

ARTICLE OPEN Vitamin B₁₂ is not shared by all marine prototrophic bacteria with their environment

Sabiha Sultana ¹, Stefan Bruns ¹, Heinz Wilkes¹, Meinhard Simon ^{1,2} and Gerrit Wienhausen ^{1,3 ×}

© The Author(s) 2023

Vitamin B_{12} (cobalamin, herein B_{12}) is an essential cofactor involved in amino acid synthesis and carbon resupply to the TCA cycle for most prokaryotes, eukaryotic microorganisms, and animals. Despite being required by most, B_{12} is produced by only a minor fraction of prokaryotes and therefore leads to complex interaction between prototrophs and auxotrophs. However, it is unknown how B_{12} is provided by prototrophs to auxotrophs. In this study, 33 B_{12} prototrophic alphaproteobacterial strains were grown in coculture with *Thalassiosira pseudonana*, a B_{12} auxotrophic diatom, to determine the bacterial ability to support the growth of the diatom by sharing B_{12} . Among these strains, 18 were identified to share B_{12} with the diatom, while nine were identified to retain B_{12} and not support growth of the diatom. The other bacteria either shared B_{12} with the diatom only with the addition of substrate or inhibited the growth of the diatom. Extracellular B_{12} measurements of B_{12} -provider and B_{12} -retainer strains confirmed that the cofactor could only be detected in the environment of the tested B_{12} -provider strains. Intracellular B_{12} was measured by LC-MS and showed that the concentrations of the different B_{12} -provider as well as B_{12} -retainer strains differed substantially. Although B_{12} is essential for the vast majority of microorganisms, mechanisms that export this essential cofactor are still unknown. Our results suggest that a large proportion of bacteria that can synthesise B_{12} *de novo* cannot share the cofactor with their environment.

The ISME Journal (2023) 17:836-845; https://doi.org/10.1038/s41396-023-01391-3

INTRODUCTION

Vitamin B₁₂ (cobalamin, herein B₁₂) is a water-soluble cobaltcontaining compound and is required by the vast majority of prokaryotic and about half of the eukaryotic marine microorganisms that are isolated or genome sequenced [1]. B₁₂ functions as coenzyme for the methylcobalamin-dependent methionine synthase and adenosylcobalamin-dependent methylmalonyl-CoA mutase, which are involved in amino acid synthesis and carbon resupply to the TCA cycle, respectively [2, 3]. However, de novo synthesis can only be carried out by a minor fraction of prokaryotes [1, 4, 5]. More than 30 genes are required for the complete biosynthesis of this important cofactor, which makes up about 1% of an average bacterial genome [4, 6]. This is an energetically and metabolically expensive biosynthetic process, which may explain why considerably fewer than half of all prokaryotes encode the genes for complete biosynthesis of B₁₂ or other cobamides [1, 4, 7, 8]. To gain an evolutionary benefit in an environment where there is still a sustainable supply from distinct substrates or growth factors such as vitamins, loss of biosynthetic genes often occurs in bacteria, leading to a reduction in the size of the genome, known as genome streamlining [9, 10]. This process is believed to reduce the metabolic cost and thus provide a selective advantage, as long as sufficient quantities of the essential compound are freely available. Less than 10% of soil bacteria are capable of de novo synthesise of B₁₂ [8]. In marine ecosystems only select heterotrophic bacteria and Thaumarchaeota can produce it [11] and the share of B₁₂ prototrophs can be as low as one-fifth of the bacterial community, so that the vast majority of microorganisms depend on the cofactor [7]. This gap between supply and demand of B_{12} can result in complex microbial interactions between prokaryotes and eukaryotes [12-16]. Approximately half of known phytoplankton encode the B₁₂-dependent methionine synthase (metH) [17], which is why they require this pivotal cofactor from the environment. Concentrations of dissolved B₁₂ undergo strong fluctuations in the sea, are in some cases below the detection limit of a few pM, and their presence has been shown to influence marine microbial communities [11, 18-23]. In marine environments, bacteria often live in close association with phytoplankton [24, 25]. In several studies, the provision of B₁₂ by individual heterotrophic bacteria to B₁₂ auxotrophic phytoplankton in exchange for organic carbon was demonstrated [13, 14, 16, 26-29]. Yet, it is still debatable whether this exchange of metabolic products represents a mutualistic symbiosis between B₁₂ prototrophs and B₁₂ auxotrophic, microbial eukaryotes, or whether its release is unintentional [13, 30, 31]. In fact, mechanisms that lead to the provision of the cofactor and factors that favor this exchange are still largely unknown. Despite varying lower and upper ligands attached to the corrinoid ring, B₁₂family metabolites, including cobalamin, are always larger than 1,350 Daltons. Therefore, diffusion through the cell membrane appears to be almost impossible [32]. The relatively well studied uptake of B₁₂ by gram-negative bacteria, requires the binding of B₁₂ to the outer membrane protein BtuB. Then, B₁₂ is transported into

Received: 1 August 2022 Revised: 20 February 2023 Accepted: 23 February 2023 Published online: 13 March 2023

¹Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129 Oldenburg, Germany. ²Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, D-26129 Oldenburg, Germany. ³Institute for Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, D-26129 Oldenburg, Germany. ^{Elemail:} gerrit.wienhausen@uni-oldenburg.de

the cell by the inner membrane protein complex TonB via an electrochemical gradient of protons [33]. The mechanism of B_{12} export, essential for microbial interactions, still remains unexplored.

Given the available knowledge, we hypothesise that not all B_{12} prototrophic bacteria share the essential cofactor with other microorganisms. Our aim is to provide first indications of the requirement of an active export mechanism in order to draw conclusions on B_{12} driven mutualistic interactions and the global provision of B_{12} in marine ecosystems.

In order to achieve this goal, we co-cultured *Thalassiosira pseudonana*, a B₁₂ auxotrophic diatom, with 33 B₁₂ prototrophic bacteria of the alphaproteobacterial class to test the bacterial ability to share B₁₂ with other microorganisms. Furthermore, we determined intra- and extracellular B₁₂ concentrations of B₁₂-provider and B₁₂-retainer strains by means of liquid chromatography coupled with mass spectrometry (LC-MS) [34] and studied patterns that both B₁₂-provider and B₁₂-retainer strains had in common.

METHODS AND MATERIALS Identification of B₁₂ prototrophs

To study the ability of heterotrophic bacteria to share B_{12} with surrounding microorganisms, we selected 33 prototrophic marine representatives. As a prerequisite, all selected bacteria had to grow on synchronized artificial seawater (syn-ASW) media (Supplementary table S1) as it promotes the growth of most phototrophic eukaryotes as well as prokaryotes with equal growth facilitating conditions. Further, the genome sequence had to be complete and accessible at IMG (integrated microbial genomes; https://img.jgi.doe.gov/cgi-bin/mer/main.cgi). The ability for *de novo* B_{12} synthesis was verified based on a complete B_{12} pathway and growth (determined by OD) in minimal medium without the addition of B_{12} . The genetic verification of the B_{12} biosynthesis pathway was assumed if at least 95% of the B_{12} biosynthesis pathway of a strain was annotated (Supplementary table S2). As B_{12} auxotrophic (recipient) organism, we selected the genome sequenced diatom, *T. pseudonana* (CCMP 1335).

