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Regional but not global temperature 
variability underestimated by climate 
models at supradecadal timescales

T. Laepple    1,2 , E. Ziegler    3,4, N. Weitzel    3, R. Hébert    1, B. Ellerhoff    3,4,13, 
P. Schoch    5, B. Martrat    6, O. Bothe    7, E. Moreno-Chamarro    8, 
M. Chevalier9,10, A. Herbert    11,12 & K. Rehfeld    3,4

Knowledge of the characteristics of natural climate variability is vital when 
assessing the range of plausible future climate trajectories in the next 
decades to centuries. The reliable detection of climate fluctuations on 
multidecadal to centennial timescales depends on proxy reconstructions 
and model simulations, as the instrumental record extends back only a 
few decades in most parts of the world. Systematic comparisons between 
model-simulated and proxy-based inferences of natural variability, however, 
often seem contradictory. Locally, simulated temperature variability is 
consistently smaller on multidecadal and longer timescales than is indicated 
by proxy-based reconstructions, implying that climate models or proxy 
interpretations might have deficiencies. In contrast, at global scales, studies 
found agreement between simulated and proxy reconstructed temperature 
variations. Here we review the evidence regarding the scale of natural 
temperature variability during recent millennia. We identify systematic 
reconstruction deficiencies that may contribute to differing local and global 
model–proxy agreement but conclude that they are probably insufficient to 
resolve such discrepancies. Instead, we argue that regional climate variations 
persisted for longer timescales than climate models simulating past climate 
states are able to reproduce. This would imply an underestimation of the 
regional variability on multidecadal and longer timescales and would bias 
climate projections and attribution studies. Thus, efforts are needed to 
improve the simulation of natural variability in climate models accompanied 
by further refining proxy-based inferences of variability.

Climate variability results from a forced component driven by the plane-
tary energy imbalance and from chaotic variations linked to the internal 
dynamics of the climate system. While the current long-term increase 
in global mean temperature is mostly due to climate forcings related to 
human activities1, internal variability (Box 1) dominates the regional, 
short-term changes that are most relevant to societies2,3. Knowledge of 
the climate system’s variability is required to anticipate the full range 

of possible future climate change and to increase the impact of societal 
mitigation and adaptation efforts. While forced variability is relatively 
well understood1, regional internal variability is largely uncertain, and 
society-relevant changes persisting for decades could be outside the 
range of current projections4. Climate models can provide direct esti-
mates of internal variability at all scales5. However, uncertainties are 
introduced by processes not being included and models mostly being 
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Typical examples of global and local temperature reconstructions 
from proxy data and model simulations reveal that these contradictory 
findings are a result of the distinct nature of global and local climate var-
iability (Fig. 1). Global mean temperature time series from proxy-based 
reconstructions (Past Global Changes (PAGES) 2k proxy temperature 
database16) and models (the Coupled Model Intercomparison Project 
Phase 5 (CMIP5)/Paleoclimate Modelling Intercomparison Project 
Phase III (PMIP3) and Coupled Model Intercomparison Project Phase 6  
(CMIP6) last millennium ensemble17, referred to here as CMIP5/6; 
Extended Data Table 1) show similar timings and amplitudes of the 
anomalies throughout most of the past millennium (Fig. 1a) and the 
power spectra of model simulations and reconstructions are consistent 
across most timescales (Fig. 1c). In contrast, local temperature variabili-
ties are largely uncorrelated, as illustrated by the Cariaco sea surface 
temperature (SST) reconstruction18 and simulated temperatures for the 
same location (Fig. 1b). The reconstruction exhibits larger amplitudes 
than individual simulations and even exceeds the ensemble’s spread. 
On decadal and shorter timescales the proxy and model-based power 
spectra are more consistent (Fig. 1d), but they diverge for supradecadal 
timescales. There, model spectra flatten, while the local SST record 
shows a steep increase in the spectral density towards longer time-
scales. This behaviour is not limited to this example but can also be 
found in high-resolution records of the PAGES 2k compilation (ref. 19 
and Extended Data Fig. 1), in lower-resolution SST records14 and in land 
temperature records4.

To systematically disentangle the structure of agreement and 
disagreement between model simulations and reconstructions, we 
performed a meta-study of the existing literature on surface tem-
perature variability in the Holocene and past millennium, following the 
respective author’s original assessments of model–data consistency 
(Fig. 2 and Extended Data Fig. 2; Methods). At the global scale, there is a 
high level of agreement on all timescales8,10–12,16,19,20. As the spatial scale 
decreases from global to hemispheric, the results are more mixed. For 
the Northern Hemisphere some studies found agreement on decadal 
to centennial timescales9,11,21, while others reported weaker simulated 
variability than that reconstructed on interannual to multicentennial 
scales22,23. Owing to the sparsity of proxy coverage of the Southern 
Hemisphere, there is a clear bias towards the Northern Hemisphere in 
global and hemispheric studies. At regional and local scales (Box 1), the 
findings are strongly timescale-dependent. On interannual scales, most 
studies found model–data agreement4,8,12,14,19,21–26 or reported mixed 
results13,26–29. Disagreement emerged on decadal19 or multidecadal8,12,14 
scales. On supradecadal timescales, the majority of studies showed 
disagreement between reconstructions and models4,12–14,19,21,25,27 with 
reconstructions yielding higher magnitudes of temperature variability 
than simulations.

This leaves us with the enigma of a model–data match at global 
scales and a mismatch at local and regional scales for supradecadal 
timescales. Possible causes for this could be shortcomings in the ability 
of current climate models to simulate local and regional temperature 
variability, or systematic deficiencies in global or local temperature 
reconstructions.

Reconstruction deficiencies alone do not explain 
the scale enigma
Pre-instrumental temperature estimates are primarily reconstructed 
from physical and biogeochemical proxies measured in natural archives 
such as glacier ice, sediments and trees30. This proxy information is 
transformed into estimates of past temperatures using statistical 
methods. While many sources of uncertainties and biases have been 
identified in these statistical reconstructions31–34, we focus here on 
potential underlying causes of the diagnosed scale enigma.

Studies that have found consistent global variability in recon-
structions and simulations typically employed multi-proxy databases 
comprising predominantly annually resolved records. These have 

validated against recent observational constraints6. Furthermore, 
computational constraints necessitate parameterizations and only 
allow small ensemble simulations on long timescales that are needed 
to constrain longer-than-decadal timescales (here termed supradec-
adal timescales). While instrumental data can be used to estimate the 
contribution of internal variability for periods of up to several dec-
ades, the limited length of these records and the concurrent changes in 
anthropogenic forcing imply that fluctuations on supradecadal time-
scales are poorly constrained. Thus, model simulations remain largely 
unvalidated for variability on multidecadal timescales and beyond. 
Approaches that exploit observational records are promising7, but their 
robustness and scope need to be further improved using palaeoclimate 
reconstructions to achieve confidence on those timescales.

