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The robustness of complex networks was one of the first phenomena studied after the
inception of network science. However, many contemporary presentations of this theory
do not go beyond the original papers. Here we revisit this topic with the aim of providing a
deep but didactic introduction. We pay attention to some complications in the
computation of giant component sizes that are commonly ignored. Following an
intuitive procedure, we derive simple formulas that capture the effect of common
attack scenarios on arbitrary (configuration model) networks. We hope that this easy
introduction will help new researchers discover this beautiful area of network science.
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1 INTRODUCTION

In 2000 Albert, Jeong, and Barabási published a groundbreaking paper on the error and attack
tolerance of complex networks [1]. At the time of writing this paper has been cited nearly 104

times, and one of the paper’s take-home messages, the uncanny stability of scale-free networks, is
widely known beyond the academia. Today the study by Albert et al. is rightfully counted among
the founding papers of modern network science. Shortly thereafter, Newman, Strogatz, and
Watts published a mathematical theory on the size of connected components in networks with
arbitrary degree distribution [2]. Although some of these results were already known in
computer science [3], Newman et al.‘s rediscovery popularized them in physics by phrasing
them in a convenient and accessible way. Together with other landmark papers published
around the same time, these works further accelerated network science which at the time was
already rapidly gaining momentum.

Looking back from the present day, it is clear that several important lines of research directly
originated from these foundational papers. The mathematics of attacks on networks, has informed
work on the prevention of power cuts [4, 5], fragmentation of communication networks [6, 7],
cascading species loss in food webs [8], epidemics [9–11], financial crashes [12–14] and
misinformation [15]. Some important subsequent developments include the extension of the
theory to networks with degree correlations [16, 17], clustering [18, 19], and block structure
[20]. Moreover structural robustness has been extended to other types of attacks such as cascading
failures [21] and bootstrap percolation [22, 23] and also other classes of systems such multilayer [5,
24], higher order [25] and feature-enriched networks [26].

The broad variety of applications makes clear that the theory of network robustness is not the
study of an isolated phenomenon, but provides a powerful tool for thinking about network structure.
When such new tools are discovered in science they usually go through a phase of tempering where,
the underlying mathematics get formulated and subsequently reshaped until a canonical form
emerges. For network robustness an important step in this tempering process is the Review by Mark
Newman [27], which combines known results from graph theory with new approaches to formulate a
widely applicable mathematical theory of network robustness.
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Our goal here is not to argue that robustness is the most
important topic in network science. There are other topics which
were already going strong at the time, and some of them such as
network dynamics, and community structure may address a
wider range of applications. In fact, to a network scientist it
should be apparent that arguing about the relative importance of
field is largely meaningless as long as they remain densely
interlinked and thus form part of an emergent whole.

Over the past decades the theory of network robustness has
certainly grown into one of the main pillars of modern network
science. It is included in several influential reviews and textbooks
[28–31]. However, in current literature, the discussion of
robustness does not usually go deeper than Newman’s concise
presentation. Moreover, there seem to be several very useful
corollaries to basic results on robustness, which have not been
spelled out in the literature. Finally, while the hallmark robustness
of scale-free networks is widely known, the several caveats and
flip-sides to this result are known by experts but have received
much lesser attention.

It is our belief that under normal circumstances much more
tempering of the theory of network robustness would likely have
happened. However, at the time network science was moving
extremely fast and a small number of network scientists found
themselves suddenly in a position where they could suddenly
make a significant impact on a vast range of applications. In this
situation, it was more attractive to go forward to apply and extend
the theory rather than to try to rephrase its equations, provide
didactic examples, or ponder philosophical issues at its
foundations. While all of these things have still happened to
some extent, we believe that it is nevertheless valuable to revisit
those basic foundations.

The present paper is based on experience gathered while
teaching the mathematics of networks robustness over 12 years
to different audiences in different departments and on different
continents. The paper seeks to provide a retelling of the basic
theory that governs the structural robustness of simple networks
(configuration model graphs) against different forms of node and
link removal. We take the liberty to discuss certain issues at
greater length than comparative texts to provide a deep but
simple introduction. The presentation is mathematical but,
broken into simple steps. We further illustrate the theory by
worked examples, including a class of attack scenarios that is
exactly solvable with pen and paper. Along the way, we discover
some shortcuts and neat equations by which even complicated
scenarios can be quickly evaluated. Going beyond mathematics
we crystallize the main insights from the calculations into concise
take-home messages. We hope that new researchers entering this
field will find this introduction of a well-known topic helpful.

2 GENERATING FUNCTIONS

The exploration of networks builds heavily on the combinatorics
of probability distributions. When working with such
distributions, we often represent them in the form of sequences

pk � (p0, p1, p2, p3, ...). (1)

Sequences are intuitive objects, which store information
straight forwardly, but they do not come equipped with a lot
of powerful machinery. If we want to compute, say, the mean of a
distribution, we have to take the elements out of the sequence
one-by-one and then process them one-by-one [32]. By contrast,
continuous functions, are mathematical objects that come with a
lot of machinery attached; they can be evaluated at different
points, inverted, and concatenated. Most importantly, they can be
differentiated, enabling us to apply the powerful toolkit of
calculus.

