl+1(t) + erθw (t+ θl) fαl (t),

we obtain that

k−1∑
l=0

∫ θ

0

ql(t)zl(t)dt =

k−1∑
l=0

∫ θ

0

ql+1(t)
[
zl+1(t) + erθw (t+ θl) fαl (t)

]
dt

+

k−1∑
l=0

∫ θ

0

e−ρ(t+θl)
(
p0

α(t+ θl)

(1 + C0α(t+ θl)fαl (t))2
− C2α(t+ θl)

)
zl(t)dt.

Since z0(t) = 0 and qk(t) satisfies the second equation in (2.10), we may conclude that

0 =

k−1∑
l=0

∫ θ

0

erθw (t+ θl) fαl (t)ql+1(t)dt

+

k∑
l=0

∫ θ

0

e−ρ(t+θl)
[
p0

α(t+ θl)zl(t)

(1 + C0α(t+ θl)fαl (t))2
− C2α(t+ θl)zl(t)

]
dt.

Using (2.7) we obtain

dG(α)(w) =−
k−1∑
l=0

∫ θ

0

w (t+ θl) erθfαl (t)ql+1(t)dt

+

k∑
l=0

∫ θ

0

e−ρ(t+θl)
[
p0

w(t+ θl)fαl (t)

(1 + C0α(t+ θl)fαl (t))2
− C2w(t+ θl)fαl (t)

]
dt.

(2.12)

From (2.12) we get the conclusion.

Existence of an optimal control can be proved as in [3, 6, 9]. Let α∗ be such an optimal control. Then, for
any w ∈ L∞(0, T ) such that only 0 ≤ α∗(t) + εw(t) ≤ 1 a.e., for sufficiently small ε > 0 holds, we have that

G(α∗) ≥ G(α∗ + εw).

Remark 2.3. Let α∗ be an optimal control for the problem (2.6). We denote by

al(t) =
p0

(1 + C0α∗(t+ θl)fα
∗

l (t))2
− C2 − erθ+ρ(t+θl)ql+1(t), (2.13)
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for t ∈ [0, θ) and l = 0, 1, . . . , k − 1. al(t) is a strictly decreasing and continuous function of α∗ (t+ θl) ∈ [0, 1].
The set of all values of al(t) is the closed interval[

p0
(1 + C0fα

∗
l (t))2

− C2 − erθ+ρ(t+θl)ql+1(t), p0 − C2 − erθ+ρ(t+θl)ql+1(t)

]
.

If 0 belongs to this interval, then α∗ (t+ θl) is the unique value for which al(t) = 0. So, for this case

α∗ (t+ θl) =
1

C0fα
∗

l (t)

(√
p0

C2 + erθ+ρ(t+θl)ql+1(t)
− 1

)
. (2.14)

If 0 does not belong to this interval, then the optimal control α∗ can be characterized as:

α∗ (t+ θl) =

{
0, if p0 − C2 − erθ+ρ(t+θl)ql+1(t) < 0
1, if p0

(1+C0fα
∗

l (t))2
− C2 − erθ+ρ(t+θl)ql+1(t) > 0, (2.15)

for t ∈ [0, θ) and l = 0, 1, . . . , k − 1.
For t ∈ [0, T − θk), we obtain similar results denoting by

ak(t) =
p0

(1 + C0α∗(t+ θk)fα
∗

l (t))2
− C2.

The theoretical results allow for numerical tests that extend the present framework to more realistic and
heterogenous distributions of the resource.

3. Numerical tests

The previous results (Thms. 2.1 and 2.2, and Rem. 2.3) allow us to develop a conceptual iterative algorithm
to improve at each step the control α, in order to obtain a higher value for the objective G (a gradient-type
algorithm).

Step 0. Set j := 0 and G(0) := 0
Initialize α(0)(t).

Step 1. Compute f (j+1) the solution of (2.3) corresponding to α := α(j);

Evaluate G(j+1) := G from (2.6) corresponding to fα := f (j+1) and

α := α(j).

Step 2. if |G(j+1) −G(j)| < ε or G(j+1) ≤ G(j) then STOP;

else go to Step 3.