Current comparisons of temperature variability in model simula-
tions and reconstructions or instrumental observations (hereafter 
model–data comparisons) seem contradictory. While some studies 
have found agreement between the variability simulated by climate 
models and the variability inferred from instrumental observations8 
or proxy-based reconstructions9–11, others suggest disagreement for 
the instrumental period12,13 and past climates4,14,15.

Box 1

Glossary of terms
Spatial scales: In this study, local refers to a single proxy record or 
model grid box and regional to any aggregation of multiple proxy 
records or grid boxes smaller than a hemisphere.

Temporal scales: Subdecadal denotes interannual to decadal 
timescales, and supradecadal multidecadal to millennial 
timescales.

Spectrum: For a given time series, the PSD (here referred to simply 
as spectrum) provides a measure of variability as a function of 
timescale. For temperature, this spectrum often follows a power law 
with a scaling coefficient that describes its temporal persistence. A 
larger scaling implies stronger correlations across timescales and 
longer persistence times.

Temporal persistence: The strength of (anti-)correlation of 
successive values in a time series.

Internal climate variability: Climate variability has a forced 
component and an unforced (that is, internal) component. Internal 
variability arises from nonlinear interactions between the various 
feedbacks and components in the climate system, from stochastic 
fluctuations and from deterministic chaos. As such, it appears in 
unforced ‘control’ model simulations. Forced variability results 
from external drivers of the climate system, irrespective of whether 
they are anthropogenic or natural. At first order, internal and forced 
variability are independent, but forced variability can influence the 
timing and strength of internal climate variability. Natural variability 
refers to internal and naturally forced.

Climate model: Unless otherwise stated, we use model as 
shorthand to denote global atmosphere/ocean general circulation 
models.

Model–data comparison: In the context of model–data 
comparison, we use data as shorthand to refer to both instrumental 
observations and proxy-based reconstructions of surface 
temperature, but not for results produced by numerical models.
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been calibrated using the period that overlaps with the instrumental 
record (temporal calibration). A number of studies have suggested that 
global temperature reconstructions might underestimate variability 
(such as ref. 34 and references therein). The temporal calibration step 

can underestimate supradecadal variability, particularly when the 
proxy is used as predictor (direct regression)35. Furthermore, cur-
rent multi-proxy databases are dominated by tree ring records (for 
example ∼60% in the PAGES 2k 2017 database) that can underestimate 
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Fig. 1 | Examples of local and global surface temperature variability in models 
and reconstructions over the 1,000–1,800 CE time span. a, Time series of 
global mean surface temperature from CMIP5/6 model simulations and all 
PAGES 2k proxy reconstructions16. b, Time series of a local SST reconstruction 
(Cariaco18) and of model simulations for the same location (y-axis as in (a)). The 

thin lines show annual values, thick lines are low-pass filtered (cutoff frequency 
1/30 yr) to focus on the supradecadal variations. c,d, Power spectral density 
(PSD) of the global (c) and local (d) simulated and reconstructed temperature 
time series on shared y-axis. Coloured shading indicates the range of the model 
and proxy reconstruction ensemble.
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scales. Each circle represents a specific study, colour coded according to the 
strength of (dis)agreement (Methods). Some studies report different rates of 
agreement at one spatiotemporal scale; that is, depending on properties such as 

region or proxy type. Such multiple occurrences in one box are marked by a thick 
line around the circle. The number of distinct studies is given at the bottom right 
of each box. Diagonal lines indicate a small number of studies (one or two) for 
the given spatiotemporal scale. See Extended Data Fig. 2 indicating the specific 
literature studies (refs. 4,8–14,16,19–2997).
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supradecadal variability due to the removal of individual growth 
trends36. These arguments have sparked the development of new meth-
ods including indirect regression (which avoids the underestimation 
of low-frequency variability in the calibration step), ensemble meth-
ods and Bayesian models37. Pseudo-proxy experiments suggest that 
these new methods do not substantially underestimate supradecadal 
variability31. While the few reconstructions that do not rely on tree ring 
records exhibit the highest supradecadal variability38,39 and differing 
methodologies can produce a spread of up to one order of magnitude, 
even the global reconstructions with the highest magnitude variability 
are still consistent with the ensemble of CMIP5/6 simulations (Fig. 1a,c).

Unlike global reconstructions, studies focusing on local scales 
often rely on proxies from sedimentary archives (lake and marine 
sediments, glacier ice) that are calibrated using independent data 
from laboratory experiments40, physical models41 or modern spa-
tial relationships42. These calibrations are not subject to the under-
estimation of supradecadal variability found for direct temporal 
regression35. Instead, ‘proxy noise’ (that is, the variability enhance-
ment from non-climatic processes) has been proposed as the most 
likely culprit for overestimations of supradecadal variability in these 
local reconstructions. Examples of such processes are aliasing of the 
seasonal cycle43, spatial heterogeneity in the archive44, recording of 
site-specific features such as upwelling events that are not representa-
tive of mean conditions45, vital effects or measurement errors. As 
local variability estimates typically rely on single records, there can 
be no dampening of proxy noise through averaging. In contrast to 
these variability-enhancing mechanisms, other non-climatic processes 
such as bioturbation of sediments46, isotopic diffusion in ice47, slow 
response times of biological systems48 and homeostasis49 can lead to 
timescale-dependent underestimation of local variability. Biases from 
proxy noise and timescale-dependent temperature sensitivities can 
be minimized through statistical corrections50 and the use of proxy 
system models51. These corrections lead to consistent estimates of 
variability across independent proxy types and with instrumental 
observations on overlapping timescales4,14, strengthening the credibil-
ity of reconstructed variability. Nonetheless, corrected estimates still 
show the model–data variability mismatch on supradecadal scales14,27. 
Supporting the evidence in the literature, we found that local variabil-
ity reconstructed from instrumentally calibrated annually resolved 
records is consistent with marine and terrestrial proxies and displays 
a similar model–data variability mismatch on supradecadal timescales 
(Extended Data Fig. 1).

Chronological uncertainties can complicate the comparison of 
individual events in proxies and simulations. However, age model 
errors have little influence on local variability estimates from single 
records52. While averaging across records with age uncertainty leads 
to an underestimation of variability4, the age uncertainties for annually 
resolved records of the Common Era is usually below 10 years (ref. 53). 
Thus, we expect little to no effect on supradecadal global temperature 
variability estimates. It is often not possible to unambiguously attrib-
ute proxy variations to a specific physical variable (for example, trees 
can be sensitive to temperature or moisture) or season. However, the 
mismatch for local supradecadal variability would be even higher if we 
assumed that proxies represented hydroclimate, instead of tempera-
ture variations (Extended Data Fig. 3). In addition, the local model–data 
disagreement is also found in geochemical proxies that are only sensi-
tive to temperature (for example, Mg/Ca ratios in foraminifera or Sr/Ca  
ratios in corals). Taken together, it is unlikely that chronological uncer-
tainties or hydroclimate influences on proxies contribute substantially 
to the scale enigma.

