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Abstract

It is a fundamental challenge to understand how the function of a network is related
to its structural organization. Adaptive dynamical networks represent a broad class
of systems that can change their connectivity over time depending on their dynami-
cal state. The most important feature of such systems is that their function depends
on their structure and vice versa. While the properties of static networks have been
extensively investigated in the past, the study of adaptive networks is much more chal-
lenging. Moreover, adaptive dynamical networks are of tremendous importance for
various application fields, in particular, for the models for neuronal synaptic plasticity,
adaptive networks in chemical, epidemic, biological, transport, and social systems, to
name a few. In this review, we provide a detailed description of adaptive dynamical
networks, show their applications in various areas of research, highlight their dynam-
ical features and describe the arising dynamical phenomena, and give an overview of
the available mathematical methods developed for understanding adaptive dynamical
networks.
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1. Introduction

In nature and technology, complex networks have been already a long-standing
framework with a broad range of applications from physics, chemistry, biology, neu-
roscience, socio-economic and others [1]. Besides the paradigm of static networks,
the analysis of interconnected dynamical systems on temporally evolving connectiv-
ity structures has gained more and more importance [2]. In this context, two basic
modeling approaches can be distinguished: i) The first approach makes use of a pre-
scribed temporal evolution of the network structure [3, 4], called temporal dynamical
networks. ii) In the second approach, the temporal evolution of the network depends
on the dynamical state of the network and coevolves with the network nodes [5, 6],
called adaptive dynamical networks. In this review, we present the state-of-the-art
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for adaptive dynamical networks and provide perspectives for future research using
this modeling framework.

Adaptive dynamical networks have been used to describe the dynamics of a variety
of complex systems. The corresponding models are commonly used for understanding
dynamical phenomena induced by synaptic plasticity [7, 8], which is a mechanisms
that causes adaptation by leading to persistent changes in neural connections. An
example is spike timing-dependent plasticity (STDP), which describes the change of
the synaptic weight as a function of the difference of spiking times between pre- and
post-synaptic neurons [7, 9, 10, 11, 12, 8, 13, 14]. As a result of STDP, the network
structure adaptively reorganizes in response to neuronal dynamics.

Besides direct application to neuroscience, spike timing-dependent plasticity rules
have been discussed for neurocomputing [15] and have recently also been implemented
into memristive devices [16, 17]. Memristors and memristor arrays play an important
role in the development of neuromorphic computing [18, 19, 20, 21, 22], which is be-
lieved to be an important aspect in the future of artificial intelligence. An exhaustive
survey on approaches to neuromorphic computing is presented in [23].

Overall, adaptive networks have been reported for chemical [24, 25, 26, 27], epi-
demic [28], biological [29], physiological [30, 31], transport [32, 33] and vascular sys-
tems [34], social systems [5, 35, 36, 37], genomic organization [38], or for technological
systems as seen in artificial intelligence [39], control schemes [40] and power grids [41].
A paradigmatic class of models of adaptively coupled phase oscillators has recently
attracted much attention [42, 43, 44, 45, 46, 47, 48, 49, 50], and it appears to be
useful for predicting and describing phenomena in more realistic and detailed mod-
els [51, 14, 52, 53].

In this review, we cover many of these fields of applications and show how models
of adaptively coupled dynamical systems are used to understand the dynamics in
real-world systems. We further provide a comprehensive introduction to adaptive dy-
namical networks and classify these models with respect to certain common features.
Additionally, we show which dynamical phenomena arise in systems with an adaptive
network structure and introduce mathematical techniques to study these phenomena.

The article consists of four main parts concerning: (i) the definition and classifi-
cation, (ii) applications of adaptive dynamical networks, (iii) effects and dynamical
phenomena in systems with adaptive network structure, and (iv) mathematical meth-
ods to study these systems. In sections 2.3 and 3 we provide a detailed introduction
of adaptive dynamical networks and suggest several ways to classify them. These
two sections serve as a reference point for the subsequent discussions. The follow-
ing sections concern the application of adaptive dynamical networks to model neural
(section 4) and physiological systems (section 5), to machine learning (section 6), to
build control mechanisms (section 7), to investigate power grid systems (section 8),
and to study the behavior in social (section 9), epidemiological (section 10) as well
as transport networks (section 11). In section 13 we consider networks with time-
delayed interactions and adaptive delays. Further in section 14, we discuss dynamical
phenomena arising in the various adaptive dynamical network models outlined in the
applications sections. In the last section 15, we summarize the currently available
mathematical methods that have been introduced to study the effects of an adaptive
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network structure.

2. Complex dynamical networks

This section is devoted to the introduction of basic graph theoretical concepts for
networks and the description of special classes of networks that will be considered in
this review. Here, we follow standard textbooks and literature on graph theory and
complex networks [54, 55, 56].

2.1. A brief graph-theoretical primer

Networks are formally described by graphs [54, 55] which we will introduce in the
following. However, we use the notion ’network’ for consistency. A directed network
N is defined as a triple N = (V,E,Ψ) where V is the set of all nodes, E is the set
of all links, and Ψ : E → {(v, w) ∈ V × V } assigns each link to an out-going v and
in-going node w. The total number of nodes and links of a network are denoted by
N = |V | and M = |E|, respectively. In case of an undirected network, we may restrict
the link assignment to Ψ : E → {X ⊆ V : |X| = 2}. In particular, Ψ maps the link
e ∈ E to a pair of elements X = {v, w} meaning that Ψ(e) refers to an undirected
link between node v and w. Note further if v = w, the link e describes self-coupling.
If all links can be uniquely identified with their images under the map Ψ, the network
is called a simple network.

Simple networks are the most commonly studied structures in the theory of com-
plex dynamical networks. Therefore, we restrict our attention to this type of networks.
For simple networks with V = {v1, . . . , vN}, every link e can be uniquely assigned
to the image Ψ(e) = (vj, vi). Hence, we introduce the shorthand notation eij mean-
ing that the link e connects two nodes going-out at node vj and going-in at node
vi (i, j ∈ {1, . . . , N}). Due to the latter fact, the map Ψ can be dropped in the
definition of a network and we may define a simple network as N = (V,E) with N
nodes V = {v1, . . . , vN} and M links E = {eij : (i, j) ∈ {1, . . . , N}2}. For the sake of
simplicity, we refer to simple networks as networks unless stated differently.

We further introduce the notion of a subnetwork M of a network N . A network
M = (V ′, E ′) is a subnetwork of a network N if V ′ ⊆ V and E ′ ⊆ E. In addition, a
subnetwork is denoted an induced subnetwork if E ′ = {eij ∈ E : vi, vj ∈ V ′}.

Another way of describing the structure of a simple network is provided by the
N ×N adjacency matrix A with the entries

aij =

{
1, if eij ∈ E,
0, otherwise.

(1)

The adjacency matrix provides an algebraic view on networks by representing their
structure in form of a matrix. We will use this perspective frequently throughout this
review. Moreover, the adjacency matrix A allows us to define the following network
quantities. The in-degree d(i) of node vi is given by the ith row sum of A, i.e.,

d(i) =
N∑
j=1

aij. (2)
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Further, we define the Laplacian matrix L of a network as

L =


d(1) 0 · · · 0

0
. . . . . .

...
...

. . . . . . 0
0 · · · 0 d(N)

− A. (3)

This matrix is a discrete version of the well-known Laplacian operator known from the
theory of partial differential equations. In particular, for certain dynamical networks
such as nonlocally coupled ring networks, an explicit relation between the discrete
and the continuum version can be derived [57, 58, 59].

Lastly, for each network we can define a link weighting Ξ : E → R which assigns
a real number, the link weight, to each link of the network. According to this map Ξ,
the weight matrix κ with entries is given by

κij =

{
Ξ(eij), if eij ∈ E,
0, otherwise.

(4)

Consequently, a weighted (simple) networkW is defined by the triple (V,E,K) where
K = Ξ(E) for a given weighting map Ξ. With regards to complex dynamical networks,
the weight matrix is often called coupling matrix and its entries κij coupling weights.
Note that each network can be also regarded as weighted dynamical network by
considering Ξ(eij) = 1 for all eij ∈ E. Building on the definition of (weighted)
networks, we establish the concepts of dynamical and adaptive dynamical networks
in the next sections.

2.2. Dynamical networks

A dynamical system (X , T ,Φ) consists of a state space X , a set of times T and
a flow Φ : T × X → X . For the state space, we distinguish between discrete and
continuous spaces. In the latter case, we usually consider X = Rd or X = Cd with
dimension d ∈ N. For the set of times, we consider either a continuous time T = R
or a discrete set of times T = Z. Frequently, the temporal evolution of a state space
variable x for T = R will be given by the ordinary differential equation (ODE)

d

dt
x = F (x, t), x(0) = x0, (5)

which directly generates a flow Φ(t,x0) = x(t) if the vector field F is sufficiently
regular and autonomous F (x, t) = F (x). The temporal derivative can be abbreviated
by ẋ = dx/dt. We remark that upon appending ṫ = 1 one can also generate a flow
for the non-autonomous case at the cost of adding one additional dimension. In case
of discrete time, we write the temporal evolution of the state space as the iterated
map

xn+1 = F (xn, n). (6)
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In the following, we write all equations in continuous time but often one can translate
the setting directly to discrete time as well.

In order to define a dynamical network, we first assign a state space Xi to each
node vi ∈ V of a given network N . The network state vector is then given by
x = (x1, . . . ,xN) ∈ X = X1 × · · · × XN . A dynamical network is then generally
defined by the differential equation

ẋ = f(x, t;E) (7)

with the vector field f : X1×· · ·×XN ×T → X1×· · ·×XN , where the set of edges E
(or K in case of weighted networks) of a given network enters as a parameter (denoted
by the separation with a semicolon) of the system. If the vector field is autonomous,
we again get a dynamical system, which is the case we will be mostly interested in
here.

In practice, a more structured form of a dynamical network compared to the
general form given above is often used. This form reads

ẋi = fi(xi, t) +
∑

{eij :j∈1,...,N,eij∈E}

gij(xi,xj, t), (8)

where fi : Xi × T → Xi and gij : Xi × Xj × T → Xi. Note that each state space
Xi together with fi defines a single dynamical system for each node if fi and gij are
independent of time. This system is referred to as local (dynamical) system or as the
local dynamics of node i. Hence, we refer to fi as the local vector field. The coupling
functions gij describe the directed interactions of two nodes for each link eij ∈ E. By
the explicit use of the adjacency matrix we may write (8) as

ẋi = fi(xi, t) +
N∑
j=1

aijgij(xi,xj, t). (9)

In most of the literature, however, simpler models are studied. It is commonly as-
sumed that the same state space Y is assigned to each node and that the coupling
function g : Y ×Y × T → Y is the same for all links. Hence, the ordinary differential
equations (ODEs) (9) simplify to

ẋi = fi(xi, t) +
N∑
j=1

aijg(xi,xj, t) (10)

with xi ∈ Y .
It is important to mention that the structure of a network is used here in order to

model the interaction of only two nodes/vertices, i.e., using pairwise interactions. One
could think of using the network structures also to describe higher order interactions.
However, in these cases usually other structures such as simplicial complexes and
hyper-networks are introduced [60, 61, 62, 63].

7



Another frequently used generalization of dynamical networks are weighted dy-
namical networks. In these cases, we consider a weighted networkW = (V,E,K) and
define the dynamics via

ẋi = fi(xi) +
N∑
j=1

κijg(xi,xj, t) (11)

with coupling weights κij ∈ R. Note that by definition κij = 0 whenever aij = 0 and
hence aij could be dropped in (11).

Further generalization are dynamical networks with delayed interactions. In the
weighted case, they are defined by W = (V,E,K,T), where the matrix T = (τij),
τij ∈ R ≥ 0 determines time-delays for the interactions along the links eij. The
resulting set of delay differential equations is

ẋi(t) = fi(xi(t)) +
N∑
j=1

κijg(xi(t),xj(t− τij), t), (12)

where the time-dependence is explicitly shown for the state variables to distinguish
between delayed and non-delayed terms. In contrast to the non-delayed networks,
the phase space of system (12) is not just a direct product of the phase spaces of
individual dynamical systems. Since solutions of system (12) depend on their past
history, the resulting system is infinite-dimensional and the natural phase space is
the space of functions that includes the history [64, 65].

2.3. Adaptive dynamical networks

Here we introduce dynamical networks where the network structure is part of the
temporal evolution and not static, see Fig.1. Such systems go beyond the scope of
dynamical network models with a static interaction structure introduced in the pre-
vious section. Based on the representation of the network structure via the adjacency
matrix or the coupling matrix, we extend systems (7).

Starting from (7), for a given set of edges E (weighted edges K) we extend the
state space by the set L = {0, 1}M (or L = RM) where M = |E| and l ∈ L is the
network state vector. A general adaptive dynamical network can then be written as

ẋ = f(x1, . . . ,xN , l1, . . . , lM , t), (13)

l̇ = h(x1, . . . ,xN , l1, . . . , lM , t). (14)

with the nodal vector field f : X × L × T → X and the adaptation vector field
h : X ×L×T → L. Note that the dynamics of the network structure formally given
by (14) allows discontinuous changes in l by using generalised functions for h.

As in the case of dynamical networks, simpler models are often used in practice.
To describe these models, let aij ∈ {0, 1} be the entries of the adjacency matrix
and YN × {0, 1}N2

be the extension of the state space of (10). We call a system
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Structure Function

Adaptive Dynamical Networks

Figure 1: Adaptive dynamical networks.

an adaptive (or coevolutionary) dynamical network if the corresponding vector field
takes the form

ẋi = fi(xi, t) +
N∑
j=1

aijg(xi,xj, t), (15)

aij(t) = H t
ij[x(·), A(·), t], (16)

where with H t
ij we denote a general adaptation evolution operator, which depends

on the states and the history of the nodes x, as well as on the past states of the
adjacency matrix A = (aij). The adjacency matrix becomes now the time-dependent
variable A(t). The evolution of H t

ij is usually discontinuous as it is associated with
the appearance and disappearance of links, i.e., jumps of the values of aij between 0
and 1.

Analogously, we may define an adaptive (or coevolutionary) dynamical weighted
network on the state space YN × RN2

ẋi = fi(xi, t) +
N∑
j=1

κijg(xi,xj, t), (17)

κ̇ij = h(xi,xj, t), (18)

with the adaptation function h : Y × Y × T → RN×N . We note that in both sys-
tems (15)-(16) and (17)–(18), the adaptation depends explicitly on the state vectors
of node i and j. This feature of the adaptation function lies at the heart of adaptive
networks as it allows the structure to rearrange according to the states of the nodes
in the network. Therefore, we explicitly require this dependency of the adaptation
function for our definition of adaptive dynamical networks. Analogously to (17)–(18),
dynamical networks with adaptive delays can be defined, for example, as follows

ẋi(t) = fi(xi(t), t) +
N∑
j=1

κijg(xi(t),xj(t− τij(t)), t), (19)

τ̇ij = h(xi(t),xj(t), t). (20)
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However, delay adaptation is much less studied until now, and we will only discuss
this case in Sec. 13.

System (17)–(18) includes the adaptation rule where the weight of the link κij
depends only on the states of the in- and out-going nodes xj and xi. Other higher-
order adaptation rules are also possible, as we will show in this review. For example,
the adaptation rule can depend on average ensemble quantities.

For dynamical systems such as (15)-(16) and (17)–(18) the notions coevolution-
ary and adaptive have been used interchangeably [66]. In this review, we use the
terminology of adaptive (weighted) dynamical networks. Adaptive networks of the
form (15)-(16) and (17)–(18) have been studied extensively over the last years. Vari-
ous forms of adaptation functions have been introduced in order to describe dynamical
systems with a plethora of applications. In the next sections, we provide both, a sys-
tematic overview over frequently used adaptations rules, and an overview on the fields
of applications for adaptive dynamical networks.

3. Classification of adaptive networks

3.1. Temporally evolving network structures that are not adaptive

In the previous section, we have described adaptive dynamical networks as a
generalization of dynamical networks with temporally evolving network structure.
In particular, we assumed that the change of the network structure depends on the
states of the dynamical nodes. This feature of adaptive networks is different to
other dynamical systems with temporally evolving network structures. Moreover,
sometimes the notion of ”adaptivity” is used in another context as in this review. In
order to sort out the main unique modelling features of adaptive networks, we briefly
discuss the differences to models of network evolution and adaptation.

A famous example of an evolved network structure are Barabasi-Albert networks.
They are the result of a network growth process that follows the rule of preferential
attachment. By making the linking probability proportional to the node degree, pref-
erential attachment guarantees that new nodes connect only to sites that are already
well connected [67]. The interplay of network growth and preferential attachment has
been successfully used to provide a model explaining the scale-free structure of many
real-world networks [68]. In Barabasi-Albert networks, the evolution of the network
structure depends on the node degree. Similar evolution models of the network struc-
ture have also been used to investigate social and economic systems. In this context,
models have been introduced where the network structure evolves based on the node
feature ”utility”. In particular, starting from a given random network, links may be
inserted or deleted depending on the utility value of the corresponding nodes [69, 70].
All these models describe an evolution process of a network structure. However, the
network nodes there are not dynamical, but only their topological properties deter-
mine the evolution of the network structure. Therefore, these classes of models are
not captured by our definition of adaptive dynamical networks.

Another type of dynamical systems that includes a temporally changing network
structure are temporal dynamical networks [3, 71, 72, 73, 74]. In contrast to adap-
tive dynamical networks, the networks structure evolves in time independently of the
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dynamics on the network, i.e., the state of the dynamical nodes. As pointed out in
Section 2.3, however, the interdependence of network structure and node dynamics is
a crucial feature of adaptive dynamical networks, that is encoded in the adaptation
function. Temporal dynamical networks have served as models for many applica-
tions [4]. In these models, the temporal evolution of the topological structures are
prescribed, e.g. by empirical data, and thus it sometimes does not explain the mech-
anism causing topological changes. Therefore, the interplay of the network structure
with the node dynamics is still an open question. In the review article by Holme and
Saramäki on temporal networks [3], they point out: ”This question comes close to the
goal of adaptive network studies [162] that model the feedback from network structure
(and how it affects dynamics on the network) to the success of the agents forming the
network (and how they seek to change their position in it). If one could include when
contacts happen along an edge into adaptive network models and thereby explain
some observed temporal–topological correlations, this would be a breakthrough (no
matter what the objective system is).”

3.2. Non-network-based adaptive systems

As we describe in the next sections, adaptive dynamical networks are commonly
used models in computational neuroscience. In particular, with relation to synap-
tic plasticity, adaptive networks have been used to get insights into the interaction
of neural cells with their connectivity structure. An important mechanism leading
to changes in the synaptic coupling strength is called synaptic short-term plasticity.
Building on the work by Tsodyks et.al. [75], short-term plasticity has become impor-
tant for modelling features of the working memory [76] and even recently implemented
in models for describing coarse-grained microscopic models of coupled neurons [77, 78].
Even though the models for short-term plasticity describe a change of the synaptic
strength κij depending on the dynamics of the neurons i and j, they are not adap-
tive dynamical networks in the sense considered here. In particular, the additional
dynamical variables u, x that describe the short-term plasticity [75] (denoting the
fraction of resources that remain available after neurotransmitter depletion) can be
included in the neuron model xi.

It is also worth to mention that the notion ”adaptive” is used in particular models
of single neurons as well [79, 80, 81]. More precisely, in this context adaptivity denotes
a feedback to the membrane potential through internal processes in the neuronal cell.

In the following section, we discuss how adaptive dynamical networks of the
form (15)-(16) and (17)–(18) can be classified with respect to their adaptation func-
tions.

3.3. Event-based and continuous adaptation

Adaptive dynamical networks, as treated here, can be distinguished by their adap-
tation rules aij(t) = H t

ij[x(·), A(·), t]. The adaptation functions determine how the
dynamics of the nodes xi(t) shape the network structure A(t) = (aij(t)) (or κij(t)).
One can distinguish between event-based and continuous (in time) forms of adapta-
tion.
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3.3.1. Event-based adaptation

For the event-based adaptation, the network structure changes at certain discrete
points in time. The triggers for the changes can be of various form and depend on
different components of the dynamical system. A convenient way of writing this is
by using event functions e(x, A, t). The adaptation function is split up into the form

∆A(t)|e(x,A,t)=0 = [A(t+)− A(t−)]|e(x,A,t)=0 = δH(x, A, t), (21)

where ∆A(t) is an instantaneous discontinuous change of the coupling structure,
A(t+) = limε↓0A(t + ε) and A(t−) = limε↓0A(t − ε). The amount of this change
δH(x, A, t) can depend on the state of the dynamical network. Such a change can in-
clude, e.g., adding or removing certain links. For all other time moment, the coupling
structure is assumed to be constant. Thus, at any point in time, the event function
evaluates the state of the adaptive dynamical network and activates the adaptation
if the state meets the condition e(x, A, t) = 0. A typical example of such a condition
is given by thresholding

e(x, A, t) = ẽ(x) = ((xi)1 − xth)((xj)1 − xth), (22)

where one of the components (here the first component) of the state vectors xi or xj
hits a threshold value xth. Note that also the state dynamics can be subjected to the
same event function. When the event function depends on the state vectors of the
network, we call them spatial event functions. This type is often used in neuroscience
in the context of spike-timing-dependent plasticity, see Sec. 4.1.

Another type of event function can be found in models of epidemics or models
of molecular species, see Sec. 10. Here, the event depends on the current time of
the dynamical system and we call them temporal event functions. Temporal event
functions may for instance have the following form

e(x, A, t) = ẽ(t) =
∞∏
k=1

(t− kT ), (23)

where e(x, A, t) activates the adaptation periodically with the period T .
All the above mentioned forms of event-based adaption can be found in a variety

of models in the subsequent sections.

3.3.2. Continuous adaptation

In contrast to event-based adaptation rules, the adaptation function in continu-
ous adaptive dynamical networks h(xi,xj, t) in (18) (or H t

ij[x(·), A(·), t] in (16)) is
continuous in time t ∈ T . Note that the notion also applies to discrete time systems
(16) with T = Z.

As well as the event-based adaptation rules, continuous adaptive dynamical net-
works have been studied extensively in the literature. Examples are provided in the
subsequent sections of this article. In the following section, we introduce a widely
studied model that belongs to the class of continuous adaptive dynamical networks.
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3.4. Adaptively coupled phase oscillator models

For the theory of synchronization phenomena, models of phase oscillators such as
the Kuramoto model [82] are of great importance [82, 83, 84, 85, 86]. A particularly
important feature of coupled nonlinear oscillator systems is their reducibility to phase
oscillator networks in the case of weak interactions [87, 88, 89, 90]. The reduction
of complex dynamical systems to networks of coupled phase oscillators is well-known
and there exist exhaustive reviews highlighting the importance of phase oscillator
models [89, 91, 90]. Recent studies, in addition, aim for making phase oscillators
models even more powerful by lifting conditions under which reductions to phase
oscillator models can be achieved [92, 93, 94, 95]. Therefore, it is not surprising that
also adaptive networks have been studied over the years based on the phase oscillator
modeling paradigm.

