
1. Introduction
Redox-sensitive trace elements (RSEs) such as molybdenum (Mo), uranium (U), and vanadium (V) are widely 
used to reconstruct marine redox changes throughout Earth's history (Dickson,  2017; Kendall et  al.,  2017; 
Tribovillard et al., 2006). RSEs in various redox states have different solubilities and/or affinities for particu-
lates, resulting in distinct authigenic enrichment patterns (Tribovillard et al., 2006). Under oxic conditions, Mo 
in the dissolved form (i.e., 𝐴𝐴 Mo(VI)O2–

4
 ) can be adsorbed to iron (Fe)-manganese (Mn) (oxyhydr)oxides. Isotop-

ically light Mo is preferentially adsorbed, leading to an equilibrium isotopic fractionation (Δ 98Mosolution–solid) 
of ∼1–3‰ (Barling & Anbar, 2004; Goldberg et al., 2009; Wasylenki et al., 2008). Under sulfidic conditions, 
thiolation (sulphurization) transfers soluble 𝐴𝐴 Mo(VI)O2–

4
 to poorly soluble 𝐴𝐴 Mo(VI)OxS

2–
4-x

 , which is further scav-
enged by metal-rich particles, organic matter, and/or iron sulfides (Chappaz et al., 2014; Erickson & Helz, 2000; 
Hlohowskyj et al., 2021; Kendall et al., 2017). When the concentration of dissolved sulfide increases at a rate 
that allows near-equilibrium conditions to be maintained, 𝐴𝐴 Mo(VI)O2–

4
 undergoes complete thiolation, being fully 

converted to 𝐴𝐴 Mo(VI)S2–
4

 at ∼11 µΜ dissolved sulfide (Erickson & Helz, 2000). In this case, there is no isotopic 
fractionation of Mo between precipitates and ambient solution (Poulson Brucker et al., 2009). On the contrary, 
in environments of sufficiently low dissolved sulfide concentrations (<11 µΜ), incomplete thiolation leads to 
a lower Mo-isotope value (δ 98Mo) in precipitates compared to that in solution due to equilibrium fractionation 
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(Δ 98Mosolution–solid = 0.5–0.9‰) (Hlohowskyj et al., 2021; Dickson, 2017; Kendall et al., 2017; and references 
therein). The Mo-isotope fractionation associated with incomplete Mo thiolation is smaller than that of adsorp-
tion of Mo onto Fe- and Mn-oxides, but for the formation of secondary Mo enrichments the thiolation process is 
considered to be more significant than adsorption.

While the content and isotope ratio of Mo in sediments have often been used as paleoredox proxies of coeval 
seawater, postdepositional processes could overprint the pristine Mo signature (Lin et  al.,  2022; McManus 
et al., 2002; Slotznick et al., 2022). For example, if depositional conditions are sulfidic with limited porewater 
Mo, we expect near-complete transition of porewater Mo to the solid phase during early diagenesis in shallow 
layers of organic-rich sediments. As a result, additional dissolved sulfide produced in deeper layers has a minor 
influence on the buried Mo signal due to a lack of Mo supply (Eroglu et al., 2021). However, if sediments are 
sulfide-lean, Mo released from reductive dissolution of Mo-bearing minerals could diffuse up/downward until 
drawdown into new host minerals, leading to secondary Mo enrichments and low δ 98Mo values in sediments 
(Chen et al., 2022; Eroglu et al., 2020; Reitz et al., 2007). Furthermore, when the temperature rises, late-stage 
diagenesis could lead to substantial alteration of both the chemical composition and texture of sediments, for 
example, through fluid-rock interaction (Milliken, 2003). This process, along with potential external fluids, may 
also alter sedimentary Mo signatures (Ardakani et al., 2016, 2020). Recent work on sediments near hydrothermal 
vents reports abnormally negative δ 98Mo values as low as −1.7‰ (Goto et al., 2020), but how hydrothermal 
processes remobilize Mo after burial is yet to be explored.

To understand postdepositional Mo behavior and the use of Mo-based proxies for paleoredox reconstruction, 
we investigate deep sediments from the International Ocean Discovery Program (IODP) Expedition 370 Site 
C0023, which have undergone extensive early diagenesis (Kars et al., 2021; Köster et al., 2021) and hydrother-
mal alteration (Tsang et al., 2020). By examining RSE contents and Mo-isotope ratios of bulk sediments, along 
with porewater trace element concentrations, we aim to reveal factors that exert the first-order control on the Mo 
redistribution and δ 98Mo composition during postdepositional processes.