The idea to use functions instead of sequences to store and
process distributions lead to the concept of generating functions.
An excellent introduction to generating functions can be found in
[32]. In this section, we provide a brief summary of their main
properties that are relevant in the context of attacks on networks.

A sequence can be converted into a function by interpreting it
as the sequence of coefficients arising from a Taylor expansion.
Applying the Taylor expansion backward turns a sequence pk into
the function

G(x) � p0 + p1x + p2x
2 + p3x

3 + ... � ∑∞
k�0

pkx
k. (2)

This function is the so-called generating function of pk. Note
that the variable x does not have any physical meaning, it is
merely used as a prop that helps us encode the distribution.

In the following we omit writing the argument of generating
functions explicitly if it is just x, i.e. we will refer to the generating
function above just as G, instead of writing G(x).

For illustration we consider the probability distribution of a
(not necessarily fair) four-sided die (see Figure 1). We denote the
probability of rolling k on a single die roll as pk. Then the
generating function for the four-sided die is

G1d4 � p1x + p2x
2 + p3x

3 + p4x
4, (3)

where we borrowed the notation 1d4 for “1 four-sided die roll”
that is commonly used in roleplaying games.

FIGURE 1 | A four-sided die. In contrast to six-sided dice the outcome of
a roll is determined by the number of the face on the bottom. The configuration
shown in the picture corresponds to an outcome of 2.
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2.1 Distribution
From the generating function we can recover the distribution by a
Taylor expansion,

pk � 1
k!

d

dx
( )

k

G

∣∣∣∣∣∣∣∣∣x�0. (4)

2.2 Norm
In many cases it is unnecessary to recover the sequence as many
properties of interest can be computed directly from the
generating function. One of these is the norm of pk, which we
can compute as

|pk| � G(1). (5)
For example, for our four-sided dice, we can confirm

G1d4(1) � p1 + p2 + p3 + p4. (6)

2.3 Mean
Let’s see what happens if we differentiate a generating function.
For example,

G1d4′ � p1 + 2p2x + 3p3x
2 + 4p4x

3 � ∑∞
k�0

kpkx
k−1. (7)

The differentiation has put a factor k in front of each of the
terms. If we now evaluate this expression at x = 1 we arrive at

G1d4′ (1) � p1 + 2p2 + 3p3 + 4p4. (8)
which is the expectation value of the die roll. Also, for any other
distribution, we can compute the mean of the distribution as

〈k〉 � G′(1). (9)

2.4 Higher Moments
We can also compute higher moments of the distribution from
the generating function in a similar manner. Above, we saw that
we can use differentiation to put a prefactor k in front of the terms
of the sum in the generating function, however, this also lowered
the exponents on the x one count. We can ‘heal’ the exponents
after differentiation by multiplying x again, i.e.

x
dG

dx
� ∑∞

k�0
kpkx

k. (10)

Repeating the differentiation and multiplication n times a
prefactor of kn can be constructed, which allows us to compute

〈kn〉 � ∑∞
k�0

knpk � x
d

dx
( )

n

G

∣∣∣∣∣∣∣∣
x�1

. (11)

2.5 Adding Distributions
Suppose we are interested in the probability distribution of the
sum of two rolls of the four-sided die. We could work out the
probability for the individual outcomes. For example we can

arrive at a result of 4 by rolling a 2 on the first roll and a 2 on the
second roll (probability p2

2) or a 1 on the first and a 3 on the
second (p1p3) or vice versa (p3p1) which adds to up to a total
probability p2

2 + 2p1p3 for a result of 4.
The generating function for the sum of two four-sided die

rolls is

G2d4 � p1
2x2 + 2p1p2x

3 + (p2
2 + 2p1p3)x4 + (2p1p4 + 2p2p3)x5

+(p3
2 + 2p2p4)x6 + 2p3p4x

7 + p4
2x8.

(12)
Here the first term says that you can get a two by rolling two

ones, and so on.
Looking at the expression for G2d4 it is interesting to note that

the combinatorics of the terms is the same that we find in the
multiplication of polynomials. This points to a more efficient way
for finding G2d4:

G2d4 � p1x + p2x
2 + p3x

3 + p4x
4( )2 � G1d4( )2. (13)

So, we can find the generating function for the sum of two die
rolls simply as the square of the generating function of one die
roll. The same rule holds more generally: Even if we compute the
sum of random variables drawn from different distributions, then
the generating function for the sum is the product of the
generating functions for the parts.

2.6 Adding Constants to Distributions
Suppose we want to roll our four-sided die and then add 2 two to
the result. We can think of the number 2 as the result of a random
process that results in the outcome 2 with 100% probability. The
generating function for such a process is

G2 � x2. (14)
We can now use the rule for adding distributions to find the

generating function that describes the result of adding two to a
four-sided die roll,

G1d4+2 � G2G1d4 � x2G1d4. (15)
Generalizing from this result, we can say that when we add n to

the outcome of a random process, the generating function that
describes the sum is the generating function of the process
times xn.

