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Abstract
Rapidly shrinking Arctic sea ice has had significant impacts on the Earth system. Therefore, 
reliably estimating the Arctic sea-ice thickness (SIT) using a combination of available 
observations and numerical modeling is urgently needed. Here, for the first time, we 
assimilate the latest CryoSat-2 summer SIT data into a coupled ice-ocean model. In 
particular, an incremental analysis update scheme is implemented to overcome the 
discontinuity resulting from the combined assimilation of biweekly SIT and daily sea-ice 
concentration (SIC) data. Along with improved estimates of sea-ice volume, our SIT 
estimates corrected the overestimation of SIT produced by the reanalysis that assimilates 
only SIC in summer in areas where the sea ice is roughest and experiences strong 
deformation, e.g., around the Fram Strait and Greenland. This study suggests that the newly 
developed CryoSat-2 SIT product, when assimilated properly using our approach, has great 
potential for Arctic sea ice simulation and prediction.
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1. Introduction
Coinciding with the Arctic warming ratio that is four times that of the global average 
(Chylek et al., 2022; Rantanen et al., 2022), Arctic sea ice has sharply declined during the 
satellite era (Kwok, 2018; Stroeve & Notz, 2018). Substantial sea ice loss has significantly 
influenced the Earth system (Bailey et al., 2021; Cohen et al., 2021; Liu et al., 2022; Qi et 
al., 2022). For instance, the Arctic sea ice reduction has been linked to some extreme events 
at middle and lower latitudes (Bailey et al., 2021; Cohen et al., 2021; Liu et al., 2022). 
Although the ongoing decline has made commercial trans-Arctic transit more feasible in the 
summer, the changing and mobile sea ice impacts maritime activities (e.g., Eicken, 2013; 
Min, et al., 2022). For instance, local variations in the sea-ice thickness (SIT) can affect the 
safety and route planning of maritime navigators. Consequently, there is a great need for 
and interest in reliable measurements, simulations and forecasts of Arctic sea ice.
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Sophisticated year-round sea-ice concentration (SIC) monitoring has been developed for 
several decades (e.g., Comiso et al., 1997; Lavergne et al., 2019; Spreen et al., 2008). 
Satellite sea ice data such as those derived from the Soil Moisture and Ocean Salinity 
(SMOS, Kaleschke et al., 2012; Tian-Kunze et al., 2014) and CryoSat-2 (Laxon et al., 2013; 
Ricker et al., 2014) products record the ice thickness over several years, but processing 
challenges in summer have resulted in the availability of only winter observations. Recently, 
a pan-Arctic summer SIT product derived from CryoSat-2 has become available (Landy et 
al., 2022). The most recent CryoSat-2 observations not only offer a look at pan-Arctic SIT 
from the perspective of satellite remote sensing year-round but also provide opportunities 
for constructing a more reliable SIT reanalysis by assimilating these data into dynamical 
models and generating sea-ice forecasts (Landy et al., 2022).

Data assimilation can strongly enhance sea-ice estimates because the model initialization 
can be adjusted and the model state can be continuously constrained to reality by integrating 
new observations (Blockley & Peterson, 2018; Day et al., 2014; Massonnet et al., 2015). 
The assimilation of winter SIT, for instance, can provide improved initial conditions for the 
summer season and hence has the potential to lower uncertainty in both sea-ice estimates 
and forecasts (e.g., Blockley & Peterson, 2018; Day et al., 2014; Mignac et al., 2022; Xie 
et al., 2018; Yang et al., 2014; Yang et al., 2019). In particular, to improve the ice-thickness 
estimates, a year-round Combined Model and Satellite Thickness (CMST) reanalysis has 
been developed by assimilating the CryoSat-2 and SMOS thickness data throughout the 
freezing season (Mu, Losch, et al., 2018). Although the CMST has been systematically 
evaluated and widely used (e.g., Li et al., 2022; Min et al., 2019; Min et al., 2021; Mu, 
Losch, et al., 2018; Zhou et al., 2021), the SIT is corrected only indirectly in summer 
through the positive covariance between SIC, which is assimilated, and SIT, which is not 
assimilated during the summer months. Moreover, the weekly mean SIT from CryoSat-2 is 
simply assimilated every day of the week during the cold season (Mu, Losch, et al., 2018; 
Mu, Yang, et al., 2018), which may introduce unrealistic “jumps” at the transition points 
between different weeks and seasons (i.e., winter-summer and summer-winter). To date, 
there have not been studies on the impacts of and approaches for assimilating satellite-based 
summer SIT. Given the current availability of summer SIT data, we conducted a data 
assimilation experiment by simultaneously assimilating summer SIC and SIT.