Finally, local proxies may be more variable than model simula-
tions due to differences in spatial scales between local proxy records 
and a typical grid-box size in climate models (~100 km). However, for 
surface temperature, the spatial decorrelation length on interannual 
scales is usually larger than the size of a model grid box, which limits 

the impact of differences in spatial scale54. Moreover, as the spatial 
coherence of temperature variability increases between interannual 
and supradecadal timescales55, discrepancies are expected to diminish 
towards longer timescales.

The described methodological differences between global and 
local reconstructions complicate the assessment of systematic biases. 
Nevertheless, current evidence suggests that neither an overestima-
tion of local variability nor an underestimation of global variability 
from reconstructions can solely explain the diagnosed scale enigma. 
Therefore, we argue that model deficiencies substantially contribute 
to the enigma.

Consequences for the spatial structure of natural 
climate variability
As a possible explanation for the scale enigma, we hypothesize that 
while the current generation of climate models can accurately simu-
late global-scale temperature variability, they are too stable at smaller 
(local) scales. If correct, this hypothesis would imply that climate mod-
els need more spatially independent modes of supradecadal variability.

Global and local variability are not independent, they are con-
nected by the spatial correlation structure of the temperature field. 
Stronger spatial correlations lead to smaller differences between 
regional and global temperature variability and vice versa56. Compar-
ing the spectra of simulated local and global variability suggests that 
the ratio between both quantities decreases with longer timescales  
(Fig. 3a, grey shaded area). This is associated with an increase in the typi-
cal spatial extent of temperature anomalies on longer timescales56 and 
is supported by instrumental observations on subdecadal scales12,55. 
The relationship between temporal and spatial scales can also be visu-
alized by subtracting two mean temperature fields from successive 
time steps from one another (for example, from two adjacent years  
(Fig. 3b), from adjacent decades (Fig. 3c) or from even longer periods 
(Fig. 3d)). In the CMIP5/6 model simulations, the local and global vari-
ability magnitudes converge as timescales increase (grey shading in  
Fig. 3a), which is associated with a continuously increasing spatial scale 
of the temperature fluctuations (Fig. 3b–d).

This increase in the spatial extent of temperature anomalies on 
supradecadal timescales might be an artefact introduced by the cli-
mate models, as the reconstructed local temperature variability on 
these timescales is larger than the simulated variability (Figs. 1 and 2). 
By adding published estimates of the local variability spectrum from 
PAGES 2k reconstructions19 and marine and lake sediment cores4,14  
(Fig. 3a, blue dashed line; Methods) to the model spectrum, we tenta-
tively deduce that the observed supradecadal local variability increases 
in parallel with the global variability. This would lead to a constant ratio 
between local and global variability (vertical dashed shading) and imply 
that, in contrast to the model results, the spatial scale of supradecadal 
temperature fluctuations might not increase after all. This prompts us 
to speculate that the true temperature anomalies between centuries 
might be more similar in structure and amplitude to the simulated 
temperature anomalies between decades (Fig. 3c), rather than the 
simulated anomalies between centuries (Fig. 3d).

This implied invariance in the spatial extent of temperature anom-
alies on supradecadal timescales according to the reconstructions, con-
trasting the further increase suggested by the models, may result from a 
different balance between two competing processes: (1) those creating 
local climate variability and (2) those causing a timescale-dependent 
suppression of local variability.

It has been proposed that the amplitude of natural forcing or the 
response to that forcing could be underestimated or be too spatially 
homogeneous due to shortcomings in the dynamical response in mod-
els57. Missing components of the climate system such as interactive 
ice sheets and dynamic vegetation58–62 might further cause a lack of 
regional variability, especially when the mechanisms causing the vari-
ability are linked to timescale-invariant spatial structures such as the 
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topography or land–sea boundaries. On the other hand, horizontal dif-
fusion63 reduces regional variability at low frequencies. Hence, overly 
weak or misrepresented ocean eddies64 and inadequacies in the repre-
sentation and spatiotemporal propagation of sub-grid-scale processes 
in current climate models could artificially dampen supradecadal 
temperature variabilities at regional scales. One notable limitation of 
the current CMIP protocols for past simulations that could contribute 
to the local variability deficit of simulations is the lack of knowledge 
regarding the dynamic initial state of the ocean. The Earth system has 
a long memory for past forcings65 and the supradecadal variability has 
been suggested to echo slowly varying boundary conditions, mainly 
orbital forcing10. Meanwhile, simulations of the past millennium are 
generally initialized in a state of quasi-equilibrium with the starting 
boundary conditions.

Our hypothesis of a stronger persistence of regional temperature 
variability is consistent with other observational and proxy evidence. 
A lack of temporal persistence resulting in too much fast variation 
relative to to slow variation of regional temperatures in climate mod-
els66,67 and a local response to forcing that is too weak were proposed as 
explanations for the so-called ‘signal-to-noise paradox’66. This denotes 
the perplexing finding that models predict the observed (regional) 
temperature variations better than they predict ensemble forecast 
members. Finally, proxy-based reconstructions of temperature anoma-
lies for specific periods in the past often exhibit more complex spatial 
patterns than the corresponding fields from simulations68–70.

Implications for climate projections and 
attribution efforts
Misrepresented variability would decrease the skill of policy-relevant 
climate and extreme event projections71,72, impact assessments73,74 and 

attribution studies75. The ability of forced climate model simulations 
to reproduce the magnitude and structure of global temperature vari-
ability (Fig. 2) strengthens the confidence in the simulated response 
to external forcing9,76 in future climate projections. In contrast, biases 
in the spatial structure of variability would affect regional climate pro-
jections at supradecadal timescales. Likewise, projections might miss 
abrupt climate transitions as many climate models have been shown 
to be too stable to accurately simulate such transitions in the past77. 
However, recent progress in Earth system models60,78 regarding the rep-
resentation of these (in)stabilities of the climate system is promising.

Long-term variability modulates the occurrence of extreme 
weather and climate events72,79, and stronger temporal persistence 
can increase the frequency of occurrence of such extremes (Fig. 4). As 
a result, current model-based loss and damage estimates from extreme 
events and risk projections may be underestimations. This may also 
affect short-term projections as the return periods of extreme events 
might be misrepresented (Fig. 4c). Finally, our reliance on instrumental 
observations can bias the distribution estimates of climate variables 
(Fig. 4b) as this period might be too short to sample the full range of 
supradecadal variability. Stronger persistence of climate variations 
would increase the probability of extreme conditions (Fig. 4a), includ-
ing very rare and intense events80. Compound events may also occur 
more often, intensifying the vulnerability of ecosystems and socie-
ties, and the risk of sustained impacts such as agricultural losses and 
wildfires81. Socio-economic long-term planning for climate change 
requires a better understanding of this linkage between variability 
and extreme events82.