2. Materials and Methods
2.1. Study Site

The IODP Site C0023 recovers drill cores down to 1,200 m below seafloor (mbsf) in the Nankai Trough, south-
east of Cape Muroto, Japan (Heuer et al., 2017). Due to the location at the subduction boundary between the 
southwest Eurasian plate and the Philippine Sea plate, a décollement (deformational fault) between 758 and 
796 mbsf separates the above and below domains (Figure 1, Figure S1 in Supporting Information S1) (Horsfield 
et al., 2006). The above-thrust domain includes the upper zone (250–720 mbsf) and a reversed sulfate-methane 
transition zone (SMTZ, centered at 730  mbsf) that likely evolved due to upward diffusion of sulfate from a 
“relict” (buried) sulfate pool (Köster et al., 2021). The underthrust domain is the hydrothermally altered zone 
(760–1120 mbsf) affected by low-temperature hydrothermal fluids (<220°C; Tsang et al., 2020) (Figure 2).

2.2. Methods

We analyze solid-phase and porewater trace element concentrations with an inductively coupled plasma mass 
spectrometer (ICP-MS) and solid-phase Mo-isotope ratios with a multi-collector (MC)-ICP-MS using the 
double-spike method. Sample collection and analytical details are given in Supporting Information S1.

3. Results
The sedimentary Mo content between 250 and 1120 mbsf is constantly low (average = 0.76 μg g −1), except for the 
large enrichment to 19.92 μg g −1 at the SMTZ (Figure 2). This exceptionally high Mo content coincides with the 
peak of porewater sulfide concentration as well as the lowest U and V contents. Although the U and V contents 
are more scattered compared to Mo, all these RSEs show coupled increases at 850 and 880 mbsf at the hydrother-
mally altered zone. Similarly, the solid phase δ 98Mo is stable (average = −0.24‰, n = 2) within the upper zone, 
slightly decreases to −0.80‰ at the SMTZ, and becomes more negative within the hydrothermally altered zone 
with a minimum of −1.59‰ at 850–880 mbsf.

The porewater Mo concentration increases between 400 and 720 mbsf from <0.5 to up ∼2 μM, plateaus across 
the SMTZ, and then decreases to 0.2 μM at 1040 mbsf within the hydrothermally altered zone (Figure 3). The 
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porewater U, V, and Ni concentrations remain low in the above-thrust domain (despite slightly higher V concen-
trations above ∼400 mbsf and near the SMTZ) but show a strong variation at the hydrothermally altered zone. 
This pattern is similar for solid-phase RSEs and REEs (rare earth elements) (Figure 2, Figure S3 in Supporting 
Information S1).

Figure 1. Geological maps of the study area. (a) Tectonic configuration of the Japanese Island system After Underwood and Guo (2018); (b) Bathymetry map of the 
Nankai Trough and IODP Site C0023 (Expedition 370) off Cape Muroto, Japan. After Heuer et al. (2017).

Figure 2. Depth profiles of porewater and solid-phase geochemistry at Site C0023. (a) Porewater sulfate and methane concentrations; (b) Dissolved sulfide and pyrite 
(chromium reducible sulfur, CRS) content; (c, e, f) bulk solid-phase Mo, U, and V contents; (d) bulk solid-phase δ 98Mo. The error bar is smaller than the symbol size. 
Data in panels a–b are from Heuer et al., 2017; Köster et al., 2021.

 19448007, 2023, 21, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
104706 by A

lfred W
egener Institut F. Polar- U

. M
eeresforschung A

w
i, W

iley O
nline L

ibrary on [01/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Geophysical Research Letters

NAN ET AL.

10.1029/2023GL104706

4 of 9

4. Discussion
4.1. Mo Behavior Across the SMTZ

The porewater sulfate and methane profiles display a reverse SMTZ sulfides (Figure 2a, Figure S4 in Support-
ing Information S1; Heuer et al., 2020; Kars et al., 2021; Köster et al., 2021), where iron oxides are typically 
transformed into Fe sulfides (e.g., Riedinger et al., 2005, 2017). During this alteration, previously adsorbed Mo 
is released into porewater (Figure 4). The concurrent decreases in solid-phase U, V, and REE contents within the 

Figure 3. Depth profiles of trace element concentrations in porewater at Site C0023.