In accordance with (17)–(18), an adaptive dynamical weighted network of N cou-
pled phase oscillators is written as

φ̇i = ωi +
N∑
j=1

aijκijg(φi, φj, t), (24)

κ̇ij = h(κij, φi, φj, t), (25)

where φi ∈ [0, 2π) represents the phase of the ith oscillator (i = 1, . . . , N), ωi is its
natural frequency, and κij is the coupling weight of the connection from node j to i.

As discussed in the previous sections, the form of the coupling vector field g and the
adaptation function h can have various forms. One class of adaptive phase oscillator
models that has recently gained a lot of attention takes the following form [45, 48, 96]

φ̇i = ωi +
N∑
j=1

aijκijg(φi − φj), (26)

κ̇ij = −ε (κij + h(φi − φj)) . (27)

The functions g and h are 2π-periodic functions and ε is the adaptation time constant
which is often considered to be small ε� 1 [48, 96].

A rather simple model for the oscillators coupling dynamics, known as Kuramoto-
Sakaguchi type model [97], describes a dynamical network of N coupled phase oscilla-
tors. Equipped with an adaptation function similar to the phase interaction function,
it reads

φ̇i = ω − 1

N

N∑
j=1

κij sin(φi − φj + α), (28)

κ̇ij = −ε (κij + sin(φi − φj + β)) . (29)

The interaction as well as the adaptation function are each homogeneously chosen,
i.e., the same for each pair of phase oscillators, and given by a sinusoidal coupling
kernel. The parameter α and β can be considered as phase-lags of the interaction [97]
and the adaptation function [98, 45], respectively. Systems similar to (28)–(29) have
been extensively studied [99, 100, 98, 101, 102, 103, 104, 105, 45, 106, 48].
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3.5. Slow and fast adaption limits

As already introduced in the previous section, the dynamics of the nodal states xi
does not necessarily take place on the same time scale with the adaptation dynamics of
the network’s links. In the following sections, we describe the plethora of adaptation
rules found and studied in various fields of research. In many examples, the role
of different time scales is also discussed and empirical evidence for the time scale
splitting is provided.

A simple way to include different time scales for the nodal and the link dynamics is
to explicitly introduce a time scale separation parameter ε in the adaptation function,
i.e., h(xi,xj, κij, t) = εĥ(xi,xj, κij, t). Many works utilize a strict separation of the
time scales for slow (ε → 0) or fast (1/ε → 0) adaptation, e.g. to derive analytic
conditions for the emergence of observed phenomena or mean-field models. The
differences between slow and fast adaptation rates have been analyzed, for example,
in the context of slow and fast learning in [107]. A detailed mathematical description
of multiple time scale techniques will be discussed in sections 14.4 and 15.4; here we
discuss the scale separation formally from the perspective of applications.

Let us for simplicity consider a weighted adaptive dynamical network of the
form (17)–(18) with h(xi,xj, t) = εĥ(xi,xj, t). Then, in the formal slow adapta-
tion limit (ε→ 0), the nodal dynamics (17) is much faster than the dynamics of the
network structure. Hence, on a time scale of O(1), one can attempt to approximate
the network as static and thus (17) can be treated as a dynamical network, where the
network structures enters as a parameter. On the other hand, the network structure
adapts to the nodal dynamics slowly.

In the case of the fast adaptation (1/ε → 0), the situation is inverse. Then, the
network structure is on the fast time scale t determined by the equation

κ̇ij = h(xi,xj, κij, t),

where the nodal states xi enter as parameters. In case of model (29), this would lead
to κij = − sin(φi − φj + β) for the network configuration.

Thus, a separation of the time scales between the nodal and network dynamics
can have favorable analytic consequences. In some realistic systems such a separation
is indeed present and we will discuss these models in the next sections.

4. Adaptive neuronal systems

Neural and neuronal systems have been a major research objects over the last
decades. In this section, we introduce two forms of synaptic plasticity that have
been studied in order to understand the function of the human brain. We note,
however, adaptive dynamical networks have been also developed to understand e.g.
the neuronal activity in Alzheimer’s disease [108, 109] and other forms of adaptive
mechanisms have been introduced to study the voltage dependence of synaptic plas-
ticity [110, 111], activity-dependent rewiring rules [112], short-term synaptic plastic-
ity [75, 77, 78] or to incorporate resource constrains [113, 114, 115].
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post-synaptic fires
after pre-synaptic

post-synaptic fires
before pre-synaptic

Figure 2: A possible STDP adaptation function W (∆tij) given by Eq. (31) and measured experi-
mentally [10].

4.1. Spike-timing-dependent plasticity

In neuronal systems, spike-timing-dependent plasticity (STDP) is an adaptation
mechanism describing changes in coupling weights (synaptic efficacy), which are
caused by the relative differences between firing times of pre- and postsynaptic neu-
rons [7, 9, 10, 110]. If a presynaptic neuron fires at time tj,pre and postsynaptic at time
ti,post, then the change of the coupling weight κij is a function of ∆tij = ti,post− tj,pre.
In experiments, such changes of synaptic efficiency were measured by forcing neurons
to fire repetitively with a fixed inter-spike interval ∆tij [10]. In modeling approaches,
the coupling weights κij are updated in a point process-like manner as

κij(t+) = κij(t−) + εW (∆tij) (30)

at each time-moment t when either neuron i or neuron j fires. At each individual
spike, the update is small, which is reflected by the smallness of ε. This also implies
that the STDP adaptation takes place on a slower timescale than the neuronal spiking
dynamics.

The STDP update function W (∆tij) can be of the following form

W (∆tij) =

{
A1e−∆tij/τ1 , ∆tij ≥ 0
−A2e∆tij/τ2 , ∆tij < 0

, (31)

which is an approximation of experimentally measured potentiation and depression
of glutamatergic synapses induced by correlated spiking of presynaptic and postsy-
naptic neurons [10]; see also [116] and Fig. 2. Here, A1, A2, τ1, and τ2 are real valued
parameters that determine the shape of W . The STDP function can, however, have
a form different from (31). It may depend, for instance, on the dendritic location of
the connections [117, 118, 119, 120, 111]. As a result, the update rule may become
even of the opposite sign. The work [53] considers a symmetric update function in
the form of a ”Mexican hat”.

A typical general form of the adaptive dynamical network with STDP can be

15



written as follows

ẋi(t) = Fi(xi) +
∑
j

κijG(xi,xj), (32)

∆κij(t)|t∈Ui∪Uj
= εW (∆tij), (33)

where ẋi = Fi(xi) determines the dynamics of an uncoupled neuron, G(xi,xj) is an
(often nonlinear) coupling term, ∆κij(t) = κij(t+) − κij(t−) denotes a discontinuous
jump of the coupling weight κij at time moment t where one of the neurons i or j fires;
we denote the set of such time moments as Ui and Uj, respectively. Depending on the
model for the individual neuron, such a spiking event can be determined differently.
For example, it can be a moment where the voltage variable crosses the zero level.
∆tij is the interval between the current spike time t and the previous spike time of
the reciprocal neuron. The models of individual neurons (nodes) in the networks with
STDP can be of different complexity, ranging from phase oscillators [14, 121, 53, 122]
to more realistic conductance-based neurons [51, 122, 53]. When using the update
rule (30), the neuronal models determine the spiking times ti and tj, while the STDP
updates (33) change the coupling weights κij affecting the neuronal dynamics. We
note that the point process-like, discontinuous, update rule (30) introduces additional
challenges in the numerics and, especially, in theoretical analysis of systems with
STDP. One of the possible approaches for the complexity reduction is to approximate
the discontinuous update process by a continuous update [14, 53] using an averaging
technique.

We briefly summarize the main properties of the STDP adaptation:

• The update of the coupling weight occurs on a much longer timescale than the
dynamics of individual nodes.

• The precise timing of individual neurons spiking matters. Also, the order of
spiking plays an important role.

• The adaptation of the coupling weight κij depends directly only on the relative
dynamics of the adjacent nodes i and j.

Motivated by STDP, simplified phase-oscillator models were proposed (see Sec. 3.4),
which possess the above features. It was shown that such models are much simpler
for theoretical and numerical studies, while at the same time they possess a predictive
power for STDP [53, 123, 14, 122].

4.2. Structural plasticity

Contrary to STDP, the structural plasticity mechanism allows connections be-
tween neurons to be deleted and created, and not only alter their weights [124, 125,
126]. It serves a homeostatic purpose to reach and maintain the target firing rate of
the network. The model for structural plasticity contains one-compartment neurons
that carry sets of synaptic (axonal and dendritic) elements, so-called contact points.
Synapses are formed by merging corresponding synaptic elements or are deleted when
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Figure 3: Growth rate curve for synaptic elements zi used in structural plasticity; see Eq. (34). The
curve is schematic and holds qualitatively for ε > ηz and ν > 0.

synaptic elements are lost. In current models [127, 128, 126, 125, 124, 129], the aver-
aged neuronal activity is effectively represented by the neuron’s intracellular calcium
concentration, which drives changes in the number of synaptic elements per neu-
ron. The following experimental observation sets the ground for structural plasticity:
When the average activity of a neuron exceeds some level, the neuron withdraws den-
dritic spines, and retracts neurite branches, thereby reducing connectivity and hence
activity. If the activity becomes lower, the neuron generates synaptic elements, in-
creasing connectivity and activity. Accordingly to structural plasticity, connectivity
in the network is updated on a much slower timescale than the electrical activity of
neurons. The model works at the single neuron level, so that each neuron follows this
rule independently.

Here we sketch the main ideas of a structural plasticity model; more details can
be found in [124, 125, 126]. Important variables are Ai the number of axonal elements
of neuron i, Dex

i and Din
i are excitatory and inhibitory dendritic elements of neuron i.

Axonal elements can be excitatory or inhibitory, for excitatory or inhibitory neurons,
respectively. Ai, D

ex
i , and Din

i are continuous variables for integration, but they are
rounded down to integer values for manipulating with synapse formation.

The dynamics of dendritic and axonal elements zi ∈
{
Ai, D

ex
i , D

in
i

}
are described

by the following system [125]

dzi
dt

= ν

(
2 exp

(
−
(
Xi − ξz
ζz

)2
)
− 1

)
, (34)

where Xi is the averaged activity of neuron i. The parameters ξz = (ηz + XH)/2
and ζz = (ηz − XH)/(2

√
ln 2) are such that the right-hand side of Eq. (34) has a

Gaussian shape and crosses zero at ηz and XH > ηz, see Fig. 3. Such a shape of
the growth curve guarantees the stabilization of the activity level at the target value
XH . The neuronal activity can be measured by the level of calcium concentration
Xi =

[
Ca2+

]
i
, see [125]. The slowness of the structural update is determined by the

maximum rate ν, which is chosen to be ν = 0.0001ms−1 in [125].
The level of calcium concentration (activity level) of neuron i can be determined
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[125] as
dXi

dt
=

{
− Xi

τCa
+ β, V ≥ 30mV,

− Xi

τCa
otherwise,

(35)

where V is the membrane voltage variable.
Algorithmically, the update of the synaptic elements is performed discretely in

a periodic manner (every 100ms in [125]). The synaptic elements are either ran-
domly deleted if the corresponding value of zi given by Eq. (34) decreases, or inserted
otherwise.

Above we described the dynamics of synaptic elements (connection points). For
synapse formation, all vacant synaptic elements from all neurons are simultaneously
randomly assigned to a complementary synaptic element, i.e. excitatory axonal ele-
ments to excitatory dendritic elements and inhibitory axonal elements to inhibitory
dendritic elements. Whether or not the assigned pairs of complementary synaptic
elements actually form synapses depends on the Euclidean distance between the neu-
rons. For this, a distance-dependent kernel is introduced determining the distance-
dependent likelihood for synapse formation between any pair of neurons.

Summarising, the structure of the dynamical adaptive network system correspond-
ing to the structural plasticity algorithm from [125], can be written in the following
form

ẋi = F (xi) +
∑
j

κijG(xi, xj), (36)

żi = ν

(
2 exp

(
−
(
Xi − ξz
ζz

)2
)
− 1

)
, z ∈

{
A,Dex, Din

}
(37)

Ẋi =

{
− Xi

τCa
+ β, Vi = x1

i ≥ 30mV,

− Xi

τCa
, otherwise.

(38)

∆κij|t=kT = P (zi, zj, i, j), T = 100ms. (39)

Here the function P (zi, zj, i, j) denotes the change of the connectivity between the
neurons i and j, which depends on the number of corresponding dendritic and axonal
elements zi, zj of these neurons. As determined in [125], the dependence P is not
deterministic, since connections may appear or disappear randomly, with the prob-
abilities depending not only on zi, zj but also on other geometric properties such as
the distance between the neurons. Such a dependence is expressed by the arguments
i, j of this function. Note that the range of κij values in [125] are discrete and include
0 for the case when there are no connections between a given pair of neurons. In
system (36)-(39), the dynamics of the single node i is described by the collection of
variables (xi, Ai, D

ex
i , D

in
i , Xi), and the adaptation rule is discrete and event-based.

Since T is much larger than the dynamics of the single neuron, the structural plas-
ticity adaptation is slow. Manos et al. [129] show that by taking structural plasticity
into account, clinically important phenomena, such as the increase of desynchronizing
effects of coordinated reset neuromodulation can be reproduced computationally.
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Figure 4: Schematic illustration of a unified disease model. (A) A tissue element is depicted, in
which the basic processes take place: shown are the cells (colored) involved such as parenchymal,
fibroblast, endothelial cells, and macrophages, polymorphonuclear leukocytes and thrombocytes in
the parenchyma (grey), the stroma (yellow), and the capillary blood vessel. (B) depicts the functional
interactions within and between the two corresponding network layers in our model, the parenchyma
and the stroma (immune layer). Figure taken from [31].

5. Adaptive physiological networks

Network physiology is an interdisciplinary research area bridging between physi-
ological modeling approaches from the micro to the macro scale. Bringing together
network science, dynamical system theory and physiological modeling, network phys-
iology aims for getting insights into systemic diseases such as cancer, sepsis and
others [130, 131]. Except from neural systems, modelling approaches using an adap-
tive network structure are rare. Recently little steps into this direction have been
taken in the works [30, 31], where the focus lies on the functional modeling of interac-
tions between different systems in the living organism, not on a detailed biochemical
modeling of a single organ or system, see e.g. [132] for a recent perspective on the
modeling of sepsis. In this section, we describe briefly the functional model (unified
disease model) recently proposed to study the emergence of tumor disease and sepsis.
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5.1. Functional two-layer network model

The unified disease model is centered around the nonspecific immune system,
which includes disease-specific initial conditions, parameters and infection-driven cy-
tokine dysregulation. For the analysis of tumor disease or sepsis, we consider a volume
element of tissue consisting of parenchyma, basal membrane and stroma, see Fig. 4
A. The network layer of parenchymal cells (superscript 1) are represented by N phase
oscillators φPi , i = 1, . . . , N and the network layer of immune cells (superscript 2) are
presented by N phase oscillators φSi . The coupling weights in the parenchymal layer
are considered to be partly fixed and partly adaptive, while in the immune layer the
coupling weights are completely adaptive. Coupling weights model here the commu-
nication through cytokines which mediate the interaction between the parenchymal
cells by the coupling weights κPij, and those between the immune cells by coupling
weights κSij. Note that φSi and κSij represent the collective dynamics of all dynamical
units of the stroma, see Fig. 4 B. The use of phase oscillators for the functional mod-
eling of the interacting parenchymal cells and immune cells is motivated by the fact
that phase oscillator networks are a paradigmatic model for collective coherent and
incoherent dynamics. The healthy state is assumed to be characterized by regular
periodic, fully synchronized dynamics of the phase oscillators. Healthy and patho-
logical cells differ by their metabolic activity, i.e., pathological cells shut down their
mitochondrial cellular respiration and switch to aerobic glycolysis. Therefore they
are less energy-efficient and thus have a modified cellular metabolism and reduced
function, which is reflected in the phase oscillator model by a different frequency.

A multiplex network with two layers each consisting of N identical adaptively
coupled phase oscillators of the following form has been introduced:

φ̇Pi = ωPi −
1

N

N∑
j=1

(aPij + κPij) sin(φPi − φPj + αPP )− σ sin(φPi − φSi ), (40)

κ̇Pij = −εP
(
κPij + sin(φPi − φPj − β)

)
,

φ̇Si = ωS − 1

N

N∑
j=1

κSij sin(φSi − φSj + αSS)− σ sin(φSi − φSi ), (41)

κ̇Sij = −εS
(
κSij + sin(φSi − φSj − β)

)
,

where φµi ∈ [0, 2π) represents the phase of the ith oscillator (i = 1, . . . , N) in the µth
layer (µ = P, S), ωPi ≡ ωi are the natural oscillator frequencies of the parenchymal
cells which are distributed according to a probability distribution ρ(ωP ) = (1 −
r)δ(ωP −ωh)+ rδ(ωP −ωpat) where r is the fraction of pathological parenchymal cells
(tumor cells) relative to the number of all parenchymal cells N , δ is the Dirac delta
function, and ωpat and ωh are the natural frequencies of pathological and healthy
parenchymal cells, respectively. The value of ωS ≡ ω is the natural frequency of the
immune cells. The interaction between the oscillators within each layer is determined
by the intralayer connectivity weights aPij ∈ [0, 1] (fixed interaction within an organ)
and κµij ∈ [−1, 1] (adaptive interaction mediated by cytokines). Between the layers
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Figure 5: Qualitative comparison of model prediction with empirical data. (A) Pathological states
ratio for σ = 1 vs the age parameter β where all data points were averaged over a sliding window of 4
neighboring data points. (B) Empirical data taken from [135] showing the hospitalization incidence
of sepsis per 100,000 inhabitants in Germany by age group for the years from 2007 to 2013. Figure
taken from [31] where also further details on the simulations and the model can be found.

the interlayer coupling weights σ ≥ 0 are fixed and symmetric for both directions
of interaction. Further the interactions within the layer depend on the phase lag
parameters αPP and αSS. The adaptation rates 0 < εµ � 1 separate the time
scales of the slow dynamics of the coupling weights and the fast dynamics of the
oscillatory system. The adaptation rate of the parenchymal layer εP is assumed to
be slow compared to the adaptation rate of the immune layer εS, i.e., εP � εS to
account for the faster reaction of the immune cells [133, 134]. Thus there are two
classes of adaptive coupling weights modeling two different cytokine mechanisms on
two different timescales.

The parameter β plays an essential role in the model because it governs the adap-
tivity rule of the cytokines. It is called age parameter as it mimics a systemic sum
parameter which accounts for different influences, such as physiological changes due to
age, inflammaging, systemic and local inflammatory baseline, adiposity, pre-existing
illness, physical inactivity, nutritional influence, etc.

5.2. Predicting hospitalization incidences for sepsis

A first remarkable result achieved by this functional modeling approach (Eqs. (40)–
(41)) can be seen in Fig. 5. Figure 5A presents the ratio of observed pathological
states compared to the number of considered initial conditions for the simulations
depending on the age parameter β, see [31] for details. It shows that the probability of
a pathological sepsis state sharply rises for the age parameter β above approximately
β > 0.5π. This curve compares favorably with empirical data of patients which gives
the number of cases of sepsis per 100,000 inhabitants in Germany as a function of
age, presented in Fig. 5 B. This comparison shows a striking similarity that needs to
be investigated in further studies, however, providing first evidence for the potential
of the proposed functional modeling approach.
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Figure 6: Schematic representation of the multilayer perceptron. The layers are connected in a
feed-forward manner. Each connection is trained during the training phase.

6. Machine learning applications

A machine learning implementation should ideally possess self-adaptation capa-
bilities. That means it should adapt to changes in the real-world that were not
anticipated during the initial development and learn with new data in both the run-
time and development environments. Such machine learning methods should be able
to dynamically adjust learning and goals based on real-time feedback, making them
suitable for operations with changing external environments or operations that re-
quire optimized response. In this section, we demonstrate the relevance of adaptive
networks in machine learning applications.

6.1. Deep neural networks as an adaptive dynamical network during training phase

Many machine learning applications employ artificial neural networks with adap-
tive weights. The multilayer perceptron, for example, consists of layers of artificial
neurons coupled in a feed-forward manner [136], see Fig. 6. The corresponding cou-
pling weights are adapted during the training phase to optimally perform a specific
task. After training is completed, the coupling weights are fixed and a network with
a static coupling structure is used for inference. Thus, the adaptive features of the
network are used only during the training phase.

Let us show that a training process for deep neural networks (DNNs) is based on
an adaptive dynamical network with discrete time. Let κ be the vector containing
the coupling weights in a DNN, and (u(n),y(n)) is a sequence of input-output pairs
used for the training. A successively trained neural network is expected to reliably
reproduce not only the outputs y(n) for the inputs u(n) of the training sequence
with possibly small error, but also the input-output relationships for a test data set
(utest(n),ytest(n)).

Consider the training step n with the training data (u(n),y(n)) and coupling
weights κ(n− 1) resulting from the training step n − 1. Denote the output of the
DNN as

ŷ(n) = FDNN(u(n),κ(n− 1), ŷ(n− 1)). (42)

In most cases, the dependence (42) does not include the output of the previous train-
ing ŷ(n− 1), i.e., Eq. (42) reads ŷ(n) = FDNN(u(n),κ(n− 1)). However, for gen-
erality, we add such a dependency to incorporate possible applications to temporal
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data, where the output of the neural network is further used as an input. Equation
(42) represents a dynamical relation determining the functional response of the neural
network to the input u(n). The calculation of (42) implicitly includes the updates
for the states of the network nodes x(n) at discrete times n as

ŷ(n) = F out(x(n)); x(n) = X(u(n),κ(n− 1), ŷ(n− 1)),

where the function X includes the recurrent applications of certain activation func-
tions accordingly to the scheme in Fig. 6. In fact, the output ŷ(n) = F out(x(n)) is
a function of the nodes in the output layer only. For our purpose, we do not specify
the functions FDNN, F out, or X explicitly.

To compute the updated coupling weights κn, one usually considers a loss function
L(ŷ(n),y(n)), which could be, for example, L = ‖ŷ(n) − y(n)‖2. The simplest
realization of the gradient descent algorithm leads to the update rule

κ(n) = κ(n− 1)− ε∇κL(κ(n− 1),u(n),y(n), ŷ(n− 1)), (43)

where the parameter ε controls the update rate (it can depend on the discrete time n).
A common way for computation of the gradient∇κL in DNNs is the back-propagation
algorithm, see details in [137, 138].

Finally, the obtained set of dynamical equations during the training phase is
summarized as

x(n) = X(u(n),κ(n− 1), ŷ(n− 1)), (44)

ŷ(n) = F out(x(n)), (45)

κ(n) = κ(n− 1)− ε∇κL(u(n),y(n),κ(n− 1), ŷ(n− 1)), (46)

and it has the form of an adaptive network with the nodal dynamics (44), some
”macroscopic” network characteristic given by the output (45), and the adaptation
rule (46) for the coupling weights. The adaptation rule depends on the output (45).
Since the gradient descent parameter ε is usually small, the adaptation dynamics is
slow.