2.7 Adding a Random Number of Random
Variables (Dice of Dice)
Picture a situation in a game where you find a random number of
bags, each containing a random number of gold pieces. The
player rolls one die to determine the number of bags, and then
one die for each bag to determine the gold in that particular bag.
The total amount of gold found can then be computed by
summing over the values from the individual bags. For
example, the player might roll a 2 on the first roll, showing
that they found 2 bags. Then they roll 1 and 3, finding a single
gold piece in the first bag and three in the second for a total
of four.
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To find the generating function that governs the amount of
gold, we could think as follows: With probability p1, we roll a 1 on
the first roll, so in this case, we find only one bag. Hence the
generating function for the outcome is identical to the generating
function of one bag (say, G1d4). With probability p2, we roll a 2 on
the first roll. Thus, we get two bags and, using the results above,
our earnings, in this case, are described by G2d4 � (G1d4)2.
Putting all four possible scenarios together, we find the
generating function for the total amount of gold

G(1d4)d4 � p1G1d4 + p2(G1d4)2 + p3(G1d4)3 + p4(G1d4)4, (16)
where the first term corresponds to the scenario where we get one
bag, the second corresponds to the scenario where we get two, etc.

Looking at the equation above, we note that it resembles a
polynomial of G1d4; we can write it as

G(1d4)d4 � G1d4(G1d4). (17)
Again, the same rule holds generally: Suppose we have a

random process p described by a generating function P, and
we want to sum over s outcomes of p together, where s is drawn
from a distribution with generating function S. The generating
function for the sum is then

G � S(P). (18)

3 EXISTENCE OF THE GIANT COMPONENT

Large sufficiently-random networks have two distinct phases. In
one of these, the network consists of isolated nodes and small
components, whereas in the other there is a giant component that
contains a finite fraction of all nodes, and hence has an infinite
size in the limit of large network size [33–35]. The central
question that we review in this paper is how the removal of
nodes and links affects the giant component.

3.1 Essential Distributions
An important starting point for our exploration of giant
components is the networks degree distribution, i.e. the
probability distribution that a randomly-picked node has k
links. We describe this distribution by the sequence pk and its
generating function

G � ∑∞
k�0

pkx
k. (19)

the expectation value of the degree distribution is themean degree

z � ∑∞
k�0

kpk � G′(1). (20)

A second distribution of interest is the excess degree
distribution qk. If we follow a random link in a random
direction, qk is the probability to arrive at a node that has k
links in addition to the one we are traveling on. Finding the excess
degree distribution is an example of many calculations in network
science that become easier when we think about it in terms of

endpoints of links. When we follow a random link (in a random
direction) we arrive at a random endpoint. The probability to find
k additional links on the node is the same as the probability that a
randomly-picked endpoint is on a node of degree k + 1. Hence we
can compute the excess degree distribution as

qk � Number of endpoints on nodes of degree k + 1
Number of all endpoints in the network

� N(k + 1)pk+1
Nz

� (k + 1)pk+1
z

. (21)

The generating function for this distribution is

Q � ∑∞
k�0

qkx
k � ∑∞

k�0

(k + 1)pk+1
z

xk � 1
z
∑∞
k�0

kpkx
k−1 � G′

z
. (22)

The expectation value of the excess degree distribution is the
mean excess degree,

q � ∑∞
k�0

kqk � Q′(1) � G″(1)
z

, (23)

i.e., the expected number of additional links we find when
arriving at a node at the end of a random link.

3.2 Existence of the Giant Component
In the following, we consider configuration model networks, that
is, networks that are formed by randomly connecting nodes of
prescribed degree [3, 36]. In such networks a giant component
exists if q > 1. A mathematical derivation of this result can be
found in [2]. The same result is already derived in principle [36],
but stated in a more complicated and less catchy form, as the
concept of excess degree had not been formulated. Here, we skip
this derivation of this formula, but, to gain intuition, consider the
following argument: if we walk on a network and find on average
more than one new link on every node that we visit, we can
continue exploring new links until we have seen a finite fraction
of the network.

Despite its intuitive nature, it is good to keep in mind that the
q > 1 condition does not hold in networks subjected to other
organizing principles. Thus it is easy to come up with specific
networks that have q = 100 but no giant component or a network
with q = 0.01 that has a giant component (see Supplementary
Appendix). Although such exceptional networks exist, the q > 1
condition provides a reasonable guide for many real-world
applications. In particular, the configuration model does not
have degree correlations or an abundance of short cycles and
under these conditions, the q > 1 condition holds.

3.3 Size of the Giant Component
One of the most subtle and intriguing calculations in network
science is determining the size of the giant component. The
canonical derivation of this equation starts with a self-consistency
statement.

A node is not part of the giant component if none of its
neighbors is part of the giant component.

Note that the statement is phrased in negative form; it is a
condition for being outside the giant component, rather than
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being inside it. One good reason for this formulation is that it
makes the equations more concise, as we’ll see below. An
unfortunate side effect is that it makes it easier to gloss over a
complication that occurs in the next steps.

To arrive at a useful mathematical equation, we need to
translate the self-consistency statement into a probabilistic form

The probability that a randomly picked node is not part
of the giant component is the same as the probability
that none of its neighbors is part of the giant
component.

We can now assign a symbol to ‘the probability that a node is
not part of the giant component’; say u. So, the first half of the
statement above says, u = . . .. But what about the second half? It is
tempting to jump to the conclusion that for a node of degree k, a
term of the form uk will appear. But, let’s not go so fast, we first
need to deal with some complications.