Attribution studies provide vital insights into the impacts of 
anthropogenic greenhouse gas emissions on current and future climate 
change, including extreme climate and weather events. The reliability 
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of these assessments depends on accurate representations of the 
statistical properties of the climate and its decomposition into anthro-
pogenic and natural contributions83,84, which makes these assessments 
susceptible to misrepresentations of variability in models75. Indeed, 
extreme event attribution often assumes that decadal and longer inter-
nal variability plays only a minor role in the occurrence of extremes85.

Discrepancies between modelled and observed changes in climatic 
parameters complicate regional attribution86 as most attribution stud-
ies focus precisely on those local to regional spatial scales at which the 
supradecadal variability is probably underestimated in models. Thus, 
if strong and persistent local variability is missing in models, tests 
for the significance of anthropogenic effects are likely to be biased 
positive. These arguments highlight the urgent need for an improved 
understanding of variability and its spatial structure, including the 
relationship between local and global variability estimates. We could 
then leverage this new understanding to validate and improve the 
capabilities of climate models regarding regional projections, for exam-
ple, through emergent constraints87, downscaling or bias-correction 
techniques88 targeting variability. Incorporating stochastic natural 
forcing in climate model simulations of future scenarios is another 
important step in climate modelling for realistic projections of future 
climate variability89,90.

Regional projections, risk assessments of extremes and attribu-
tion all depend on reliable simulations of local and regional variability. 
Without an improved representation of variability in climate models, 
the range of future conditions might not be fully covered. Thus, policies 

that are based on these estimates will not address the actual required 
mitigation and adaptation strategies. Overall, underestimation of the 
full temperature range can lead to a false sense of security (during a 
decade on the lower end of the range, for example) (Fig. 4), as well as to 
decades of unexpectedly high temperatures1 for which policymakers 
and societies are unprepared.

Closing the existing knowledge gap
To resolve the enigma of global climate models and proxy-based cli-
mate reconstructions being in agreement regarding the global aver-
age continuum of temperature variability but not at smaller (local to 
regional) scales, we have argued that regional-scale fluctuations in 
climate models should be larger and persist for longer. As a result, 
regional temperatures in current models probably seem too stable 
on supradecadal timescales and internal variability constitutes only 
a small fraction of their projection uncertainties, even at regional 
scales91. Additional efforts are required to ensure that natural (forced 
and internal) variability is simulated accurately to better evaluate its 
contribution to regional projection uncertainty. This includes inves-
tigating long model simulations with transient boundary conditions 
and simulations with additional coupled Earth system components in 
terms of their simulated supradecadal variability.

Validation of climate models with respect to palaeoclimate data 
usually focuses on their ability to simulate the mean state in a given 
time period such as the Last Glacial Maximum or slow changes, but 
rarely with respect to variability across timescales; this requires 
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estimated from an exceptionally cold and warm decade (dashed lines). c, Return 
levels from the short-term and full signals.
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both a paradigm shift in our approach to validating models and a 
new data product. In the 1970s, Climate: Long range Investigation, 
Mapping, and Prediction92 became a landmark project, providing 
the first spatially comprehensive estimates of climate change and 
mapping the climate and ecology of the Last Glacial Maximum. An 
undertaking of similar magnitude concerning natural variability is 
now necessary and achievable. It requires the participation of the 
palaeoclimate, proxy-development and statistics communities. While 
we already have a large number of palaeoclimate reconstructions 
that cover several continents and oceanic basins, as well as time-
scales that range from annual to millennia, this dataset needs to be 
extended to improve replicability93 and reduce the number and size 
of gaps in spatial, temporal and timescale coverage. While this may 
seem to be a considerable challenge, recent advances in analytical 
techniques such as mass spectral imaging94 or laser spectroscopy95 
can be exploited to help achieve this, as these methods allow faster, 
more efficient and higher-resolution processing of proxy data. We 
need to combine community-driven synthesis and production of 
proxy datasets with a process-based understanding of the record-
ing of climate signals in different types of archive30 based on more 
site-level monitoring data. This will facilitate the separation of the 
climate signal from non-climatic noise, the separation of temperature 
and hydroclimate variability and the identification of the timescales 
at which the climate signal dominates variability. We also need to 
further develop and optimize statistical methods to combine the 
diverse information into reliable and unbiased variability estimates. 
This effort would facilitate spatially comprehensive estimates of vari-
ability as a function of timescale, ideally both for surface temperature 
and hydroclimatic variables.

Such advances are crucial for benchmarking and improving the 
representation of variability in climate models and the quantification 
of future regional climate risks linked to natural variability. Making use 
of distinct spatial fingerprints of the different mechanisms producing 
supradecadal variability would help identify the origins of the currently 
missing local supradecadal variability in models. Furthermore, these 
advances can provide the basis for characterizing the spatiotemporal 
covariance structure of climate variability. This in turn will improve the 
skill of data assimilation96 and climate field reconstruction methods, 
permitting us to test our hypothesis for the scale enigma.

Finally, variability is a critical criterion of model development that 
should be evaluated in validating models and as an emergent property. 
This would allow us to investigate a broader range of possible model 
sensitivities and predictions of climate variability at various spatiotem-
poral scales. The proposed measures are vital for reliable estimates of 
variability, which in turn advance more robust regional projections, 
assessments of model-independent constraints and attribution and 
impact studies. The improved understanding of climate variability 
would thus contribute to better climate policy choices and mitigation 
and adaptation efforts.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41561-023-01299-9.

References
1. IPCC Climate Change 2021: The Physical Science Basis (eds 

Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
2. Degroot, D. et al. Towards a rigorous understanding of societal 

responses to climate change. Nature 591, 539–550 (2021).
3. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Uncertainty in 

climate change projections: the role of internal variability. Clim. 
Dynam. 38, 527–546 (2012).

4. Hébert, R., Herzschuh, U. & Laepple, T. Millennial-scale climate 
variability over land overprinted by ocean temperature 
fluctuations. Nat. Geosci. 15, 899–905 (2022).

5. Maher, N., Lehner, F. & Marotzke, J. Quantifying the role of internal 
variability in the temperature we expect to observe in the coming 
decades. Environ. Res. Lett. 15, 054014 (2020).

6. Hourdin, F. et al. The art and science of climate model tuning. 
Bull. Am. Meteorol. Soc. 98, 589–602 (2017).

7. McKinnon, K. A. & Deser, C. Internal variability and regional 
climate trends in an observational large ensemble. J. Clim. 31, 
6783–6802 (2018).