This study aimed to explore whether the assimilation of CryoSat-2 summer SIT data can 
better constrain modeled SIC and SIT and thus improve sea ice estimates. We applied an 
incremental analysis update (IAU) scheme for CryoSat-2 summer SIT assimilation to ensure 
the physical development of sea ice volume (SIV) and SIT given that CryoSat-2 
observations were available only at a lower biweekly time interval than the daily SIC 
observations. We further compared our outputs with those of the CMST and different 
independent data to assess the overall improvement resulting from assimilating summer 
SIT.

2. Materials and Methods
2.1 Observations for data assimilation

The pan-Arctic, year-round CryoSat-2 SIT dataset has been generated by combining deep 
learning radar waveform classification with numerical radar simulation (Landy et al., 2022). 
In summary, a one-dimensional convolutional neural network has been applied to classify 
leads from sea-ice returns in radar altimeter waveform (Dawson et al., 2022). A series of 
numerical waveform simulations based on the Facet-Based Echo Model (Landy et al., 2020; 
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Landy et al., 2019), which integrates melt ponds, are then used to calibrate a radar range 
bias that causes the CryoSat-2 freeboards to be underestimated. The SIT is derived from 
CryoSat-2 radar freeboards, assuming hydrostatic equilibrium and accounting for snow 
loading, with snow depth and density estimates obtained from the MERRA-2 version of 
SnowModel-LG (Liston et al., 2021). The innovative dataset provides the SIT and its 
uncertainty with a temporal resolution of 15 or 16 days and a spatial resolution of 80 km. 
Nevertheless, large uncertainties remain close to the coast of northern Greenland, the 
Canadian Arctic Archipelago and the Fram Strait when compared to airborne 
electromagnetic thickness observations (Landy et al., 2022). More details about the data 
processing can be found in Dawson et al. (2022) and Landy et al. (2022).

The SIC data used in this study are computed at the French Research Institute for 
Exploitation of the Sea (IFREMER) and reprocessed by the Integrated Climate Data Center. 
Together with the ARTIST (Arctic Radiation and Turbulence Interaction STudy) Sea Ice 
algorithm (Kaleschke et al., 2001; Spreen et al., 2008), this SIC dataset is derived from 
brightness temperatures measured with the 85-GHz Special Sensor Microwave/Imager 
(SSM/I) and/or Special Sensor Microwave/Imager Sounder (SSM/IS) channels. A 5-day 
median filter is used to reduce unrealistic short-term SIC variations resulting from the 
influence of weather (Kern et al., 2010). The spatial resolution of the daily SIC data is 12.5 
km.

2.2 Reference observations

The SIC observations, which are processed by the National Aeronautics and Space 
Administration (NASA) Team algorithm and distributed by the National Snow and Ice Data 
Center (NSIDC, DiGirolamo et al., 2022), are processed into the sea-ice extent (SIE) prior 
to assessing the SIEs estimated by CMST and our experiments. This reference SIC dataset 
is used to ensure that we are not assimilating and testing against the same observations. 
Notably, the SIC dataset derived from the NASA Team algorithm distributed by the NSIDC 
and the SIC dataset computed at the IFREMER are both derived from the same brightness 
temperatures/emissivity measured by the Special Sensor Microwave/Imager (SSM/I) and/or 
the Special Sensor Microwave/Imager Sounder (SSM/IS), which prevents them from being 
considered independent data. The two SIC observations are, however, retrieved using 
different algorithms. Therefore, we can assume that the NSIDC SIC data are sufficiently 
different and can be utilized as reference observations.