One problem is that the probabilities in the second half of our
statement are not independent probabilities. After all, if a node is
in the giant component, all of its neighbors must be in the giant
component as well. This is bad news because the common
mathematical rules for working with probabilities that we
often take for granted do not apply.

For example, if a and b are independent probabilities of events,
the probability that both events occur is ab, but this isn’t
necessarily true if the events are interdependent. But if event b
must occur if a occurs then, the probability that both occur is just
a. If we take the interdependence of probabilities into account,
our carefully crafted statement above just translates to u = u,
which would be useless.

The beauty of mathematical modeling is that by carefully
thinking about our definitions, we can often arrive at quantities

that work well with mathematics. In the present case, we can use a
little twist in the statement to make the probabilities independent:

The probability that a randomly picked node is not part
of the giant component is the same as the probability
that none of the neighbor’s neighbors nodes remain in
the giant component after we have removed all of the
random node’s links.

So now we pick a random node, make a list of all of it is
neighbors, remove all links from the node and then check
whether it is former neighbors are still part of the giant
component (Figure 2). Because the links to the randomly
picked node are broken by the time that we check giant
component membership, the probability that the former
neighbors are part of the giant component is now independent.

Having dealt with the issue of interdependence, we could go
straight to the solution. However, instead, let us first make an
intuitive, but naive attempt. This will lead to a wrong but
nevertheless interesting result.

As before, we read the first half of the statement above as u =
. . .. To deal with the second half of the statement, we define v as
the probability that a given neighbor is not part of the giant
component (after the links have been cut). Moreover, let’s assume
that the degree of our randomly picked node is the mean degree z
(for a first attempt, it is worth a try). Under these assumptions, we
can translate the statement above to

u � vz. [Naive attempt, first half] (24)
Now we have to ask, what is the probability that one of the

neighbors is not part of the giant component? If the neighbors
were completely random nodes, we could assume v ≈ u, but we
have reached these nodes by the following link.We can now apply
the same idea as before: The neighbor is not part of the giant
component if none of their neighbors is part of the giant
component (after cutting off their links), and hence

v � vq. [Naive attempt, second half] (25)
Note that the previous Eq. 24 links two different variables u

and v, which appear because a randomly-picked node is
statistically different from a randomly picked neighbor. By
contrast, the second equation Eq. 25 contains two references
to v because a random neighbor is statistically similar to a
neighbor’s neighbor. The second equation is closed, so we can
solve it for v and then use v to compute u. Using that the
proportion of nodes in the giant component is s = 1 − u, we
can summarize the solution as follows

s � 1 − vz

v � vq.
[Naive attempt, summary] (26)

This was a fund derivation, but unfortunately, the result is now
what we wanted from the second equation we can see that the
solutions are v = 0 or v = 1, whichmean s = 0 or s = 1, which seems
to say, all nodes are in the giant component or none. This can’t be
right. In addition, there is solution q = 1, which perhaps hints that
something is happening at q = 1, so perhaps not all is lost?

FIGURE 2 | Illustration of the hypothetical cutting of links to find a formula
for the giant component size. We pick a random node (red), then cut all of its
links. We can say that the probability that the randomly picked node is not in
the giant component before the cutting is the same as the probability that
none of the node’s former neighbors are part of the giant component after the
cutting. This statement gives us a self-consistency condition from which the
giant component size can be calculated. The cutting of links is essential, as it
enables us to treat giant component members of the former neighbors as
independent random variables.
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Thinking about the solutions again, we can see that s = 0 is a
direct consequence of the self-referential nature of our approach:
If we just declare every node to be not in the giant component, the
result is wrong but self-consistent. Hence it is good to keep in
mind that s = 0 can be a pathological solution that arises from the
peculiarities of the approach. The situation is worse for the
solution s = 1. This is clearly wrong as our network may well
contain some nodes of degree 0 which, certainly can’t be in the
giant component. Let’s understand why we arrive at this
erroneous result: In our reasoning, we assumed that every
node had the mean degree z. By making all nodes the same,
we have ended up at a result where all nodes join or leave the giant
component together.

We now understand that the key to a better result is to take
the heterogeneity between nodes into account. So instead of
assuming that all nodes have the mean degree z or q, let’s work
with the full degree distributions. Our randomly picked node
has degree k with probability pk, and, using the same
reasoning as above, the neighbors of a node of degree k are
not part of the giant component (after link-cutting) with
probability vk. So that a randomly picked node has degree k
and is not in the giant component is pkv

k. Similarly, the
probability that a randomly picked neighbor has
excess degree k and is not in the giant component is
qkv

k. Summing over all possibilities for k, we find the
equations

s � 1 −∑
k
pkv

k

v � ∑
k
qkv

k.
[Solution] (27)

Examining the form of the solution, we may notice that the
generating functions G and Q appear. Hence, we can write the
equations for the giant component size as

v � Q(v)
s � 1 − G(v). [Elegant form of solution] (28)