8. Fredriksen, H.-B. & Rypdal, K. Spectral characteristics of 
instrumental and climate model surface temperatures. J. Clim. 
29, 1253–1268 (2016).

9. Crowley, T. J. Causes of climate change over the past 1000 years. 
Science 289, 270–277 (2000).

10. Zhu, F. et al. Climate models can correctly simulate the 
continuum of global-average temperature variability. Proc. Natl 
Acad. Sci. USA 116, 8728–8733 (2019).

11. Fernández-Donado, L. et al. Large-scale temperature response 
to external forcing in simulations and reconstructions of the last 
millennium. Clim. Past 9, 393–421 (2013).

12. Laepple, T. & Huybers, P. Global and regional variability  
in marine surface temperatures. Geophys. Res. Lett. 41, 
2528–2534 (2014).

13. Parsons, L. A. et al. Temperature and precipitation variance 
in CMIP5 simulations and paleoclimate records of the last 
millennium. J. Clim. 30, 8885–8912 (2017).

14. Laepple, T. & Huybers, P. Ocean surface temperature variability: 
large model–data differences at decadal and longer periods. 
Proc. Natl Acad. Sci. USA 111, 16682–16687 (2014).

15. Rehfeld, K., Münch, T., Ho, S. L. & Laepple, T. Global patterns of 
declining temperature variability from the Last Glacial Maximum 
to the Holocene. Nature 554, 356–359 (2018).

16. Neukom, R. et al. Consistent multidecadal variability in global 
temperature reconstructions and simulations over the Common 
Era. Nat. Geosci. 12, 643–649 (2019).

17. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of  
CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 
485–498 (2012).

18. Black, D. E. et al. An 8-century tropical Atlantic SST record 
from the Cariaco Basin: baseline variability, twentieth-century 
warming, and Atlantic hurricane frequency. Paleoceanogr. 
Palaeoclimatol. 22, PA4204 (2007).

19. Ellerhoff, B. & Rehfeld, K. Probing the timescale dependency of 
local and global variations in surface air temperature from climate 
simulations and reconstructions of the last millennia. Phys. Rev. E 
104, 064136 (2021).

20. Askjær, T. G. et al. Multi-centennial Holocene climate variability 
in proxy records and transient model simulations. Quat. Sci. Rev. 
296, 107801 (2022).

21. Cheung, A. H. et al. Comparison of low-frequency internal 
climate variability in CMIP5 models and observations. J. Clim. 30, 
4763–4776 (2017).

22. Bothe, O., Jungclaus, J. H. & Zanchettin, D. Consistency of the 
multi-model CMIP5/PMIP3-past1000 ensemble. Clim. Past 9, 
2471–2487 (2013).

23. Collins, M., Osborn, T. J., Tett, S. F. B., Briffa, K. R. & Schweingruber, 
F. H. A comparison of the variability of a climate model with 
paleotemperature estimates from a network of tree-ring densities. 
J. Clim. 15, 1497–1515 (2002).

24. Ault, T. R., Deser, C., Newman, M. & Emile-Geay, J. Characterizing 
decadal to centennial variability in the equatorial Pacific  
during the last millennium. Geophys. Res. Lett. 40, 3450–3456 
(2013).

http://www.nature.com/naturegeoscience
https://doi.org/10.1038/s41561-023-01299-9


Nature Geoscience

Perspective https://doi.org/10.1038/s41561-023-01299-9

25. Bühler, J. C. et al. Comparison of the oxygen isotope signatures in 
speleothem records and iHadCM3 model simulations for the last 
millennium. Clim. Past 17, 985–1004 (2021).

26. Zorita, E. et al. European temperature records of the past  
five centuries based on documentary/instrumental information 
compared to climate simulations. Climatic Change 101,  
143–168 (2010).

27. Dee, S. G. et al. Improved spectral comparisons of paleoclimate 
models and observations via proxy system modeling: 
Implications for multi-decadal variability. Earth Planet. Sci. Lett. 
476, 34–46 (2017).

28. Franke, J., Frank, D., Raible, C. C., Esper, J. & Brönnimann, S. 
Spectral biases in tree-ring climate proxies. Nat. Clim. Change 3, 
360–364 (2013).

29. PAGES 2k-PMIP3 group. Continental-scale temperature  
variability in PMIP3 simulations and PAGES 2k regional 
temperature reconstructions over the past millennium. Clim. Past 
11, 1673–1699 (2015).

30. Evans, M. N., Tolwinski-Ward, S. E., Thompson, D. M. & 
Anchukaitis, K. J. Applications of proxy system modeling in high 
resolution paleoclimatology. Quat. Sci. Rev. 76, 16–28 (2013).

31. Anchukaitis, K. J. & Smerdon, J. E. Progress and uncertainties 
in global and hemispheric temperature reconstructions of the 
Common Era. Quat. Sci. Rev. 286, 107537 (2022).

32. Esper, J., Frank, D. C. & Wilson, R. J. S. Climate reconstructions: 
low-frequency ambition and high-frequency ratification. Eos 85, 
113–120 (2004).

33. Kunz, T., Dolman, A. M. & Laepple, T. A spectral approach  
to estimating the timescale-dependent uncertainty of 
paleoclimate records – part 1: theoretical concept. Clim. Past 16, 
1469–1492 (2020).

34. Christiansen, B. & Ljungqvist, F. C. Challenges and perspectives 
for large-scale temperature reconstructions of the past two 
millennia. Rev. Geophys. 55, 40–96 (2017).

35. Osborn, T. J. CLIMATE: the real color of climate change? Science 
306, 621–622 (2004).

36. Cook, E. R., Briffa, K. R., Meko, D. M., Graybill, D. A. &  
Funkhouser, G. The ‘segment length curse’ in long tree-ring 
chronology development for palaeoclimatic studies. Holocene 5, 
229–237 (1995).

37. Tingley, M. P. & Huybers, P. A Bayesian algorithm for 
reconstructing climate anomalies in space and time. part i: 
development and applications to paleoclimate reconstruction 
problems. J. Clim. 23, 2759–2781 (2009).

38. Moberg, A., Mohammad, R. & Mauritsen, T. Analysis of the  
Moberg et al. (2005) hemispheric temperature reconstruction. 
Clim. Dynam. 31, 957–971 (2008).

39. Trouet, V. et al. A 1500-year reconstruction of annual 
mean temperature for temperate North America on 
decadal-to-multidecadal time scales. Environ. Res. Lett. 8, 
024008 (2013).

40. Kim, S.-T. & O’Neil, J. R. Equilibrium and nonequilibrium oxygen 
isotope effects in synthetic carbonates. Geochim. Cosmochim. 
Acta 61, 3461–3475 (1997).