B₁₂ cross-feeding co-culture experiment

To establish a B₁₂ deficient diatom culture, *T. pseudonana* was first cultured in F/2 media and subsequently transferred (twice) to B12-free syn-ASW media (supplemented with thiamine (vitamin B₁), riboflavin (vitamin B₂), nicotinic acid (vitamin B₃), pantothenic acid (vitamin B₅), pyridoxine hydrochloride (vitamin B₆), and biotin (vitamin B₇); 500 pM each). Once B₁₂ was depleted, the final diatom pre-culture for the inoculation of the main experiment was supplemented with 10 pM B₁₂ to ensure growth, yet growth was limited upon B₁₂ depletion. Bacterial pre-cultures were grown in Marine Broth (MB) media at 20 °C, 100 rpm. Cultures of the late exponential growth phase were washed three times (5974 g, five minutes) with B12-free syn-ASW media prior to inoculation. All diatom pre-cultures and the experimental co-cultures were illuminated at 70 μ E m⁻² s⁻¹ and incubated at 20 °C with a 12:12 h light-dark cycle (RUMED). The diatombacteria co-cultures were grown at three varying conditions. First, bacterial isolates were co-cultured with the diatom T. pseudonana without further additions to determine whether growth of T. pseudonana upon bacterial B₁₂ release is enabled. Second, to eliminate the possibility that individual bacterial isolates are unable to utilize diatom derived organic carbon and thus are unable to share B₁₂, the co-culture was supplemented with an organic carbon mixture (120 μ MC), containing glucose, glutamate, and acetate (each substrate at 40 μ M C). Third, B₁₂ (1 nM) was added to the bacteria-diatom co-culture, to ensure that the growth of the diatom was not inhibited by the bacteria, thus resulting in a false consideration as B12retainer. Alongside each experimental run, a negative control, axenic T. pseudonana grown without B12 addition and a positive control, T. pseudonana grown with the addition of 1 nM B₁₂ was considered. All treatments were run as triplicates. To ensure that only the bacterially provided B_{12} , but not the possible provision of methionine, enables the growth of T. pseudonana in co-culture, we cultivated T. pseudonana with only the addition of methionine and did not observe growth (Supplementary Fig. S1). For all co-culture treatments containing bacteria, the initial bacterial inoculum was calculated to be at 500,000 cells ml⁻¹ (based on flow cytometric cell counts), initial T. pseudonana cells were estimated to be about 4,000 cells ml⁻¹ (microscopic enumeration). Bacterial-diatom co-cultures were illuminated at 70 μ E m⁻² s⁻¹ and incubated at 20 °C with a 12:12 h light-dark cycle. Growth of *T. pseudonana* was determined throughout the experiment by means of relative fluorescence (TD 700 fluorometer, Turner Designs, California, USA). Samples for diatom and bacterial cell count were collected after inoculation and during the early stationary growth phase of *T. pseudonana*. For bacterial cell counts, samples were fixed with GDA at a final concentration of 1%, incubated at 4 °C for 30 min, and stored at -20 °C until enumeration by flow cytometry [35]. Diatom samples for cell enumeration were fixed with lugol (final concentrations of 0.15% iodine and 0.29% potassium iodide) and stored at 4 °C until further analysis.

Enumeration of bacteria and diatom

Prior to counting with the flow cytometer, bacterial cells were detached from the diatom cells using glass beads (2.3 mm) and ultrasonication (35 °C, 70%, 4 ×5 minutes, Sonorex digital 10P, Bandelin, Berlin, Germany) following by a short vortexing step (2 × 2 seconds, Vortex Genie2, Scientific Industries Inc., New York, USA) after each ultrasonic interval. This method was a further development of the detachment method described elsewhere [36]. Afterwards, bacterial cells were stained with SybrGreen I and enumerated by flow cytometry (BD Accuri C6, BD biosciences, Franklin Lakes NJ, USA) as described elsewhere [35]. Diatom samples, fixed with lugol, were loaded on a hemocytometer and enumerated by microscopy (AXIO, Lab.A1, objective lens Carl Zeiss, 40x).

Measurement of intra- and extracellular $B_{12}\xspace$ concentrations

Intracellular B₁₂ concentrations of 20 bacterial strains were measured using LC-MS. Selected strains were grown in B₁₂-free syn-ASW media (see above) and supplemented with an organic substrate mix (30 mM C) containing glucose, acetate, and glutamate (each having 10 mM C). Cell pellets of 2 × 50 ml culture were harvested from each replicate during the late exponential or early stationary growth phase, monitored by means of optical density (OD; Tables 1 and 2, Supplementary Fig. S2 and S3). The samples were then washed twice with B₁₂-free syn-ASW medium (3,213 g, five minutes at 4 °C) and cell pellets were stored at -20 °C until further analysis. Alongside, samples for bacterial cell counts were withdrawn, fixed with GDA (final concentration 1%), and enumerated by flow cytometry (see above).

To also analytically analyse whether B_{12} prototrophic bacteria share B_{12} , we sampled the exometabolome of four representative bacterial strains. We chose two isolates (*Marinovum algicola* FF3 DSM 10251, *Phaeobacter inhibens* DSM 17395) that promoted the growth of *T. pseudonana* in co-culture, while the other two isolates (*Pseudodongicola xiamenensis* DSM 18339, *Jannaschia helgolandensis* DSM 14858) did not. The isolates were grown as described above and growth was monitored by OD. The exudate was collected by filtering the culture with 0.2 µm filter (Sartorius, Minisart syringe filter) during late exponential or early stationary growth phase. Samples were stored at -20 °C until further analysis.

Bacterial cell pellets for intracellular B₁₂ analysis were extracted with bead beating, as described elsewhere [37]. To assess the recoveries, the work-up procedure was performed with known amounts of reference standards of the respective vitamins, and the amounts after the work-up were compared to the theoretical amounts without losses for each analyte. Recoveries of the different B₁₂ forms (cyano-, adenosyl-, methyl- and hydroxycobalamin) were 97-99%. Extracellular B₁₂ was concentrated on a solid phase extraction column (HLB, 1g, Macherey-Nagel) at pH 6 and eluted with methanol [38]. The solvent extracts were dried down under nitrogen stream and redissolved in 200 μl of water. Concentrations of individual intra- and extracellular B₁₂ forms were analyzed by LC-MS as described elsewhere [34] and summarized as total B₁₂. For HPLC separation with an Ultimate 3000 (ThermoFisher Scientific) on a Kinetex Evo C18 column (100 \times 2.1 mm, 2.6 μ m pore size, Phenomenex, Torrance, CA, USA) 10 mM ammonium formate (pH 6.0) (A) and acetonitrile (B) were used with the following solvent gradient: 0-13 min 100-75% A; 13-15 min 75-0% A; 15-19 min 0% A; 19-21 min 0-100% A; 21-26 min 100% A. Parameters for selected reaction monitoring mode on a TSQ Quantum Ultra triple quadrupole mass spectrometer (ThermoFisher Scientific) can be found in supplementary table S3.