We note that the adaptive dynamical network (44)–(46) is non-autonomous, i.e.,
it is driven by the time-dependent inputs (u(n),y(n)).

6.2. Adaptive networks in reservoir computers

Reservoir Computing (RC) combines the computational capabilities of neural net-
works with a fast and rather simple training [139, 140]. In RC, only the linear weights
of the output layer are trained using the relatively simple ridge regression method.
Most reservoir computing approaches consider a reservoir with fixed internal connec-
tion weights. However, plasticity as an unsupervised and biologically inspired adap-
tation seems to be beneficial for the performance of RC [39, 141, 142, 143, 144, 145].

The work [39] considers a combination of several learning rules in RC. First,
the anti-Hebbian learning for synaptic plasticity can be exemplified by the following
adaptation rule for the coupling weights wkj(t) (the time t in this system is discrete)

wkj(t+ 1) =
wkj(t) + ηxk(t+ 1)xj(t)√∑
j (wkj(t) + ηxk(t+ 1)xj(t))

2
, (47)
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where η is a parameter controlling the learning rate, xj(t) and xk(t+ 1) represent the
activity of the pre- and post-synaptic neurons, respectively. The work [39] also uses
another type of plasticity, called intrinsic plasticity, which alters the excitability of
individual neurons to match a Gaussian target distribution function. This is a type
of homeostatic plasticity. It has been shown that the best performance is usually
achieved by a combination of synaptic and homeostatic plasticity.

In [141], Hebbian-type synaptic plasticity was employed for modifying the reservoir
weights dynamically. In their model, the so-called anti-Oja’s update rule is used

wkj(t+ 1) = wkj(t)− ηxk(t+ 1) [xj(t)− xk(t+ 1)wkj(t)] ,

which approximates Eq. (47) for small updates η, see [39]. The prediction error
achieved by the RC with adaptation was substantially smaller compared to the pre-
diction error achieved by a standard algorithm.

In [142], the intrinsic plasticity rule is developed as a gradient adaptation dynamics
based on information theory. Such a rule allows the neuron to bring its firing rate
distribution into an approximately exponential regime, as observed in visual cortical
neurons. In [143], the intrinsic plasticity was applied to RC. The authors demonstrate
that the intrinsic plasticity is able to make RC more robust: the internal dynamics
can autonomously adjust to the dynamic regime that is optimal for a given task,
independent of the initial weights or input scaling. Other plasticity rules in RC
networks can be found in [144, 146, 145].

Another related research direction is the prediction of the behavior of adaptive
networks with machine learning tools. For example, in [147], the authors have pre-
dicted the macroscopic signal of an adaptive network of Kuramoto phase oscillators
using RC. To improve the prediction, an additional time-delay embedding of the input
was performed.

7. Adaptive networks in control theory

Adaptive systems and in particular adaptive dynamical networks have been stud-
ied with regards to various control problems and several methods have been devel-
oped [148, 149, 40]. In this context, adaptive dynamical networks are also called
state-dependent networks [150, 38]. In the following, we provide a short overview
on selected control schemes that have been developed using adaptive network struc-
tures.Note that there are also other control approaches using adaptive dynamical
networks, e.g. control through rewiring [151] or adaptive gradient networks [152].

7.1. Continuous adaptive control of full synchronization in complex networks

Of particular interest in control theory is the control of full synchronization in a
dynamical system. For this, consider a dynamical network of the form

dxi
dt

= f(xi) +
∑
j=1

g(aij, κij,xi,xj), (48)
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see our more general definition of adaptive dynamical networks in Sec. 2.3. Note that
the coupling function can take the forms e.g. aijκijg(xi,xj) (Eq. (9)) or lijg(xi,xj)
where lij denote the entries of the (weighted) Laplacian matrix. For such a system, we
assume that the fully synchronized state, i.e., the solution for which xi(t) = s(t) for
all i = 1, . . . , N , exists. In simple words, the goal of control theory is to guarantee the
stability of this fully synchronized state against perturbations and, moreover, to make
the size of its basin of attraction as large as possible, desirably covering the whole
phase space, i.e., global stability. A couple of different approaches to control these
states based on an adaptive change of the network structure have been developed. In
this section, we briefly introduce some of them. For a more detailed review, we refer
to [153].

The weights κij are also called coupling gains and hence, the type of control is
often called gain control decentralized adaptive strategy. In its general form the gain
control scheme can be written as

κ̇ij = hij(x1, . . . ,xN ). (49)

At this point, the distinction between vertex-based and edge-based adaptive strategies
can be made. For the vertex-based strategy, for each vertex (node) of the network a
single coupling gain κi is considered and hence the dynamical equations (49) reduces
to κ̇i = hi(x1, . . . ,xN). Control schemes like this have been proposed e.g. by Kurths
and Zhou [154], DeLellis et. al. [155], and Sorrentino and collaborators [156, 157, 158].
As outlined in the preliminaries of this review, these vertex-based control strategies
do not belong to the group of adaptive dynamical networks. For the edge-based
adaptive control strategies, the control mechanism is implemented in the individual
coupling weights by considering a strategy of the form κ̇ij = hij(x1, . . . ,xN). Hence,
the dynamical network together with its control strategy forms an adaptive dynamical
network.

Edge-based strategies have been considered depending on the local synchroniza-
tion error eij = xi − xj. DeLellis et al. [153] considered two classes of strategies
hij(x1, . . . ,xN) = h(eij) with (i) h(eij) = α‖eij‖p where α ∈ R, ‖ · ‖ indicating the
Euclidean norm and 0 < p ≤ 2, or (ii) a monotonously increasing function h(eij) with

h(0) = 0 and 0 ≤ h(eij) <∞. Examples are h(eij) = α‖eij‖ and h(eij) =
‖eij‖
‖1+eij‖ for

class (i) or (ii), respectively. For dynamical networks for which the corresponding vec-
tor field is of QUAD-type, see [159] for a definition, it was shown that an edge-based
adaptive control strategy of the first or second class guarantees global stability of the
fully synchronized state [160]. These results have been also confirmed by numerical
results [155, 161, 162] for several dynamical systems including the Kuramoto model,
consensus models, Chua’s circuits and Rössler oscillators. Another control scheme
has been analyzed in [163] where instead of the coupling weights, the entries of the
weighted Laplacian matrix are updated, i.e., the authors investigated an adaptation
rule of the form hij(eij) = −αijeTijΓeij where Γ is a positive semi-definite diagonal
matrix and αij = αji ∈ R. Also for these systems global stability could be proved
and numerically confirmed.
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7.2. Edge snapping control

While in the previous section the control strategies build on a prescribed network
structure, edge snapping describes a control scheme which allows for reorganization
of the network topology [153]. Note in this regard that the control strategies lead to a
constantly increasing coupling weight κij until full local synchronization eij is reached.
Hence, whenever a link is active, i.e., aij = 1, the corresponding coupling weight is
positive when the asymptotic state is reached. In order to allow also for vanishing
coupling weights, in [164] a second order differential equation for the coupling weights
of the following form has been introduced:

κ̈ij + dκ̇ij +
∂

∂κij
V (κij) = h(eij),

where d is a damping constant. The dynamics of the network topology is governed
by the (bistable) potential V , which is considered to be sufficiently smooth and to
posses two local minima at κij = 0 (inactive link) and at κij = 1 (active link). It has
been shown that also for this control strategy full synchronization is asymptotically
achieved. Moreover, depending on the form of the potential V the resulting network
supporting full synchronization can vary strongly. See [153] for examples.

For edge snapping also event-based strategies have been considered. The so-called
hybrid adaptive coupling weights are given by

κij =

{
κ̂ij, if κ̂ij > 1,

0, otherwise,

where the reference coupling weight κ̂ij is controlled by dκ̂ij/dt = α‖eij‖ and the
event function is chosen to be Θ(κ̂ij, eij) = κ̂ij. To render the resulting network
structures unweighted and similar to those obtained by the edge snapping described
above, the following rule could be considered: κij = 1 if Θ(κ̂ij, eij) > 1 and κij = 0
otherwise.

7.3. Speed-gradient method and cluster synchronization

Another control scheme that have been used to control the synchronization dy-
namics with adaptive coupling weights in complex dynamical networks is the speed-
gradient method [165]. In [166, 167], the authors apply the speed-gradient method to
a coupled system of Stuart-Landau oscillators where the coupling weights were used
as control variables. The control scheme is obtained by first choosing an appropriate
goal function for the desired M -cluster state, i.e., a state where the system splits up
into M groups of completely synchronized oscillators. Second the dynamical equation

u̇ = −Γ∇∂Q(z1, . . . ,zN , u, t)

∂t

determines the state of the control variables u, where Γ is a positive definite gain
matrix and zi is the state vector of the ith Stuart-Landau oscillator. Choosing the

26



coupling weights κij as control variables and Γij = γGδij (γG > 0), a continuous
adaptive coupling strategy can be derived that possesses the form

κ̇ij = h(zi, zj, ĥi(z1, . . . ,zN), h̃i(κ11, . . . , κNN))

with smooth functions ĥi and h̃i that describe special local mean values for the os-
cillatory system and the coupling topology, respectively. For more details we refer
to [166, 168].

8. Adaptive networks and the relation to power grid models

Network models describing power systems as well as micro and macro power grids
have been analyzed intensively [169, 170, 171, 172, 173]. It was shown that rather
simple low-dimensional models capture certain aspects of the short-time dynamics
of power grids very well [174, 175, 176, 177]. In particular, the model of phase
oscillators with inertia has been widely used to understand synchronization phe-
nomena of complex networks and as a paradigm for the dynamics of modern power
grids [178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194].

Adaptive dynamical networks emerge naturally in power grid systems as a result of
the inductances and capacitances to the ground of the power grid lines [195]. Hence,
the lines possess their own dynamics that depend on the state of the neighboring
nodes. However, in this review, we do not cover the topic of the power grids with
transmission-line dynamics. Instead, we consider a simpler class of models consisting
of N coupled phase oscillators with inertia is given by

Mφ̈i + γφ̇i = Pi +
N∑
j=1

aijh(φi − φj), (50)

where M is the inertia coefficient, γ is the damping constant, Pi is the power of the
ith oscillator (related to the natural frequency ωi = Pi/γ), h is the coupling function,
and aij is the adjacency matrix as defined in Eq. (26). We note that the phase space
of (50) is 2N -dimensional, i.e., of lower dimension than that of the adaptive network
model Eqs. (26)–(27).

Over the last years, studies on phase oscillator models such as (50) and os-
cillators on adaptive networks such as Eq. (26), revealed a plethora of common
dynamical scenarios including solitary states [196, 189, 190, 197], frequency clus-
ters [198, 48, 199, 200], chimera states [201, 45, 47], hysteretic behavior and non-
smooth synchronization transitions [202, 43, 203, 204]. Also hybrid systems with
phase dynamics combining inertia with adaptive coupling weights have been inves-
tigated, for example, to account for a changing network topology due to line fail-
ures [205], to include voltage dynamics [206] or to study the emergence of collective
excitability and bursting [207].

Building on the previously described observations, it has been shown that dynami-
cal power grid models have a deep relations with adaptive networks [41]. In particular,
a mathematical relation between these two models have been found. In the follow-
ing, we sketch the main idea of this relation, discuss its dynamical implications and
describe two routes for its generalization.
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Figure 7: Illustration for the definition and meaning of pseudo coupling weights χij and their relation
to the mean phase velocity

8.1. Dynamical relation between the phase oscillator models

In order to find a relation, first write Eq. (50) in the form

φ̇i = ωi + ψi, (51)

ψ̇i = − γ

M

(
ψi −

1

γ

N∑
j=1

aijh(φi − φj)

)
, (52)

where ψi is the deviation of the instantaneous phase velocity from the natural fre-
quency ωi. We observe that this is a system of N phase oscillators (51) augmented
by the adaptation (52) of the frequency deviation ψi. Similar systems with a di-
rect frequency adaptation have been studied in [208, 84, 209, 210]. Note that the
coupling between the phase oscillators is realized in the frequency adaptation which
is different from the classical Kuramoto system [82]. As we know from the theory
of adaptively coupled phase oscillators [45, 48], a frequency adaptation can also be
achieved indirectly by an adaptation of the coupling matrix.

In order to introduce coupling weights into system (51)–(52), we express the fre-
quency deviation ψi as the sum ψi =

∑N
j=1 aijχij of the dynamical power flows χij

from the nodes j that are coupled with node i. Figure 7 visualizes the relation between
ψi and χij. The power flows are governed by the equation χ̇ij = −ε (χij + g(φi − φj)),
where g(φi − φj) ≡ −h(φi − φj)/γ are their stationary values [211] and ε = γ/M .
It is straightforward to check that ψi, defined in such a way, satisfies the dynamical
equation (52). In order to discuss a physical meaning of the coupling weights χij, we
consider the power flows Fij from node j to node i given by Fij = −g(φi − φj) [211].
Then each χij is driven by the power flow from j to i. In particular, for constant
Fij, χij → Fij asymptotically as t → ∞. Therefore, χij acquires the meaning of a
dynamic power flow.

As a result, we have shown that the swing equation (51)–(52) can be written as
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the following system of adaptively coupled phase oscillators

φ̇i = ωi +
N∑
j=1

aijχij, (53)

χ̇ij = −ε (χij + g(φi − φj)) . (54)

The obtained system corresponds to (26)–(27) with coupling weights χij and coupling
function f(φi−φj) ≡ 1. The coupling weights form a pseudo coupling matrix χ. Note
that the base network topology aij of the phase oscillator system with inertia Eq. (50)
is unaffected by this transformation.

With the introduction of the pseudo coupling weights χij, we embed the 2N di-
mensional system (51)–(52) into a higher dimensional phase space. In [41], it was
further shown that the dynamics of the higher dimensional system (53)–(54) is com-
pletely governed by the system (51)–(52) on a 2N dimensional invariant submanifold.
All together we yield a dynamical equivalence between (51)–(52) and (53)–(54).

The obtained result suggests that the power grid model is a specific realization of
adaptive neuronal networks. In the following, we briefly outline some implications of
the found relation between both dynamical systems.

8.2. Consequences of the relation between network adaptivity and inertia

The new relation between adaptive networks and power grid models provides an
abstract mapping between two dynamical systems on the one hand. On the other,
and probably even more important, this relation brings different research communities
closer together and may trigger knowledge transfer among them. Below we describe
some examples where such transfer has been very fruitful.

The first example concerns multi-frequency-cluster states. Here, the relation be-
tween a phase oscillator with inertia and adaptively coupled phase oscillators has been
successfully utilized. In fact, a novel type of multi-frequency-cluster state could be
reported for the phase oscillator model with inertia, for details on multi-frequency-
clusters we refer to section 14.2. Various types of multicluster states including the spe-
cial subclass of solitary states have been extensively described for adaptively coupled
phase oscillators [45, 199, 197]. For phase oscillator models with inertia, however, only
one type of multicluster state, the in-phase multicluster, was known [196, 204, 200].

In [41] a novel hierarchical mixed-type multicluster on a nonlocally coupled ring
of phase oscillators with inertia was presented. This state consists of one large splay
cluster with wavenumber k = 2 and a small in-phase cluster and was found by using
the experience from a system of adaptively coupled phase oscillators. The emergence
of such a multicluster state breaks the dihedral symmetry of the nonlocally coupled
ring network. In another work [212], similar symmetry breaking states referred to as
Chimera states have been observed also in small globally coupled networks. Another
novel observation for multicluster states in networks of phase oscillators with inertia
is their hierarchical emergence. As reported in [45] for adaptive networks, the clusters
emerge in a temporal sequence from the largest to the smallest. By visualizing the
pseudo coupling strengths at different points in time, the same hierarchical temporal
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formation of multicluster states could be also observed for phase oscillators with
inertia.

A particular subclass of multicluster states are solitary states that are a common
dynamical phenomenon observed in simulations of real power grid networks [189, 190].
Using an approach similar to [48] which was developed for adaptive networks, a
multiscale ansatz was used in [41] to understand dynamical features of solitary states
in the German ultra-high voltage power grid. By the transfer of the method, it
was possible to approximate the temporal behavior of the solitary node as well as to
quantify the temporal variation of the coupling weights between the solitary node and
any other mode from another cluster (coherent background cluster). Note that due
to the relation described in the previous section, the coupling weights are directly
connected to the power flow on each line. Hence, the pseudo coupling approach
further allows for a description of the power flow for each line. In [41] it was shown
how high power fluctuations emerge at the solitary nodes and how these fluctuations
spread over the power grid.

So far methods and ideas from adaptive networks have been transferred to under-
stand dynamical phenomena in power grid models. The next example concerns the
other direction. In particular, in [41] the authors reinterpreted the dynamical cas-
cading of line failures in power grid models as cascades leading to neural breakdown
in the context of adaptive networks. For this the power grid setup from [211] was
employed and the following interpretation was given. Let us regard the power flow on
a line in a power grid as the (localized) synaptic input Fij(t) = κij(t)f(φi(t)− φj(t))
from oscillator j to oscillator i. Then, we say that a line fails if the corresponding
synaptic input exceeds a certain threshold K ∈ R, i.e., |Fij(t)| > K at some time t.
Correspondingly, the link is cut off, i.e., aij = aji = 0. A possible neuronal interpreta-
tion of such a temporal cut-off may be related to the presence of short term synaptic
plasticity [213, 116]. Indeed, when the signal between neurons or neuronal regions
exceeds a certain critical level, then the corresponding connections can be affected
by short term activity-dependent depression. As a result, such an activity implies an
effective cut-off, at least temporarily. With this interpretation and the insights from
the dynamical cascading of line failures in power grid models, dynamical cascading
of synaptic failures in an adaptive network could be found and explained.

8.3. Generalizations of the pseudo coupling approach

In Sec. 8.1, we have shown how adaptive phase oscillator networks and networks
of coupled phase oscillators with inertia are related. In the following, we show two
generalizations to this relation that have been reported in [41].

The obtained results in Sec. 8.1 suggest that the power grid model is a specific
realization of adaptive neuronal networks. Now, we proceed one step further and
consider the swing equation with additional inclusion of the voltage dynamics [206,
189]. By using the technique developed in the Sec. 8.1, these dynamical systems can
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be written as

φ̇i = ωi +
N∑
j=1

aijχij, (55)

χ̇ij = − 1

Mi

(γχij − EiEjh(φi − φj)) , (56)

miĖi = −Ei + Ef,i +
N∑
j=1

aijEjv(φi − φj), (57)

where the additional dynamical variable Ei is the voltage amplitude. The functions h
and v are 2π-periodic, and mi and Ef,i are machine parameters [206, 189]. Due to the
voltage dynamics (57), the adaptation function g(φ) = Ei(t)Ej(t)h(φ) in (56) pos-
sesses additional adaptivity. This kind of meta-adaptivity (meta-plasticity) has been
shown to be of importance in neuronal networks [214, 215] as well as for neuromorphic
devices [17].

As another example for a generalization, we consider a second-order consensus
model. Consensus describes the result of a decision making process of autonomous
mobile agents with positions xi and velocities vi. The decision making process is
described by the consensus protocol that is given as a dynamical system on a complex
network structure. Consensus is achieved if the agents synchronize as time tends to
infinity. Consensus models have a wide range of applications and are of particular
importance in social science and engineering [216].

Let us consider the following second-order consensus model [217]

ẋi = vi, (58)

v̇i = ρ
N∑
j=1

lijvj + σ
N∑
j=1

aijh(xi − xj), (59)

where the dynamical variables xi,vi ∈ Rd, aij are the entries of the adjacency matrix
of the network, lij the entries of the Laplacian matrix of the network, i.e., lij = aij
for i 6= j , lii = −

∑N
j=1,j 6=i aij, and ρ, σ ∈ R are coupling constants. Let us introduce

the vector-valued pseudo coupling matrix χij ∈ Rd by vi =
∑N

j=1 aijχij. Then the
model (58)–(59) can be written as

ẋi =
N∑
j=1

aijχij, (60)

χ̇ij = −ρliiχij + ρ

N∑
k=1

ajkχjk + σh(xi − xj). (61)

By using the same arguments in section 8.1, the dynamical equivalence between both
models (58)–(59) and (60)–(61) can be proved. With this, we have shown that a
second-order consensus model can be written as a dynamical network with a complex
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adaptive coupling scheme rather than a fixed coupling matrix. Note that the elements
of the complex dynamical coupling scheme χij are not uniquely defined, but might
be chosen according to their physical meaning.

9. Human and animal behavior

A pressing current question is how we can effectively make decisions together to
address major societal problems. In the age of post-truth, social media echo chambers,
and widespread willful disinformation, our ability to determine what is real as a
society is eroding. This makes it hard to reach a broad consensus even in areas where
urgent action is needed. These concerns lead to the question how humans form their
opinions and how this process is affected by social network structure, norms, and
hierarchy.

Studying the processes that form these networks, norms, and hierarchies naturally
leads to adaptive network models. Networks (or higher order structures) offer a
suitable framework to describe human social organization. In these social networks
the nodes represent agents, whereas the links represent friendships, acquaintance,
or professional relationships. Through their links the agents are exposed to different
opinions, bits of information and types of behavior. In time these influences may shape
internal properties of the agent, such as political affiliation, ideology, informational
state, wealth, health, fitness or social status. These changes in the agent may in
turn induce changes in the network structure, for example cuts links to followers
of competing ideologies or seeks to connect to individuals of higher status. This
completes the adaptive feedback loop.

The origin of our social networks, norms and hierarchies can be traced back to bio-
logical evolution where fundamental behaviours were shaped in an ecological context.
It is therefore interesting to study adaptive social networks in animals as well, not
only because these system are fascinating in their own right, but also they provide
a new angle at human behaviour. In contrast to their human counterparts, social
networks between animals are often easier to study. In these networks there are typ-
ically no privacy and data protection concerns, social behavior is less biased by the
observation, networks can often be identified more easily from visual cues, and when
rewards are offered as part of the experiments the costs are much cheaper than they
would be for rewarding humans.

Surveying the publications in this field of adaptive social networks is daunting
because of the breadth of academic disciplines involved, which including notable con-
tributions from Economics, Anthropology, Psychology, Sociology, Biology and Philos-
ophy, besides Physics, Mathematics and Computer Science. In the following we resist
the temptation to group the literature by discipline and instead organize it according
to a set of central questions, each of which is addressed by multiple disciplines. Due
to the volume of work that has been done, the overview presented here will be far
from comprehensive and instead focuses on some important advances and illustrative
examples.
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9.1. Information flow in adaptive networks

One of the core questions that is investigated in adaptive social networks is how
self-interested choices by agents shape large scale network properties. An interesting
precursor of this line of work is a paper by Paczuski et al. [218]. This paper studies
a set of agents who participate in a minority game. In each round, each agent selects
one of two possible actions, with the aim of selecting the action that is chosen by
the minority of agents in the system. The agents make their decision dependent on
the previous actions of their neighbors using a Kauffman-style [219] look-up table.
These look-up tables are then evolved as the agents try to optimize their success in
the game.