41. Werner, M., Mikolajewicz, U., Heimann, M. & Hoffmann, G. 
Borehole versus isotope temperatures on Greenland: seasonality 
does matter. Geophys. Res. Lett. 27, 723–726 (2000).

42. Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I. & Rosell-Melé, A. 
Calibration of the alkenone paleotemperature index U37

K’  
based on core-tops from the eastern South Atlantic and the 
global ocean (60°N-60°S). Geochim. Cosmochim. Acta 62, 
1757–1772 (1998).

43. Laepple, T. et al. On the similarity and apparent cycles  
of isotopic variations in East Antarctic snow pits. Cryosphere 12, 
169–187 (2018).

44. Zuhr, A. M. et al. Age-heterogeneity in marine sediments 
revealed by three-dimensional high-resolution radiocarbon 
measurements. Front. Earth Sci. https://doi.org/10.3389/
feart.2022.871902 (2022).

45. Peeters, F. J. C., Brummer, G.-J. A. & Ganssen, G. The effect of 
upwelling on the distribution and stable isotope composition 
of Globigerina bulloides and Globigerinoides ruber (planktic 
foraminifera) in modern surface waters of the NW Arabian Sea. 
Glob. Planet. Change 34, 269–291 (2002).

46. Berger, W. H. & Heath, G. R. Vertical mixing in pelagic sediments. 
J. Mar. Res. 26, 134–143 (1968).

47. Johnsen, S. J. in Isotopes and Impurities in Snow and Ice 
Publication No. 118, 210–219 (IAHS-AISH, 1977).

48. Webb, T. Is vegetation in equilibrium with climate? How to 
interpret late-Quaternary pollen data. Vegetatio 67, 75–91 (1986).

49. Mix, A. in North America and Adjacent Oceans During the Last 
Deglaciation Vol. K-3, 111–135 (Geological Society of America, 1987).

50. Laepple, T. & Huybers, P. Reconciling discrepancies between Uk37 
and Mg/Ca reconstructions of Holocene marine temperature 
variability. Earth Planet. Sci. Lett. 375, 418–429 (2013).

51. Dee, S. et al. PRYSM: an open-source framework for proxy system 
modeling, with applications to oxygen-isotope systems. J. Adv. 
Model. Earth Syst. 7, 1220–1247 (2015).

52. Rhines, A. & Huybers, P. Estimation of spectral power laws  
in time uncertain series of data with application to the Greenland 
Ice Sheet Project 2 δ18O record. J. Geophys. Res. Atmos. 116, 
D01103 (2011).

53. Sigl, M. et al. Timing and climate forcing of volcanic eruptions for 
the past 2,500 years. Nature 523, 543–549 (2015).

54. North, G. R., Wang, J. & Genton, M. G. Correlation models for 
temperature fields. J. Clim. 24, 5850–5862 (2011).

55. Jones, P. D., Osborn, T. J. & Briffa, K. R. Estimating sampling  
errors in large-scale temperature averages. J. Clim. 10,  
2548–2568 (1997).

56. Kunz, T. & Laepple, T. Frequency-dependent estimation  
of effective spatial degrees of freedom. J. Clim. 34, 7373–7388 
(2021).

57. Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D. & Waple, A. 
Solar forcing of regional climate change during the Maunder 
Minimum. Science 294, 2149–2152 (2001).

58. Bakker, P., Clark, P. U., Golledge, N. R., Schmittner, A. & Weber, 
M. E. Centennial-scale Holocene climate variations amplified by 
Antarctic Ice Sheet discharge. Nature 541, 72–76 (2017).

59. Braconnot, P., Zhu, D., Marti, O. & Servonnat, J. Strengths and 
challenges for transient Mid- to Late Holocene simulations with 
dynamical vegetation. Clim. Past 15, 997–1024 (2019).

60. Hopcroft, P. O. & Valdes, P. J. Paleoclimate-conditioning reveals a 
North Africa land–atmosphere tipping point. Proc. Natl Acad. Sci. 
USA 118, e2108783118 (2021).

61. Bonan, G. B. Forests and climate change: forcings, feedbacks, and 
the climate benefits of forests. Science 320, 1444–1449 (2008).

62. Laguë, M. M., Bonan, G. B. & Swann, A. L. S. Separating the 
impact of individual land surface properties on the terrestrial 
surface energy budget in both the coupled and uncoupled land–
atmosphere system. J. Clim. 32, 5725–5744 (2019).

63. Rypdal, K., Rypdal, M. & Fredriksen, H.-B. Spatiotemporal 
long-range persistence in Earth’s temperature field: analysis  
of stochastic–diffusive energy balance models. J. Clim. 28, 
8379–8395 (2015).

64. Jüling, A., von der Heydt, A. & Dijkstra, H. A. Effects of strongly 
eddying oceans on multidecadal climate variability in the 
Community Earth System Model. Ocean Sci. 17, 1251–1271 (2021).

65. Rypdal, M. & Rypdal, K. Long-memory effects in linear response 
models of Earth’s temperature and implications for future global 
warming. J. Clim. 27, 5240–5258 (2014).

http://www.nature.com/naturegeoscience
https://doi.org/10.3389/feart.2022.871902
https://doi.org/10.3389/feart.2022.871902


Nature Geoscience

Perspective https://doi.org/10.1038/s41561-023-01299-9

66. Sevellec, F. & Drijfhout, S. S. The signal-to-noise paradox for 
interannual surface atmospheric temperature predictions. 
Geophys. Res. Lett. 46, 9031–9041 (2019).

67. Strommen, K. & Palmer, T. N. Signal and noise in regime 
systems: a hypothesis on the predictability of the North Atlantic 
Oscillation. Q. J. R. Meteorol. Soc. 145, 147–163 (2019).

68. Mann, M. E. et al. Global signatures and dynamical origins of 
the Little Ice Age and Medieval Climate Anomaly. Science 326, 
1256–1260 (2009).

69. Hargreaves, J. C., Annan, J. D., Ohgaito, R., Paul, A. & Abe-Ouchi, 
A. Skill and reliability of climate model ensembles at the Last 
Glacial Maximum and mid-Holocene. Clim. Past 9, 811–823 (2013).

70. Weitzel, N., Hense, A. & Ohlwein, C. Combining a pollen and 
macrofossil synthesis with climate simulations for spatial 
reconstructions of European climate using Bayesian filtering. 
Clim. Past 15, 1275–1301 (2019).

71. Blanusa, M. L., López-Zurita, C. J., & Rasp, S. Internal variability 
plays a dominant role in global climate projections of 
temperature and precipitation extremes. Climate Dynamics 61, 
1931–1945 (2023).

72. Ionita, M., Dima, M., Nagavciuc, V., Scholz, P. & Lohmann, G.  
Past megadroughts in central Europe were longer, more severe 
and less warm than modern droughts. Commun. Earth Environ. 2, 
61 (2021).