The in situ observations of SIT are limited to a very small area, with nearly no observations 
available in the Central Arctic region. To validate the SIT results, we use a set of 
independent fixed mooring and airborne SIT observations (see Fig. 1 for geographic 
locations of surveys and deployment positions). Sea ice drafts from May 23 to September 
30, 2016, were obtained from upward-looking sonars (ULSs) provided by the Beaufort Gyre 
Experiment Program (BGEP). The data from the three different moorings are hereafter 
referred to as BGEP_A, BGEP_B and BGEP_D. According to Melling et al. (1995), the 
error associated with ULS sea ice draft observations is approximately 0.1 m. Additionally, 
draft data from May 23 to August 8, 2016, collected by the Alfred Wegener Institute (AWI) 
using an acoustic Doppler current profiler (ADCP) in the western Laptev Sea area, are used. 
Per Belter et al. (2021), the uncertainties in the hourly observations are relatively high 
(±0.96 m) but consistent. To simplify the comparison between the model SIT and 
observations, the observed sea ice draft is converted to thickness by multiplying it by a 
factor of 1.1 (Nguyen et al., 2011).
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In addition to the moored observations, SIT from airborne electromagnetic surveys 
conducted by the Alfred Wegener Institute (AWI) in the Fram Strait and northern Greenland 
(Krumpen et al., 2019) are used as a reference dataset for our model results. The applied 
surveys were conducted between July 24 and August 1, 2016, during the IceBird campaign. 
For more details on the methodology, we refer to Krumpen et al. (2020). According to 
Pfaffling et al. (2007), airborne observations are estimated to have an uncertainty of ±0.1 m 
over flat ice, although the accuracy may be affected by the presence of melt ponds. As the 
footprint of airborne measurements is in the range of tens of meters, all airborne 
electromagnetic ice thicknesses are averaged onto the CryoSat-2 grids for comparison, 
following Landy et al. (2022). As the numerical model uses the effective/mean ice thickness 
(volume over an area), all field observations are multiplied by the local NSIDC SIC to obtain 
the observed mean thickness to facilitate comparison between the model and observations, 
following Yang et al. (2015). Because the in situ ULS/ADCP measures SIT on a 
subkilometer scale while the modeled SIT is on a multikilometer scale, there are some 
limitations to comparing the modeled SIT with these point measurements from the 
observations. However, by averaging the values over a timespan of one day, we assume the 
ULS/ADCP samples over a wide range of the ice thickness distribution, as floes drift over 
the mooring. Following previous studies (e.g., Yang et al., 2014; 2015), this study does not 
attempt to quantify these uncertainties.

Fig. 1. The MITgcm model grid is shown in an orange net plotted at 12 model grid points. 
The independent observations used to validate CryoSat-2, the Combined Model and 
Satellite Thickness (CMST) and the analysis field (ANA) are presented as extra-large blue 
dots for the two Alfred Wegener Institute (AWI) acoustic Doppler current profiler (ADCP) 
sensor deployments, as blue lines for the AWI airborne surveys (IceBird), and as a black 
dot, triangle and square for the A, B and D moorings, respectively, of the Beaufort Gyre 
Exploration Program (BGEP). The blue dots for the two AWI ADCPs (Vilk1-14 and Vilk3-
14) overlap due to their proximity.

2.3 Sea-ice data assimilation system

The data assimilation system is further developed based on the CMST system. For example, 
the Massachusetts Institute of Technology general circulation model (MITgcm, Marshall et 
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al., 1997) and the Parallel Data Assimilation Framework (PDAF, Nerger & Hiller, 2013) 
are employed. Sea ice dynamics use a viscous plastic rheology (Hibler, 1979; Zhang & 
Hibler, 1997), with a one-layer, zero-heat capacity formulation applied in thermodynamics 
(Parkinson & Washington, 1979; Semtner, 1976). Fifty vertical model layers are used in the 
ocean model, with 28 layers located in the top 1000 m. An Arakawa C grid with a variable 
horizontal resolution and an average spacing of 18 km is used to discretize both the ocean 
and sea ice models. The experiments are based on a regional MITgcm configuration with 
open boundaries located around 55°N in the Atlantic and Pacific (Losch et al., 2010; Nguyen 
et al., 2011). Fig. 1 depicts the model domain with an orange mesh.

As with earlier data assimilation studies (e.g., Mu, Losch, et al., 2018; Mu, Yang, et al., 
2018; Yang et al., 2015), the coupled ice-ocean model is driven by atmospheric ensemble 
forecasts generated by the UK Met Office (UKMO) Ensemble Prediction System (EPS) and 
accessible from The Observing System Research and Predictability Experiment 
(THORPEX) Interactive Grand Global Ensemble archive (TIGGE) (Bowler et al., 2008; 
Park et al., 2008) to incorporate flow-dependent uncertainty in atmospheric forcing. Eleven 
sets of perturbed forecasts are employed to force an ensemble of eleven model states. Details 
about the atmospheric data processing can be found in previous studies (Mu, Losch, et al., 
2018; Yang et al., 2015).