Although the model of Paczuski is played on a static network, it contains a degree
of adaptivity as the lookup tables can evolve to ignore imput from certain neighbors.
Thus the edges can be cut from the effective network of realized information flow.
The authors show that this link-cutting is very common and continues to a point at
which the network reaches a critical state. The model thus provides an example of
(surprising) topological adaptation to a specific dynamical state.

Interestingly the model by Paczuski et al. appeared at the same time as the first
adaptive network model of neural criticality [220] which also showed self-organization
to a state at or close to criticality. The study of the critical brain subsequently led
to several other models that showed adaptive self-organized criticality. Meanwhile,
papers in engineering demonstrated that adaptive networks that locally adapt links
to optimize information processing could have have technical applications as well
[221, 222].

9.2. Adaptive cooperation

Other parts of the literature are concerned with the impact of adaptivity on the
outcome of the dynamics on the network. A central question in this area is the
emergence of cooperative behavior. This is typically studied in models where nodes
are agents and links represent social or professional interactions, which are modelled
as cooperation games. The agents often have the choice between cooperating and
defecting, i.e. making investments to produce social benefits or selfishly free-riding off
the investments of others. The agents can then change their behavior or their local
topology to maximize payoffs received in the game.

An important early work in this direction are papers by Zimmermann et al. [223],
and Skyrms and Pemantle [224]. Similar models were then subsequently analyzed
in a large number of publications which elucidated various aspects of the dynamics
and topological evolution and refined analysis methods, including [225, 226, 227,
228, 229, 230, 231, 232, 233, 234] and many more. These works and several others
were reviewed in [235]. Notably many of the predictions from these models can be
confirmed in experiments [236, 237].

One of the central results in this field is that adaptivity generally benefits the
emergence of costly cooperation. In most of the games studied links confer a benefit,
as links produce a positive payoff in average. Hence cutting links to defectors, which
some earlier models (e.g. [223, 231]) implement constitutes a direct punishment of

33



defection, which benefits the emergence of cooperation in a fairly direct way. How-
ever, some papers avoid this direct punishment of defectors by implementing rewiring
rules that are agnostic of node strategies, such as rewiring selectively to successful
players regardless of their strategy or direct benefit (e.g. [234, 238]). Even in these
scenarios the adaptivity can benefit cooperation by leading to the emergence of dense
clusters of highly successful cooperators (safe havens of cooperation) or by a complex
dynamical mechanism that leads to a collective push to full cooperation [238]. The
latter mechanism seems surprisingly generic and can also be observed in other games
on adaptive networks [239].

Another focus of game-theoretic work in adaptive networks is to explore the for-
mation of hierarchies that develop in the course of adaptive self-organization [240,
224, 223, 228, 241, 240]. One of the cleanest models in this class was prosed by
Holme and Ghoshal [242] where agents try to achieve a position of high centrality
but low degree in the network. In principle the adaptivity of this model could be
disputed as it does not feature dynamics on the network, however instead we have
the computation of centralities which can be seen as a (fast) dynamical process on the
network. In this sense the model of Holme and Ghoshal is similar to other adaptive
network models with timescale separation and exhibits a similar degree of topological
self-organization, including fragmentation transition and global hierarchies.

The formation of large scale hierarchies was already observed in some of the ear-
liest games on adaptive networks, however these analysis of these hierarchies was
complicated due to the choice of discrete strategies. In later models continuous time
adaptation, weighted link dynamics (e.g. [241]) and finally continuous time, links, and
strategies [240] are explored. The paper by Do et al. [240] demonstrates that large
scale hierarchies and resource flows can emerge deterministically from an almost per-
fectly homogeneous initial condition.

After 2010, the activity in this adaptivity in games sharply declined as many of
the important mechanisms have been understood at this point. However, adaptive
interplay and the phenomena it causes live on in many current more complex models
as adaptivity arises indirectly or as one feature in a more complex framework, e.g. [243,
244, 245]. One consequence of the shift of interest that has occurred in 2010 is that
many of the adaptive network models in this area have not been analyzed with the
powerful methods that were introduced subsequently. Hence reviving this area in the
light of these developments could be very promising and profitable.

9.3. Opinion formation and Fragementation

Potentially the most widely investigated phenomenon in social adaptive networks
is social fragmentation. Even before the post-truth crisis researchers have explored
the possibility that adaptivity in networks of agents may lead to echo chambers and
a fragmentation of society.

In the context of adaptive networks researchers already noted in 2012 “It thus
seems likely that situations develop where a given subset of the society (and the media
by which it is represented) pay attention only to information sources with the same
belief system, thus reinforcing and perpetuating myths that are never confronted with
opposing views. In this light, one may ask whether we are heading for a society that
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is fractionated into groups adhering to internally consistent but mutually exclusive
belief systems.”[246].

Research in the social science and humanities has a longer tradition of analysing
opinion formation and the potential of social fragmentation, dating back to the 1950s
[247, 248]. A central idea that emerged from with work is bounded confidence [249,
250, 251], the idea that people are willing to take different opinions into account as
long as these opinions are relatively closely aligned with their own, but completely
disregard opinions that are too different.

Models of bounded confidence naturally lead to adaptive networks, where nodes
are agents and links denote social interactions. In time the agents update their
opinions and links, taking the opinions of interacting partners into account but also
shifting links toward agents with more similar opinion [249, 250, 252, 253, 254, 255,
256, 257, 258, 259, 260, 261, 262, 263, 264].

The most stylized model of opinion formation in adaptive networks is the adaptive
voter model (aVM) [265]. In this model agent’s opinion are binary variables and the
links are unweighted. Nodes adopt their neighbors opinion at a certain rate, while
also rewiring links from nodes with the opposed opinion to nodes that hold their
own opinion. One of these rate parameters can be eliminated by means of time-scale
renormalization, such that the only remaining parameters are the size of the network,
the mean degree of the nodes, and the relative rate of rewiring compared to the total
rate of rewiring and opinion copying events. This last parameter is simply called
rewiring rate in the context of the aVM.

The aVM can be considered a fair model, in the sense that it does not give any
reproductive advantage to either of the two opinions, even if one of the opinions is in
the numerical majority. The model therefore undergoes a random walk in the opinion
space. If the rewiring rate is low this random walk in the number of supporters of
either opinion can be observed for an extended period until the model eventually hits
one of the absorbing states where one of the opinions vanishes. At low rewiring rates,
one thus observes an extended dynamical phase followed by eventual consensus.

If the rewiring rate is increased, a phase transition occurs, in which the meta-stable
dynamical phase vanishes. After the transition links are rewired quickly enough such
that all links that connect different opinions are quickly eliminated from the system
[265]. The result is a fragmented state in which the number of agents believing in the
two opinions is still very close to their initial values, but all links connecting agents
of different opinions have been cut, which freezes the system in a state with partisan
divide.

Like the adaptive aSIS model (see Sec. 10) the aVM can lay claim to being the
simplest adaptive network model. Both of these models use two node states and a
conserved number of unweighted, bidirectional links. In both cases the link dynamics
is implemented as homophilic rewiring and the node dynamics are a simple contagion
processes.

Despite the many similarities, the two models respond very differently to math-
ematical analysis with moment expansions [266]. The aSIS model is extremely well-
behaved and almost every moment expansion scheme that has been proposed in the
literature yields very accurate results. By contrast in case of the aVM, all common
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moment expansions yield poor estimates of the transition point.
For example, it was shown that an unbounded active-neighborhood approximation

can be solved analytically [267]. In this approximation the dynamics is described by an
infinite system of differential equations that capture the opinion-colored joint degree
distribution of the system. This infinite ordinary differential equation system can then
be transformed into a two-dimensional partial differential equation system. Using the
method of characteristics, these partial differential equations are then transformed
into four ODEs which can be integrated analytically. However, the accuracy of this
very extensive approximation is only marginally better than a simple homogeneous
expansion and can overestimates the transition point by approximately 20%.

The difficulties with the aVM arise because moment expansions generically assume
that the system is well-mixed beyond a certain correlation length [266]. However,
when the fragmentation transition occurs in the aVM, the system is at the point
where the network breaks into two internally homogeneous clusters, and hence the
correlation length of node states is comparable to the network diameter.

To estimate the aVM’s fragmentation point accurately, one must avoid the mix-
ing assumption, which normally enters in the moment closure approximation. By
deriving a bespoke closure approximation that replaces the assumption of mixing
with an assumption of opinion separation, one arrives at an approximation scheme
that allows precise estimates of the fragmentation point using a comparatively simple
calculation [268].

Since its inception the aVM has become an important toy model, which has in-
spired a large number of subsequent developments e.g. [268, 269, 267, 270, 271, 272,
273]. These include multi-opinion versions as well as models on directed networks
[246], multi-layer networks [274], simplicial complexes [37] and hypergraphs [273].
These extensions show a variety of new phenomena. For example in hypergraphs small
initial imbalances in opinions are amplified leading to a faster consensus [273, 37]. By
contrast in ’twitter-like’ directed networks arbitrarily small rewiring rates can be
sufficient to cause fragmentation [246]

The aVM and its variants have been very successful in physics, revealing a range
of new phenomena and contributing to a deeper understanding of the adaptive inter-
play between state and topology. An important challenge for the future will be to
translate these insights back into the application domains that inspired these mod-
els. Recent developments including the post truth-crisis, Covid-19 response, and
also global change highlight the need for a deeper understanding of real world social
dynamics and particularly opinion formation processes [275].

For humans it is presently still difficult to relate aVM results directly to the real
world. Data protection concerns makes working with real-life social network data
difficult. Moreover the need for an informed consent makes it nearly impossible to
conduct unbiased laboratory experiments with human participants. An interesting
alternative is to explore animal models of decision making. Behavioral experiments
with animals can be informed without consent and allow the researcher to study
decision-making in animals in a highly controlled way.

It was pointed out in [276] that common swarming experiments with animals can
also be interpreted as opinion formation experiments, as the individuals in the swarm
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make the decision where to go collectively. Using a variant of the aVM and an analysis
based on moment expansions, the paper showed that experimental results can be
understood with adaptive network models. A subsequent paper [277] then predicted
a new phenomenon in the collective behavior that was verified in experiments with
fish. These and other results [278] suggest adaptive networks as a powerful tool to
explore, understand and to some extent predict opinion formation in animals.

10. Epidemiological models

Infectious diseases have plagued humanity since its earliest days, from the killers
of the ancient world, via medieval plagues, to the COVID-19 pandemic. New diseases
typically arrive in the human population, when we change our behavior or environ-
ment and allowing new pathogens to spread [279]: Intravenous drug use contributed
to HIV, the use of air conditioning caused legionellosis, climate change gave us ESME
a resurgence of malaria and many others.

Today we are changing our environment at an unprecedented pace. The human
population is larger than ever. Our global transport systems, both for people and
livestock, enable new and emerging diseases to rapidly spread around the world. The
black death of the 14th century travelled across Europe as a wave, proceeding at the
pace of an ox cart, and taking years to spread across the continent [280]. By contrast
SARS traveled at the speed of a jetliner, spreading around the globe within days
[281]. As a result new and reemerging pathogens arrive in the human population at
an unprecedented rate.

Over the past years, epidemic models have become rapidly more important as a
planning tool, with model predictions providing a quantitative basis for policy deci-
sions (and a way to assess the damage done when this quantitative information is
ignored) [282, 283]. The vast majority of epidemic models follow a compartmental
approach [284], where different variables are used to track the number of individuals
who have a certain epidemic status such as being susceptible to the disease or being
currently infected and infectious [285]. In the simplest case a mean field approxima-
tion is used to derive differential equations for the size of the infected populations in
the thermodynamic limit.

Epidemic models are typically named to suggest the sequence of epidemic statuses
that they consider [286]. In particular, the SIS model describes a situation in which
susceptible individuals (S) can become infected (I) and eventually recover, becoming
immediately susceptible (S) again. This immediate return to the susceptible status,
without a period of immunity is typical for macro-parasite infections (e.g. lice). The
dynamics can then be described by

[İ] = −r[I] + p[SI], (62)

[Ṡ] = p[SI]− r[I], (63)

where [S] is the proportion of individuals that are susceptible, [I] is the proportion of
infected (and infectious) individuals, [SI] denotes the effective rate of contact between
infectious and susceptible individuals, and r and p are rate constants for recovery and
contagion.
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To close the model, a mean field approximation is used to write the encounter
density as

[SI] = [S][I], (64)

where the constant of proportionality has been set to 1, as any such constant that may
exist in the real world system can be absorbed into the parameter p. Furthermore,
the proportions of infected and susceptible individuals obey

[I] + [S] = 1, (65)

which allows us to eliminate the variable [S], leading to

[İ] = −r[I] + p[I](1− [I]), (66)

[S] = 1− [I]. (67)

These equations are exact for a well-mixed population in the thermodynamic limit,
but offer also a good approximation to epidemics on low-diameter (i.e. small world)
networks, where nodes represent individuals and links represent contacts; for a more
detailed look at the mathematical challenges for moment methods applied to adaptive
networks, we refer to Section 15.

Many real world diseases have a more complex epidemiology. Hence, models need
to consider additional epidemic statuses such as recovered or removed individuals (R),
who cannot be reinfected, asymptomatic infectious individuals (A), and individuals
who have been exposed and become infected but have not yet reached the infectious
phase (E).

10.1. Adaptive SIS model

Epidemic diseases that are threatening or stigmatised trigger a variety of social
responses ranging from the individual avoidance of risky activities, via physical dis-
tancing, increased hygiene, and vaccination to self-imposed or mandatory quarantine
and large-scale preemptive lock downs [287, 288, 283].

To understand the phenomena that are triggered by the adaptive response of the
network to the disease, it is useful to explore conceptual models. For illustration
we consider the so-called adaptive SIS (aSIS) model, as it is the first and perhaps
simplest of a class of similar models [289, 290, 291, 292, 293, 294, 295, 296, 297, 298,
299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310].

The model considers SIS on a network, where susceptible individuals try to avoid
becoming infected, by breaking off links with infected [28]. For every link that is bro-
ken in this way the susceptible individual establishes a new link to another susceptible
individual such that the number of links in the system is conserved.

The adaptive rewiring of links can have a significant impact on the dynamics of the
epidemic, but is not captured in the mean field model, since rewiring itself does not
change the number of infected nodes. To incorporate the effect of rewiring, we have
to go back to Eq. (62) and instead of closing at the mean field level write additional
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equations for the change in the number of links of given type, leading to

[İ] = −r[I] + p[SI], (68)

[ ˙SS] = −p[SSI] + r[SI], (69)

[ ˙II] = −2r[I] + p[SI] + p[ISI], (70)

where we now interpret [SI], [SS], and [II] as the number of links of the respective
type per node, while [ISI] is the number of ISI-chains, divided by the number of
nodes. This somewhat peculiar normalization generally pays off as it often leads to
more compact equations. The exact reasoning by which these equations are derived
is explained in detail in [28] and the basic procedure is also covered in Sec. 15.

10.2. State-topology interplay: complex dynamics and explosive transitions

The simple equations of the aSIS model (68)-(70) are interesting because they
capture a crucial feature of adaptive networks: the interplay of node-state with topo-
logical degrees of freedom [5]. Consider that discrete state dynamical systems on
networks have typically low-dimensional dynamics. For example the dynamics of the
non-adaptive SIS model can already be captured faithfully by a single dynamical
variable. By contrast in adaptive networks the dynamic state of nodes impacts the
topology. The network topology (with its very many degrees of freedom) thus be-
comes a memory that can be written and read by the node dynamics. How much
of this memory is accessed depends on the specific dynamical process. In the aSIS
model this interaction with the topology is limited and hence the dynamics can still
be faithfully captured with three dynamical variables.

Coupling node dynamics to topological degrees of freedom can lead to new phe-
nomena as the topological memory allows higher-dimensional dynamics to occur. For
example in the aSIS self-sustained oscillations are possible at high rewiring rates. By
contrast such oscillations cannot occur in the effectively one-dimensional dynamics of
the non-adaptive SIS model. In the original aSIS model the basin of attraction of the
oscillatory dynamics is small and hence very large simulations are necessary to observe
such oscillations. However, variants of the model exhibit stable large scale-oscillations
over a broad parameter range, e.g. [311, 297, 306].

The aSIS model was intentionally set up to model prudent [312] behavior, i.e. the
susceptible individuals protect themselves by rewiring links in a way that always re-
duces the links that are available for disease transmission. However even this prudent
behaviour has a detrimental side effect: It leads to the accumulation of links between
susceptible individuals, which can fuel the future growth of the epidemic if these
susceptible nodes should become infected.

Rewiring impedes epidemic spreading effectively if the proportion of infected in
the population is low. In this case the rewired links are diluted in the large pool of
susceptibles. By contrast rewiring is less effective in states where a large proportion
of the population is infected. In this case links quickly accumulate in a smaller set of
susceptibles, which in turn can be quickly reinfected.

The higher effectiveness of rewiring at low numbers of infected leads to a specific
phenomenon: Rewiring pushes the epidemic threshold that marks the critical infection
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Figure 8: Explosive transitions in adaptive epidemic models. Shown is the sketch of a stylized
bifurcation with stable (blue) and unstable (red, dashed) branches of steady states. Without adaptive
rewiring (r = 0) the onset of the epidemic occurs in a continuous transition as the infection rate
is increased above the epidemic threshold. If the agents try to avoid contact with infected, this
epidemic threshold can be moved to much higher infection rates (’shift’). However, with sufficiently
strong rewiring (r > r∗) an established epidemic can persist even below the epidemic threshold,
leading to hysteresis and explosive transitions.

rate at which the epidemic can invade the population. As a result this threshold is
moved to much higher values of p (Fig. 8) [28, 287]. However, due to lesser effect
in the case when a large infected population exists, the persistence threshold for an
established epidemic is pushed back significantly less. This leads to the formation of a
region where an established epidemic can persist but a newly arriving epidemic cannot
invade a healthy population. This region is then bounded by discontinuous phase
transitions. The aSIS model thus provided one of the first examples for explosive
transitions in network dynamics [313, 314].

The adaptive interplay also allows the topology to react to the dynamics in other
ways. It is well known that preferential attachment (a topological process) creates
scale-free structures that have vanishing epidemic threshold, because the second mo-
ment of the degree distribution becomes infinite. By contrast networks with finite
second moment typically have a finite epidemic threshold. However if network growth
by preferential attachment is coupled with SIR dynamics that removes nodes, the sys-
tem approaches a state of finite second moment, while the epidemic threshold still
vanishes [309]. This is possible because the adaptive interplay pushed the second
moment to a value that is just high enough for the disease to survive.

10.3. From concept and benchmark to real world epidemics

The aSIS model (68)-(70) is a among a group of conceptual models which studied
similar systems. For example [289] considers a susceptible-infected-recovered (SIR)
model in which links to infected can be broken. The main purpose of these early
models was to draw attention to the new phenomena that can be observed in adaptive
networks, including higher-dimensional dynamics and bifurcations, new transition
pathways and strongly shifted transition points.
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Moreover, the aSIS model was subsequently widely used as a well-behaved bench-
mark system that was later reanalysed and used for the development of refined meth-
ods, e.g. [311, 315, 292, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327,
328, 329, 330, 331]. In particular it served as an example in the development of the
active neighborhood approximation [315] and in the construction of early warnings
signals for saddle-escape transitions [325]. Kattis et al. used it as an example system
to develop a data-driven equation free modelling approach to network dynamics [327]
and Kuehn and Bick showed that the transition between explosive and non-explosive
behavior observed in this model is a generic pathway [331].

Besides these conceptual uses, it quickly became apparent that already such fairly
simple models can be related to real world data and yield useful insights. An interest-
ing work in this context is the paper by Scarpino et al. [312]. The model is a variant
of aSIS with a rewiring rule that captures the effect of relational exchange, the effect
of the replacement of infected workers in key roles with susceptible substitutes. The
resulting dynamics feature an aSIS-like hysteresis loop but are overall more favorable
to the disease. In particular the dynamics explain an initial acceleration of cases at
the onset of the disease that is observed in some epidemics, but cannot be explained
by common non-adaptive models.

Another interesting extension is the study of adaptive SIS and SIR models in
which the network topology is created in more complex algorithms that more closely
mimics real world social network formation processes [332], which adds further realism
and allows a detailed exploration of the effects of quarantine.

10.4. Epidemics and Information

The Covid-19 pandemic has shown forcefully that human behaviour is an essential
factor in the dynamics of infectious diseases. Particularly adaptive changes of the
topology are often the result of active choices, such as avoiding contacts, increased
hygiene, use of protective equipment or adoptions of vaccinations. The spreading of
epidemics is thus coupled to the spreading of information (including mis- and dis-
information) which happens on a related but different social network [287, 288, 333,
334, 335].

From a network perspective the propagation of epidemics and information through
a population are very similar processes. Both processes can be described as copying
processes, where the payload is duplicated when it spreads. Moreover in both cases
the content of the message, or properties of the pathogen can evolve between trans-
missions.

When one considers epidemic spreading together with the spreading of information
that triggers an adaptive response, a race between the epidemic and the information
can ensue. Kiss et al. [336] derive the conditions under which the information can win
this race, leading to the eradication of the epidemic. Further analysis, often with a
stronger emphasis on the multi-layer nature of this race, was presented in subsequent
papers [337, 338, 339, 340, 341, 342, 343], recently reviewed in [344]. In most of these
models adaptivity exists only because becoming informed about the epidemic fully or
partially removes the node from the disease propagation layer. However, already this
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limited adaptivity is sufficient to cause typical phenomena associated with adaptive
networks auch as explosive transitions and complex dynamics.

10.5. Epidemiological modeling outlook

A second important lesson from Covid-19 is that epidemic models play an essen-
tial role in forecasting and responding to pandemics [345]. As none of the factors
that contributed to the worldwide spread of Covid-19 can be expected to change in
the future (dense-connectivity, super-spreaders, environmental change, etc.) future
pandemics of similar size and impact will appear highly likely.

Covid-19 has also shown that the adaptive response of the population is an essen-
tial factor that has a strong impact on the time-course of the pandemic. However, in
future predictive models of epidemics adaptivity will likely only be one aspect besides
others, such as realistic social mixing patterns, demographic structure, geographic
migration, and temporal forcing of mixing [346]. Adaptivity and the explosive tran-
sitions and complex dynamics that it causes will thus become a small, but important
puzzle piece in much larger modelling efforts.

We hope that in addition to their use in public health, there will also be con-
tinued interest in adaptive epidemics in the complex systems community. The SIS
model is one of the nicest and most well-behaved model of a continuous phase tran-
sition. Likewise its adaptive extensions such as aSIS provide simple and tractable
models of state-topology interplay in network dynamics. This interplay remains rela-
tively purely understood: We still do not have a comprehensive theory regarding the
topological features a dynamical process senses from its network substrate, neither is
there a good understanding what a given topology tells us about the adaptive changes
that have shaped it. Gaining such an understanding could impact a wide variety of
areas from neuroscience to computing. The universality of the simple propagation
and rewiring mechanisms captured by aSIS and its cousins highlights these models
as useful tools that can aid in making this progress.