3.4 Degree Distribution Inside the Giant
Component
A final ingredient that is sometimes useful is the degree
distribution inside the giant component, i.e. the degree
distribution that we would find if all the nodes outside the
giant component were removed [3, 37]. We already know that
the probability that a randomly drawn node has degree k and is
not in the giant component is

pk
out � pkv

k. (29)
The probability that a node has degree k and is inside the giant

component, can be written as

pk
in � pk − pk

out � pk(1 − vk). (30)
This probability distribution gives us the probability that a

node is inside the giant component and has degree k, but what we
are interested in is the degree distribution of random nodes
picked from the giant component. We can find this by

dividing pk
in by the probability s that a randomly picked node

is in the giant component, which leads to

pk
gc � pk(1 − vk)

s
. (31)

We can use this result to write the generating function for the
degree distribution inside the giant component as

Ggc � ∑k pk(1 − vk)xk

s
� G(x) − G(vx)

1 − G(v) . (32)

4 ATTACKS AND DAMAGE IN NETWORKS

In the sections above, we established some useful mathematics for
estimating the size of the giant component in networks. We are
now ready to build a second layer of tools on top of these that
capture the effect of different types of attacks and damage in
networks.

4.1 Random Link Removal
We start by considering an attack that removes links from the
network at random. Before the attack, the network is described by
the degree distribution pk. Then links are removed at random,
such that after the attack, each link survives with probability c (to
remember this more easily, we can call this the cir-vival
probability).

We now ask, what is the degree distribution after the attack? If
we were to randomly pick a node from the network after the
attack, the probability to pick a node that had k links before the
attack is pk. Each of these links has a chance c to survive the attack.
We can also describe the survival in terms of a probability
distribution. A link that was one link before the attack is still
one link after the attack, with probability c, and it is zero links
with probability 1 − c. So the degree of a randomly-picked node,
after the attack, is computed as a sum over a random number of
random variables. This is exactly the sort of calculation that is
covered by the “dice of dice” rule from Section 2.

To apply the dice-of-dice rule, we need to describe the attack
by a generating function,

A � (1 − c)x0 + cx1 � 1 + (x − 1)c, (33)
which means 1 with probability c and 0 with probability 1 − c.
Using the dice-of-dice rule we can then write the degree
generating function after the attack as

Ga � G(A). (34)
This equation is a powerful tool, allowing us to derive some

results very quickly. For example, we can compute the mean
degree after the attack as

za � Ga′(1) � G′(A(1))A′(1) � cG′(1) � cz, (35)
where we used the normalization condition A (1) = 1. This “norm
reduction” step is a staple of generating function calculations and
is one of the reasons why these calculations are often enjoyable.
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Here, the result shows that removing a proportion of the links
reduces the mean degree by the same proportion, regardless of the
degree distribution.

Similarly, we can find the generating function of the excess
degree distribution after the attack Qa by substituting the attack
function A into Q,

Qa � Q(A). (36)
Using generating functions, we can prove this rule in a single

line,

Qa � Ga′
Ga′(1) �

G′(A)A′
G′(A(1))A′(1) �

G′(A)
G′(A(1)) � Q(A), (37)

where we used A′(x) = A′(1), a property of the attack function.
The mean excess degree after the attack is

qa � Qa′(1) � Q′(A(1))A′(1) � Q′(1)c � cq. (38)
This shows that, if we remove a proportion of the links at

random, then, also the mean excess degree is reduced by the same
proportion.We can use Eq. 38 to calculate the proportion of links
that need to be removed from a network to break the giant
component. Suppose we have a network with excess degree q
before the attack and qa = cqb after the attack. The attack will
break the giant component, if qa < 1, which requires c < 1/q.
Hence the proportion r of links we need to remove from the
network to break the giant component by random link removal is

r � 1 − c � 1 − 1
qb

� q − 1
q

. (39)

For example, in the early stages of the COVID-19 pandemic,
one infected person infected on average 3 other people. This
number is the mean excess degree of the network in which nodes
are infected people and links are contacts that have led to
infections. If we had managed to remove 2/3 of the links from
the transmission network through hygiene and social distancing,
it would have broken the giant component on where the virus was
spreading and stopped the pandemic in its tracks. Sadly, these
numbers are by now woefully outdated due to the evolution of
later variants, which are more transmissible.

The results we derived so far also permit a first glimpse at the
stability of heterogeneous networks. Networks that contain different
node degrees can have huge mean excess degrees q. Hence we can
already see that breaking the giant component in such networksmay
require the removal of a large proportion of the links. For example, if
a network has q = 20, removal of r = 95% of links is required to break
the giant component by random link removal.

To summarize the results from this section, we can say that the
network properties after random removal of a proportion r = 1 − c
of the links are

Na � N (40)
za � cz (41)
qa � cq (42)

Ga � G(A) (43)
Qa � Q(A), (44)

where A = cx + (1 − c).

4.2 Random Node Removal
Another type of attack on networks is the random removal of
nodes. To understand the effect of random node removal, it is
useful to imagine it as a two-step process (Figure 3). In the
first step, we remove just the nodes, which leaves behind the
broken stubs of links, by which these nodes were connected to
the rest of the network. In a second step, we prune these
broken links, what may reduce the degrees of the
surviving nodes.

If we remove nodes at random until only a proportion c of the
original nodes survives. Already the first step, the removal of the
affected nodes, reduces the size of the network. If we had N nodes
before the attack, then the number of nodes after the attack is

Nh � cN, (45)
where we used the label h to indicate that we are now considering
the state after the first step, i.e. halfway through the attack.