73. Calel, R., Chapman, S. C., Stainforth, D. A. & Watkins, N. W. 
Temperature variability implies greater economic damages from 
climate change. Nat. Commun. 11, 5028 (2020).

74. Schwarzwald, K. & Lenssen, N. The importance of internal climate 
variability in climate impact projections. Proc. Natl Acad. Sci. USA 
119, e2208095119 (2022).

75. Harrington, L. J., Schleussner, C.-F. & Otto, F. E. L. Quantifying 
uncertainty in aggregated climate change risk assessments.  
Nat. Commun. 12, 7140 (2021).

76. Hausfather, Z., Drake, H. F., Abbott, T. & Schmidt, G. A. Evaluating 
the performance of past climate model projections. Geophys. 
Res. Lett. 47, e2019GL085378 (2020).

77. Valdes, P. Built for stability. Nat. Geosci. 4, 414–416 (2011).
78. Klockmann, M., Mikolajewicz, U., Kleppin, H. & Marotzke, J. 

Coupling of the subpolar gyre and the overturning circulation 
during abrupt glacial climate transitions. Geophys. Res. Lett. 47, 
e2020GL090361 (2020).

79. Czymzik, M., Muscheler, R. & Brauer, A. Solar modulation of  
flood frequency in central Europe during spring and summer  
on interannual to multi-centennial timescales. Clim. Past 12, 
799–805 (2016).

80. Yan, M. & Liu, J. Physical processes of cooling and mega-drought 
during the 4.2 ka BP event: results from TraCE-21ka simulations. 
Clim. Past 15, 265–277 (2019).

81. Zscheischler, J. et al. A typology of compound weather and 
climate events. Nat. Rev. Earth Environ. 1, 333–347 (2020).

82. Deser, C., Knutti, R., Solomon, S. & Phillips, A. S. Communication 
of the role of natural variability in future North American climate. 
Nat. Clim. Change 2, 775–779 (2012).

83. Hegerl, G. & Zwiers, F. Use of models in detection and attribution 
of climate change. WIREs Clim. Change 2, 570–591 (2011).

84. Stott, P. A. et al. Observational constraints on past attributable 
warming and predictions of future global warming. J. Clim. 19, 
3055–3069 (2006).

85. Philip, S. et al. A protocol for probabilistic extreme event 
attribution analyses. Adv. Stat. Climatol. Meteorol. Oceanogr. 6, 
177–203 (2020).

86. van Oldenborgh, G. J. et al. Pathways and pitfalls in extreme event 
attribution. Climatic Change 166, 13 (2021).

87. Qasmi, S. & Ribes, A. Reducing uncertainty in local temperature 
projections. Sci. Adv. 8, eabo6872 (2022).

88. Wu, Y. et al. Quantifying the uncertainty sources of future climate 
projections and narrowing uncertainties with bias correction 
techniques. Earth Future 10, e2022EF002963 (2022).

89. Bethke, I. et al. Potential volcanic impacts on future climate 
variability. Nat. Clim. Change 7, 799–805 (2017).

90. Ellerhoff, B. et al. Contrasting state-dependent effects of natural 
forcing on global and local climate variability. Geophys. Res. Lett. 
49, e2022GL098335 (2022).

91. Lehner, F. et al. Partitioning climate projection uncertainty with 
multiple large ensembles and CMIP5/6. Earth Syst. Dynam. 11, 
491–508 (2020).

92. McIntyre, A. et al. Seasonal Reconstructions of the Earth’s Surface 
at the Last Glacial Maximum (Geological Society of America, 1981).

93. Comboul, M., Emile-Geay, J., Hakim, G. J. & Evans, M. N. 
Paleoclimate sampling as a sensor placement problem. J. Clim. 
28, 7717–7740 (2015).

94. Wörmer, L. et al. Ultra-high-resolution paleoenvironmental 
records via direct laser-based analysis of lipid biomarkers in 
sediment core samples. Proc. Natl Acad. Sci. USA 111, 15669–
15674 (2014).

95. Barkan, E. & Luz, B. High precision measurements of 17O/16O 
and 18O/16O ratios in H2O. Rapid Commun. Mass Spectrom. 19, 
3737–3742 (2005).

96. Amrhein, D. E., Hakim, G. J. & Parsons, L. A. Quantifying  
structural uncertainty in paleoclimate data assimilation with 
an application to the last millennium. Geophys. Res. Lett. 47, 
e2020GL090485 (2020).

97. Ljungqvist, F. C. et al. Centennial-scale temperature change in 
last millennium simulations and proxy-based reconstructions.  
J. Clim. 32, 2441–2482 (2019).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with 
the author(s) or other rightsholder(s); author self-archiving of the 
accepted manuscript version of this article is solely governed by the 
terms of such publishing agreement and applicable law.

© Springer Nature Limited 2023

1Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany. 2MARUM–Center for Marine Environmental Sciences 
and Faculty of Geosciences, University of Bremen, Bremen, Germany. 3Department of Geosciences, University of Tübingen, Tübingen, Germany. 
4Department of Physics, University of Tübingen, Tübingen, Germany. 5Institut für Naturwissenschaften, Geographie und Technik, Pädagogische 
Hochschule Heidelberg, Heidelberg, Germany. 6Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain. 7Institute 
for Coastal Systems—Analysis and Modelling, Helmholtz-Zentrum Hereon, Geesthacht, Germany. 8Barcelona Supercomputing Center (BSC), Barcelona, 
Spain. 9Section Meteorology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany. 10Institute of Earth Surface 
Dynamics, Geopolis, University of Lausanne, Lausanne, Switzerland. 11ARC Centre of Excellence in Australian Biodiversity and Heritage (CABAH), 
Canberra, Australian Capital Territory, Australia. 12School of Culture, History and Language, The Australian National University, Canberra, Australian 
Capital Territory, Australia. 13Present address: Department Greenhouse gas emission verification, Deutscher Wetterdienst, Offenbach, Germany. 

 e-mail: tlaepple@awi.de

http://www.nature.com/naturegeoscience
mailto:tlaepple@awi.de


Nature Geoscience

Perspective https://doi.org/10.1038/s41561-023-01299-9

Methods
Spectral estimates
The PSD estimates were calculated using the multitaper method98 with 
three tapers and a time-bandwidth parameter ω = 2. The PSD estimates 
were smoothed using a Gaussian kernel with a constant width of 0.03 
on the (base 10) logarithmic timescale.

Literature review and agreement
We included literature that covered the entire Holocene and applied a 
ranking system to indicate the level of (dis)agreement between climate 
reconstructions and models using the following five levels: disagree-
ment, largely disagree, neutral, largely agree, and agreement. Levels 
were assigned on the basis of the respective study authors’ original 
assessments of their model–data consistency that were based on 
various methods used for the model–data comparison (for exam-
ple direct comparison, proxy modelling) and proxy calibration (for 
example temporal calibration, spatial calibration). We differentiated 
the results according to temporal and spatial scales wherever pos-
sible. Supplementary Table 1 contains the full review on which Fig. 2 
is based, together with statements from the original papers that were 
the basis for assigning the levels of (dis)agreement. Extended Data  
Fig. 2 explicitly cites the individual studies.