11. Adaptive transport networks

Transport processes are crucial for the functioning of natural and technological
systems. In most cases, such processes can be described by transport networks. One
of the most advanced examples of a transport network is the mammalian vascular
system. An effective adaptation mechanism in such networks is an important feature
allowing to adapt to different operating conditions. For example, the mammalian
vasculature is highly adaptive in that the diameter of the vessels dynamically adjusts
to changes in flow properties, such as pressure or shear stress, through a variety of
vascular response mechanisms.

Several publications have studied such adaptation mechanisms in flow networks,
and here we shortly mention the modeling approaches from [347, 34]. The phenomeno-
logical models used in [347, 34] can predict the emergence and partition of the flow
network into tree-like and cyclic structures, thus, rendering the supply in the network
more robust.
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The state of node i is described by the pressure pi, while the flow between the
nodes i and j is given by fij = Cij(pi − pj), where the nodal accumulation rate is
neglected (e.g. inelastic vessels, see [348]). Here Cij = Cji > 0 is the conductance
along the network edge (i, j), while Cij = 0 if no such edge exists. External nodal
flows are given as temporal functions hi(t) that can model sources (hi > 0) or sinks
(for hi < 0). The mass balance then becomes

hi(t) =
∑
j

Cij(pi(t)− pj(t)). (71)

The main variables of the system are:

• The state of each node i, i = 1, . . . , N is described by the pressure pi(t). We
denote p = (p1, . . . , pn)T the vector of all pressures.

• The weights are described by the conductances Cij. In the case of an adaptive
network, the conductances Cij can adapt their values, depending on the network
states p(t), and become time-dependent Cij(t).

The role of the node equations in this case is played by the linear algebraic system
(71), which can also be written in the vector form

h = Kp,

where Kij = (δij
∑

j Cij) − Cij [34]. Taking into account a finite accumulation rate
for the nodes would lead to a system of ODEs for the node dynamics instead of the
algebraic system. However, we limit the description here to the algebraic case as in
[347, 34].

The adaptation rule for the weights Cij is given as

d

dt
Cij = Cij (α1 |pj − pi|γ − α2) , (72)

where α1,2 > 0, and the first term in the right-hand side induces growth proportional
to the power dissipated along the edge. This mitigates rising pressure differences by
increasing the conductance along the edge. The exponent γ was chosen to be 2 in [34],
and the effect of varying positive γ was studied in [347]. The last term in Eq. (72)
prevents an unlimited growth of the conductance. This adaptation rule acts towards
minimizing the power consumption.

Summarizing the modeling approach in [347, 34], the complete adaptive system
is given by Eqs. (71)–(72) with the additional condition for the balance of the nodal
flows

∑
i hi(t) = 0. It is demonstrated that such a model explains the intricate balance

between cyclic and tree-like structures that emerge self-consistently and render the
supply more robust in flow networks with (in-) or outflow fluctuations.

In more realistic situations for epidemic modeling, transportation networks must
be coupled to the epidemic network leading to a challenging dynamical processes. An
example for such a modeling approach is given in [349], where a multiplex network
model emerge. The main ingredients of the model from [349] are as follows, see Fig. 9:
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Figure 9: A model from [349] combining epidemic dynamics on a network with a transport process.
Reprinted from [349].

(i) The transport process takes place on a given static network as a random walk of
individuals. In particular, these individuals can occupy the same nodes.
(ii) The epidemic network consists of two layers: a static base ”community” layer, and
a dynamic layer, which includes links between the individuals only in the case when
they occupy the same location in the transport network. As a result, the connectivity
of the second epidemic layer is time-dependent and is governed by the transport
dynamics. According to our classification, the model from [349] is an example of a
temporally-evolving network, since the temporal evolution of the second layer of the
epidemic network is prescribed by the transport network dynamics, and there is no
feedback from the epidemic state to the network topology. Such a situation would
be, for example, when the transport process becomes adaptive, e.g. by restricting the
mobility of individuals in a certain state of health or by avoiding sites with a high
local prevalence of the epidemic.

12. Climate modeling – Adaptivity in networks of tipping elements

The Earth is a complex system of interacting elements at different spatial and
temporal scales. Obviously, there are a multitude of different adaptive mechanisms
in this system that need to be investigated. At a present time, the authors are not
aware of any modeling approaches that would emphasize adaptive (not merely time-
varying) network structure there. In this section, we propose a possible approach
that could be pursued in the future.

The approach relies on the so-called tipping elements, important large-scale parts
of the Earth system that can have a significant impact on climate [350]. Tipping
elements can undergo large and even qualitative changes in response to natural or
anthropogenic perturbations. In particular, such dangerous large-scale changes can
represent ”tipping points”, such as the potential collapse of the Atlantic Meridional
Overturning Circulation (AMOC), the dieback of the Amazon rainforest, or the dis-
integration of the Greenland ice sheet. Tipping elements include, for example, Arctic
sea-ice, Greenland ice sheet, West Antarctic ice sheet, AMOC, Indian Summer Mon-
soon, and others.

Tipping elements interact with each other and form a complex dynamic network.
In [351], for example, the authors examined the effects of interactions between the
Greenland and West Antarctic ice sheets, the AMOC, and the Amazon Rainforest
using a conceptual network approach. They showed that there is a high probability

44



Figure 10: Adaptive coupling between the tipping elements Greenland Ice Sheet and the West
Antarctic Ice Sheet realized through the Atlantic Meridional Overturning Circulation (AMOC). The
dynamic state (weakening or strengthening) of the AMOC is influenced by another tipping element:
the Amazon rainforest. The AMOC coupling is dynamic (or active) because of its interaction with
the Amzon rainforest and also because of its complex dynamic nature.

that the ice sheets will be the initiators of tipping cascades, while the AMOC acts as
a mediator transmitting cascades.

The results from [351] imply that AMOC can be considered as an adaptive cou-
pling between the ice sheets. Figure 10 illustrates the interaction between the Green-
land and the West Antarctic ice sheets, which is mediated by the AMOC. In addition,
the Amazon rainforest influences the AMOC, leading to an additional active degree
of freedom for the adaptive coupling between the ice sheets.

13. Dynamical networks with adaptive time delays

Time delays occur in applications where signal propagation between the inter-
acting elements cannot be neglected. This is often the case for neuronal networks
[352, 353] or semiconductor lasers [354, 355]. One of the possible forms of the dy-
namical networks with time delayed interactions is as follows

ẋi(t) = fi(xi(t)) +
N∑
j=1

κijg(xi(t),xj(t− τij)), (73)

where τij is the time-delay for the interaction between the j-th and i-th system. Other
variants are possible, for example, the time delays may appear for the self-feedback
terms g(xi(t − τ),xj(t − τ)) or even in the individual dynamics. In the case of the
networks with time delays, the properties of the edges of the corresponding graphs
are described not only by the coupling weights κij but also by the time-delays τij.

In contrast to the adaptive networks introduced in the previous sections, where
the coupling weights κij were changing, the adaptation mechanism can exist for the
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Activity-induced
myelination

Figure 11: The extent of myelination may depend on neuronal activity. Myelination affects the
propagation time delay along the axon. This results in an adaptive mechanism between the neuronal
dynamics and the time delays along the axons.

time delays τij as well [356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367],
i.e., time-delays become dependent on the activity of the nodes τij = τij(x). The
reason for the appearance of adaptive time-delays depends on the physical setup.
For example, in neuronal systems, myelinated axons (white matter) regulate signal
transmission velocity. Moreover, recent studies suggest that the level of myelination
undergoes continuous changes, rather than remaining static [365], and these changes
are activity-dependent [363, 364]. As a result, interaction delays continuously adjust
in order to regulate the timing of neural signals propagating between different brain
areas. In particular, active neurons become more myelinated [364], see. Fig. 11. In
networks of interacting active particles, adaptive time-delays may occur due to the
changes in the positions of the particles and, hence, the distant-dependent interaction
delays. For machine learning applications, time-delay adaptation can serve as an
additional learning mechanism [358].

The existing research with adaptive time delays is scarce. The reasons are twofold:
firstly, the evidences of delay adaptation from neuroscience is more recent [365, 363,
364] than the weight adaptations, secondly, dealing with state-dependent time-delay
is a much harder theoretical problem [368].

Here we shortly mention two models from [360] and [357]. In [360], the coupled
phase oscillators

d

dt
θi(t) = ωi +

N∑
j=1

κij sin (θj (t− τij(t))− θi(t)) , 1 ≤ i ≤ N (74)

with adaptive time-delays of the following form

d

dt
τij(t) = εH (τij(t))

[
−
(
τij(t)− τ 0

ij

)
+ ρ sin (θj(t)− θi(t))

]
(75)

are considered. This form is similar to the adaptation rule (29) for the coupling
weights. Here H(τ) is a ”smoothed” Heaviside function intended to keep the time-
delay non-negative.
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In [357], the event-based adaptation rule is used

τij 7→ τij + εW (∆t), where W (∆t) = sin(∆t)e−|∆t| (76)

and ∆t = ti− tj− τij the inter-spike distance that takes into account the propagation
delay. The discrete adaptation (76) is applied each time the neuron i or neuron j
fires. Such an adaption rule us similar to the STDP plasticity discussed in Sec. 4.1
with the difference that the STDP leads to the updates in the coupling weights. As a
nodal system for determining the state x(t), excitable coincidence detectors are used.
this wikipedia picture

14. Dynamical phenomena in adaptive networks

This section given an overview of dynamical phenomena discovered in adaptive
dynamical networks. Some of these phenomena appear the same as in non-adaptive
networks, such as complete synchronization (Sec. 14.1), multistability (Sec. 14.6),
explosive synchronization (Sec. 14.7), or chimera states (Sec. 14.9). However, adap-
tivity either induces new specific features or requires a more sophisticated theoretical
and numerical treatment of the adaptive systems involved. For example, the classical
master-stability-function method for the study of complete synchronization [369] can-
not be applied to adaptive networks, and an extended approach has been developed
[50]. Also, multistability in adaptive networks appears to be much richer compared
to dynamical networks without adaptivity.

Of particular interest are phenomena that exclusively occur in networks with adap-
tive couplings. These are frequency clusters (Sec. 14.2), solitary states (Sec. 14.3),
recurrent synchronization (Sec. 14.4), self-organized noise resistance (Sec. 14.5) or
heterogeneous nucleation (Sec. 14.8). We note that while we report on the adaptation-
induced phenomena, it is not excluded that some phenomenologically similar effects
may occur in other classes of systems. For example, solitary states were reported
in [370] in the Kuramoto model with inertia, but it is was then shown in [41] that
their emergence can be interpreted by the effect of frequency adaptation, and the Ku-
ramoto model with inertia can be equivalently formulated as an adaptive dynamical
network, see also Sec. 8.

14.1. Complete synchronization and master stability function

Synchronization plays a crucial role in many applications where adaptive dynam-
ical networks emerge. In brain networks this is important, for instance, under normal
conditions in the context of cognition and learning [371], and under pathological con-
ditions, such as Parkinson’s disease [372], epilepsy [373], tinnitus [374], schizophrenia,
to name a few [375]. In power grid networks, synchronization is essential for the
stable operation [181, 183, 189]. It has been shown that adaptation rules such as
spike-timing-dependent plasticity play an important role for achieving synchroniza-
tion [376]. Rigorous conditions for the emergence of phase-locked states in adaptive
Kuramoto-like systems and for the complete oscillator death state in an adaptive
Winfree model have been developed by Ha et. al. [377, 378, 379].
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The methodology of the master stability function [369] is one possibility for the
analysis of synchronization phenomena. This method allows for separating dynamical
from structural features for a given network. It drastically simplifies the problem by
reducing the dimension and unifying the synchronization study for different networks.
For adaptive networks, the master stability function was introduced in [50], where
the following class of N adaptively coupled systems was considered

ẋi = f(xi)− σ
N∑
j=1

aijκijg(xi,xj), (77)

κ̇ij = −ε (κij + aijh(xi − xj)) , (78)

with f(xi) describing the local dynamics of each node, and g(xi,xj) the coupling
function. The coupling is weighted by the scalar variables κij, which are adapted
dynamically according to Eq. (78) with the nonlinear adaptation function h(xi−xj)
depending on the difference of the corresponding dynamical variables. The base
connectivity structure is given by the matrix elements aij ∈ {0, 1} of the N × N

adjacency matrix A which possesses a constant row sum r, i.e., r =
∑N

j=1 aij for
all i = 1, . . . , N . The assumption of the constant row sum is necessary to allow for
synchronization. The Laplacian matrix is L = rIN−A, where IN is the N -dimensional
identity matrix. The eigenvalues of L are called Laplacian eigenvalues of the network.
The parameter σ > 0 defines the overall coupling input, and ε > 0 is a time-scale
separation parameter.

Complete synchronization is defined as x1 = x2 = · · · = xN . Denoting the
synchronization state by xi(t) = s(t) and κij = κsij, we obtain from Eqs. (77)–(78)
the following equations for s(t) and κsij

ṡ = f(s) + σrh(0)g(s, s), (79)

κsij = −aijh(0). (80)

In particular, we see that s(t) satisfies the dynamical equation (79), and κsij are
either −h(0) or zero, if the corresponding link in the base connectivity structure
exists (aij = 1) or not (aij = 0), respectively.

In [50], the stability problem for the synchronous state is reduced to the largest
Lyapunov exponent Λ(µ), depending on a complex parameter µ, for the following
low-dimensional system

ζ̇ =

(
Df(s) + σrh(0)

[
D1g(s, s)

+ (1− µ

r
)D2g(s, s)

])
ζ − σg(s, s)κ,

(81)

κ̇ = −ε (µDh(0)ζ + κ) . (82)

The function Λ(µ) is called master stability function. Note that the first bracketed
term in ζ of (81) resembles the master stability approach for static networks, which,
in this case, is equipped by an additional interaction representing the adaptation.
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Furthermore, the shape of the master stability function depends on the choice of σ and
r explicitly. In case of diffusive coupling, i.e., g(x,y) = g(x−y), the master stability
function can be expressed as Λ(σµ) such that the shape of Λ scales linearly with the
coupling constant σ. This master stability approach has been further generalized for
systems of coupled phase oscillators with heterogeneous adaptation rules [380].

Another example of the master stability function is given in [157] for a system with
the coupling weights aij = σiaij(t), where aij(t) is an externally given function of the
coupling topology, and σi an adaptively changing weight. The system considered
in [157] is a mixture of temporally evolving networks (see Sec. 3.1) and adaptive
networks. The coupling structure is defined by aij(t) and it is predefined, while the
weights σi are determined adaptively according to a certain control rule. We discuss
it more specifically in Sec. 7.

14.2. Frequency clusters

Partial synchronization plays an important role in many real systems [381]. In the
brain, partial synchrony is a common phenomenon allowing for coordinated activity
across different brain regions and allows for complex cognitive processes. Specific
examples are coherent activity in motor cortex [382] or coordinated reset stimulation
[51], to name a few.

Frequency clustering is one of the manifestation of partial synchrony and a typical
phenomenon occurring in adaptive networks [383, 45, 199, 48, 41, 51, 53, 49]. It is
characterized by the emergence of groups of strongly coupled oscillators with the same
average frequency within the groups. In other words, each group is frequency syn-
chronized, but there is no frequency synchronization between the groups – frequency
clusters. At the same time, the phases of the oscillators in the frequency clusters
need not be identical. Frequency clusters have been reported in dynamical networks
of adaptive phase oscillators [98, 100, 45, 48, 199], Hodgkin-Huxley [53], Hindmarsh-
Rose [52], FitzHugh-Nagumo [384]and Morris-Lecar [51] neurons with spiking-time
dependent plasticity, as well as in multiplexed networks [47].

We note that the frequency clusters that we report here are induced by the
adaptivity, and they occur even in the case when the oscillators are identical. On
the other hand, if the oscillators are not identical, e.g., two different groups with
different frequencies, frequency clusters can emerge naturally without adaptation
[385, 386, 83, 387].

Figure 12 illustrates the frequency clusters observed in a network of adaptively
coupled phase oscillators (28)–(29). The network is globally coupled with adaptive
coupling weights. In the case shown, three clusters emerge self-consistently. As one
can see from the coupling matrix in Figure 12(b), the oscillators interact more strongly
within the clusters while there is only a weak interaction between different clusters.
One can show that the strength of the intercluster interaction is proportional to the
time-scale splitting between the node and adaptation dynamics ε in system (28)–(29),
cf. [45].

The most important feature of the frequency cluster is that all its elements move
with the same (average) frequency. A structure of the mutual dynamics (phase lags)
within the cluster may be very different ranging from complete synchronization to
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Figure 12: Example of frequency clusters in a network of adaptively coupled phase oscillators (28)–
(29). (a) Schematic representation of the emerging three clusters and (b) asymptotic coupling
weights matrix. (c) Oscillator’s phases arranged over the circle. Colors denote different clusters.
The oscillators from different clusters move with different frequency Ωi. Parameter values: ε = 0.01,
α = 0.3π, β = 0.23π, ω = 0, and N = 100.

anti-phase or so-called splay states. In [48], it was shown that only three types
of clusters may appear in system (28)–(29): splay, antipodal (including in-phase
and anti-phase), and douple-antipodal. In more realistic neuronal models [51, 52,
53], the observed clusters display complete synchronization between the elements.
Beyond neuronal models, frequency cluster states have been reported for oscillating
electrochemical systems [388].

In order to understand the stability of frequency cluster states different approaches
have been used. Utilizing slow adaptation, see e.g. Eq. (28)-(29) with small ε, Berner
et. al. described the stability in the asymptotic limit (ε → 0) [199, 389]. A more
rigorous result on the stability of frequency clusters in Kuramoto-like systems has
been developed by Feketa et.al. [390]. In their work, they provide a set of sufficient
condition that guarantee the existence and stability of frequency cluster states.

In addition to the localized spatial structures, the emergence of modular and
scale-free networks has been reported [391, 392, 393, 42, 394, 395, 396, 397, 398,
399, 400, 51, 52, 401, 402] in networks with STDP. This fact underlines the potential
importance of adaptive mechanism in the formation of connectivity structures as they
have been experimentally found in brain networks [403, 404]. Furthermore, activity
based adaptive rewiring has even been shown to enhance modularity [112].

14.3. Solitary states

A particular case of frequency cluster states (sometimes called multiclusters) are
solitary states for which only one single element behaves differently compared with the
behavior of the background group, i.e., the neighboring elements. These states have
been found in diverse dynamical systems such as generalized Kuramoto-Sakaguchi
models [405], the Kuramoto model with inertia [370, 41], the Stuart-Landau model,
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Figure 13: Schematic figure illustrating the emergence of recurrent synchronization. The hidden slow
variables govern the recurrent transitions through the phases of synchronization and asynchrony of
a fast network dynamics.

the FitzHugh-Nagumo model, systems of excitable units and even experimental se-
tups of coupled pendula [406]. Solitary states are considered as important states in
the transition from coherent to incoherent dynamics [370]. In [197], the emergence of
solitary states in the presence of plastic coupling weights is investigated. The bifur-
cation scenarios in which solitary states are formed and (de)stabilized are studied.

14.4. Recurrent synchronization

Recurrent synchronization is a macroscopic phenomenon in dynamical networks
involving the recurrent switching between synchronous and asynchronous behavior.
In [123], a periodic switching between phase-locking and frequency clustering is re-
ported. During recurrent synchronization, a macroscopic observable exhibits bursting
behavior, whereas the individual nodes (neurons) are not required to burst at the mi-
croscopic level. In the study [123], the authors consider the nodes to have simple
oscillatory dynamics. Therefore recurrent synchronization as a macroscopic effect
contrasts bursting found in neuronal networks [407, 374, 408, 116], where single neu-
rons can have alternating periods of quiescence and fast spiking.

Other studies [409, 410, 411, 412, 413] have reported the occurrence of a seemingly
similar phenomenon, called collective bursting, in neuronal networks. An important
difference of [409, 410, 411, 412, 413] from [123] is that the collective bursting phe-
nomenon is induced and observable on the microscopic level of individual neurons,
whereas recurrent synchronization is not manifested by bursting on the microscopic
level. An adaptation-induced switching between phase-locking and periodic oscilla-
tion has been observed in [207], which is related to fold-homoclinic bursting [414].

The mechanism for recurrent synchronization in [123] is based on a recurrent slow
dynamics of adaptive coupling weights (hidden variables) between neuronal popula-
tions. When adaptation is heterogeneous (asymmetric), the hidden variables lead to
a re-emergence of episodes of synchronization and desynchronization. [123] reveals
the importance of the following ingredients for the emergence of recurrent synchro-
nization: slow adaptation, i.e., the timescale separation between the adaptation and
the individual neuronal dynamics; asymmetry of adaptation rules; and recurrent (pe-
riodic/spiking) dynamics of the individual neurons. These results suggest that asym-
metric adaptivity might play a fundamental role in the emergence and impairment of
neuronal pattern generators, e.g., in Parkinsonian resting tremor.
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14.5. Self-organized noise resistance, enhanced synchronization

In [122], the authors show that adaptive dynamical networks can be more re-
silient to the desynchronizing effect of noise. This work considers spiking Hodgkin-
Huxley neural populations with adaptive synaptic weights governed by spike timing-
dependent plasticity (STDP). It is found that the mean synaptic coupling in such
systems increases dynamically in response to the increase of the noise intensity, and
there is an optimal noise level, where the amount of synaptic coupling gets maximal in
a roverviewesonance-like manner. This constitutes a noise-induced self-organization
of the synaptic connectivity [415, 416, 417], which effectively counteracts the desyn-
chronizing impact of independent noise over a wide range of the noise intensity.

The phenomenon of self-organized noise resistance was studied in more details in
[14], where the authors investigate a minimal model of two coupled oscillatory neurons
in the presence of noise. First, they considered two coupled phase oscillator models

dθ1 = [ω1 + w1g(θ2 − θ1)] dt+
√
µdW1, (83)

dθ2 = [ω2 + w2g(θ1 − θ2)] dt+
√
µdW2, (84)

where the natural fluctuations (noise) are represented as independent Wiener pro-
cesses with the intensity

√
µ, and the coupling weights wi(t) are adaptive accordingly

to phase-difference-dependent plasticity (PDDP) rule

ẇi(t) = Pi(θ2 − θ1). (85)

The authors apply an averaging procedure to derive specific functions Pi, that ap-
proximate the STDP rule (30)–31. Thus, [14] presents a connection between the
discontinuous STDP adaptation rule and the continuous PDDP adaptation (85).