Let’s also consider what this first step does to nodes of degree
k. The number of nodes of degree k before the attack is

nk � Npk. (46)
Since the attack removes nodes at random, a proportion c of

the nodes of degree k also survive the first step of the attack, hence

nk
h � cnk � cNpk � Nhpk. (47)

We can use this result to compute the degree distribution, after
the first step of the attack,

pk
h � nkh

Nh
� pk. (48)

This shows that the first step of the attack, the random node
removal itself, does not change the degree distribution of the
surviving nodes.

We are not quite done yet, as we still have to clean up the
broken links left by the attack. This cleaning up is another
example of a calculation that gets easier when we think in
terms of endpoints. In the pruning step, a node will lose a
given link if the endpoint at the other end of the link was
removed in the attack. This means that an attack that removes
a certain proportion of all endpoints will remove the same
proportion of links from the surviving nodes. Moreover, if we
remove a proportion r of the nodes at random, we also remove a
proportion r of the endpoints in the system, which implies that in
the pruning step we remove a proportion r of the links of the
surviving nodes.

Expressed positively, we can say: if a proportion c of the nodes
survive, the surviving nodes will retain a proportion c of their
links. As the removal of the broken links is essentially random
link removal, the same rules as before apply. Thus the mean
degree and mean excess degree get reduced by a factor c.

In summary, random removal of a proportion r = 1 − c of the
nodes affects the network properties as follows:

Na � cN (49)
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za � cz (50)
qa � cq (51)

Ga � G(A) (52)
Qa � Q(A), (53)

where A = cx + (1 − c).
It is interesting to note that random node removal and random

link removal affect the network in very similar ways, which allows
us to multiply up the effects of different attacks.

For example, if we vaccinate half the population with a vaccine
that is 90% effective and then also avoid 1/3 of all contacts. We
reduce the network mean excess degree, consequently, the
remaining vulnerable network is 0.9 · 0.5 · (2/3) = 0.3 of its
original value. What would certainly, have broken the giant
component spread of the SARS-CoV-2 wild-type, but
insufficient to break the giant component spread for later
variants.

4.3 Targeted Node Removal
The previous section showed that heterogeneous networks,
characterized by high values of q, are hard to break by
random node removal because we need a proportion of r =
(q − 1)/q nodes to break the giant component.

Perhaps we can do better with targeted attacks? The low-
dimensional intuition of our daily experience suggests that we can
do perhaps much better by attacking naturally existing
bottlenecks in the network. A COVID-19 example of this
strategy is, for example, trying to stop the virus at national
borders; a strategy that has had mixed success.

When it comes to random networks, our real-world intuition
can be misleading: Unless we consider networks of low mean
degree, which are fragile in any case, bottlenecks arise only as a
result of the low-dimensional embedding of networks, for
example, due to geographical constraints [38]. The
configuration model networks considered here are genuinely
high-dimensional structures and thus generally lack strong
bottlenecks. While it is possible to fine-tune an attack to split
a strongly geographically embedded network, e.g. the road
network, trying to find a similarly optimized attack in a
random network is pointless.

Even in the absence of bottlenecks, we can still maximize the
impact of our attack by targeting highly-connected nodes. As in
the case of random node removal, we implement the attack in two
steps, where the first step removes only the directly affected nodes
but leaves the rest of the degree distribution unchanged. Then the
leftover stubs will be removed in a second step.

An important decision is how we encode the targeted removal
mathematically. Here, we define rk as the probability that a
randomly-picked node from the original network has degree k
and is subsequently removed in the attack. Most other papers
encode targeted attacks in terms of ρk, the removal risk of a node
of degree k which is related to rk via

ρk �
rk
pk
. (54)

While the definition of rk seems more complicated, we will see
below that it leads to particularly nice results.

In actual calculations, rk is quite intuitive as it follows the same
intuition as the degree distribution. Suppose, for example, the
degree distribution of our network was 0.5, 0.25, 0.25, such that
half the nodes were of degree zero. If we wanted to remove 60% of
the nodes of degree 2, then rk would be 0, 0, 0.15.

Having familiarized with the rk, let us now consider a degree
targeted attack on a general network. As this first step in our
calculation, we calculate some properties that quantify the effect
of the attack. For this purpose, it is convenient to define the
generating function of rk as

R � ∑∞
k�0

rkx
k. (55)

In contrast to the generating functions used so far, the norm of
rk is not 1 but, the proportion of nodes removed in the attack, i.e.

r � 1 − c � ∑∞
k�0

rk � R(1), (56)

where r and c are again the removed and surviving proportions of
the nodes.