Determination of the B₁₂ requirement of *T. pseudonana*

In order to get a better insight into the B_{12} requirement of *T. pseudonana*, we grew the axenic diatom in cultures of triplicates in syn-ASW-medium with the addition of different B_{12} concentrations (5, 10, 25, 50, and 100 pM)

Table 1. Intra- and extr strain without and with	acellular vitamin B ₁₂ the addition of B ₁₂	concentrations obtaine and with the addition	ed from B ₁₂ -provider strait of B ₁₂ in monoculture.	ins when grown in mon	o-culture and growth rates of	<i>T. pseudonana</i> in co-culture v	vith respective bacterial
B ₁₂ provider strains	Strain designation	Cell collection method used	Intracellular B ₁₂ molecules/ cell	Extracellular B ₁₂ molecules / cell	Growth rate of <i>T.</i> <i>pseudonana</i> grown in co- culture without addition of B ₁₂ (day)	Growth rate of <i>T.</i> <i>pseudonana</i> grown in co- culture with addition of B ₁₂ (day)	Growth rate of <i>T.</i> <i>pseudonana</i> only with addition of B ₁₂ (day)
Antarctobacter heliothermus EL-219	DSM 11445	Cell pellet	753±232	N/A	3.7 ± 1.4	2.6 ± 0.04	2.8 ± 0.02
Dinoroseobacter shibae	DSM 16493	Filtration	7,194 ± 1,105	N/A	9.6±0.9	8.8 ± 0.3	8.1 ± 0.1
Marinovum algicola FF3	DSM 10251	Cell pellet	7,171 ± 792	936±363	2.8 ± 0.04	2.8 ± 0.04	2.8 ± 0.02
Nautella italica R11	DSM 26436	Cell pellet	$1,986 \pm 273$	N/A	5.6 ± 0.2	2.7 ± 0.02	2.8 ± 0.02
Phaeobacter inhibens	DSM 17395	Cell pellet	2,821 ± 540	11 ± 3	10.3 ± 1.1	8.2 ± 1.1	8.1 ± 0.1
Phaeobacter inhibens T5	DSM 16374	Cell pellet	664±88	N/A	5.6 ± 0.5	2.5 ± 0.05	3.4 ± 0.4
Ponticoccus litoralis CL- GR66	DSM 18986	Cell pellet	4,622 ± 2,227	N/A	6.5 ± 1.2	3.8 ± 0.04	3.4 ± 0.4
Aliiroseovarius crassostreae CV919-312	DSM 16950	Cell pellet	26,619±13,140	N/A	5.8 ± 1.7	4.7 ± 0.9	3.4 ± 0.4
Roseovarius mucosus DFL-24	DSM 17069	Cell pellet	4,028 ± 708	N/A	6.0 ± 0.1	3.8 ± 0.06	3.4 ±0.4
Silicibacter sp.	TM1040	Cell pellet	15,214 ± 3,566	N/A	7.7 ± 0.5	4.3 ± 1.0	3.4 ± 0.4
Sulfitobacter sp.	DFL-14	Cell pellet	1546 ± 124	N/A	5.9±0.8	5.4 ± 1.2	3.4 ± 0.4
Sulfitobacter sp.	M22	Filtration	$13,982 \pm 6,646$	N/A	2.9 ± 0.2	2.7 ± 0.1	2.8 ± 0.02
*N/A not available.							

SPRINGER NATURE

and without any addition. All cultures were illuminated at 70 $\mu E~m^{-2}~s^{-1}$ and incubated at 20 °C with a 12:12 h light-dark cycle. The growth was determined every two to three days by means of relative fluorescence and the determination of the cell numbers (see above).

RESULTS

Growth of T. pseudonana at varying B₁₂ concentrations

We observed similar growth yield patterns by adding different B_{12} concentrations both by relative fluorescence (Fig. 1A) and by cell number determination (Fig. 1C). However, especially in the later growth phase (days 18 - 29), a strong decrease in relative fluorescence occurred, whereas at the same time points microscopically counted cell numbers still increased strongly (Fig. 1A, C). Highest relative fluorescence and also *T. pseudonana* cell density was achieved with the addition of 100 pM B_{12} (Fig. 1B, D). All other measured values rank according to the added concentration. Even the addition of fairly low B_{12} concentrations (five pM) resulted in significant growth compared to the negative control, which was detected by means of relative fluorescence as well as cell enumeration.

Growth of T. pseudonana in co-culture

To analyze the B₁₂ sharing between B₁₂ prototrophic bacteria and the auxotrophic diatom *T. pseudonana*, both microorganisms were co-cultured. Among 33 B₁₂ prototrophic bacterial strains, 18 promoted the growth of the diatom. Growth of T. pseudonana in co-culture with B₁₂-providing bacteria mostly achieved the same growth yield as the positive control, where the alga was grown with addition of 1 nM B₁₂, however with a slightly delayed growth (Fig. 2A, Fig. 3 and Supplementary Fig. S4). In the following, this group of bacteria is referred to as B₁₂-provider (Table 1). Cocultivation with nine other B₁₂ prototrophic bacteria did not result in distinct growth of the diatom, although the bacterial cell counts increased significantly over the course of the co-culture. The addition of substrate to exclude the possibility that the respective bacteria cannot utilise the diatom derived dissolved organic carbon did not lead to growth of the diatom either (Fig. 2B, Fig. 4, and Supplementary Fig. S5). However, the additional supply of B_{12} to the co-culture led to growth of T. pseudonana, which eliminates possible growth inhibition of the diatom induced by the tested bacteria. The group of these B₁₂ prototrophic bacteria is hereafter referred to as B₁₂-retainer (Table 2). Apart from the B₁₂-provider and B_{12} -retainer strains, co-cultivation with six additional B_{12} prototrophic bacterial isolates did not show distinct results, that would clearly favour one of the two groups. Five bacterial isolates were particularly growth-promoting when additional substrate was added to the co-culture. This observation suggests that these bacterial isolates cannot utilise the diatom derived DOM. In fact, most of these isolates (four out of five) were isolated from a source other than diatoms (Supplementary table S4). It is quite possible that these bacteria also share the synthesised B_{12} with their environment (Fig. 2C and Supplementary Fig. S6 and S7). Nevertheless, we have not considered this group for follow-up analysis. In co-cultivation with one bacterial strain, S. litoralis, the growth of T. pseudonana was inhibited under all three culture conditions. Growth yield of T. pseudonana remained at only half the level seen when T. pseudonana was grown in monoculture with the addition of B_{12} (Fig. 2D). Again, it can be assumed that S. *litoralis* shares B_{12} with the diatom, but again, we did not take this strain into account for further investigations.