The work [154] shows that adaptivity can improve the synchronizability of net-
works of different topologies compared to corresponding networks with fixed structure.
The authors of [154] consider diffusively coupled identical oscillators of the form

ẋi = F (xi) +
N∑
j=1

Gij (H(xj)−H(xi)) , (86)

where Gij(t) = AijVi(t) with Aij a binary adjacency matrix and Vi weights that are
controlled by the local synchronization properties of the nodes. More specifically,

V̇i = γ
∆i

1 + ∆i

, ∆i =

∣∣∣∣∣H(xi)−
1

ki

∑
j

AijH(xj)

∣∣∣∣∣ , γ > 0,

where ki is the number of neighbors of the node i. The variable ∆i measures the
difference of the activity of node i and the average activity of its neighbors. Such
adaptation leads to synchronization and thus suppression of the difference ∆i. Also,
one can observe that the coupling weights increase in time (V̇i > 0) if the node i is not
synchronized with its neighbors. This latter fact gives a partial explanation for the
particular mechanisms behind the enhancement of synchronization in this particular
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model. Moreover, the transition to synchronization appears to be hierarchical as the
nodes of different degrees ki possesses different effective coupling strengths.

The work [418] reports how the stochastic burst synchronization can be either
enhanced or depressed by the STDP in the presence of noise. More specifically,
a Matthew effect in synaptic plasticity has been found due to a positive feedback
process. Good burst synchronization (with higher bursting measure, see definition in
[418]) gets better via long-term potentiation of synaptic strengths, while bad burst
synchronization (with lower bursting measure) gets worse via long-term depression.
As a result, a step-like rapid transition to stochastic burst synchronization has been
found to occur by changing the noise intensity, in contrast to the relatively smooth
transition in the absence of STDP. For the individual nodes, the Izhikevich neuronal
model was used [419].

14.6. Multistability

The emergence of different collective states and synchronization patterns has been
discussed in the above sections. Moreover, the co-emergence of the different states
has been studied for various complex dynamical systems [420]. This, so-called mul-
tistability, plays an important role in mathematics and physics. It is also crucial in
a wide range of applications, e.g., in climate science or for the understanding of dy-
namic coordination in the brain [421, 422]. Various mechanisms have been described
in complex dynamical systems that induce multistability. In fact, an adaptive net-
work structure provides additional degrees of freedom for the co-stability of different
dynamical states.

In models of phase oscillators with various forms of network adaptivity, multista-
bility is a common phenomenon. The bistability of splay type (coherent) and other
phase locked states has been found in [100, 98]. In [210], the authors observe the
co-emergence of incoherence and synchronization. Beyond phase oscillator models,
bistable dynamical regimes have been found in adaptive epidemic systems for healthy
and endemic states [28] or in neuronal networks of Morris-Lecar bursting neurons
with synaptic plasticity [51]. In the latter study [51], the two co-stable states corre-
spond to tinnitus related abnormal synchronization and a healthy conditions. The
unlearning of the pathological state was analyzed by using coordinated reset stim-
uli [423, 424, 374]. These findings have also triggered recent work on the treatment
of Parkinson’s disease using vibrotactile stimuli [425], where modelling systems have
shown the same bistable dynamics [426, 427, 428, 129].

In addition to bistable regimes, an adaptive network structure often leads to
multistability of more than two collective states. These co-stable states may in-
clude different types of phase-locked states, e.g., splay and in-phase synchronous
states [429, 101], locked and incoherent states [430], various forms of frequency clus-
ter states [121, 48, 199] or chimera and solitary states [45, 41, 431, 432]. Consequently,
the resulting network structures for the co-emerging states take various forms, lead-
ing to a plethora of different asymptotic coupling structures [433]. The robustness
of multistability with respect to the variation of network structures has been ana-
lyzed in [434]. In [435], the co-stability of different phase locked states for multiplex
adaptive networks has been analytically described using the multiplex decomposition
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method [436]. In addition, the authors found the appearance of additional phase-
locked states induced by the multiplex and adaptive structure.

The multistable emergence of synchronized states and frequency clusters has also
been found for coupled Hodgkin-Huxley systems with synaptic plasticity [14, 53],
where an analytic link between these models and adaptive phase oscillator models
has also been established. Multistability of chaotic dynamics, periodic motion, and
steady states have been found [398] on complex dynamical networks with dissipative
processes between the nodes. Recently, multistability has been considered as an
important feature for functional modelling approach of tumor and sepsis disease by
using adaptive network models [30].

14.7. Explosive synchronization and hysteresis

In the previous sections, we have discussed the role of the adaptive network struc-
ture for the formation of synchronization patterns in homogeneous systems. For het-
erogeneous systems, where e.g. the individual nodes of a network represent dynamical
units with different dynamical properties, the emergence of collective behaviour may
depend on the interaction strength of the dynamical units. A classical example is the
emergence of synchronization in populations of phase oscillators, where each oscilla-
tor possesses a different natural frequency drawn from a given frequency distribution.
In these systems it has been shown that synchronization (coherence) emerges gradu-
ally with increasing interaction strength starting from asynchrony (incoherence) and
ending in a completely synchronous state [82]. From the statistical physics point of
view, this transition from incoherence to coherence can be regarded as a second-order
phase transition.

Another type of phase transition, known as first-order transition, has started at-
tracting attention in the field of dynamical systems. This type of transition has been
found to emerge in various dynamical systems, e.g., showing an abrupt jump from
incoherence to coherence. The latter feature led also to the alternative notion of ex-
plosive synchronization. Explosive synchronization has been found in phase oscillator
systems on scale-free networks [437]. The mechanisms leading to an abrupt change
in the synchronization of phase oscillators have been further investigated by looking
at the synchronization state’s basin of attraction [438] or considering the continuum
limit [439]. Beyond phase oscillator networks, first-order transitions have been also
been found in experimental systems of coupled relaxation oscillators [440]. For reviews
and recent developments on explosive synchronization and explosive percolation, we
refer the reader to [313, 314]. More recently, a universal mechanism has been un-
veiled that is responsible for the emergence of explosive transitions in a generic class
of dynamical systems [331]. In their work, Kuehn and Bick [331] exemplified their
mathematical findings further by showing the existence of an explosive transition in
an adaptive epidemic network model.

Explosive transitions and the related phenomenon of hysteresis have been reported
for adaptive epidemic networks. In [28], the authors found an abrupt transition from
no infections to a very high number of infections, while increasing the probability of
becoming infected. Also in dynamical systems of coupled phase oscillators, a first-
order transition can be induced by applying adaptive coupling schemes. In [43], the
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coupling between the oscillators is scaled by the value of the order parameter, which
in turn depends explicitly on the current state of the oscillators and leads to an
explosive transition. Another type of adaptivity is introduced in [106], where the
adaptation of the link between two nodes is governed by a differential form of the
logistic map and driven by the correlation of the two nodes’ states. The influence
of the node correlations is controlled by a parameter called the correlation thresh-
old which also determines the emergence of an explosive transition. Next to these
differentiable forms of adaptation, in [441] the enhancement of synchronization was
studied in networks that, at each iteration time step, adapt their random Erdös-Renyi
structure with respect to a connection probability that depends on the current state
of the oscillators. This form of adaptation also induces a sudden transition to syn-
chronization. Building on these findings, the emergence of first-order transitions has
also been studied in other complex network structures such as multilayer networks.
In [442, 443], Kuramoto phase oscillator models on multiplex networks have been
investigated. It was shown that in these setups, too, the different forms of adaptation
of the interlayer coupling weights lead to explosive synchronization transitions.

14.8. Heterogeneous nucleation in adaptive networks

Besides explosive transitions, other types of first-order transitions have been re-
ported for adaptive dynamical networks. In particular, in [444] the authors considered
a globally coupled adaptive network of phase oscillators (28)-(29), see also Sec. 3.4.
This paper describes two qualitatively different transitions to synchronization induced
by the interplay of an adaptive network structure and finite size inhomogeneities in
the natural frequency distributions have been described: single-step and multi-step
transitions. These transitions are a result of multistable multiclusters and explo-
sive synchronization. In the multi-step transition, a single large cluster (nucleus) is
formed around an inhomogeneity in the frequency distribution and grows seccesively
until full synchronization is reached. In contrast, in the single-step synchronization
transition, multiple equal-sized clusters (nuclei) are formed around multiple inhomo-
geneities, grow and coexist stably until they merge in an abrupt first-order transition
to full synchronization for high coupling strengths. These transition phenomena are
very similar to heterogeneous nucleation induced by local impurities known, e.g.,
from cloud formation [445], crystal growth [446] or Ostwald ripening in equilibrium
and nonequilibrium systems [447]. This observation bridges between synchronization
transitions in finite-size dynamical complex networks and thermodynamic phase tran-
sitions, where the finite-size induced inhomogeneities in the natural frequencies play
the role of impurities.

In order to derive conditions for the transition scenarios, a mean-field approach
for the considered adaptive dynamical network has been developed in [444] using a
collective coordinate ansatz [448, 449, 450, 451, 452]. To account for the various
multistable multicluster states, the population of all oscillators is split up into sub-
populations. The dynamics of the sub-populations, of the intra-population and of
the inter-population coupling weights is then described by a few mean-field variables.
In [453], a similar approach utilizing the Ott-Antonson ansatz [454] to describe the
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dynamics within the subpopulation has been introduced. A rigorous approach to
mean-field description for adaptive dynamical networks can be found in Sec. 15.

14.9. Chimera states

In this section, we briefly summarize some findings on chimera states in networks
of adaptively coupled dynamical nodes. Commonly, chimera states are considered
as symmetry broken states that consist of coherent (or synchronous) and incoherent
(or asynchronous) parts. Hence, the network of nodes can be divided into these two
groups. It is further often assumed that the two groups have some kind of ”spatial”
relationship between the nodes within each group. In particular, in the first article
in which the notion ”chimera state” was coined, the spatial relation was provided
by a nonlocal coupling structure [455]. Since then various kinds of chimera state in
a variety of dynamical systems have been described [456] and even the concept of
a chimera state has evolved over the years [457]. For more information and insights
into the research on chimeras states, we refer the reader to the rich selection of review
and perspective articles [458, 459, 460, 461, 462]. A review on the mathematics of
chimera states can be found in [463].

One of the first works that focused on the phenomenon of chimera stets in adaptive
networks is by Kasatkin et.al. [45]. Here, the authors used a simple model of globally
and adaptively coupled phase oscillators (28)-(29), see also Sec. 3.4, to show the
emergence of chimera states 1. In fact, they have shown that the network splits up
into two or more groups (clusters) of oscillators for which at least one group consists
of frequency synchronized phase oscillators while another group stays incoherent. The
groups size, further, has been shown to have hierarchical structure meaning that the
number of oscillators in each group differs ”strongly” from each other. It is further
worth to mention that adaptive dynamics leads to intercluster coupling that vanishes
on average, i.e., an effective decoupling between the clusters. Recently the notion
of ”strong chimeras” has been introduced, which are chimera states that ”(i) are
permanently stable, (ii) exhibit identically synchronized coherent domain, and (iii)
do not co-occur with stable global synchronization” [464]. While the first condition
would have to be proved, the numerics indicates that the chimera states from [45]
fall into this category of strong chimeras. In fact, for some regions in the analyzed
parameter space, the presence of the incoherent cluster stabilizes the coherent cluster,
while stable global synchronization is impossible. The stabilization of the coherent
cluster could be possibly proved by an analysis as described in [199, 389].

The chimera states found in [45] have been also analysed on multiplex networks
which allowed for an investigation of the dynamical interaction of chimera states.
In [47], Kasatkin and Nekorkin have shown the robustness of chimeras states against
complexity of the network structure [47]. Beyond that, in [50], the emergence of
chimera states in adaptive networks of phase oscillators and FitzHugh-Nagumo os-
cillators have been observed in an adaptivity induced desynchronization transition.

1Note that the authors called their states chimera-like states due to the missing spatial relation-
ship between the nodes of the coherent and incoherent group.
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Similar states as those found in [45], have been also observed in networks of adaptively
coupled active rotators [432], adaptively coupled FitzHugh-Nagumo oscillators [465]
and populations of bursting neurons equipped with burst-timing-dependent plastic-
ity [466]. Using a mathematical slow-fast analysis, the emergence of chimera and
breathing chimera states have been recently described for a two-layer system of phase
oscillators with adaptive interlayer coupling [467].

In systems of adaptively and pulse-coupled dynamical units, another type of
chimera called itinerant chimera state have been described [468]. This novel type
of chimera states emerged in parameter regions between chimera states and coherent
states. The phenomenon is characterized by a temporally and spontaneously chang-
ing organization of the coherent group. More precisely, at any point in time, the
observed state can be split into a coherent and an incoherent group. However, the
elements of these groups change with time in contrast to chimeras states where the
elements stay the same. The elements in the coherent group may even change com-
pletely which distinguishes itinerant chimeras also from breathing chimeras. Itinerant
chimeras have been also observed in adaptive networks of active rotators [432].

To conclude this section, we would like to comment on the emergence of so-
called ”weak chimeras” in adaptive networks. Weak chimeras have been introduced
by Ashwin and Burylko [469] as a mathematically well-defined notion for a chimera
state in coupled systems of indistinguishable, i.e., identical and interchangeable, phase
oscillators. These states are simply characterized by the existence of three nodes, two
of which have the same average frequency and the remaining node has a different
average frequency. Therefore, a weak chimera state describes a symmetry broken
state. See [469] for more details. With regards to this definition, in fact, multicluster
states on e.g. globally or non-locally coupled networks could be classified as weak
chimera states, see Sec. 14.2 for details.

15. Mathematical methods for adaptive networks

A natural approach to improve the toolbox of mathematical techniques for adap-
tive network dynamics is to start by trying to extend existing methods from static
networks. To understand the difficulties in this process, it is helpful to briefly review
for each method the static setting and then discuss, where the challenges to an ex-
tension are. In fact, a mathematically rigorous theory for adaptive networks is still
in its infancy at this point, so we can only sketch the first steps here focusing on a
didatic introduction to the techniques that have already proven to be useful.

15.1. Mean-Field: Vlasov-Fokker-Planck Equations

The idea of a mean-field for interacting particle systems is deeply ingrained within
the foundations of statistical physics [470, 471, 472, 473, 474]. The idea is that a
“typical particle” can be identified, which feels the interactions with other particles
in a sufficiently uniform way to allow for a single equation to describe the system
dynamics. As an illustration consider a set of ordinary differential equations (ODEs)
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in the form

dxi
dt

= ẋi = fi(xi) +
1

N

N∑
j=1

K(xi,xj), i ∈ {1, 2, . . . , N} =: [N ], (87)

where xi = xi(t) ∈ X describes the state of the i-th particle/node, X is the node’s
phase space, t ∈ R is the time variable, K is a given interaction kernel with K(x,x) =
0, and the individual dynamics fi(xi) is often chosen to be very similar (or even
identical) for each node. We have already seen several application examples, which
are of a form identical or similar to (87). In fact, many famous models fall into the
class (87) including gas as well as plasma dynamics [475], the Kuramoto model [82],
the Desai-Zwanzig model [476], coupled van-der-Pol/FitzHugh-Nagumo systems [477,
478], the continuous Hopfield equations [479], the Hegselmann-Krause model [251],
and the Cucker-Smale model [480], see also Eqs. (8), (9), (10), and (11).

To see mathematically, how a mean-field can arise, let us consider (87) for the
slightly simpler case fi ≡ 0 for all i ∈ [N ]; for example, this situation arises in the
Kuramoto model of identical oscillators in a rotating frame [83]. If we could show
that

1

N

N∑
j=1

K(xi,xj)→
∫
X
K(xi, x̃) u(t, x̃) dx̃ as N →∞,

for a density u(t,x), then it is appealing to replace (87) by a single evolution equation

ẋ =

∫
X
K(x, x̃) u(t, x̃) dx̃. (88)

In this context, the density u(t,x) describes the density of particles found at time t at
position x. One observes that (88) is the characteristic ODE of a partial differential
equation (PDE)

∂tu = −∇x · (uV [u]), V [u](t,x) :=

∫
X
K(x, x̃) u(t, x̃) dx̃. (89)

The PDE (89) is also known as the Vlasov equation [481]. One expects that for
large N , we may use solutions of (89) to approximate the original interacting particle
system (87). To make this more precise, one considers the empirical measure

δN(t) :=
1

N

N∑
i=1

δxi(t),

where δxi(t) are Dirac measures at location xi = xi(t). Considering the time-dependent
family of probability measures µ(t) given by µ(t)(A) :=

∫
A u(t,x) dx for measurable

subsets A ⊂ X , one can hope that for a fixed time T > 0

lim
N→∞

sup
t∈[0,T ]

d(δN(t), µ(t)) = 0, (90)
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where a choice of the metric d is required on the space of (probability) measures.
There are several choices of comparison metric available [482, 483]. The question
whether (90) holds can be answered rigorously in the affirmative as long as K is
sufficiently regular and becomes more difficult for very singular kernels K. One might
anticipate that it is possible to generalize the idea to derive a Vlasov equation in the
context of (fixed) network dynamical systems of the form [484, 184]

dxi
dt

= ẋi = fi(xi) +
N∑
i=1

aNijK(xi,xj), i ∈ {1, 2, . . . , N} =: [N ], (91)

where we write AN = (aNij )
N
i,j=1 for the, possibly scaled, adjacency matrix, where the

superscript emphasizes the dependence on the number of nodes N . Already the static
network case (91) is very difficult as several questions arise: Since the scaling 1/N is
just natural for the all-to-all or very dense networks, what is the correct scaling of
AN as N → ∞? What do we mean by a limit AN → A∞, i.e., what is the limit of
a network of infinitely many nodes? What is the analog to the Vlasov equation for
heterogeneous networks? If a Vlasov-type equation does exist, how is the network
heterogeneity encoded in it? How do we prove approximation results between the
solutions of the finite-dimensional ODEs and the Vlasov PDE now? A lot of recent
progress has been made on these questions. The easiest case occurs if the adjacency
matrix is sampled from a graphon W : [0, 1] × [0, 1] → {0, 1} [485]. One subdivides
the unit interval into N equally spaced sub-intervals Ij and sets (aNW )ij = 1 if W is 1
at the center of the square Ii× Ij and (aNW )ij = 0 otherwise. Therefore, W effectively
encodes all links and can be viewed as the limiting operator of the adjacency matrix
that can act (spatially) on densities

lim
N→∞

ANW → A∞W , (A∞Wu)(t,x) :=

∫ 1

0

W (x,y)u(t,y) dy. (92)

In the case of graphons for static network dynamics, a lot of detailed results exist [486,
487]. For example, one obtains a Vlasov-type equation for (91) and fi ≡ 0 as

∂tu = −∇x(uVW [u]), VW [u](t,x, y) :=

∫
X

∫ 1

0

K(x, x̃)W (y, ỹ)u(t, x̃, ỹ) dỹ dx̃,

(93)
where now the density u = u(t,x, y) also depends on the heterogeneity via the variable
y ∈ [0, 1], which encodes the position of a node in the network. Of course, one could
try to average over the heterogeneity coordinate in some form to obtain a single
mean-field PDE, which captures the average properties of the network over all nodes.
There are now already several studies exploiting mean-field graphon Vlasov limit
PDEs to study stability, bifurcations, and related topics [488, 489, 490]. Indeed,
all the usual tools for PDEs become applicable once one exchanges the large finite-
dimensional ODE system for a family of Vlasov equations, which is much smaller in
many applications. Unfortunately, there are only relatively few networks, relative to
the space of all networks, which admit a graphon limit [491]. This problem has also
recently been tackled and a solution is to view graph limits more abstractly via general
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linear operator limits A∞, so-called graphops [491], and/or via their associated fiber
measures {µ∞y }y∈[0,1]. In particular, viewing A∞ as an operator limit is natural since
each finite-dimensional adjacency matrix AN is a linear operator already (albeit on
growing spaces). Hence, the Vlasov equation in this more general setting is formally
given by [492]

∂tu = −∇x(uVA[u]), VA[u](t,x, y) =

∫
X
K(x, x̃)(A∞u)(t, x̃, y) dx̃, (94)

where instead of a graphon acting via a convolution we more abstractly have the action
of the graphop A∞ acting as an operator. Alternatively, we can use the associated
fiber measures representing A∞ to re-write (94) as

∂tu = −∂x(uVµ[u]), Vµ[u](t,x, y) =

∫
X

∫ 1

0

K(x, x̃)u(t, x̃, ỹ) dµy(ỹ) dx̃. (95)

Several rigorous results exist proving that (94)-(95) are good approximations to the
dynamics on large networks [493, 494]. Yet, static networks are only a first step, and
for adaptive networks a typical class of ODEs is

ẋi = fi(xi) +
1

N

N∑
j=1

aNijK(xi,xj),

(ȧNij ) = gij(x, A
N),

(96)

where the dynamics of the edges is given by the vector field g = gij, which may po-
tentially depend on all node values x = (x1,x2, . . . ,xN)> and the entire adjacency
matrix AN . In fact, we have already seen many examples of the form (96) arising
in applications. We remark that in the substantially simpler case of time-dependent
networks [495, 496] we have that gij is independent of x, so that we have a non-
autonomous variant of (96). In this time-dependent case, one anticipates under rea-
sonable conditions that (94) and (95) are still valid replacing A∞ by a time-dependent
operator A∞(t) and µy by time-dependent measures µy(t). As we have emphasized
several times described in all the applications above, adaptive networks go beyond
this, and then one has to deal with the limit of the ODEs (ȧNij ) = gij(x, A

N). For gen-
eral vector fields gij, this is beyond current mathematical techniques. A first starting
point has been obtained in [96] considering evolution equations for the links of the
form

ȧij = −ε(aij + h(xj − xi)), (97)

where h is a given coupling kernel and ε > 0 controls the scale separation; cf. Sec-
tion 15.4. The rule (97) is local and linear in the link weights. In this case, one can
again prove the validity of a Vlasov equation [96]. The idea is to use the variation-
of-constants formula for (97)

aij(t) = e−εtaij(0) +

∫ t

0

e−ε(t−s)h(xj(s)− xi(s)) ds
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and then insert this formula into (96). This yields a nonlocal-in-time generalized
Kuramoto-type model. Under suitable conditions on h, one can then establish a gen-
eralized Vlasov equation. Yet, the full adaptive case is mathematically still unresolved
at this point.

A directly related class of mean-field problems arise if the original ODEs are
replaced by stochastic ordinary differential equations (SODEs), e.g., given by

ẋi = fi(xi) +
N∑
j=1

aNijK(xi,xj) + σξi, (98)

where {ξi = ξi(t)}Ni=1 are independent vectors of white noises and σ > 0 is a constant
controlling the noise level. For the classical case of all-to-all coupling, it is well-
understood that one obtains a modification of the Vlasov equation, sometimes called
Vlasov-Fokker-Planck equation (VFPE), which contains a Laplacian ∆x arising due to
the noise [497, 498, 499]. Therefore, one conjectures that for heterogeneous networks,
the VFPE for (98) should be

∂tu =
σ2

2
∆xu−∇x(uVA[u]), VA[u](t,x, y) =

∫
X
K(x, x̃)(A∞u)(t, x̃, y) dx̃. (99)

For all-to-all coupled systems, many mathematical techniques exist to derive (99),
see e.g. [500]. However, even the theory of VFPEs for static networks is still being
developed at this point and the case of adaptive networks is mostly open although
the technique mentioned above via the variation-of-constants formula evidently gen-
eralizes quite directly.