A second important property is ~r the proportion of endpoints
that are removed directly in the first step of the attack Recall that

FIGURE 3 | Node removal in a two-step process. Understanding the effect of node removal becomes easier if we picture node removal as a two-step process.
Starting from an initial network (left, degrees: 1,2,2,3,4,4) the first step removes the target nodes (here a node of degree 2 and a node of degree 4), but the broken links
are kept in the network (center, node degrees 1,2,3,4). In the second step, the broken links are pruned (right, 0,1,1,2). In this example, the mean degree after the first step
is zh = (1 + 2 + 3 + 4)/4 = 2.5.
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G′(1) = z is the mean degree of the nodes in the network. Hence
NG′(1) is the number of all endpoints in the network.
Analogously, NR′(1) is the number of endpoints that are
removed in the first step of the attack. Hence we can compute
~r as the ratio

~r � R′(1)N
G′(1)N � R′(1)

z
. (57)

We can now also defined the proportion of surviving
endpoints after the first step

~c � 1 − ~r. (58)
Let’s also have a look at the second derivative of R. For the

degree generating G the quantity G′′(1)/z is the mean excess
degree q. So by analogy we may call

δ � R″(1)
z

, (59)

the removed excess degree by analogy.
We can now write the degree distribution after the first step

(removal of targeted nodes). It is helpful to first write the number
of nodes of degree k after the removal

nk
h � Npk −Nrk � N(pk − rk), (60)

where we have again used h to denote properties after the first
step of the attack. To find the degree distribution after the
removal, we have to divide by the remaining number of
nodes, which we can write as Nc. Hence,

pk
h � N(pk

b − rk)
cN

� pk − rk
c

. (61)

The corresponding generating function is

Gh � ∑∞
k�0

pk − rk
c

xk � G − R

c
. (62)

Using this function, we compute the excess degree generating
function after the first step using the relationship Q = G′/G′(1),
which implies

Qh � Gh′
Gh′(1) �

G′ − R′
G′(1) − R′(1) �

G′ − R′
z~c

, (63)

where we used Eq. 57 to replace

G′(1) − R′(1) � z − z~r � z(1 − ~r) � z~c. (64)
Let’s turn to the second step of the attack and remove the

remaining stubs of the broken links. We proceed as in the
previous case and define the generating function for the
probability that a link remains intact

~A � ~cx + 1 − ~c, (65)
and then use the dice-of-dice rule to find the degree and excess

degree generating function after the attack

Ga � Gh( ~A) � G( ~A) − R( ~A)
c

Qa � Qh( ~A) � G′( ~A) − R′( ~A)
z~c

. (66)

At this point, we already have the generating functions that we
need for giant component calculations, but, for completeness,
let’s also compute the mean degree and mean excess degree after
the attack:

za � Ga′(1) �
~A′(1)
c

G′( ~A(1)) − R′ ~A(1)( ) � ~c

c
G′(1) − R′(1)( ) � z~c2

c
, (67)

qa � Qa′(1) �
~A′(1)
~c

G″(1) − R″(1)
z

� q − δ. (68)

The second of these equations justifies why we call δ the
removed excess degree. The simplicity of this equation is
surprising and probably hints at some deeper insights that
may yet be gained.

In summary, some network properties after a degree-targeted
attack described by the attack generating function R are

Na � cN (69)
za � z

~c2

c
(70)

qa � q − δ (71)
Ga � G( ~A) − R( ~A)

c
(72)

Qa � G′( ~A) − R′( ~A)
z~c

, (73)

where ~A � ~cx + (1 − ~c), ~c � 1 − R′(1)/z, c = 1 − R (1) and δ =
R′′(1)/z.

4.4 Viral Attacks
Another interesting class of attacks that we can treat with the
same mathematics are “viral” attacks that propagate across the
same network that they are attacking. Real-world examples
include computer viruses and certain infrastructure disruptions
such as traffic gridlock and cascading line failure in power grids,
but also viral advertising campaigns, etc. Even vaccinations could
be turned into viral attacks on an epidemic if we let recipients of
the vaccination nominate further recipients.

When dealing with viral attacks, one potential pitfall is to
confuse ourselves by thinking too much about the dynamic
nature of the attack. Network science has good methods for
dealing with dynamics, but in this paper, we aim to study attacks
from a purely structural angle. We will therefore consider the
state of the network after the attack has stopped spreading
because it can’t reach any more nodes.

If the attack can spread across every link in the network, it will
eventually reach every node in the entire component. It is more
interesting to consider an attack that can only spread across a
certain portion of the links, chosen randomly. For example, only
some roads may have enough traffic flowing along them to allow
gridlock to spread. In the following, we call such links that can
propagate the attack as conducting links.
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Now the attack will infect all nodes that it can reach by a path
of conducting links. In other words, the attack reaches the entire
component in a different version of the network where we count
only the conducting links. Because the non-conducting are now
ignored, the components in the network of conducting are
smaller than the components in our original network,
potentially allowing some nodes to escape the attack.

Considering a proportion w of the links as non-conducting
is analogous to a link removal attack on the viral attack. Hence
if the non-conducting links are distributed randomly, then we
can re-purpose our treatment of random link removal to study
how many nodes will be affected by the viral attack. For
example, we can see immediately that in a network with
mean excess degree q, there is a giant component in the
network of conducting links if (1 − w)q > 1. Otherwise, a
viral attack starting from one node can only spread to a very
small number of nodes.

From now on, we refer to the nodes and links that are part of
the giant component in the network of conducting links as the
giant conducting component.