Growth characteristics of bacteria and *T. pseudonana* in coculture

In most B_{12} -provider-diatom co-cultures without supplementations of substrate or B_{12} , *T. pseudonana* achieved the same growth yield as with the additional supply of B_{12} , however, mostly with a slight delay in growth (Fig. 2A and Supplementary Fig. S4). Growth

Table 2. Intra- and extract strain with the addition of	Ilular vitamin B_{12} cor B_{12} and with the ad	ncentrations obtained f Idition of B ₁₂ in mono	rom B ₁₂ -retainer strain. -culture.	s when grown in mono	-culture and growth rates of	T. pseudonana in co-culture	with respective bacterial
B ₁₂ retainer strains	Strain designation	Cell collection method used	Intracellular B ₁₂ molecules/ cell	Extracellular B ₁₂ molecules / cell	Growth rate of <i>T.</i> <i>pseudonana</i> grown in co-culture without addition of B ₁₂ (day)	Growth rate of <i>T.</i> <i>pseudonana</i> grown in co-culture with addition of B ₁₂ (day)	Growth rate of <i>T.</i> <i>pseudonana</i> only with addition of B ₁₂ (day)
Pseudodongicola xiamenensis Y2	DSM 18339	Filtration	2,656 ± 421	QN	N/A	7.2 ± 1.5	8.1 ± 0.1
Jannaschia helgolandensis Hel10	DSM 14858	Filtration	ND	QN	N/A	2.3 ± 0.03	3.8 ± 0.9

 2.8 ± 0.02

 2.7 ± 0.04 2.4 ± 0.00 2.8 ± 0.08

N/A N/A

N/A

A/A

 $4,558 \pm 106$

 7.5 ± 0.1

8.1±0.1

 2.8 ± 0.02

 3.8 ± 0.9

 2.8 ± 0.02

 2.8 ± 0.02

N/A

A/A

671 ± 28'

Cell pellet

DSM 16199

-oktanella salsilacus

R-8904

A/A

N/A

g

Filtration

DSM 26640

gallaeciensis BS 107

Phaeobacter

Sulfitobacter sp. Sulfitobacter sp.

N/A N/A N/A

 $4,599 \pm 122$

g

Cell pellet Cell pellet

M215 M220

ND not detected, N/A not available.

Sulfitobacter sp.

Loktanella sp.

g

Filtration

DFL-23

M39

2.8 ± 0.02

 2.8 ± 0.01

rates in most co-cultures were fastest with the addition of B_{12} , followed by co-cultures with substrate additions and mostly slowest in co-cultures without any addition. The only exception was Sulfitobacter sp. DFL-14, in which the growth rate of T. pseudonana was fastest in co-culture without the addition of B₁₂ compared to the one with B₁₂ (Supplementary Fig. S4). In all cultures with B12-provider strains, bacterial cell counts in the late exponential or early stationary growth phase were distinctly above those of the time point of inoculation (Fig. 2A and Supplementary Fig. S4). Bacterial cell counts of all these co-cultures for the treatments with substrate and B_{12} addition were mostly in the same order of magnitude, whereas co-cultures without further additions were mostly slightly below these values. The only exception was observed for the co-cultures with A. crassostreae DSM 16950, in which the highest bacterial cell counts were detected in the co-culture without further additions (Supplementary Fig. S4).

In the B₁₂-retainer-diatom co-cultures, we observed considerable differences in growth rates and yield in co-cultures with B₁₂ addition. The significantly increased growth yield of T. pseudonana when co-cultured with C. baekdonensis DSM 27375 and B12 additive was very noticeable (Supplementary Fig. S5). The relative fluorescence of this co-culture was almost twice as high as compared to others. In most of the B₁₂-retainer-diatom co-cultures, the detected relative fluorescence of T. pseudonana without any and with substrate addition was comparable to negative control values of T. pseudonana, when cultivated axenically without B₁₂ addition. Only a slight growth of *T. pseudonana* in co-culture with the B₁₂-retainers *L*. salsilacus, Sulfitobacter sp. M39, and Sulfitobacter sp. M220 was observed (Supplementary Fig. S5). Due to the low growth, which only became apparent in the later course of the growth curve, we nevertheless classified these strains as B12-retainers. For all B12retainer-diatom co-cultures, the bacterial cell counts sampled at the stationary phase (B₁₂ addition) or at the end of the experiment (no addition and substrate addition) were significantly higher than the measurements at the time of inoculation (Fig. 2B and Supplementary Fig. S5). Only in B₁₂-retainer-diatom co-cultures (without any addition), J. helgolandensis DSM 14858, Loktanella sp. M215, and P. gallaciensis, a slight to no increases in cell numbers was detected, yet an increase in cell numbers with substrate addition was detected in all co-cultures (Supplementary Fig. S5). The bacterial strains studied, divided into the groups of B₁₂-providers and B₁₂retainer, are listed in supplementary table S4 with their known habitats or isolation sites. Here it can be seen that especially bacteria of the B₁₂-provider group were isolated from or are mostly living in association with eukaryotic microorganisms.

Intra- and extracellular B₁₂ concentration

Twenty of the bacteria that we identified as either B₁₂-provider or B₁₂-retainer were grown again in monoculture with the addition of substrate, to determine the intracellular concentration of B₁₂. The growth yield of some B12-retainer strains was significantly lower, which is why their biomass sampling yield was significantly lower as well. Detected B₁₂ concentrations were normalised against cell numbers to better distinguish between cultures with different growth rates and yields. In some cases, the intracellular B_{12} values differed immensely, with 40-fold deviations within the B12provider strains. When comparing intracellular B₁₂ values of individual B₁₂-provider strains to their ability to impact the growth rate of *T. pseudonana* in co-culture through their release of B₁₂, we cannot discern a direct correlation (Table 1). In B₁₂-retainer strains, we were unable to detect B₁₂ in four out of eight bacterial cultures (Table 2). Detected B_{12} values varied between 671 to 4,599 B_{12} molecules per cell. The four detected intracellular B₁₂ values of B12-retainer strains were comparable to the average values measured for the B₁₂-providers (Tables 1 and 2).

Extracellular B_{12} was measured additionally in two selected bacterial strains from the groups of B_{12} -provider and B_{12} -retainer,

Fig. 1 *T. pseudonana* vitamin B_{12} bioassay. Shown is the growth of *T. pseudonana* at varying B_{12} concentrations, monitored by relative fluorescence (**A**, **B**) and cell count (**C**, **D**). In **A** the Y-axis represents the relative fluorescence and in **C** the Y-axis represents diatom cell count/ml. Depicted are maximum growth determined by relative fluorescence (**B**) and cell count (**D**) of the diatom at respective B_{12} concentrations.

each of which exhibited a comparably high growth yield. B_{12} was detected in both B_{12} -provider cultures (*M. algicola* and *P. inhibens*), while no B_{12} was measured in both B_{12} -retainer cultures (*P. xiamenensis* and *J. helgolandensis*, Tables 1 and 2). Extracellular B_{12} concentrations of the two B_{12} -provider strains were approximately 8 and 256 times lower than the corresponding intracellularly detected values (Table 1). However, when evaluating these values and drawing conclusions for the observations from the co-cultures, it must be considered that the values were obtained from monocultures with a significantly shortened growth phase. B_{12} production by prototrophic bacteria can vary in co-culture with the diatom, as it is known that algal metabolism upregulates bacterial production of B_{12} [13].

DISCUSSION

Vitamin B₁₂ biosynthesis potential of different bacteria

B vitamins play a key role in complex marine microbial interactions as they are obligatory cofactors in various essential metabolic reactions in all living organism [13, 14, 39–41]. An exciting fact about B_{12} is that genes for synthesis of this complex

cofactor have never made the transition to the eukaryotic kingdom, although it is required by both prokaryotes and eukaryotes. *De novo* synthesis is restricted to a minor fraction of bacteria and archaea, thus, suggesting that the ability to synthesise B_{12} is disproportionate to its demand in nature [1, 4]. This phenomenon can be observed in various habitats, for example in the soil microbiome, where the proportion of B_{12} producers is less than one tenth [8]. Similar findings have been shown for the microbiome on human skin, where only 1% of the core species are predicted to produce B_{12} de novo, while 39 % of the species are predicted to use B_{12} for metabolism [42]. In order to adequately answer this fundamental question regarding the balance between B_{12} availability and consumption, we should aim to better understand the synthesis potential of individual prototrophic prokaryotes.