By using the multivariate covariances between ice concentration and thickness, Yang et al. 
(2015, 2016) found that assimilating the summer SIC improved the forecast and estimate of 
the summer SIT. Based on this, Mu, Losch, et al. (2018) developed the year-round CMST 
reanalysis. However, uncertainties remain in the heavily deformed and ridged sea ice region. 
Thus, we conduct this study to further improve the SIT estimates. For easy comparison with 
the previously-developed CMST reanalysis, which assimilates only the IFREMER SIC 
during summer, following Mu, Losch, et al. (2018), the IFREMER SIC and CryoSat-2 SIT 
are assimilated into the ice-ocean model by using the local error-subspace transform Kalman 
filter (LESTKF) coded in PDAF (Nerger & Hiller, 2013; Nerger et al., 2012). The LESTKF, 
a local formulation of ESTKF, is a highly efficient ensemble Kalman filter with very high-
dimensional models (Nerger et al., 2012). In particular, the ESTKF can be used with a 
deterministic minimum transformation, which allows the use of particularly small 
ensembles. The SIC and SIT obtained from the forecast fields are stored together in the state 
vector. Then, at each analysis step, the LESTKF is used to correct the state vector by only 
accounting for the sea-ice data observed within a 126 km radius of each model point (Mu, 
Losch, et al., 2018; Yang et al., 2015). The observations within the radius are weighted with 
distance from the grid point by a quasi-Gaussian weight function (Gaspari & Cohn, 1999). 
The model uncertainties are calculated from the ensemble of model states driven by the 
UKMO ensemble atmospheric forcing (Mu, Losch, et al., 2018; Yang et al., 2015). The 
observation error for SIC is set as a constant value of 0.25. This choice is based on sensitivity 
experiments in our previous studies (e.g., Mu, Losch, et al., 2018; Yang et al., 2016) and 
accounts for the representation error. For the SIT observations, variable observation errors 
provided with the CryoSat-2 dataset are used; for an example of SIT uncertainty during 
summer 2016, see Fig. 2.
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Fig. 2. Uncertainties in the CryoSat-2 summer sea-ice thickness (SIT) observations. Figures 
in the left panel (a, c, e, and g) and the right panel (b, d, f, and h) are uncertainty maps of 
CryoSat-2 summer SIT data for the first and second halves, respectively, of June, July, 
August, and September 2016.

For consistent pan-Arctic temporal and spatial coverage, CryoSat-2 SIT data are available 
twice a month at intervals of 15 or 16 days (Landy et al., 2022; Lawrence et al., 2021). 
Therefore, the forecast interval between the analysis steps is excessively long when directly 
assimilating CryoSat-2 data. The sparse analysis step typically creates unrealistically large 
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“jumps” in the evolution of sea ice, leading to an unnatural development of SIV (Fig. A1). 
For forecasting systems that need daily updates, direct assimilation of these data is therefore 
inappropriate. Hence, an IAU strategy similar to those of previous studies (Bloom et al., 
1996; Lellouche et al., 2013; Ourmières et al., 2006) is implemented to obtain smoother 
evolutions of sea ice. The IAU is applied only for the CryoSat-2 summer observations while 
assimilating SIC observations instantaneously. The IAU scheme developed in this study is 
schematically shown in Fig. 3. In brief, this IAU scheme is cycled with a combination of 7-
/8-day runs and rerun over 15 or 16 days. For this, we first execute a 7-/8-day assimilation 
run, which assimilates daily SIC, initialized from the previous state at the beginning (light 
blue dots in Fig. 3) of each period of the biweekly mean CyoSat-2 SIT data. At the end of 
this first run (bright blue squares in Fig. 3), the CryoSat-2 SIT is assimilated. The total SIT 
increment obtained at the analysis step is not immediately applied but divided by 15 or 16, 
according to the time span of the assimilated CyoSat-2 SIT, and stored for the IAU to 
perform daily updates. Finally, for a 15-/16-day assimilation experiment, we restart our 
system at the initial time of the first 7-/8-day run (light blue dots in Fig. 3) and assimilate 
the daily SIC while also incorporating the daily SIT increment into the data assimilation 
system. This cycle is repeated during the whole assimilation cycle. This approach allows us 
to assimilate the rather infrequent biweekly summer SIT data in combination with the daily 
SIC data while ensuring a gradual development of the sea ice fields over time.

Fig. 3. A schematic illustration of the incremental analysis update (IAU) approach 
implemented in our data assimilation system. The light blue dots represent the initial states 
for modeled summer sea ice at the beginning of the 15-day or 16-day period for biweekly 
mean CyoSat-2 sea-ice thickness (SIT), while the dark blue squares are for the analysis 
fields with SIC and SIT assimilation. The dates in green font denote the dates of available 
CyoSat-2 SIT data. The dashed arrows represent the daily SIT increment in the IAU 
approach.