Local and global spectra and relationship to the spatial scale 
of temperature fluctuations
Global mean spectra (Figs. 1 and 3) were computed as the PSD of the 
global temperature time series. As an example of a local record, we 
chose the Cariaco Mg/Ca records as it is one of the highest-resolution 
marine records that spans most of the past millennium (1200–2000 ce). 
This record is not affected by bioturbation (due to its laminated sedi-
ment) and is based on a classical temperature proxy (Mg/Ca on planktic 
foraminifera). Mg/Ca is clearly attributed to temperature and we can 
use an independent calibration (Methods; see ref. 14), circumventing 
potential issues with temporal calibrations. Local mean spectra (Figs. 1 
and 3 and Extended Data Fig. 1) were computed as area-weighted mean 
spectra of the local (grid box) temperature. For the model spectra, the 
grid boxes containing the proxy record were selected. The local mean 
spectrum from the PAGES 2k database (Fig. 3 and Extended Data Fig. 1)  
corresponds to the estimate in ref. 19. For this estimate, 101 proxy 
records were considered and selected according to their resolution, 
number of data points and coverage, as well as their maximum hiatus. 
The result is robust to the selection criteria19. In Fig. 3, the local spec-
trum from sedimentary records is also shown, covering timescales 
from 1/200–1/3000 years. The proxy spectra were created from the 
weighted average of local SST spectra from ref. 14 (arithmetic mean of 
Mg/Ca and Uk37 proxy-based spectra, where Uk37 is the unsaturation 
index of C37 methyl alkenones50) and local terrestrial air temperature 
spectra from ref. 4 (2/3 × SST + 1/3 × terrestrial temperature). All three 
spectra show a similar scaling of PSD ≈ f−1 for frequency f and are there-
fore parallel to the global mean temperature spectra from CMIP5/6 and 
the PAGES 2k reconstruction (Fig. 1). This implies that the spatial scale 
remains nearly constant on supradecadal timescales, independent of 
the absolute magnitude of local variability. The ratio of local to global 
variability can be interpreted as effective spatial degrees of freedom 
that can in turn be translated into a characteristic length scale (an 
effective correlation radius)56 (see Fig. 3a and the circles and labelling 
in Fig. 3b–d). To visualize a typical amplitude and spatial scale of tem-
perature anomalies at different timescales (Fig. 3b–d), we computed a 
Haar fluctuation at different timescales (that is, the difference between 
the average of the first and second half of a given time interval) from 
the MPI-ESM-P past1000 experiment. We show examples for one 2 yr 
(Fig. 3b), one 20 yr (Fig. 3c) and one 500 yr fluctuation (Fig. 3d); they 
correspond to, respectively, the average temperature for the year 
1050 minus 1051, the years 1050–1059 minus 1060–1069 and the years 
1050–1299 minus 1300–1549.

Conceptual relation between slow climate variability  
and extremes
The time series of short-term variations in Fig. 4 was created as white 
noise, while the time series of long-term variations was generated as 
a low-pass filtered (cutoff 1/10 yr) stochastic process with PSD ≈ f−1. 
The variance ratio was 5:1. The parameters and time steps were cho-
sen such that the short-term time series corresponds to fluctuations 
with a characteristic timescale of weeks and the long-term series to 
decadal fluctuations. In total, we generated a 10,000 yr time series to 
ensure that the distributions converged. The distribution and return 
levels were obtained empirically. We used the definition of the return 
level from the Weibull formula, which relates the inverse rank, i, of 
the sorted time series vector, X, of length N to the return period R(xi) 
via (Box 1):

X = (x1,… xN), xi ≥ xi+1

R(xi) = 1/(P(x ≥ xi)) =
N+1
i

Data availability
The PAGES 2k palaeotemperature records (PAGES 2k v.2.0.0) are avail-
able at www.ncdc.noaa.gov/paleo/study/21171. The ensemble of global 
temperature reconstructions based on the PAGES2k16 data are avail-
able through the World Data Service (NOAA) Palaeoclimatology at 
https://www.ncdc.noaa.gov/paleo/study/26872 and via Figshare at 
https://doi.org/10.6084/m9.figshare.c.4507043. The pollen-based 
reconstructions are available via PANGEA at https://doi.pangaea.
de/10.1594/PANGAEA.930512. The marine proxy data are available 
via PANGEA at https://doi.org/10.1594/PANGAEA.899489. The CMIP5 
millennium simulations are available through the Earth System Grid 
Federation portal at https://esgf-data.dkrz.de. Source data are pro-
vided with this paper.
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Extended Data Fig. 1 | Spectrum of mean local simulated and reconstructed 
temperature variability. As in Fig. 1d of the main text but for the mean local 
temperature spectrum from CMIP5/CMIP6 simulations and from PAGES2k 
temperature reconstructions (see Methods and Ref. 19). This shows that local 

variability reconstructed from instrumentally calibrated annually resolved 
records displays a similar model-data variability mismatch on supra-decadal 
time-scales as the example reconstruction (Cariaco) shown in Fig. 1d, or other 
marine or terrestrial records4,14.
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Extended Data Fig. 2 | Overview of model-data (dis)agreement in Holocene 
temperature variability in the literature with explicit references. As in Fig. 2  
of the main text, model-data agreement is grouped according to temporal 
(x-axis) and spatial scale (y-axis). Each symbol represents a specific study  
(refs. 4,8–14,16,19–2997) and the color-code indicates strength of (dis)agreement. 
Multiple occurrences in one box can happen when differing results are reported 

that is depending on reconstruction method or proxy type. Such cases are 
highlighted with a black border. The number at the bottom right of each box is 
the number of distinct studies in this box. Dashing of a box indicates only one 
or two studies for this spatio-temporal scale. Further details can be found in the 
Methods section.
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Extended Data Fig. 3 | Local precipitation and local temperature variability 
show a different temporal scaling. Local mean spectral estimates from 
CMIP5/6 precipitation (dark blue) and temperature (brown). Across all models, 
local precipitation variability shows a flatter (more white) scaling than local 
temperature variability. This implies that the mismatch between simulated and 

reconstructed local supra-decadal variability would increase, if the proxies would 
represent a mix of precipitation and temperature (calibrated to temperature 
units), as the difference in scaling between proxies and simulated precipitation is 
even larger than between proxies and simulated temperature.
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Extended Data Table 1 | CMIP5/CMIP6 model experiments. The model experiments were used in Figs. 1 and 3 (refs. 99–109)
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