Here we present intra- and extracellular B_{12} concentrations of various B_{12} prototrophic, alphaproteobacterial strains. The concentration of intracellular B_{12} differs widely between the various heterotrophic bacteria examined. Converted, B_{12} molecules detected per cell ranged between 664 to 26,619 in the analysed bacterial cultures, including B_{12} -provider and B_{12} -retainer. Such

Fig. 2 Growth of *T.* **pseudonana in co-culture with B**₁₂ **prototrophic bacteria.** Representative co-cultures of *T. pseudonana* with B₁₂ prototrophic bacteria that provide B₁₂ (**A**), retain B₁₂ (**B**), provide only when substrate is available (**C**) and likely provide B₁₂ while inhibiting growth (**D**). (left panels, growth curves) Growth of *T. pseudonana* monitored by relative fluorescence unit (RFU) over time with additions of substrate mix (orange square), B₁₂ (red diamond), or without addition of either (grey triangle). (Right panels; bar plots) Bacterial cell counts in co-cultures at the time of inoculation and early stationary growth phase of *T. pseudonana*. **A** *P. inhibens* T5 supports the growth of *T. pseudonana* by providing B₁₂ (Further examples in Fig. S4); **B** *Sulfitobacter* sp. DFL-23 retains B₁₂ and does not support growth of the diatom (Further examples in Fig. S5); **C** *S. pseudonitzschiae* provides B₁₂ only with additions of a substrate mix (Further examples in Fig. S6); and **D** *S. litoralis* provides B₁₂ and inhibits growth of *T. pseudonana*.

strong variation in intracellular B_{12} concentrations have already been shown for a number of other prokaryotes, including Archaea, heterotrophic bacteria, and cyanobacteria [11, 34]. Also, in these studies, the detected intracellular B_{12} values differed up to three orders of magnitude and showed values similar to the ones we detected. Whether factors such as cell size, which we did not consider in our analysis, or the exact growth phase in which we took the samples had an influence on the strong variation cannot be clarified here. It is quite conceivable that different B_{12} requirements of the individual cells or different regulatory mechanisms of B_{12} synthesis played a decisive role for the intracellular B_{12} concentrations. Nevertheless, we can conclude that not only the genetic B_{12} biosynthetic potential within a microbial community is decisive, but rather which prokaryote is actually present is crucial for the availability of B_{12} .

The extracellular concentrations of B₁₂ detected in *M. algicola* and P. inhibens were about 8 and 256 times lower than respective intracellular levels. For example, M. algicola secreted about 936 B₁₂ molecules per cell, which was roughly 85 times more as detected for P. inhibens. On the basis of the detected B_{12} demand of T. pseudonana determined by the bioassay, we can calculate that the eukaryote requires roughly 135,000 B12 molecules per cell, if we base the limitation of cell number solely on B₁₂ availability. Thus, it would take about 144 living M. algicola cells that release B₁₂ to cover the requirements for the growth of one T. pseudonana cell. In fact, the bacterial cell numbers in the stationary phase of the B12provider-diatom co-cultures were at least 110 times higher than the cell numbers of *T. pseudonana*. These calculations are all based on ideal laboratory conditions, with sufficient supply of inorganic nutrients and organic substrates and may differ in natural environments where viral infections or sloppy feeding can lead to cell disruption and subsequent release of intracellular B₁₂ [43, 44].

Also, B₁₂ requirement of *T. pseudonana* cells can vary under different growth conditions. For example, it has been shown that growth of *T. pseudonana* even with 1 pM of B₁₂ can result in a significant change in the metabolite pool of the diatom, which in turn may have implications for the interaction with bacteria [45]. Nevertheless, our data give a first approximate insight into the interplay between B₁₂-producers and -consumers in the world of microorganisms.

Bacterial effects on the growth of T. pseudonana

Growth characteristics of *T. pseudonana* in co-culture show not only the obligatory provision of B_{12} by bacteria but also other bacterial factors that influence growth. For example, we observed that *Sulfitobacter litoralis*, a representative of the Roseobacter group, showed inhibitory behaviour towards the diatom. Other studies have shown that Roseobacter group isolates can produce inhibitory substances, roseobacticides, which can suppress the growth of eukaryotic phototrophs [46]. The provision of B_{12} leads to a promotion in growth and, at the same time, growth of the diatom is inhibited. One reason for the different growth characteristics of the diatoms observed in co-culture with different bacteria could be the adaptation to different habitats where the bacterial isolates naturally occur.

In contrast to these observations, *Celeribacter baekdonensis* DSM 27375 significantly stimulated the growth of *T. pseudonana*. Even though *C. baekdonensis* did not provide B_{12} despite being synthesized, its presence in co-culture with B_{12} addition significantly increased the growth rate and growth yield of *T. pseudonana* compared to the positive control of the corresponding experimental run. In previous bacterial-diatom co-culture experiments, it has been shown that the excretion of cyclic peptides, diketopiperazines, by a bacterium, significantly increased diatom cell numbers [47]. Another plausible scenario

Fig. 3 Maximum growth of *T. pseudonana* in co-culture with B_{12} -provider. Bars represent the maximum relative fluorescence of *T. pseudonana* during growth in co-culture with 18 different B_{12} -providers under different growth conditions (corresponding growth curves can be seen in the appendix). Grey bars represent maximum relative fluorescence of *T. pseudonana* in co-cultures without further additions, orange co-cultures with an additional substrate mix and red the co-cultures with B_{12} additions.

is the synthesis and excretion of indoleacetic acid (IAA) by *C. baekdonensis*, which is a growth-promoting hormone for diatoms [48]. A similar effect is also conceivable for *C. baekdonensis* and would be exciting to explore in greater depth.

A finding that appears to be overlooked in the context of our actual question is the fact that the expected bacterial cell death does not necessarily lead to the release of B12, which would promote the growth of T. pseudonana, and thus promote the interaction. Even after up to six weeks in co-culture, we cannot observe significant growth of T. pseudonana despite the presence of a bacterial B₁₂ prototroph. This fact highlights the importance of cell lysis mechanisms in nature, for example caused by viral infections or sloppy feeding. Already today, these two natural processes are considered to play a significant role in the turnover of dissolved organic matter [44, 49–51] and are likely to also have a decisive influence on the release of B-vitamins in marine ecosystems [23]. Additionally, T. pseudonana is known to secret a B₁₂ binding protein under B_{12} deficient conditions that has an affinity constant of 2 × 10^{11} M⁻¹. This protein might help them to acquire B_{12} from the surroundings, when it is released through bacterial cell lysis mechanism [52]. Other phytoplankton might also have a similar strategy to scavenge B₁₂ from the environment. When intracellular B₁₂ is considered as a reservoir for other B₁₂ auxotrophic microorganisms, then, for example, already 19 M. algicola cells would be sufficient to enable the growth of one T. pseudonana cell.