Figure 4. (a) Schematic diagram of postdepositional behavior of Mo at Site C0023. Reductive dissolution of Fe-Mn (oxyhydr)oxide and Mo thiolation control the Mo 
signatures at the SMTZ, while hydrothermal fluids and Mo adsorption onto Fe-Mn (oxyhydr)oxides control those at the hydrothermally altered zone. (b) The modeled 
sedimentary δ 98Mo in relation to varying Fe/Mn ratios. Fe/Mn ratios are from Heuer et al. (2017) and Köster et al. (2021) There are two source solutions: hydrothermal 
fluids (green dashed line) and seawater (black dashed line), providing upper and lower boundaries for the estimated solid phase δ 98Mo (green and black solid lines), 
which well covers all the observed δ 98Mo data from the hydrothermally altered zone. The error bar is smaller than the symbol size (open cycles).
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SMTZ also indicate dissolution of Fe-Mn (oxyhydr)oxides (Figure 2, Figure S3 in Supporting Information S1), as 
Fe-Mn (oxyhydr)oxides have a strong capacity to adsorb U(VI), V(V), and REE(III) (Bayon et al., 2004). When 
the released Mo subsequently encounters dissolved sulfide produced by sulfate reduction, thiolation reduces Mo 
solubility, eventually resulting in a more than twenty-fold enrichment of Mo in sediments (Figure 2c). We note 
that the organic carbon content remains relatively stable and low (average = 0.3 wt%, Heuer et al., 2017) across 
this zone and was presumably also low at the time of deposition (Köster et al., 2021). Thus, scavenging of Mo by 
organic matter during deposition is unlikely to be the cause for the Mo enrichment.

The negative Mo-isotope excursion at the SMTZ agrees with the above finding. With the dissolved sulfide concen-
tration being extremely low throughout the cored sediment column, and with the comparatively high Mo concen-
tration in porewater around the SMTZ, we expect incomplete thiolation with Δ 98Mosolution–lsolid  =  0.5–0.9‰. 
Assuming that the δ 98Mo composition of sediments before burial into the deep SMTZ was similar to that at 
the upper zone (−0.24‰), and assuming reductive dissolution of oxides and incomplete thiolation, the result-
ing solid-phase δ 98Mo due to equilibrium fractionation would theoretically range between −0.74 and −1.14‰ 
(Figure 4). This is in agreement with our observation of −0.80‰ at the SMTZ (Figure 2d), and also with the 
reported δ 98Mo = −0.82‰ resulting from early diagenesis from the eastern Mediterranean (Reitz et al., 2007). 
Interestingly, the Mo content and δ 98Mo signature do not always follow the trend of pyrite at this site (i.e., paleo-
SMTZ indicator). This inconsistency suggests that either the availability of paleo-porewater sulfide or Mo was 
limited to produce secondary Mo enrichments, or subsequent processes (e.g., the dissolution of iron sulfides) 
erased the paleo-Mo signal (Chappaz et al., 2014; Gregory et al., 2015).

In addition to Fe-Mn (oxyhydr)oxides dissolution, one might wonder that underthrust hydrothermal fluids and/
or seawater could be potential Mo sources to the SMTZ. Hydrothermal alteration introduces fluid-bearing Mo, 
while seawater ions diffusing downward may carry quantitative Mo into porewater. However, according to the 
distinct characteristics of porewater Ni concentrations above and below the décollement, the décollement has 
hindered hydrothermal fluid flows from the underthrust domain (Hamada et al., 2018; Tobin & Saffer, 2009). 
On the other hand, similar to Eroglu et al. (2021), the influence of seawater Mo is restricted to surface layers 
(<10 mbsf), where sulfides at shallow depths have readily removed dissolved Mo into sediments (see Supporting 
Information S1). It is thus less likely to impose the observed abrupt change of Mo signals at the SMTZ. On the 
contrary, Fe-Mn (oxyhydr)oxide dissolution in deep sediments provides excess Mo. This process combined with 
Mo thiolation appears to be the primary control on the Mo signature at the SMTZ.