2.4 Experimental design

In the beginning of 2016, a record-low monthly SIE was experienced, but the summer extent 
exceeded most seasonal forecasts (Petty et al., 2017; Petty et al., 2018). Due to the 
unconsolidated summer ice cover in 2016, modeling and forecasting sea ice conditions 
during this summer are expected to be exceptionally challenging (Petty et al., 2017; Petty 
et al., 2018). To test our system, which has been newly developed with the IAU scheme, we 
carried out a case study from May 23 to September 30, 2016. Given that CMST data are 
already well validated and applied (e.g., Li et al., 2022; Min et al., 2019; Min et al., 2021; 
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Mu, Losch, et al., 2018; Zhou et al., 2021), following Yang et al. (2019), restart files from 
this retrospective simulation (CMST) are used as the initial ice-ocean conditions for the data 
assimilation experiments.

3. Results

The spatial distributions of summer SIT are displayed in Figs. 4a-4c. Overall, assimilating 
the summer SIT leads to a better agreement of the SIT and SIV estimated from our thickness 
analysis field (hereafter, ANA) with that from CryoSat-2 compared to CMST, which only 
assimilates SIC during the summer. Compared to that of CMST, the SIT distribution from 
ANA is more similar to that from CryoSat-2. Fig. 4d further illustrates the differences 
between the absolute value of ANA minus CryoSat-2 and the absolute value of CMST 
minus CryoSat-2, showing that ANA has been significantly improved. The overestimation 
of the ice thickness by CMST is corrected, particularly in the Fram Strait and in the Arctic 
Ocean on the northern coast of the Canadian Arctic Archipelago and Greenland. These are 
regions where the sea ice experiences stronger deformation and the ice surface is roughest 
(Farrell et al., 2020; Kwok, 2015).
Root-mean-square error (RMSE), mean bias, and the correlation coefficient, whose 
calculation methods are described in Appendix A2, are used to quantify the comparisons 
between the CMST, ANA, and observations. Our results demonstrate relatively strong 
agreement with the observed SIE (Fig. A2) and SIV (Fig. 4e) during the entire summer 
season, both during the ice melting phase and freezing period (mid-September). The 
correlation coefficients for SIV between the ANA/CMST and the observations are nearly 
equal (0.97 between the ANA and CryoSat-2 data). In relation to the SIV calculated by 
CMST and ANA, the RMSEs decrease from 2.43×103 km3 to 1.97×103 km3, demonstrating 
that the estimates for SIV are improved. Owing to the lack of assimilating summer SIT, the 
initial condition from CMST still shows a significant initial error in estimating SIV. In 
addition, we suppose there are two reasons why the SIV in early summer, as estimated by 
ANA, is much closer to the CMST than to the CryoSat-2 data. First, the data assimilation 
system needs a certain amount of time to spin up before leading to consistent improvements 
(Mu, Yang, et al., 2018). Second, around the early summer, CryoSat-2 exhibits substantially 
higher uncertainty (Fig. 2) than does the model state, making the ANA results closer to those 
of the model state. Note that from the end of June, as the assimilation process moves 
forward, the observational information is weighted more to correct the model state based on 
the model and observation error covariances, leading to a stable correction of the SIT.
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Fig. 4. Arctic sea-ice thickness (SIT) averaged over September 1−15, 2016, from CryoSat-
2 (CS2), Combined Model and Satellite Thickness (CMST) and Analysis (ANA), shown in 
(a), (b) and (c), respectively. Panel (d) shows the difference between │ANA minus CS2│
and │CMST minus CS2│, which indicates the improvements obtained by assimilating CS2 
SIT. Panel (e) presents the development of summer sea-ice volume (SIV) over time. The 
vertical bar in (e) for CryoSat-2 represents uncertainty, and the horizontal bar is the time 
span for biweekly CryoSat-2 data. Root-mean-square errors (RMSEs) for the CMST and 
ANA against the observations are shown in purple and green, respectively.