The vital cofactor B_{12} is not shared by all prototrophic bacteria

About half of the marine phytoplankton species are B₁₂ auxotrophs and rely on prototrophic prokaryotes to obtain this essential vitamin [1, 53]. Several co-culture experiments have confirmed that individual marine bacterial isolates, mainly Alphaproteobacteria, enable phytoplankton species to overcome their auxotrophy by providing the essential cofactor [13–16, 27, 28]. In our study we hypothesised that not all B₁₂ prototrophs share B₁₂ with other microorganisms and to prove that we performed individual co-culture experiments between T. pseudonana and 33 B₁₂ prototrophic bacteria. B₁₂ prototrophy of the bacterial isolates was confirmed by their genetic ability to synthesize B₁₂ (Supplementary table S2) and their ability to grow in B₁₂-free medium. The results of our study support this hypothesis, as we were able to identify one group of bacteria that enables growth of T. pseudonana by the supply of the essential cofactor, B12-providers. On the other hand, we also identified a second group of B₁₂ prototrophic bacteria that did not support the growth of the diatom, the B₁₂-retainers. Moreover, while categorizing them into B12-providers and B12-retainers, we observed that there are species within one genus, such as P. inhibens and P. galleciensis, in which one is a B₁₂-provider and the other is a B12-retainer, respectively, although both of them possess the necessary genes for B₁₂ biosynthesis. Yet, the question

Fig. 4 Maximum growth of *T. pseudonana* in co-culture with B_{12} -retainer. Bars represent the maximum relative fluorescence of *T. pseudonana* during growth in co-culture with nine different B_{12} -retainers under different growth conditions (corresponding growth curves can be seen in the appendix). Grey bars represent maximum relative fluorescence of *T. pseudonana* in co-cultures without further additions, orange co-cultures with an additional substrate mix and red the co-cultures with B_{12} additions.

remains why some bacteria share the cofactor, and others, despite an obligatory interaction enforced in co-culture, do not. In the following, we describe and discuss three scenarios that we consider plausible, whereby not only one scenario has to be correct, but rather all three can take place in the B_{12} -retainer strains that we have identified.

First, biosynthesis of metabolites, such as the energetically costly B₁₂ cofactor, are subject to intracellular regulation. Transcriptional regulation of the B₁₂ biosynthesis pathway determines whether, and in what quantity B₁₂ is synthesised in the cell. For example, sigma factors can alter the specificity of an RNA polymerase for a particular promoter, so that gene expression is enhanced or reduced [54]. In the case of the bacterial isolate Propionibacterium strain UF1, the riboswitch cbiMCbl was identified to regulate the gene expression of the *cobA* operon and thus controls B₁₂ biosynthesis [55]. It is also known that sufficient availability of B₁₂ can repress B₁₂ biosynthesis gene expression in bacteria [56, 57]. In gram-negative proteobacteria as well as in cyanobacteria, for example, cobalamin (pseudocobalamin, in case of some bacteria) biosynthesis and B₁₂ transport genes are regulated by inhibition of translation initiation, whereas in some gram-positive bacteria gene regulation proceeds by transcriptional antitermination [58]. The mechanisms described above are likely to also occur in the bacterial isolates that we tested. The large difference between the detected intracellular B₁₂ concentrations could therefore be due to differences in gene regulation of the different bacteria and may also have had an influence on the release of B_{12} in the co-culture with *T. pseudonana*.

Second, cobalamin, which we referred to here as B_{12} for simplicity, belongs to a group of B_{12} -like metabolites, called cobamides. Each cobamide differs in the lower ligand attached. For example, the common cobamide, cobalamin, which is bioavailable to most microorganisms, carries 5,6-dimethylbenzimidazol (DMB) as its lower ligand, whereas pseudocobalamin synthesised by cyanobacteria in high concentrations in the ocean and being less or not bioavailable to most microorganisms, has adenine attached as its lower ligand [11, 41, 59, 60]. In general, the lower ligands of cobamides can be divided into benzimidazoles, purines, and phenols, and more than a dozen cobamides and cobamideanalogs have already been discovered [61]. However, research into the synthesis and actual diversity of cobamides, especially in marine bacteria and archaea, is still in its infancy. In our study, we were unable to detect intracellular B₁₂ in four out of eight bacterial B12-retainer strains, although the cell counts at the time of sampling should have been sufficient for its detection. However, as is generally the case, our LC-MS analysis only targets cobalamin (B₁₂) with its different upper ligands (adenosyl-, cyano-, methyl-, and hydroxy-cobalamin). Therefore, we cannot exclude the possibility that the here studied bacteria synthesise different cobamides, which are possibly not or less bioavailable to T. pseudonana, and not covered by our analytical measurement method. This speculation was supported by the fact that one of these four B₁₂- retainer strains, Sulfitobacter sp. DFL-23, does not possess the DMB synthesis gene bluB and there was no intracellular B₁₂ detected in this strain (Supplementary table S2 and Table 2). Again, it is difficult to explain this phenomenon solely depending on the presence of annotated DMB synthesis gene, as for Loktanella salsilacus DSM 16199 no bluB gene was annotated, still we detected intracellular B₁₂ in this strain using our detection method (Supplementary table S2 and Table 2).

Third, the bacteria we have identified as B_{12} -retainer simply may not have actively released the synthesised B_{12} into their environment. Regardless of the importance of B_{12} for the vast majority of living organisms on our planet, its excretion mechanisms are to our knowledge still largely unknown. Its size of more than 1,350 Dalton does not allow sufficient diffusion

through the cell membrane, which would enable microbial interactions [32]. Thus, it is likely that an unknown mechanism is required for its release. This assumption is further supported by the fact that we were able to detect intracellular B₁₂ in four of the eight B₁₂-retainer strains and at concentrations comparable to those detected in the B12-provider strains. In addition, we could detect intracellular B12 in P. xiamenensis, but none in its exometabolome. On the other hand, presence of extracellular B₁₂ was detected in the exometabolome of both the provider strains examined, M. algicola and P. inhibens. Our findings show that not all bacteria share the pivotal cofactor with their environment, which has an impact on our current understanding of the marine B₁₂ cycle and presumably in other ecosystems as well. The active exchange of B_{12} and thus microbial interaction plays a much smaller role than previously assumed for a relatively large number of bacteria. Consequently, for some of the B12 prototrophic bacteria within a community, it is likely that the cofactor is only released upon cell lysis.

$B_{12}\ production$ in the marine ecosystem and ecological implications

Looking at the original source of B_{12} in nature, namely prototrophic bacteria and archaea, the bacteria studied here show pronounced differences between the biosynthetic potentials of the cofactors and the ability to share them with their environment. Thus, the natural source of vitamin B_{12} within a given ecosystem does not primarily depend on the ratio of prototrophic bacteria, but even more crucially on how much of the cofactor is synthesised by the prototrophic prokaryotes within an ecosystem and is actively released. The fact that some bacteria do not voluntarily share B_{12} with ambient microorganisms, significantly increases the importance of processes, such as sloppy feeding by zooplankton or virus infections [44, 49–51], for the release of vitamins in the marine and likely also other ecosystems.