Step 3. Compute q(j+1) the solution of (2.10) corresponding to α := α(j)

and fα := f (j+1);

Compute α(j+1)(t) := min{max{α(j)(t) + ε̃w(t), 0}, 1}, where

wl(t) = f
(j+1)
l

(
p0

(1 + C0α(j)(t+ θl)fα
(j)

l (t))2
− C2 − erθ+ρ(t+θl)q(j+1)

l+1

)
, l = 0, . . . , k − 1,

wk(t) = f
(j+1)
k

(
p0

(1 + C0α(j)(t+ θk)fα
(j)

k (t))2
− C2

)
, t ∈ [0, T − θk),

and ε̃ > 0 is small.

Step 4. j := j + 1;
go to Step 1.
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Figure 1. Test 1. The representation of final iteration of α.
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Figure 2. Test 1. The level of harvest corresponding to the last iteration.

Here ε > 0 (Step 2) is a prescribed convergence parameter. For more information about gradient methods,
see [5].

3.1. Numerical examples

With fixed T and v we get k = bT/θc. The domain [0, θ) is discretized by m equidistant nodes, namely

ti = (i− 1)∆t, i = 1, 2, . . . ,m,
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Figure 3. Test 2. The approximate values of G as a function of iterations.
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Figure 4. Test 2. The representation of final iteration of α.

with ∆t = θ/m. Thus, the interval [lθ, (l + 1)θ] is approximated by nodes

tlm+i = ti + θl,

for i = 1, 2, . . . ,m, and l = 0, 1, 2, . . . , k, if k < T/θ, and l = 0, 1, 2, . . . , k − 1, if k = T/θ .
We set the positive constants: C0 = 1, C1 = 0.1, C2 = 0.01, p0 = 1, ρ = 0.05, and r = 0.2. We also take the

tolerance ε = 0.0001.
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Figure 5. Test 2. The level of harvest corresponding to the last iteration.

Table 1. The approximate value of the cost functional G after a certain number of iterations.

Iteration G

1 2.3204
10 2.3767
20 2.4285
30 2.4715
40 2.5079
50 2.5391
100 2.6492
120 2.6806
140 2.7078
168 2.7335

Test 1. For v = 3π/5 and T = 10, we obtain k = 3 complete rounds. The initial level of stock is assumed to
be a constant, e.g. f0(x) = 1. To start with, we take α(0)(t) = 0.5. For m = 200, the algorithm ends in 168
iterations, when the first condition in Step 2 is fulfilled.

In Table 1, it can be seen that the algorithm provides a higher value for the objective G at each step. The
representation of the control α corresponding to the last iteration is in Figure 1, and the level of harvest after
the last iteration of the algorithm is shown in Figure 2.

Let us notice that, for these numerical data, we have full exploitation of the resource in the last round of
harvesting. This means that we have α(t) = 1 for all t ∈ [T − θ, T ], thus the final stock equals f(T, x) = 0, for
all x ∈ [0, 2π] (see Fig. 1, where by dashed vertical lines we indicate the three completed rounds).
Test 2. For v = π/2 and T = 10, we obtain k = 2 complete rounds and an incomplete one. We take f0(x) =
| sinx|, and with the same initialization of α(0)(t), the algorithm ends in 689 iterations, with the first condition
in Step 2 fulfilled. In Figure 3 is the representation of the objective G vs. iterations, and in the Figure 4 is the
control from the last iteration. The level of harvest resulting from the last iteration of the algorithm is shown
in Figure 5.
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Figure 6. Test 3. The representation of final iteration of α, for C2 = 0.3 (the 272th iteration).
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Figure 7. Test 3. The representation of final iteration of α, for C2 = 0.4 (the 157th iteration).

We have full exploitation of the resource in the last round of harvesting, like in previous numerical test (see
Fig. 4, where we indicate by dashed lines the completed rounds, backward in time).
Test 3. We take v = π/2 and T = 10. By increasing the value of the cost constant, e.g. C2 = 0.3 or C2 = 0.4, it
can be observed that there is no more full exploitation (see Figs. 6 and 7). Since α(t) < 1, for all t ∈ [T − θ, T ],
the final stock is positive everywhere. The distribution of the stock along the optimal path is represented in
Figure 8, for C2 = 0.4. For each point of the unit circle, we represent the stock of the resource at the end of the
planning period; i.e. f(x, T ) for all x ∈ [0, 2π]. Thus, we represent the final stock in polar coordinates (rf , φ),
where rf = 1 + f(x, T ) and 0 ≤ φ < 2π.
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[2] L.-I. Aniţa, S. Aniţa and V. Arnăutu, Optimal harvesting for periodic age-dependent population dynamics with logistic term.
Appl. Math. Comput. 215 (2009) 2701–2715.
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