4.2. Hydrothermal Alteration of Mo Signatures

In the underthrust sediments, lateral advection of low-temperature hydrothermal fluids is responsible for the 
increases in porewater and solid-phase Mo contents. High-pressure flows result in mechanically weak areas 
(∼800–1050 mbsf) beneath the décollement zone (Heuer et al., 2020; Hirose et al., 2021), where Fe- and Mn-rich 
hydrothermal fluids intrude via lateral advection (LaRowe et al., 2020; Torres et al., 2015). Such environments 
favor Fe-Mn (oxyhydr)oxide formation, which explains the elevated contents of Mn and Fe oxides between 800 
and 900 mbsf (Figure S3 in Supporting Information S1) (Kars et  al.,  2021; Torres et  al.,  2015). Meanwhile, 
hydrothermal fluids carry large amounts of trace metals (Wheat et al., 2002), which are, in turn, adsorbed onto 
the Fe-Mn (oxyhydr)oxides. Our results show RSEs and REEs enrichments in sediments at 850 and 880 mbsf and 
increasing porewater RSEs and Ni concentrations (Figure 3, Figure S4 in Supporting Information S1), suggesting 
the active formation of authigenic minerals associated with hydrothermal processes.

With Mo supplied by hydrothermal fluids and its adsorption onto Fe-Mn (oxyhydr)oxides, the solid phase 
δ 98Mo is shifted toward more negative values (Figure 4). To quantify the effect of Mo adsorption onto Fe-Mn 
(oxyhydr)oxides on δ 98Mo, we use a simple mass balance model after Goto et al. (2020) (see details in Support-
ing Information  S1). We conceptualize the Mo system at this zone as a box, where Mo from hydrothermal 
fluids constitutes the input, while Mo adsorption onto Fe-Mn (oxyhydr)oxides serves as the output. We also 
consider Mo-isotope fractionation (Δ 98Mosolution–solid) as a function of the Fe/Mn ratio in sediments, which ranges 
from 1.11‰ (Fe-oxides dominant; Goldberg et al., 2009; Goto et al., 2020) to 2.72‰ (Mn-oxides dominant; 
Wasylenki et al., 2008; Goto et al., 2020). Typically, the δ 98Mo of low-temperature hydrothermal fluids is about 
0.8‰ (McManus et al., 2002). Model results suggest that the δ 98Mo in sediments varies between −1.92 and 
−0.31 ‰ (Figure 4b, green line), with lower δ 98Mo corresponding to lower Fe/Mn ratios. If the low-temperature 
hydrothermal fluids mix with some seawater via lateral advection, the source δ 98Mo could be higher up to 2.3‰ 
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(i.e., the modern seawater end member; Nakagawa et al., 2012), and the resulting δ 98Mo in sediments is between 
−0.42 and 1.19‰ (Figure 4b, black line). These two scenarios provide upper and lower boundaries for the esti-
mated δ 98Mo, which well covers all the observed δ 98Mo data from the hydrothermally altered zone. This is also 
in agreement with the low δ 98Mo of −1.7‰ found in co-precipitated Fe-Mn oxides in the modern hydrothermal 
setting (Goto et al., 2020).

We also note that some underthrust sediments exhibit scattered occurrences of dissolved sulfide (<11 µΜ), which 
may impact Mo through incomplete thiolation. However, Mo-isotope fractionation associated with incomplete 
thiolation will result in precipitates that exhibit lower Mo-isotope values compared to those found in the dissolved 
form with Δ 98Mosolution–solid = 0.5–0.9‰. If it were the case, hydrothermally derived Mo combined with incom-
plete thiolation would not explain a δ 98Mo value lower than −0.1‰, indicating other processes have predom-
inantly influenced the behavior of Mo. Besides, although some intervals with relatively higher pyrite contents 
(Figure 2) may be indicative of paleo-SMTZs that existed prior to hydrothermal alteration (Köster et al., 2021), 
the associated Mo-isotope fractionation could only explain solid phase δ 98Mo values as low as −0.8‰ (Reitz 
et al., 2007 and this study). Lower values, for example, the −1.59‰ determined for the depth of 850–880 mbsf, 
must derive from hydrothermal alteration. We suggest that adsorption of hydrothermally derived Mo onto Fe-Mn 
(oxyhydr)oxides plays a main role in Mo behavior at this zone.