Our results also contribute to the controversially discussed question of whether B₁₂ prototrophic bacteria live in symbiosis with phototrophic microorganisms [13, 30]. Despite numerous cocultivation experiments demonstrating the obligatory provision of B₁₂ by individual bacteria to phototrophic microorganisms, the decisive question of the mechanism of provision has so far been overlooked [13-16, 27, 28]. In our view, however, this guestion is crucial when assessing whether a symbiotic interaction is taking place. Our results support the hypothesis that a bacterial mechanism for the active release is likely to exist, as our experiments distinguish between B12-provider and B12-retainer within prototrophic bacteria. Looking at the ecological niches and the isolation sites of the two respective groups, differences can be identified. Most B12-provider strains were isolated from or discovered in association with eukaryotic microorganisms, whereas most B12-retainer strains were isolated as free-living in the ocean (Supplementary table S4). Moreover, six of the tested bacterial strains were isolated from dinoflagellates and five of them were B_{12} -provider. Since we used a diatom as a B_{12} auxotrophic organism in our study, it would also be interesting to know if these B₁₂-provider strains also provide B₁₂ to other phytoplankton, such as dinoflagellates. Also, in this study we only studied bacteria from the alphaproteobacteria class, since a large share of them are known to be B_{12} prototrophs and abundant in the marine ecosystem. For future studies, it would be interesting to see if a similar pattern of B₁₂ provisioning can be observed in bacteria from other classes. Our results indicate that the B₁₂ prototrophy of a bacterium does not necessarily indicate a mutualistic interaction with other auxotrophic microorganisms. However, the bacterial group of B₁₂-provider in particular seems to favour living in close proximity to other microorganisms, which is why the exchange of B₁₂ for e.g. organic compounds can establish itself as a distinct symbiotic interaction between individual microorganisms.

SPRINGER NATURE

DATA AVAILABILITY

The datasets generated during the current study are available from the corresponding author on reasonable request.

REFERENCES

- 1. Sañudo-Wilhelmy SA, Gómez-Consarnau L, Suffridge C, Webb EA. The role of B vitamins in marine biogeochemistry. Ann Rev Mar Sci. 2014;6:339–67.
- 2. Dowling DP, Croft AK, Drennan CL. Radical use of Rossmann and TIM Barrel architectures for controlling coenzyme B_{12} chemistry. Annu Rev Biophys. 2012;41:403–27.
- Matthews RG, Smith AE, Zhou ZS, Taurog RE, Bandarian V, Evans JC, et al. Cobalamin-dependent and cobalamin-independent methionine synthases: are there two solutions to the same chemical problem? Helv Chim Acta. 2003;86:3939–54.
- Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC. The biosynthesis of adenosylcobalamin (vitamin B₁₂). Nat Prod Rep. 2002;19:390–412.
- Doxey AC, Kurtz DA, Lynch MD, Sauder LA, Neufeld JD. Aquatic metagenomes implicate *Thaumarchaeota* in global cobalamin production. ISME J 2015;9:461–71.
- Roth JR, Lawrence JG, Rubenfield M, Kieffer-Higgins S, Church GM. Characterization of the cobalamin (vitamin B₁₂) biosynthetic genes of Salmonella typhimurium. J Bacteriol. 1993;175:3303–16.
- Shelton AN, Seth EC, Mok KC, Han AW, Jackson SN, Haft DR, et al. Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics. ISME J. 2019;13:789–804.
- Lu X, Heal KR, Ingalls AE, Doxey AC, Neufeld JD. Metagenomic and chemical characterization of soil cobalamin production. ISME J. 2020;14:53–66.
- Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.
- D'Souza G, Waschina S, Pande S, Bohl K, Kaleta C, Kost C. Less is more: selective advantages can explain the prevalent loss of biosynthetic genes in bacteria. Evolution 2014;68:2559–70.
- Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, et al. Two distinct pools of B₁₂ analogs reveal community interdependencies in the ocean. Proc Natl Acad Sci. 2017;114:364–9.
- Droop MR. A pelagic marine diatom requiring cobalamin. J Mar Biol Assoc U K 1955;34:229–31.
- 13. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG. Algae acquire vitamin B_{12} through a symbiotic relationship with bacteria. Nature 2005;438:90–3.
- Haines KC, Guillard RRL. Growth of vitamin B₁₂-requiring marine diatoms in mixed laboratory cultures with vitamin B₁₂-producing marine bacteria. J Phycol. 1974;10:245–52.
- Cruz-López R, Maske H. The vitamin B₁ and B₁₂ required by the marine dinoflagellate *Lingulodinium polyedrum* can be provided by its associated bacterial community in culture. Front Microbiol. 2016;7:560.
- Cooper MB, Kazamia E, Helliwell KE, Kudahl UJ, Sayer A, Wheeler GL, et al. Crossexchange of B-vitamins underpins a mutualistic interaction between Ostreococcus tauri and Dinoroseobacter shibae. ISME J 2019;13:334–45.
- Kazamia E, Czesnick H, Nguyen TTV, Croft MT, Sherwood E, Sasso S, et al. Mutualistic interactions between vitamin B₁₂-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol. 2012;14:1466–76.
- Sañudo-Wilhelmy SA, Gobler CJ, Okbamichael M, Taylor GT. Regulation of phytoplankton dynamics by vitamin B₁₂. Geophys Res Lett. 2006;33:L04604.
- Suffridge CP, Gómez-Consarnau L, Monteverde DR, Cutter L, Arístegui J, Alvarez-Salgado XA, et al. B vitamins and their congeners as potential drivers of microbial community composition in an oligotrophic marine ecosystem. J Geophys Res Biogeosci. 2018;123:2890–907.
- Suffridge C, Cutter L, Sañudo-Wilhelmy SA. A new analytical method for direct measurement of particulate and dissolved B-vitamins and their congeners in seawater. Front Mar Sci. 2017;4:11.
- 21. Menzel DW, Spaeth JP. Occurrence of vitamin B₁₂ in the Sargasso Sea. Limnol Oceanogr. 1962;7:151–4.
- 22. Bertrand EM, Saito MA, Rose JM, Riesselman CR, Lohan MC, Noble AE, et al. Vitamin B_{12} and iron colimitation of phytoplankton growth in the Ross Sea. Limnol Oceanogr. 2007;52:1079–93.
- 23. Wienhausen G, Dlugosch L, Jarling R, Wilkes H, Giebel H-A, Simon M. Availability of vitamin B₁₂ and its lower ligand intermediate α-ribazole impact prokaryotic and protist communities in oceanic systems. ISME J. 2022;16:2002–14.
- Seymour JR, Amin SA, Raina J-B, Stocker R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat Microbiol. 2017;2:1–12.
- Cirri E, Pohnert G. Algae–bacteria interactions that balance the planktonic microbiome. N. Phytol. 2019;223:100–6.