15.2. Mean-Field: Moment Equations

Instead of studying a detailed mesoscopic evolution equation as in Section 15.1,
one might be content with capturing important macroscopic observables. One option
to derive such observables are the classical moments of a probability distribution.
Indeed, if we consider the VFPE (99), then one can define the p-th moments and the
p-th centered moments as

mk(t, y) :=

∫
X
u(t,x, y)p dx, mk(t, y) :=

∫
X

[u(t,x, y)−m0(t, y)]p dx. (100)

As before, averaging over the heterogeneity variable y would lead to even more reduced
moments. Once certain moments are chosen, then one can differentiate (100) with
respect to t and derive differential equations [501]. Yet, for adaptive networks, using
the definitions (100) is oftentimes physically not very informative as one is primarily
interested in the interplay between node and link dynamics.

Hence, it can be beneficial to design/select observables particularly well-suited for
adaptive networks [6, 284, 502]. Let us illustrate this approach first in the context
of susceptible-infected-susceptible (SIS) dynamics on a static network with infection
rate β and recovery rate γ, which we already encountered in Section 10. Let vi(t) for
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i ∈ [N ] denote the random variable having a value U ∈ {S, I} at time t at node i.
The expected values are defined by

[U ](t) :=
N∑
i=1

P(vi(t) = U)

so that [S](t) and [I](t) are deterministic processes denoting the average number of
the susceptible and infected populations respectively. Then we define the expectations
for the proportions of the links as well

[UV ](t) :=
N∑
i=1

N∑
j=1

aNijP(vi(t) = U, vj(t) = V ), U, V ∈ {S, I},

where we recall that (aNij )
N
i,j=1 is the adjacency matrix. Note carefully that here links

between two susceptibles contribute twice to the [SS] count, so there are hidden com-
binatorial factors2. Of course, similar words-of-warning and generalized definitions
apply for triplets

[UVW ](t) :=
N∑
k=1

N∑
i=1

N∑
j=1

aijajkP(vi(t) = U, vj(t) = V, vk(t) = W ),

for U, V,W ∈ {S, I}, and so on for higher-moments. The idea of a mean-field approx-
imation is now based upon tracking averages. For an SIS epidemic with the infection
rate β and recovery rate γ on an undirected unweighted graph one may prove [284]
that

˙[S] = γ[I]− β[SI],
˙[I] = β[SI]− γ[I].

(101)

The result is intuitive: infections take place proportional to the average number of
SI-links multiplied by the infection rate β, while recovery takes place proportional
to average infected population multiplied by the recovery rate γ. Of course, we could
even omit one equation by using the conservation property [S] + [I] = N .

The proof of (101) uses the exact master equation for SIS dynamics. Let xkj (t) be
the probability of being in state

Skj for j ∈ {1, 2, . . . , ck} where ck :=

(
N
k

)
and we can interpret ck as the number of possible states having k infected nodes. We
can then group the probabilities in a (column)-vector

xk := (xk1, x
k
2, . . . , x

k
ck

)>.

2In fact, definition/conventions of the combinatorial factors seem to differ across the literature.
Hence, it is always advisable to check the conventions used in a certain source.
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Then a relatively straightforward calculation [284] shows that the master equation on
a general undirected and unweighted graph GN for the SIS model takes the form

d

dt
(xk) = Akxk−1 +Bkxk + Ckxk−1, k ∈ {0, 1, . . . , N} (102)

with A0 and CN being zero matrices and directly computable matrices Ak, Bk and
Ck. Note that the structural form of (102) arises because in a single step of infection
or recovery, the state of the dynamics only changes by one infected node. To see a
link between the master equation (102) and (101), we observe that

[I](t) =
N∑
k=0

ck∑
j=1

kxkj (t), [S](t) =
N∑
k=0

ck∑
j=1

(N − k)xkj (t)

as well as

[SI](t) =
N∑
k=0

ck∑
j=1

NSI(Skj )xkj (t),

where NSI(Skj ) is the number of edges between infected and susceptible vertices in
the state Skj . We introduce the helpful auxiliary notation

ek := (1, 1, . . . , 1) ∈ R1×ck

to express summations in a more compact form. The strategy is now clear: differen-
tiate the definitions of [I](t) and [S](t), and then simplify until [I] and [SI] appear.
We start with [I](t) and obtain

˙[I] =
N∑
k=0

kek
d

dt
(xk) =

N∑
k=0

kek(A
kxk−1 +Bkxk + Ckxk+1)

=
N−1∑
k=0

(k + 1)ek+1A
k+1xk +

N∑
k=0

kekB
kxk +

N∑
k=1

(k − 1)ek−1C
k−1xk

=
N∑
k=0

(
(k + 1)ek+1A

k+1 + kekB
k + (k − 1)ek−1C

k−1
)
xk.

To simplify this expression further, we claim that

kek+1A
k+1 + kekB

k + kek−1C
k−1 = 0 ∀k ∈ {0, 1, . . . , N}. (103)

To see this, consider one finds after some algebraic manipulation that

−(ek+1A
k+1)i − (ek−1C

k−1)i = Bk
ii = (ekB

k)i

which holds for all i ∈ [ck] so (103) is indeed true. This simplifies our derivative
computation to yield

˙[I] =
N∑
k=0

(
ek+1A

k+1 − ek−1C
k−1
)
xk = β[SI]− γ[I],
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where we have used a few further relatively simple algebraic manipulations. The
calculation for ˙[S] is almost completely analogous.

For adaptive networks, these types of calculations for master equations are still
valid, just that more terms appear due to the adaptation rule. In particular, the
structure of (102) has to also track changes in the links. As a concrete example, let
us re-consider the SIS model with adaptive re-wiring considered in Section 10. The
adaptation rule is to re-wire SI-links at rate w to SS-links [28], i.e., individuals apply
social distancing by breaking links to infected nodes and re-wiring them to susceptible
nodes; see also [328, 503, 289, 295]. Following the procedure via master equations, or
even directly writing down an ODE system analogous to (101), one obtains

˙[S] = γ[I]− β[SI],
˙[II] = β[SI] + β[ISI]− γ[II],
˙[SS] = β[SI] + w[SI]− β[SSI],

(104)

where the total number of links is conserved. So [SI] can be written in terms of [II]
and [SS] and where some care has to be taken regarding combinatorial pre-factors
depending upon, which definition of the network motifs is used.

The key problem for the static case (101) and the adaptive case (104) is that the
ODEs are not closed, i.e., they actually form an infinite chain of equations, which is
not really simpler than tracking the full network dynamics and/or VFPEs. A classical
approach to circumvent this problem is to use moment closure methods, which aim
to express higher moments as functions of lower moments; for a detailed literature
review regarding moment closure see [502]. In the context of (101) and (104), moment
closure is the search for mappings H1,2 that satisfy

[SI] ≈ H1([S], [I]), ([SSI], [ISI]) ≈ H2([S], [I], [SS], [SI], [II]). (105)

The main issue in trying to find (105) is that the approximation ideally should hold for
all possible initial conditions, all parameter ranges, and over all times. The same issue
appears in all moment closure schemes. As expected, no general rigorous solution to
this problem has been found. The current pre-dominant strategy is to use physical
principles upon which to postulate a closure mechanism. For example, one frequently
used closure scheme [504, 505] for static SIS epidemic models such as (101) is

[SI] ≈ [S][I],

which is exact for the complete network but generally fails for heterogeneous complex
networks. For (104), a commonly used closure scheme is the pair approximation [506,
507, 508]

[UVW ] ≈ [UV ][VW ]

[V ]
, for U, V,W ∈ {S, I}.

The pair approximation turns out to be quite good when compared to direct numerical
network simulations for many heterogeneous complex networks. Therefore, it also
has been used frequently in adaptive epidemic dynamics and other classes of adaptive
network models; see [284] and references therein.
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In addition to searching for good closures, e.g., based upon entropy principles [509,
510, 511], an alternative approach to improve the mean field approximation via mo-
ments, is to change the set of observables. In contrast to the moment equations
outlined above, which are also called homogeneous, taking observables that account
directly for the node degree are called heterogeneous moment equations. A wide
variety of approaches to heterogeneous moment equations and selecting associated
closures exists, see e.g. [268, 266, 512, 513, 284, 315, 514, 515, 516, 517]. To illustrate
the idea, let us consider the adaptive voter model [254, 262, 259, 265]. The classical
voter model [518] considers nodes with two opinions, say A and B. At each time step
a link XY with X, Y ∈ {A,B} is selected. If X 6= Y the link is active with one node
chosen at random adopting the neighbor’s opinion and if X = Y nothing happens.
The adaptive voter model includes social segregation. For the selected link XY , there
is now a probability p of re-wiring an active link to an inactive one and with 1 − p
the usual process happens. The homogeneous moment equations are

˙[A] = 0,
˙[AA] = 1

2
[AB] + (1−p)

2
(2[ABA]− [AAB]) ,

˙[BB] = 1
2
[AB] + (1−p)

2
(2[BAB]− [ABB]) ,

(106)

with the obvious conservation laws determining [B] and [AB]. One can then apply
closure schemes, such as pair approximation, to (106). Instead of homogeneous mo-
ments, such as [A], [B], [AB], and so on, one may consider heterogeneous observables
involving the degree of the nodes. For example, the heterogeneous pair approxima-
tion [516, 265] considers the active link densities [AB]k,k′ between nodes of degree k
and k′. After quite a lengthy derivation counting all possible changes in these new ob-
servables, one can exactly write down moment equations [266], which are structurally
of the form

˙[AB]k,j = Fk,j
(
{[AlBl′ ] : l, l′ ≤ l̄}, {Ql : l < l̄}; p

)
, (107)

where l̄ is the maximal degree, [AlBl′ ] are densities between nodes of type A with
degree l to nodes of type B with degree l′, Ql is the excess degree distribution, and we
have an equation for each pair (k, j). So the heterogeneous pair approximation (107)
gives a vector field F depending on densities of nodes between all possible degrees.
Observe that (107) is a closed - albeit very large - system of ODEs, where one has
already implicitly made an approximation of the correlations on the third-order level.
Although the heterogeneous pair approximation tends to be more accurate in many
situations, the immediate drawback is visible in comparing the analytical tractability
of (106) to the structurally very complex ODEs (107). This trade-off also occurs for
all other known heterogeneous moment equations. For example, another approach are
active neighborhood / approximate master equation techniques [513, 315, 519], where
one selects observables Xk,m of nodes with degree k in state X and m neighbors in
state Y 6= X for X, Y ∈ {A,B} and m ∈ {0, 1, . . . , k}. Then one obtains ODEs [266],
which are structurally of the form

Ȧk,m = F̃k,m ({Al,n : l ≤ k + 1, n ≤ m+ 1}; p) , (108)
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where the system defined by the vector field F̃ can be closed again for a fixed maximal
degree. Interestingly, the ODEs (108) turn out to contain various sums such as∑

k,m

Ak,m,
∑
k,m

Bk,m,
∑
k,m

(k − n)Ak,m, . . . ,

that can be interpreted as moments. Using these moments one can re-write the active
neighborhood / approximate master equation ansatz (108) as a PDE [267]. To make
this transition, one considers yet another observable Q(t, x, y) :=

∑
k,mAk,mx

kym,
which yields structurally a PDE of the form

∂tQ = g0(x, Q̄1; p)Q+ g1(x, y, Q̄2; p) · ∇Q, (109)

where g0,1 are explicit maps and Q̄1,2 are nonlocal terms depending on derivatives of
up to j-th order evaluated at a particular normalization point. Observe carefully that
the terms appearing in (109) are not completely unexpected, as one can draw clear
similarities to Vlasov(-Fokker-Planck) mean-field limit PDEs for network dynamics
as described above. Indeed, Vlasov equations for heterogeneous networks are first-
order transport-type PDEs with nonlocal terms accounting for the heterogeneity. For
Vlasov PDEs one can also use moments to go back to an infinite ODE system of ob-
servables, which demonstrates a very nice consistency of ideas needed in mathematical
mean-field approaches to tackle adaptive network dynamics.

15.3. Continuum Limit

The mean field limit approaches in Sections 15.1-15.2 are based upon a probabilis-
tic viewpoint from kinetic theory that tracks the density of a typical node or suitable
macroscopic observables. An alternative approach is to keep each individual node vn
with phase space X , associate each node location with a geometric position in a space
Y , and then construct a limiting differential equation on Y with values in X . The
most classical example is the model

dvi
dt

= vi+1 − 2vi + vi−1, , v−N = vN , vi = vi(t) ∈ R = X , i ∈ {−N, . . . , N}.
(110)

Taking Y = [−1, 1], placing vi at spatial location xi = i/N , scaling time as t 7→ t/N2,
and taking N → +∞ yields in the continuum limit the diffusion/heat equation

∂tv = ∂2
xv, v = v(t, x), v(−1) = v(1), x ∈ [−1, 1]. (111)

Of course, one may view (110) as a network dynamical system, albeit a very structured
system with very local coupling (on a spatial circular domain). For static dynamical
systems on complex networks, one naturally obtains continuum limits, which are
integro-differential equations defined via a graph limit operator [520, 191, 521, 522].
Let us illustrate this approach already more directly for adaptive network dynamical
systems [523] of the form

v̇i = f(vi) +
1

N

N∑
j=1

(aNij )K(vi, vj),

(aNij )
′ = −ε(aNij + h(vi, vj)),

(112)
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which we have already studied several times, e.g., when we have discussed a VFPE for
the simpler case when h only depends upon the difference vj − vi (see also Eqs. (26)-
(27), (28)-(29)). As before, let us assume that the graph limit of the adjacency
matrices (aNij )

N
i,j=1 = AN → A∞ as N → ∞ exists. Let us fix a reference space Y =

[0, 1] for the nodes endowed with the Lebesgue measure µY . Suppose A∞ is a bounded,
self-adjoint, and positivity-preserving operator A∞ : L∞([0, 1],R) → L1([0, 1],R).
This assumption just means that A∞ behaves like an adjacency matrix in the infinite
limit, and one also refers to A∞ as a graphop [491]. If we want to represent also
sparse graphs in the continuum limit, then using only graphops defined via graphons
as in (92) is not sufficient. Hence, we consider more general graphops, which can be
represented via the Riesz representation theorem as

(A∞g)(y) =

∫ 1

0

g(z) dηy(z),

where {ηy}y∈[0,1] are called fiber measures. Each ηy describes the links connected to
y. Then the continuum limit of (112) is given by [523]

∂tv(t, y) = f(v(t, y)) +

∫ 1

0

K(v(t, z), v(t, y)) dηzt (y), (113)

∂tη
y
t (z) = −εηyt (z)− εh(v(t, y), v(t, z))µY(z). (114)

The first equation (113) is relatively self-evident as it is the direct analog of our
diffusion/heat equation construction, where the integral term captures the nonlocal
coupling. These types of continuum limit integral equation appear in quite a number
of contexts and they become easier, when ηzt (y) also has a density W so that dηzt (y) =
W (y, z) dz leading back to the graphon case as W has then the interpretation of a
graphon. The second equation (114) arising due to adaptivity is more delicate as it
is formally written as a differential equation of measures and has to be interpreted
weakly via test functions. Proving the existence of a continuum limit mathematically
seems to be slightly easier than working with VFPEs but effectively both types of
equations are deeply linked as can be gathered from the discussion revolving around
the characteristic equation (88) in Section 15.1.

15.4. Multiscale Decomposition

We have already developed mathematical techniques for adaptive network models
of the form (112), but have not exploited the time scale separation parameter ε
between fast node dynamics and the slow link dynamics [524]. This scale separation
occurs quite often, e.g., in neuroscience and machine learning, where the speed of
information propagation is much faster than the scale of synaptic plasticity or weight
learning. Of course, in other applications, the time scale separation could potentially
be reversed. Therefore, the general theory of fast-slow dynamical systems applies [525,
526, 527, 524, 528], which covers the case of general ODEs such as

ẋ = f(x,y, ε),
ẏ = εg(x,y, ε),

(115)
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where f : Rm × Rn × R → Rm and g : Rm × Rn × R → Rn are sufficiently smooth
maps. In the context of adaptive networks, our previous notation entails that (115) is
the case of fast node dynamics and slow link dynamics but as discussed in Section 3,
the reverse case also occurs and then one would just have to swap the labels of the
variables. Taking the limit ε→ 0 in (115) yields the fast subsystem

ẋ = f(x,y, 0),
ẏ = 0,

(116)

so that only the fast variables x are dynamic, while the slow variables y become
parameters. The steady states of (115) form the critical manifold

C0 := {(x,y) ∈ Rm+n : f(x,y, 0) = 0}. (117)

In addition to the fast subsystem dynamics that takes place in Rm over a y-parametric
family of spaces, one can induce a slow subsystem dynamics on C0. Re-scaling s := εt
in (115) and taking the limit ε→ 0 we get

0 = f(x,y, 0),
y′ = g(x,y, 0),

(118)

where prime denotes differentiation with respect to s. The differential-algebraic equa-
tion (118) can be viewed as an ODE with phase space C0. The main regularity as-
sumption of multiple time scale dynamics is to start from submanifolds S0 ⊆ C0,
which are normally hyperbolic, i.e., if for any p ∈ S0, the fast subsystem lineariza-
tion Dxf(p, 0) ∈ Rm×m has no eigenvalues with a zero real part. Then the Fenichel-
Tikhonov Theorem [529, 525, 530] implies that there exists a perturbed slow manifold
Cε on which the dynamics is conjugate to the slow subsystem on S0, and Cε has the
same stability properties with respect to the fast subsystem as S0. These results
do directly apply to adaptive network dynamics of the form (112), for an example
with fast link dynamics and slow node dynamics, see [531]. However, one problem
frequently appears that calculating (117) explicitly (or even numerically) for large
finite-size networks of size N � 1 can be difficult, as it amounts to solving a large
system of nonlinear equations f(x,y, 0) = 0. Furthermore, even if we were able to
characterize C0 easily by knowing all the steady states of the static network, the adap-
tivity can add up to m = N2 slow variables if the link weights scalar-valued, so the
slow flow (118) is potentially even more complicated. Hence, alternative strategies
are required.

One option is to start with small adaptive networks focusing just on the behavior
of small motifs, which links to the theory in Section 15.2. As an example, let us
consider adaptive consensus dynamics on a triangle motif [532]

ẋ = L(x,y, ε)x,
ẏ = εg(x,y, ε),

L(x,y, ε) =

w + 1 w −1
−w w + 1 −1
−1 −1 2

 (119)

where x ∈ R3, y ∈ R, and the weight w = w(x1,x2,y, ε) in the Laplacian L is a
smooth function of its arguments. Although the fast dynamics has a nice structure
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and we only consider one slow variable to adapt the link dynamics, using geometric
methods from multiple time scale dynamics is already challenging [533, 534]. Un-
der the assumption of an affine linear mapping for w, using a conservation law to
eliminate one fast variable, eliminating another fast variable by a globally stable fast
direction and applying suitable coordinate transformations, one can reduce (119) to
the following planar fast-slow system

Ẋ3 =− (2W̃ (X3, Y ) + 1)X3,

Ẏ =εG(X3, Y, ε).
(120)

The key point to observe is that already the subset S0 = {(X3, Y ) ∈ R2 : X3 = 0}
is not normally hyperbolic in general as −(2W̃ (0, Y ) + 1) may be zero for suffi-
ciently generic adaptive Y -dynamics. Hence, even in the simplest case, we can-
not hope for completely normally hyperbolic multiscale adaptive network dynam-
ics. Analyzing singularities, where normal hyperbolicity is lost turns out to be much
more complicated. There is a multitude of asymptotic [535, 536, 537, 538], geomet-
ric [533, 539, 540, 541], and/or numerical techniques [542, 543, 544, 545] to carry this
out; for a detailed list of references of multiple time scale technqiues we refer to [524].
A geometric desingularization (or blow-up) analysis proves [532] that already semi-
linear consensus dynamics (119) on a triangle motif can have highly sensitive orbits
called canards [546, 547].

Instead of going to small motifs, we can also take the limit as N →∞ in the spirit
of Sections 15.1 and 15.3. Then one hopes that the mathematical situation improves
for fast-slow systems in infinite dimensions. As an example, consider the continuum
limit (113)-(114), which we can (very formally!) view as an evolution equation of the
form

∂tv(t, y) = F(v(t, y), ηzt (y)),
∂tη

y
t (z) = εG(v(t, y), ηyt (z)).

(121)

Evidently, the mathematical interpretation is already delicate as one might want to
use a Banach space as a phase space for (121), but the measures ηzt describing the
graph limit are often best treated on metric spaces. In the case of Banach spaces,
there has been recently a development of multiple time scale dynamics in the infinite-
dimensional setting [548, 549, 550], which has the clear potential to be general enough
to eventually also apply to multiscale network limit systems such as (121).

Lastly, we briefly comment on the use of multiscale techniques for adaptive net-
work dynamics when the node and edge dynamics is not explicitly given by ODEs.
For ODEs, it is often slightly easier to identify the multiscale structure and also to
apply existing ODE techniques. For models, which at least partially, use discrete-time
updates, the first question is how one identifies scale separation in the first place. As
a first example, let us consider the Jain-Krishna adaptive network model [551, 552].
The model considers a set of continuous-time autocatalytic ODEs [553] together with
an adaptive discrete-time directed network structure. At each node j, one considers
the ODEs

dxi
dt

=: ẋi = (A>x)i − xi
d∑

k=1

(A>x)k, i ∈ {1, 2, . . . , N}, (122)
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where the adjacency matrix A = A[0] is usually chosen as a random Erdős-Renyi
graph and one also imposes two constraints

N∑
k=1

xk = 1 and xk ≥ 0 ∀k, (123)

which are just mass and non-negativity conservation. Adaptivity arises by try-
ing to model evolutionary elimination of non-successful species/nodes. Suppose the
ODEs (122) have converged (sufficiently close) to a steady state x∗ for the adjacency
matrixA = A[0]. Then define the set of indices J∗ := {j ∈ {1, 2, . . . , d} : xj = mink xk},
which just picks out the species with minimum steady state value. Then we select
some j∗ at random from J∗ and re-sample aij∗ and aj∗i for i 6= j from a probability
distribution, which yields a new matrix A = A[1]; the process can now be repeated.
In this context, there is an implicit time scale separation made in the model, as we
have assumed that the adaptivity step only occurs after we have fully, or at least
approximately, converged to the steady state. This means that the node dynamics
is effectively fast in comparison to a slow adaptive dynamics of the topology. This
scale separation can then still be exploited in the mathematical analysis by treat-
ing the node and link dynamics as separate singular limit processes [27]. A similar
principle to identify and exploit scale separation also works for purely discrete-time
systems. As an example, let us consider the Bornholdt-Rohlf model [220, 13] for
self-organized criticality on directed and signed networks. Suppose nodes have states
{xi(t)}Ni=1 ∈ {±1} and links have values A = {aij(t)}Ni,j=1 ∈ {−1, 0,+1} without
loops. The initial network t = 0 is usually random Erdős-Renyi graph with uniformly
distributed random node values. The node dynamics is by a parallel update given as

xi(t+ 1) =

{
sgn([A(t)x(t)]i(t)) if [A(t)x(t)]i(t) 6= 0,
xi(t) if [A(t)x(t)]i(t) = 0.