Because the sea-ice model parameterizations are imperfect and satellite measurements of 
ice thickness have significant uncertainties in coastal areas with thick, multiyear sea ice, the 
CMST analysis is most uncertain around the northern coast of the Canadian Arctic 
Archipelago and Greenland (Mu, Losch, et al., 2018). Comparisons between ANA, CMST, 
CryoSat-2, and airborne sea ice surveys are conducted to determine differences in certain 
places where strong sea ice deformation occurs. As shown in Fig. 5, CMST appears to 
estimate excessively thick ice in the survey regions, whereas CryoSat-2 measures thinner 
sea ice than do the airborne surveys, as shown in Landy et al. (2022). The median values of 
the airborne surveys, CMST and CryoSat-2 are 1.58 m, 2.33 m and 0.9 m, respectively. 
With a median of 1.86 m, which is closest to that of the airborne surveys, the ANA has the 
best agreement among CryoSat-2, CMST, and ANA. This result is also true for the 
dominating probability density estimates for the observed and simulated SIT. The best 
agreement between the airborne surveys and ANA is also verified by their lower and upper 
quartiles. Benefiting from the summer SIT assimilation and model dynamics, which implies 
that the satellite thickness measurements that are incompatible with the dynamics of the sea 
ice model are discarded in the data assimilation, the ANA reduces the overestimation of ice 
thickness obtained by the CMST, particularly in the Arctic Ocean north of Greenland, while 
preventing the underestimation evident in the CryoSat-2 observations.

D
ow

nloaded from
 https://spj.science.org at U

ni B
rem

en - Staats und U
niversitaetsbibliothek on O

ctober 12, 2023



OLAR                                                                        Manuscript Template                                                                     Page 10 of 
22

Fig. 5. Comparison between observed sea-ice thickness (SIT) from the airborne surveys 
(IceBird) and CryoSat-2 and the simulated SIT from the Combined Model and Satellite 
Thickness (CMST) and Analysis (ANA). The raincloud plots show the distributions of 
observed and simulated SIT and their key summary statistics (i.e., lower and upper quartiles, 
medians, and outliers). The medians for the IceBird observations, CMST, ANA and 
CryoSat-2 are represented by gray, purple, green and blue dashed lines, respectively. 
Translucent dots represent the observed and simulated SITs.

With sea-ice observations from the BGEP moorings, the performances of CryoSat-2, CMST 
and ANA are assessed in the Beaufort Sea (Fig. 6, Table 1 and Table A1). The three datasets 
replicate the SIT developments that were measured in situ (Figs. 6a-6c). Compared to the 
BGEP moorings, both the CMST and ANA show comparatively small RMSE and mean 
bias values. For the BGEP measurements, the RMSEs for ANA are up to 0.05 m smaller 
than those for CMST, while the mean bias is generally below 0.10 m and differs by up to 
0.06 m, indicating that the further assimilation of CryoSat-2 improves not only the estimate 
of Arctic SIV but also the local SIT. Notably, the growth in SIT at the BGEP_B location 
during mid- to late September (Fig. 6b) is only well captured by ANA, which integrates 
model dynamics with satellite SIT.

Compared to the ADCPs (i.e., Vilk1-14 and Vilk3-14) deployed in the Laptev Sea, CryoSat-
2, CMST and ANA have relatively larger deviations (Figs. 6d-6e). The RMSEs for ANA 
versus Vilk1-14 and Vilk3-14 are 0.61 m and 0.78 m, respectively, while the mean biases 
are −0.39 m and −0.43 m, respectively. Although the SIT as measured by ADCPs is 
underestimated by our model outputs, the mean bias for ANA is within the mean uncertainty 
(±0.96 m) of the ADCPs. Furthermore, the CryoSat-2 data show an even larger 
underestimation (Table A1). However, in contrast to the BGEP time series, the evolution of 
the SIT at the Vilk moorings is complex during the summer of 2016. The ice cover thickens 
between the start and end of the summer as highly deformed ice transited through the 
mooring locations (Belter et al., 2020). This demonstrates that ANA still functions better 
than CryoSat-2 data in the Laptev Sea.
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Table 1. Main statistics [m] used to verify the sea-ice thickness of the Combined Model and 
Satellite Thickness (CMST) and Analysis (ANA) against in situ measurements (i.e., 
BGEP_A, BGEP_B, BGEP_D, Vilk1-14 and Vilk3-14) in summer 2016.

RMSE           Mean bias
In situ 

observation CMST ANA CMST ANA

BGEP_A 0.35 0.35 0.08 0.07
BGEP_B 0.24 0.23 0.01 –0.05
BGEP_D 0.40 0.35 0.09 0.03
Vilk1-14 0.61 0.61 –0.40 –0.39
Vilk3-14 0.76 0.78 –0.45 –0.43

Fig. 6. Comparison of summer sea-ice thickness (SIT) from the Beaufort Gyre Exploration 
Program (BGEP) moorings, CryoSat-2, Combined Model and Satellite Thickness (CMST) 
and Analysis (ANA), during summer 2016. Panels (a, b and c) show the SIT developments 
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at BGEP_A, BGEP_B and BGEP_D, respectively. Panels (d) and (e) show the SIT 
developments at the acoustic Doppler current profiler (ADCP) sensor deployments (Vilk1-
14 and Vilk3-14) in the Laptev Sea. Shaded areas indicate one standard deviation of 
uncertainty of the in situ observations.