- 26. Cruz-López R, Maske H, Yarimizu K, Holland NA. The B-vitamin mutualism between the dinoflagellate *Lingulodinium polyedrum* and the bacterium *Dinoroseobacter shibae*. Front Mar Sci. 2018;5:274.
- Wang H, Tomasch J, Jarek M, Wagner-Döbler I. A dual-species co-cultivation system to study the interactions between Roseobacters and dinoflagellates. Front Microbiol. 2014;5:311.
- Grant MA, Kazamia E, Cicuta P, Smith AG. Direct exchange of vitamin B₁₂ is demonstrated by modelling the growth dynamics of algal–bacterial cocultures. ISME J. 2014;8:1418–27.
- Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci. 2015;112:453–7.
- Droop MR. Vitamins, phytoplankton, and bacteria: symbiosis or scavenging? J Plankton Res. 2007;29:107–13.
- Wienhausen G, Bittner MJ, Paerl RW Key knowledge gaps to fill at the cell-toecosystem level in marine B-vitamin cycling. Front Mar Sci. 2022; https://doi.org/ 10.3389/fmars.2022.876726.
- Nikaido H, Rosenberg EY. Effect on solute size on diffusion rates through the transmembrane pores of the outer membrane of *Escherichia coli*. J Gen Physiol. 1981;77:121–35.
- Shultis DD, Purdy MD, Banchs CN, Wiener MC. Outer membrane active transport: structure of the BtuB:TonB complex. Science 2006;312:1396–9.
- Bruns S, Scholz-Böttcher B, Wienhausen G, Wilkes H Simultaneous quantification of all B vitamins and selected biosynthetic precursors in seawater and bacteria by means of different mass spectrometric approaches: Anal. Bioanal Chem. 2022; https://doi.org/10.1007/s00216-022-04317-8.
- Giebel HA, Wolterink M, Brinkhoff T, Simon M Complementary energy acquisition via aerobic anoxygenic photosynthesis and carbon monoxide oxidation by *Planktomarina temperata* of the Roseobacter group. FEMS Microbiol Ecol. 2019; https://doi.org/10.1093/femsec/fiz050.
- Lunau M, Lemke A, Walther K, Martens-Habbena W, Simon M. An improved method for counting bacteria from sediments and turbid environments by epifluorescence microscopy. Environ Microbiol. 2005;7:961–8.
- Cakić N, Kopke B, Rabus R, Wilkes H. Suspect screening and targeted analysis of acyl coenzyme A thioesters in bacterial cultures using a high-resolution tribrid mass spectrometer. Anal Bioanal Chem. 2021;413:3599–610.
- 38. Bruns S, Wienhausen G, Scholz-Böttcher B, Wilkes H Method development and quantification of all B vitamins and selected biosynthetic precursors in winter and spring samples from the North Sea and de-novo synthesized by *Vibrio campbellii*. Mar Chem. In review.
- Paerl RW, Bertrand EM, Allen AE, Palenik B, Azam F. Vitamin B₁ ecophysiology of marine picoeukaryotic algae: Strain-specific differences and a new role for bacteria in vitamin cycling. Limnol Oceanogr. 2015;60:215–28.
- Carini P, Campbell EO, Morré J, Sañudo-Wilhelmy SA, Cameron Thrash J, Bennett SE, et al. Discovery of a SAR11 growth requirement for thiamin's pyrimidine precursor and its distribution in the Sargasso Sea. ISME J. 2014;8:1727–38.
- Helliwell KE, Lawrence AD, Holzer A, Kudahl UJ, Sasso S, Kräutler B, et al. Cyanobacteria and eukaryotic algae use different chemical variants of vitamin B₁₂. Curr Biol. 2016;26:999–1008.
- Swaney MH, Sandstrom S, Kalan LR. Cobamide sharing is predicted in the human skin microbiome. mSystems. 2022; https://doi.org/10.1128/msystems.00677-22.
- Bonnet S, Webb EA, Panzeca C, Karl DM, Capone DG, Wilhelmy SAS. Vitamin B₁₂ excretion by cultures of the marine cyanobacteria *Crocosphaera* and *Synechococcus*. Limnol Oceanogr 2010;55:1959–64.
- Møller EF, Nielsen TG. Production of bacterial substrate by marine copepods: effect of phytoplankton biomass and cell Size. J Plankton Res. 2001;23:527–36.
- Heal KR, Kellogg NA, Carlson LT, Lionheart RM, Ingalls AE. Metabolic consequences of cobalamin scarcity in the diatom *Thalassiosira pseudonana* as revealed through metabolomics. Protist. 2019;170:328–48.
- Seyedsayamdost MR, Case RJ, Kolter R, Clardy J. The Jekyll-and-Hyde chemistry of Phaeobacter gallaeciensis. Nat Chem. 2011;3:331–5.
- Sittmann J, Bae M, Mevers E, Li M, Quinn A, Sriram G, et al. Bacterial diketopiperazines stimulate diatom growth and lipid accumulation. Plant Physiol. 2021;186:1159–70.
- Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 2015;522:98–101.
- 49. Suttle CA, Chan AM, Cottrell MT. Infection of phytoplankton by viruses and reduction of primary productivity. Nature 1990;347:467–9.
- 50. Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria. Nature 1990;343:60–2.
- Strom SL, Benner R, Ziegler S, Dagg MJ. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol Oceanogr. 1997;42:1364–74.
- 52. Sahni MK, Spanos S, Wahrman MZ, Sharma GM. Marine corrinoid-binding proteins for the direct determination of vitamin B_{12} by radioassay. Anal Biochem. 2001;289:68–76.

- Tang YZ, Koch F, Gobler CJ. Most harmful algal bloom species are vitamin B₁ and B₁₂ auxotrophs. Proc Natl Acad Sci. 2010;107:20756–61.
- Rodionov DA. Comparative genomic reconstruction of transcriptional regulatory networks in bacteria. Chem Rev. 2007;107:3467–97.
- Li J, Ge Y, Zadeh M, Curtiss R, Mohamadzadeh M. Regulating vitamin B₁₂ biosynthesis via the cbiMCbl riboswitch in *Propionibacterium* strain UF1. Proc Natl Acad Sci. 2020;117:602–9.
- Lundrigan MD, Köster W, Kadner RJ. Transcribed sequences of the *Escherichia coli* btuB gene control its expression and regulation by vitamin B₁₂. Proc Natl Acad Sci. 1991;88:1479–83.
- 57. Richter-Dahlfors AA, Andersson DI. Cobalamin (vitamin B₁₂) repression of the Cob operon in *Salmonella typhimurium* requires sequences within the leader and the first translated open reading frame. Mol Microbiol. 1992;6:743–9.
- Vitreschak AG, Rodionov DA, Mironov AA, Gelfand MS. Regulation of the vitamin B₁₂ metabolism and transport in bacteria by a conserved RNA structural element. RNA 2003;9:1084–97.
- 59. Tanioka Y, Yabuta Y, Yamaji R, Shigeoka S, Nakano Y, Watanabe F, et al. Occurrence of pseudovitamin B₁₂ and its possible function as the cofactor of cobalamin-dependent methionine synthase in a cyanobacterium *Synechocystis* sp. PCC6803. J Nutr Sci Vitaminol 2009;55:518–21.
- Stupperich E, Kräutler B. Pseudo vitamin B₁₂ or 5-hydroxybenzimidazolylcobamide are the corrinoids found in methanogenic bacteria. Arch Microbiol. 1988;149:268–71.
- Sokolovskaya OM, Shelton AN, Taga ME. Sharing vitamins: cobamides unveil microbial interactions. Science 2020;369:6499.

ACKNOWLEDGEMENTS

This work was supported by Deutsche Forschungsgemeinschaft within the Transregional Collaborative Research Center *Roseobacter* (TRR51).

AUTHOR CONTRIBUTIONS

SS performed the experimental laboratory work, data analysis, data interpretation, and manuscript drafting. SB and HW performed the cobalamin LC-MS analyses and revised the manuscript, MS revised the manuscript. GW designed the experiments, advised data evaluation, wrote parts of and finalised the manuscript.

FUNDING

Open Access funding enabled and organized by Projekt DEAL.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41396-023-01391-3.

Correspondence and requests for materials should be addressed to Gerrit Wienhausen.

Reprints and permission information is available at http://www.nature.com/ reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023