4.3. Challenges and Future Perspectives of Using Sedimentary Mo as a Paleoredox Proxy

The challenges of using sedimentary Mo as a paleoredox proxy stem from the difficulty in discerning postdep-
ositional Mo enrichment processes in bulk sediments, particularly for ancient rock samples where porewater 
data are not available. In this study, we combine the solid-phase geochemistry and porewater data to recognize 
postdepositional alteration of bulk Mo signatures which offers new insights into how the modified Mo signatures 
could complicate the interpretation of paleoredox conditions. Specifically, the Mo enrichment at the upper zone 
is small and shares similarities with that in oxic marine environments, indicating a minor diagenetic impact on 
Mo. However, the Mo enrichment at the SMTZ and the hydrothermally altered zone increases, mimicking the 
pattern from oxic to reducing environments where sediments are more enriched in Mo (see Supporting Infor-
mation  S1 and Figure S5). Furthermore, the δ 98Mo value shifts toward more negative at the SMTZ and the 
hydrothermally altered zone compared to the upper zone (Figure S5 in Supporting Information S1). Previous 
studies on the early Cambrian black shales in South China have attributed the untypically low δ 98Mo to a more 
stratified ocean at continental margin settings, where the Fe-Mn (oxyhydr)oxides shuttle at shallow water depth 
preferentially releases isotopically depleted Mo to weakly euxinic bottom water and results in the δ 98Mo lower 
than −1.5‰ (e.g., Ostrander et al., 2019; Qin et al., 2022). However, the early Cambrian hydrothermal exhalative 
ore layers are present around those areas (Derkowski et al., 2013; Steiner et al., 2001), implying potential impacts 
from hydrothermal fluids and the associated alteration. If it is the case, hydrothermal alteration could provide an 
additional explanation for the extremely low δ 98Mo signature. That said, without considering such an effect, the 
extent of oceanic euxinia could be overestimated.

Drawing from our findings, comprehensive analyses of RSEs beyond Mo (e.g., U, V) are required for assessing 
postdepositional alteration of Mo signatures. It will be critical to identify the influence of Mo sources and seques-
tration pathways on Mo signatures after burial especially for the different Mo speciation. With the development 
of micrometer- to nanometer-scale molecular geochemical techniques, such as secondary ion mass spectrometry 
(SIMS), X-ray spectroscopy, identification of Mo speciation, oxidation states and phase associations in sedi-
ments becomes feasible (Slotznick et al., 2022; Tessin et al., 2019; Wagner et al., 2017). In addition, laser abla-
tion multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) has set a new benchmark 
for the acquisition of accurate and precise non-traditional isotopes (e.g., Fe, Mg) at the micrometer scale (Sio 
et al., 2013; Zhang & Hu, 2020). Thus, it may soon be possible to analyze Mo isotopes of various Mo speciation. 
These analytical tools offer unparalleled insights into the mechanisms of Mo enrichment and the associated 
isotopic fractionation, enhancing our ability to reconstruct paleoredox conditions.

5. Conclusion
Our findings suggest that postdepositional processes, including early diagenesis and hydrothermal alteration, 
cause Mo remobilization in deep sediments, in which different Mo sources and redox conditions play a crucial 
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role. Specifically, reductive dissolution of Fe-Mn (oxyhydr)oxides and the availability of dissolved sulfide control 
the Mo signature at the SMTZ. Notably, while the dissolved sulfide concentration is lower than the threshold of 
complete thiolation (11 µΜ), the increase in sulfide concentration primarily drives the significant Mo enrichment 
with small isotope fractionation. Compared to the reducing condition, the Mo content and extremely low δ 98Mo 
in hydrothermally altered sediments are likely a result of Mo adsorption onto Fe-Mn (oxyhydr)oxides. Therefore, 
future studies must exercise caution when using Mo-based proxies for paleoredox reconstruction. Systematic 
assessments of RSEs other than Mo (e.g., U, V) and micrometer- to nanometer-scale molecular geochemistry 
could be helpful tools to identify potential postdepositional effects and to better interpret marine paleoredox 
states.
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