4. Discussion
While the new CryoSat-2 summer SIT data represent a considerable improvement in 
satellite monitoring of Arctic sea ice, the SIT uncertainties are relatively larger in summer 
than in winter (Landy et al., 2022). These SIT uncertainties include uncertainties in the radar 
freeboard estimates introduced by the interaction of CryoSat-2 radar waves with snow 
overlying the sea ice (Nab et al., 2023). This is because the ability of radar waves to 
penetrate through snow to the ice surface varies depending on the salinity and roughness of 
the snow as well as changing snow properties in response to air temperatures and wind speed 
(Nab et al., 2023; Nandan et al., 2023). More importantly, for summer datasets, the 
interaction between melt ponds on the snow surface and CryoSat-2 radar waves is very 
poorly understood (Dawson et al., 2022).

To better estimate the Arctic summer SIT, we conduct a data assimilation experiment 
assimilating the recent CryoSat-2 summer SIT with an IAU approach. Even though our SIT 
estimates, which combine model dynamics and summer satellite SIT, are better than the 
CMST estimates, there are still uncertainties in the Laptev Sea. Because the Laptev Sea is 
a crucial sea area affecting navigation safety (e.g., Min et al., 2022; Min et al., 2023), model 
simulations need to be further optimized in years when sea ice conditions experience 
dramatic changes. Given that the snow depth uncertainties contribute a significant portion 
of the total radar-derived thickness uncertainty (Nab et al., 2023), the assimilation of snow 
depth has the potential to enhance sea-ice estimates (see, e.g., Kaminski et al. 2018). 
However, in Fritzner et al. (2019), assimilating snow depth led to a less accurate long-term 
estimate of SIE (Fritzner et al., 2019). Thus, making use of snow depth data requires further 
investigation (see Text S1 and Fig. S1 for discussion). Furthermore, the assimilation of sea 
ice drift data improves the thickness distribution (e.g., Rollenhagen et al., 2009), and 
assimilating sea surface temperature also improves simulations of sea ice edge and marginal 
SIT (e.g., Liang et al., 2019). Therefore, the multivariate assimilation of ice concentration, 
thickness, drift, snow depth, and sea surface temperature is expected to provide a more 
reliable estimate of Arctic sea ice.

Furthermore, accurate initialization of SIT has a significant impact on enhancing the model 
ability to forecast Arctic sea ice on seasonal time scales (e.g., Blanchard-Wrigglesworth et 
al., 2023; Day et al., 2014; Xiu et al., 2022) and is essential for the monthly timescale 
prediction of high-latitude atmospheric surface variables, such as the 2 m temperature (Day 
et al., 2014). Previous studies have shown the importance of incorporating SIT data from 
satellite observations and reanalysis into dynamic models for improving sea ice initial 
conditions (e.g., Allard et al., 2018; Dirkson et al., 2017; Fiedler et al., 2022; Mignac et al., 
2022; Shu et al., 2021). For example, even though the ice thickness field was adjusted with 
SIT information from CryoSat-2 observations only once during the winter months, 
significant improvements in replicating SIT over multiyear ice have been found (Allard et 
al., 2018). Moreover, by assimilating satellite SIC and Pan-Arctic Ice-Ocean Modeling and 
Assimilation System (PIOMAS) SIT data, Shu et al. (2020) found that the forecast skill of 
Arctic summer sea ice was significantly improved and that the predicted integrated ice edge 
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error was reduced by approximately one order of magnitude; Collow et al. (2015) also 
revealed a significant improvement in predicting the extent of September Arctic sea ice, as 
well as an increase in interannual predictive skill. Compared with previous research, the 
CryoSat-2 summer SIT observations are incorporated into a coupled ice-ocean model for 
the first time, leading to significantly improved sea-ice estimates and initial conditions. 
Therefore, with the enhanced sea-ice initial states, our data assimilation system has the 
potential to improve sea-ice forecasts, particularly in summer, as evidenced by Yang et al. 
(2019).