(124)

After Tv node dynamics steps (124) have finished, one measures the average activity
over the last Ta := bTv/2c steps

Ai :=
1

Tv − Ta

[
Tv∑
t=Ta

xi(t)

]
. (125)

Nodes with |Ai| = 1 indicate dynamically frozen states, while |Ai| < 1 are active
nodes. The adaptivity of the model is introduced by trying to activate frozen nodes
and reduce activity in highly dynamic nodes. Choose a site i at random and calculate
Ai using (125). Let 0 ≤ δ ≤ 1 be a parameter; if |Ai| > 1−δ then i receives a new link
aij, with a randomly chosen link weight in {±1}, from a node j chosen at random. If
|Ai| ≤ 1 − δ then one of the existing nonzero links is deleted. After this topological
update the dynamics switches again to Tv node dynamics steps (124). This model
also has a natural time-scale separation given by the time scale Tv which is usually
very large so that the node dynamics is fast, while the link dynamics is slow. One can
again exploit this scale separation principle to understand self-organized criticality
using low-dimensional fast-slow dynamical systems [554].
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15.5. Bifurcations & Patterns

Bifurcation theory, among the many other classical tools from nonlinear dynamics,
can essentially be carried over to systems involving network dynamics directly, and
this has been utilized to find many of the effects discussed in Section 14. Yet, for
adaptive network dynamics, there has been one additional important paradigm that
has evolved in recent years, where bifurcation theory [555, 556, 557] has played a
key role. Suppose we have, e.g. via the methods in Sections 15.1-15.4, derived a
tractable system of differential equations or iterated maps for dynamical variables X
with several system parameters P remaining. For simplicity, let us consider the case
of ODEs

Ẋ = F (X, P ), X = X(t) ∈ Rd. (126)

As outlined in the beginning of Section 15, one often wants to compare the dynamics
of adaptive networks with their static counterparts. Hence, in many problems one
can identify a single parameter q controlling the strength of the adaptive dynamics.
For example, in (112) we would take the slow adaptation rate q = ε, while for the
epidemic SIS model (104), we would take the re-wiring parameter q = w. Once this
identification has been made, it has become common to analyze bifurcation scenarios
varying two parameters P = (p, q), where p is a primary bifurcation parameter already
present in the static network node dynamics. For example, in (112) we could take p as
a strength for the kernel coupling via K, while for the epidemic SIS model (104) one
may take the infection rate p = β. Via this strategy, one can compare the differences
in bifurcation diagrams with the main bifurcation parameter p for non adaptivity
(q = 0) with those for the adaptive case (q 6= 0). In general, it has been found,
that adaptivity can shift bifurcation points [246, 503, 14], change stability of patterns
[48], generate new patterns [238, 325], alter the criticality of transitions [28], and
induce myriad novel effects in bifurcation diagrams such as new early-warning signs
for bifurcations [503]. In fact, apart from the main physical consequences, the key
mathematical observation is that co-dimension two bifurcation theory is the natural
framework for adaptive networks as long as one wants to compare static to adaptive
networks. This viewpoint has been recently used in [331] to explain that the transition
from non-explosive (second-order, supercritical, soft) transitions to explosive (first-
order, subcritical, hard) ones cannot only be induced by adaptivity but is a generic
effect once static network dynamics is expanded to include more complicated network
dynamics such as multiplex or higher-order coupling.

16. Conclusions and Perspectives

In this review, we have introduced the modeling approach of adaptive dynamical
networks and illuminated various of its capabilities. As the notion of ”adaptivity” has
been used in several contexts in the literature, we have elaborated on the distinction of
the class of models considered in this review from other model classes considered in the
vast literature on adaptive mechanisms. In this regard, we have provided several ideas
how to classify adaptive dynamical networks starting from various features of such
systems. The major part of this review is concerned with the applications of adaptive
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dynamical networks. We have devoted individual sections to show applications to
neural and physiological systems, artificial intelligence, control schemes, power grids
as well as to social, epidemiological and transport networks. Building on the models
that have been introduced in these sections, we have given an overview on the plethora
of dynamical phenomena arising in such systems. In the last section of this review, we
show several state-of-the-art mathematical tools that can be used to analyse adaptive
dynamical systems.

In summary, adaptive dynamical systems are omnipresent in nature and technol-
ogy and can show various dynamical phenomena. Here, we have reported on the
current status of these fascinating class of dynamical models which capabilities for
understanding real-world dynamical systems is far from exhausted and several are
indeed in its infancy. In particular, also for the future research there a numerous
possibilities to study these systems, their dynamics and to develop analytic methods
to describe them.

More precisely, we have discussed in Sec. 3 the distinction between continuous
and event-based network adaptation. For some event-based rules, in particular in
systems of coupled oscillators, exist continuous adaption rules that provide a very
good approximation and are analytically more tractable. These approximations have
been successfully used to understand the dynamics in systems where the adaptation
is governed by spike timing-dependent plasticity [14, 453]. It is, however, an open
question as to what the approximation of event-based adaption by a continuous rule
could be used for other adaptive dynamical networks as well.

Another classification feature of adaptation rules, namely the adaptation rate, see
Sec. 3, has become of interest. In particular, recently an explicit splitting of time
scales has been utilized to derive conditions for the emergence of several complex
dynamical states in (rather small) adaptive dynamical networks [558, 123, 467]. How
to generalize these findings to larger or more complex systems is still elusive. In
addition, small systems, in particular systems of two coupled oscillators, have been
used to describe the emergence of chaos [558, 559, 560, 561] or recurrent synchroniza-
tion [123] in adaptive dynamical networks or to explain the interplay of an adaptive
network structure with noise [562, 563, 564, 565] or delay [566]. Also here the ques-
tion naturally arises, how the observed phenomena and derived findings transition to
larger systems.

Another emerging research direction with respect to adaptive dynamical networks,
concerns the study of mean-field theories. Mean-field approaches are powerful in
describing the dynamics for large populations of interacting systems, see e.g. [567] for
a review on mean-field approaches for phase oscillator models. These approaches have
been developed for a plethora of dynamical systems, however, for adaptive dynamical
networks only recently first results have been achieved [523, 96, 453, 444] and therefor
many problems are still unsolved.

Generalizing dynamical networks to more complex network structures such as mul-
tilayer networks, hypernetworks, higher-order networks or simplicial complexes is an
interesting research perspective for adaptive dynamical networks since the interplay
of the different ”types of complexity” invoked by adaptivity and a complex network
structure is little investigated. For mulilayer networks [568, 47, 435, 442, 569] as well
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as simplicial complexes [570, 571, 572] for results have been obtained but there is
much more to understand to obtain a comprehensive picture of the interplay.. In
more general terms, adaptive dynamical networks provide a test bed to study the
relation between function and structure of a dynamical network. In this regard e.g.
finding good estimates for the network topology from the resulting dynamics (data)
is an ongoing research question [573, 574, 575] which has been only little studied from
the adaptive dynamical network perspective [576].

Adaptivity in a general sense is a widespread feature of technological as well as
natural systems and many research has been devoted to understand its impact on
the emergent dynamics [577]. Throughout this review, we have highlighted the power
of adaptive dynamical network to model realistic dynamical systems by capturing
their temporal changes of the interaction structure. We believe that adaptive dynam-
ical networks can serve as a new generic modeling paradigm for complex dynamical
systems, that is fundamental to understand the complex interplay of structure and
function.
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of excitation waves on trees and random networks, Europhys. Lett. 106 (2014)
68001. doi:10.1209/0295-5075/106/68001.
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É. G. Rodŕıguez, Cytokines, chemokines and growth factors, in: J. M. Anaya,
Y. Shoenfeld, A. Rojas-Villarraga, R. A. Levy, R. Cervera (Eds.), Autoimmu-
nity: From Bench to Bedside, El Rosario University Press, Bogota, Colombia,
2013, Ch. 9, pp. 133–168.

[134] G. Altan-Bonnet, R. Mukherjee, Cytokine-mediated communication: a quan-
titative appraisal of immune complexity, Nat. Rev. Immunol. 19 (4) (2019)
205–217. doi:10.1038/s41577-019-0131-x.

[135] C. Fleischmann, D. O. Thomas-Rueddel, M. Hartmann, C. S. Hartog, T. Welte,
S. Heublein, U. Dennler, K. Reinhart, Hospital incidence and mortality rates
of sepsis: an analysis of hospital episode (DRG) statistics in Germany from
2007 to 2013, Dtsch. Arztebl. Int. 113 (10) (2016) 159. doi:10.3238/arztebl.
2016.0159.

[136] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015) 436.
URL https://doi.org/10.1038/nature14539http://10.0.4.14/

nature14539

84

www.frontiersin.org
www.frontiersin.org
www.frontiersin.org
https://doi.org/10.3389/fninf.2018.00032
https://doi.org/10.3389/fninf.2018.00032
www.frontiersin.org
www.frontiersin.org
www.frontiersin.org
www.frontiersin.org
https://doi.org/10.3389/fnana.2016.00057
https://doi.org/10.3389/fnana.2016.00057
www.frontiersin.org
https://doi.org/10.3389/fphys.2021.716556
https://doi.org/10.3389/fnetp.2021.711778
https://doi.org/10.3389/fnetp.2021.711778
https://doi.org/https://doi.org/10.3389/fnetp.2022.996784
https://doi.org/10.1038/s41577-019-0131-x
https://doi.org/10.3238/arztebl.2016.0159
https://doi.org/10.3238/arztebl.2016.0159
https://doi.org/10.1038/nature14539 http://10.0.4.14/nature14539
https://doi.org/10.1038/nature14539 http://10.0.4.14/nature14539
https://doi.org/10.1038/nature14539 http://10.0.4.14/nature14539


[137] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, Cambridge,
Massachusetts, London, England, 2016.

[138] D. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-
propagating errors, Nature 323 (1986) 533–536.

[139] H. Jaeger, The “echo state” approach to analysing and training recurrent neural
networks, German National Research Center for Information Technology GMD
Technical Report 148 (2001).

[140] W. Maass, T. Natschläger, H. Markram, Real-Time Computing Without
Stable States: A New Framework for Neural Computation Based on Per-
turbations, Neural Computation 14 (11) (2002) 2531–2560. doi:10.1162/

089976602760407955.
URL https://direct.mit.edu/neco/article/14/11/2531-2560/6650
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[166] J. Lehnert, P. Hövel, A. A. Selivanov, A. L. Fradkov, E. Schöll, Controlling
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[354] M. C. Soriano, J. Garćıa-Ojalvo, C. R. Mirasso, I. Fischer, Complex photonics:
Dynamics and applications of delay-coupled semiconductors lasers, Reviews of
Modern Physics 85 (1) (2013) 421–470. doi:10.1103/RevModPhys.85.421.

102

https://doi.org/10.1007/s10489-020-01770-9
https://doi.org/10.1007/s10489-020-01770-9
https://doi.org/10.1007/s00265-021-03055-8
https://link.springer.com/chapter/10.1007/978-3-030-27550-1_19
https://link.springer.com/chapter/10.1007/978-3-030-27550-1_19
https://doi.org/10.1007/978-3-030-27550-1{_}19
https://doi.org/10.1007/978-3-030-27550-1{_}19
https://link.springer.com/chapter/10.1007/978-3-030-27550-1_19
https://link.springer.com/chapter/10.1007/978-3-030-27550-1_19
https://journals.sagepub.com/doi/10.1038/jcbfm.2009.58
https://journals.sagepub.com/doi/10.1038/jcbfm.2009.58
https://doi.org/10.1038/jcbfm.2009.58
https://journals.sagepub.com/doi/10.1038/jcbfm.2009.58
https://doi.org/10.1007/s00285-022-01810-7
https://www.pnas.org/doi/abs/10.1073/pnas.0705414105
https://doi.org/10.1073/PNAS.0705414105/SUPPL{_}FILE/05414APPENDIXES.PDF
https://doi.org/10.1073/PNAS.0705414105/SUPPL{_}FILE/05414APPENDIXES.PDF
https://www.pnas.org/doi/abs/10.1073/pnas.0705414105
https://esd.copernicus.org/articles/12/601/2021/
https://esd.copernicus.org/articles/12/601/2021/
https://doi.org/10.5194/esd-12-601-2021
https://esd.copernicus.org/articles/12/601/2021/
http://www.pnas.org/cgi/doi/10.1073/pnas.0901831106
http://www.pnas.org/cgi/doi/10.1073/pnas.0901831106
https://doi.org/10.1073/pnas.0901831106
https://doi.org/10.1073/pnas.0901831106
http://www.pnas.org/cgi/doi/10.1073/pnas.0901831106
http://link.aps.org/doi/10.1103/RevModPhys.85.421 https://link.aps.org/doi/10.1103/RevModPhys.85.421
http://link.aps.org/doi/10.1103/RevModPhys.85.421 https://link.aps.org/doi/10.1103/RevModPhys.85.421
https://doi.org/10.1103/RevModPhys.85.421


URL http://link.aps.org/doi/10.1103/RevModPhys.85.421https:

//link.aps.org/doi/10.1103/RevModPhys.85.421

[355] G. Giacomelli, A. Politi, S. Yanchuk, Modeling active optical net-
works, Physica D: Nonlinear Phenomena 412 (2020) 132631. doi:

10.1016/j.physd.2020.132631.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0167278920302293

[356] C. W. Eurich, K. Pawelzik, U. Ernst, J. D. Cowan, J. G. Milton, Dynamics of
self-organized delay adaptation, Physical Review Letters 82 (7) (1999) 1594–
1597. doi:10.1103/PhysRevLett.82.1594.

[357] L. Lücken, D. P. Rosin, V. M. Worlitzer, S. Yanchuk, Pattern reverberation
in networks of excitable systems with connection delays, Chaos 27 (1) (2017)
13114. doi:10.1063/1.4971971.
URL http://aip.scitation.org/doi/full/10.1063/1.4971971

[358] H. Paugam-Moisy, R. Martinez, S. Bengio, Delay learning and polychroniza-
tion for reservoir computing, Neurocomputing 71 (7-9) (2008) 1143–1158.
doi:10.1016/j.neucom.2007.12.027.
URL https://linkinghub.elsevier.com/retrieve/pii/

S0925231208000507

[359] R. Kempter, W. Gerstner, J. L. van Hemmen, H. Wagner, Temporal coding
in the sub-millisecond range: Model of barn owl auditory pathway, in: D. S.
Touretzky, M. Mozer, M. E. Hasselmo (Eds.), Advances in Neural Information
Processing Systems 8, NIPS, Denver, CO, USA, November 27-30, 1995, {MIT}
Press, 1995, pp. 124–130.
URL http://papers.nips.cc/paper/1157-temporal-coding-in-the-sub-millisecond-range-model-of-barn-owl-auditory-pathway

[360] S. H. Park, J. Lefebvre, Synchronization and resilience in the Kuramoto white
matter network model with adaptive state-dependent delays, The Journal
of Mathematical Neuroscience 2020 10:1 10 (1) (2020) 1–25. doi:10.1186/

S13408-020-00091-Y.
URL https://mathematical-neuroscience.springeropen.com/articles/

10.1186/s13408-020-00091-y

[361] R. D. Fields, A new mechanism of nervous system plasticity: activity-dependent
myelination, Nature Reviews Neuroscience 2015 16:12 16 (12) (2015) 756–767.
doi:10.1038/nrn4023.
URL https://www.nature.com/articles/nrn4023

[362] S. Pajevic, P. J. Basser, R. D. Fields, Role of myelin plasticity in oscillations
and synchrony of neuronal activity, Neuroscience 276 (0) (2014) 135â€“147.
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Computation 14 (3) (2002) 583â€“619. doi:10.1162/089976602317250915.
URL http://www.mitpressjournals.org/doi/abs/10.1162/

089976602317250915

[367] R. D. Fields, Change in the Brain’s White Matter, Science 330 (6005) (2010)
768–769. doi:10.1126/SCIENCE.1199139.
URL https://www.science.org/doi/abs/10.1126/science.1199139

[368] F. Hartung, T. Krisztin, H. O. Walther, J. Wu, Chapter 5 Functional Dif-
ferential Equations with State-Dependent Delays: Theory and Applications,
Handbook of Differential Equations: Ordinary Differential Equations (2006).
doi:10.1016/S1874-5725(06)80009-X.

[369] L. M. Pecora, T. L. Carroll, Master Stability Functions for Synchronized
Coupled Systems, Physical Review Letters 80 (10) (1998) 2109–2112.
doi:10.1103/PhysRevLett.80.2109.
URL http://link.aps.org/doi/10.1103/PhysRevLett.80.2109https:

//link.aps.org/doi/10.1103/PhysRevLett.80.2109

[370] P. Jaros, Y. Maistrenko, T. Kapitaniak, Chimera states on the
route from coherence to rotating waves, Physical Review E - Sta-
tistical, Nonlinear, and Soft Matter Physics 91 (2) (2015) 022907.
doi:10.1103/PHYSREVE.91.022907/FIGURES/5/MEDIUM.
URL https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.

022907

[371] J. Fell, N. Axmacher, The role of phase synchronization in memory processes,
Nat. Rev. Neurosci. 12 (2) (2011) 105–118. doi:10.1038/nrn2979.

104

https://www.jneurosci.org/content/37/42/10023 https://www.jneurosci.org/content/37/42/10023.abstract
https://www.jneurosci.org/content/37/42/10023 https://www.jneurosci.org/content/37/42/10023.abstract
https://doi.org/10.1523/JNEUROSCI.3185-16.2017
https://www.jneurosci.org/content/37/42/10023 https://www.jneurosci.org/content/37/42/10023.abstract
https://www.jneurosci.org/content/37/42/10023 https://www.jneurosci.org/content/37/42/10023.abstract
https://onlinelibrary.wiley.com/doi/full/10.1002/dneu.22518 https://onlinelibrary.wiley.com/doi/abs/10.1002/dneu.22518 https://onlinelibrary.wiley.com/doi/10.1002/dneu.22518
https://onlinelibrary.wiley.com/doi/full/10.1002/dneu.22518 https://onlinelibrary.wiley.com/doi/abs/10.1002/dneu.22518 https://onlinelibrary.wiley.com/doi/10.1002/dneu.22518
https://doi.org/10.1002/dneu.22518
https://onlinelibrary.wiley.com/doi/full/10.1002/dneu.22518 https://onlinelibrary.wiley.com/doi/abs/10.1002/dneu.22518 https://onlinelibrary.wiley.com/doi/10.1002/dneu.22518
https://onlinelibrary.wiley.com/doi/full/10.1002/dneu.22518 https://onlinelibrary.wiley.com/doi/abs/10.1002/dneu.22518 https://onlinelibrary.wiley.com/doi/10.1002/dneu.22518
https://onlinelibrary.wiley.com/doi/full/10.1002/dneu.22518 https://onlinelibrary.wiley.com/doi/abs/10.1002/dneu.22518 https://onlinelibrary.wiley.com/doi/10.1002/dneu.22518
http://www.mitpressjournals.org/doi/abs/10.1162/089976602317250915
http://www.mitpressjournals.org/doi/abs/10.1162/089976602317250915
https://doi.org/10.1162/089976602317250915
http://www.mitpressjournals.org/doi/abs/10.1162/089976602317250915
http://www.mitpressjournals.org/doi/abs/10.1162/089976602317250915
https://www.science.org/doi/abs/10.1126/science.1199139
https://doi.org/10.1126/SCIENCE.1199139
https://www.science.org/doi/abs/10.1126/science.1199139
https://doi.org/10.1016/S1874-5725(06)80009-X
http://link.aps.org/doi/10.1103/PhysRevLett.80.2109 https://link.aps.org/doi/10.1103/PhysRevLett.80.2109
http://link.aps.org/doi/10.1103/PhysRevLett.80.2109 https://link.aps.org/doi/10.1103/PhysRevLett.80.2109
https://doi.org/10.1103/PhysRevLett.80.2109
http://link.aps.org/doi/10.1103/PhysRevLett.80.2109 https://link.aps.org/doi/10.1103/PhysRevLett.80.2109
http://link.aps.org/doi/10.1103/PhysRevLett.80.2109 https://link.aps.org/doi/10.1103/PhysRevLett.80.2109
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.022907
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.022907
https://doi.org/10.1103/PHYSREVE.91.022907/FIGURES/5/MEDIUM
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.022907
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.91.022907
https://doi.org/10.1038/nrn2979


[372] C. Hammond, H. Bergman, P. Brown, Pathological synchronization in
{P}arkinson’s disease: networks, models and treatments, Trends Neurosci. 30
(2007) 357–364.

[373] P. Jiruska, M. de Curtis, J. G. R. Jefferys, C. A. Schevon, S. J. Schiff,
K. Schindler, Synchronization and desynchronization in epilepsy: controversies
and hypotheses, J. Physiol. 591.4 (2013) 787–797.

[374] P. A. Tass, O. V. Popovych, Unlearning tinnitus-related cerebral synchrony
with acoustic coordinated reset stimulation: theoretical concept and modelling,
Biol. Cybern. 106 (1) (2012) 27–36. doi:10.1007/s00422-012-0479-5.

[375] P. Uhlhaas, G. Pipa, B. Lima, L. Melloni, S. Neuenschwander, D. Nikolic,
W. Singer, Neural synchrony in cortical networks: history, concept and current
status, Front. Integr. Neurosci. 3 (2009) 17. doi:10.3389/neuro.07.017.2009.

[376] J. Karbowski, G. B. Ermentrout, Synchrony arising from a balanced synaptic
plasticity in a network of heterogeneous neural oscillators, Phys. Rev. E 65
(2002) 031902. doi:10.1103/physreve.65.031902.

[377] S. Y. Ha, S. E. Noh, J. Park, Synchronization of kuramoto oscillators with
adaptive couplings, SIAM J. Appl. Dyn. Syst. 15 (1) (2016) 162–194. doi:

10.1137/15m101484x.

[378] S. Y. Ha, J. Lee, Z. Li, J. Park, Emergent dynamics of kuramoto oscillators
with adaptive couplings: conservation law and fast learning, SIAM J. Appl.
Dyn. Syst. 17 (2) (2018) 1560–1588.

[379] S. Ha, D. Kim, B. Moon, Interplay of random inputs and adaptive couplings in
the winfree model, Communications on Pure & Applied Analysis 22 (11) (2021)
3975–4006.

[380] R. Berner, S. Yanchuk, Synchronization in networks with heterogeneous adap-
tation rules and applications to distance-dependent synaptic plasticity, Front.
Appl. Math. Stat. 7 (2021) 714978. doi:10.3389/fams.2021.714978.
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