5. Conclusion

The IAU method that is newly implemented in our system guarantees a gradual 
development of the sea-ice fields over time while allowing the assimilation of infrequent 
summer SIT data, which are only provided on a two-week basis, in conjunction with daily 
SIC data. Model dynamics play an important role in the assimilation, and the ANA thus has 
the potential to reduce the underestimation of SIT in satellite retrievals, especially in the 
Fram Strait and Arctic Ocean to northern Greenland (Landy et al., 2022), where the ice 
thermodynamically thickens and experiences deformation over many winter seasons 
(Kwok, 2015; Tschudi et al., 2016). Likewise, compared with airborne electromagnetic 
measurements of summer SIT, our ANA basically solves the overestimation of SIT 
estimated by CMST in those areas and thus provides a more reliable estimate of summer 
SIT. However, an increasing SIT toward the coast is also a common feature of sea ice 
dynamics. It is, therefore, difficult to conclude that the ANA is better than CMST for regions 
near the coast. Moreover, in comparison to the CMST reanalysis, which does not assimilate 
these summer SIT observations, the evolution of the SIV estimates agrees better with that 
derived from CryoSat-2.

These findings demonstrate the benefits of assimilating CryoSat-2 summer SIT for 
estimating Arctic sea ice and hence improving the initial states for sea-ice forecasts, which 
is highly relevant for marine navigation. Furthermore, our IAU assimilation scheme can be 
well applied to summer sea ice assimilation, which is important for developing a sea-ice 
reanalysis that assimilates the year-round satellite ice thickness and concentration. A 
continuous long-term ice thickness record with a finer temporal-spatial resolution that 
assimilates both the year-round SIC and SIT will be reconstructed in the future.
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Appendix A
In this Appendix, Fig. A1 shows the sea ice volume (SIV) development in summer 2016. 
We describe how we calculated the statistics that are used to assess sea ice estimates and 
satellite observations. The comparison of the Arctic sea-ice extents (SIEs) from the Analysis 
(ANA), CMST and reference sea-ice concentration observations are presented in Fig. A2. 
Additionally, the main statistics used to verify the sea-ice thickness of CryoSat-2 data 
against in situ measurements are shown in Table A1.

A1 Sea-ice volume development

Fig. A1. Sea ice volume (SIV) development in summer 2016. SIV as determined by the 
Combined Model and Satellite Thickness (CMST) reanalysis is represented by the purple 
line. The green line (DA-biweekly) represents the evolution of the SIV based on sea ice 
estimates that directly assimilate daily sea ice concentration and biweekly CryoSat-2 sea ice 
thickness. The vertical bar for CryoSat-2 is for uncertainty, and the horizontal bar is the 
time span for biweekly CryoSat-2 data.
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A2 Statistics used to verify the sea ice estimates and CryoSat-2 observations
To verify the sea-ice estimates conducted by our data assimilation system and CryoSat-2 
observations, the root-mean-square error (RMSE), mean bias (MB) and correlation 
coefficient (CC) are calculated as follows:

RMSE =
∑(M ― OBS)2

n ,                        (1)

MB =
∑(M - OBS)

n ,                                 (2)

CC =
cov(M, OBS)

σMσOBS
,                                (3)

where M represents the model outputs (both CMST and Analysis) and CryoSat-2 SIT, OBS 
represents the SIT observations, and n is used to calculate the number of observations. The 
covariance operator and standard deviation are represented by cov and σ, respectively.

A3 Sea-ice extent from sea-ice estimates and observations
The correlation coefficients for the SIE between the ANA/CMST and observations are 
nearly equal. Statistically, the correlation coefficient for the SIE between ANA and NSIDC 
data is ~1. The RMSE for the SIE calculated from the ANA and observations is 
approximately 0.72×106 km2, while it is somewhat larger when calculated using the CMST 
and observations, at 0.74×106 km2, demonstrating that the ANA slightly improves the SIE 
estimation.

Fig. A2. The developments of summer sea-ice extent (SIE) calculated from NSIDC sea-
ice observations, Combined Model and Satellite Thickness (CMST) and Analysis (ANA). 
The root-mean-square errors (RMSEs) for the CMST against the observations and the 
ANA against the observations are shown in purple and green, respectively.
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A4 Evaluation of CryoSat-2 summer observations
Table A1. Main statistics [m] used to verify the sea-ice thickness of CryoSat-2 data against 
in situ measurements (i.e., BGEP_A, BGEP_B, BGEP_D, Vilk1-14 and Vilk3-14) in 
summer 2016. Notably, the in situ observations are averaged to the biweekly mean, whose 
duration corresponds to the biweekly data from CryoSat-2.

In situ observation RMSE Mean bias

BGEP_A 0.26 –0.06
BGEP_B 0.25 –0.06
BGEP_D 0.22 –0.13
Vilk1-14 0.71 –0.57
Vilk3-14 0.76 –0.61
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