Furthermore, we can use the results of the random-link-
removal attack to compute the number of nodes that are
affected by a viral attack. For this purpose, we need to
construct a pruning function corresponding to the removal of
the non-conducting proportion w of the links,

A � (1 − w)x + w, (74)

which then allows us to compute the giant conducting
component size by solving

vc � Q(A(vc)), (75)
sc � 1 − G(A(vc)). (76)

This component size is the proportion of nodes that are
removed if an attack starts in the giant conducting
component. It is also the probability that a randomly chosen
initial spreader will be part of the giant conducting component
and hence cause such a large cascade. Otherwise, the initial
spreader will be located in a small component of the
conducting network and, the attack will only affect a small
number of nodes.

A typical question that arises in the context of viral attacks is if
the giant component of the original network can survive a viral
attack of a given scale. Thinking about this question becomes
much easier if we start in the middle and consider a network in
which a certain proportion of links y is not in the giant conducting
component (Figure 4), either because they are not conducting, or
because they are conducting but part of a smaller component.

We start by constructing the attack generating function R in
analogy to our treatment of targeted attacks. If an attack starts in
the giant conducting component, it will reach every link except
the proportion y. Hence a node of degree k will not be affected by
the attack with probability yk. Conversely, nodes of degree k will
be affected by the attack with probability 1 − yk. Hence the

FIGURE 4 | Illustration of a viral attack. Before the attack (A) some proportion of the nodes and links is in the giant component (colored), whereas others are in small
components (grey). We consider a situation where only a small fraction of the links conduct the attack (dark red links, only marked in giant component). To assess the
impact of a viral attack (B), we remove all non-conducting links and compute the size of the giant conducting component (red nodes). After the attack (C) all nodes in the
giant conducting component and their links have been removed from the original network. The giant component in the remaining network is now smaller as some of
its nodes have been destroyed and others have become separated into small components.
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probability that a randomly picked node has degree k and is
affected by the attack is

rk � pk(1 − yk). (77)
Hence the generating function for the node removal is

R � ∑∞
k�0

pk(1 − yk)xk � G − G(xy). (78)

We can now reuse some results from our treatment of degree-
targeted attacks. The proportion of nodes affected by the attack is

r � R(1) � 1 − G(y). (79)
The proportion of removed endpoints is

~r � R′(1)
z

� G′(1) − yG′(y)
z

� 1 − yG′(y)
z

, (80)

and the reduction in excess degree due to the attack is

δ � R″(1)
z

� q − y2G″(y)
z

. (81)

Hence, after the attack the proportion of remaining nodes is

c � 1 − r � G(y). (82)
The proportion of surviving endpoints is

~c � 1 − ~r � yG′(y)
z

, (83)

and the remaining excess degree of the network is

qa � q − δ � y2G″(y)
z

. (84)

We can now construct the pruning function

~A � ~cx + ~r. (85)
Using Eq. 66 we can write the generating functions after the

attack

Ga � G( ~A) − R( ~A)
c

� G( ~Ay)
G(y) (86)

Qa � G′( ~A) − R′( ~A)
z~c

� G′( ~Ay)
G′(y) , (87)

from which we can compute the giant component size in the
usual way.

So far, all of these results are expressed in terms of y. Let’s
explore how y (the proportion of links that are not in the giant
conducting component) is related to the more intuitive w (the
proportion of non-conducting links). We start by noting that
we have two ways to compute the number of nodes removed in
the attack on the giant conducting component. We can
compute it from our calculation of the giant conducting
component size in Eq. 76. Otherwise we can compute it via
Eq. 79 from the attack function R. Combining these two
equations we get,

G(A(vc)) � G(y), (88)
since G is a rising function, this implies

y � A(vc), (89)
which we can compute from w using Eqs 74 and 75.

In summary, after a viral attack that can spread across a
proportion 1 − w of the links in the network, will result in a large
outbreak with a probability of 1 − G(y), and if it does, will affect
the network as follows:

Na � G(y)N (90)
za � (yG′(y))2

zG(y) (91)

qa � y2G″(y)
z

(92)

Ga � G( ~Ay)
G(y) (93)

Qa � G′( ~Ay)
G′(y) , (94)

where y = A (vc), A = (1 − w)x + w, and vc is the solution of vc = Q
(A (vc)).

5 EXAMPLES AND GENERAL RESULTS

The results reviewed in the sections above provide us with a
powerful toolkit. We now illustrate this toolkit in a series of
examples.

5.1 Robustness to Random Attacks
Let us start with a three-regular graph, where every node has
exactly 3 links. This network is interesting because the property of
all networks that suffer random attacks on the three-regular
graph can be computed analytically, highlighting it as a great
example for teaching.

Since all nodes in this network have degree three, the degree
generating function before the attack is

G � x3, (95)
and the corresponding excess degree generating function is

Q � G′
z

� x2, (96)

which confirms that, if we follow a random link, we expect to
find exactly two additional links at the destination, as it should be.

Because the mean excess degree is only q = 2, we can break the
giant component already by removing half the links at random,
but let’s see what happens when we start removing nodes or links
at random. Using Eqs 34 and 36 we know that the generating
functions after the attack will be

Ga � G(A) � (cx + r)3, (97)
Qa � Q(A) � (cx + r)2. (98)
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To find the giant component size we use Eq. 28 and

v � Qa(v) � (cv + r)2. (99)
This is a quadratic polynomial and can be factorized straight

forwardly. Alternatively, we can guess that v = 1 will be a solution
and then factor v − 1 out by polynomial long division. Both ways
lead us to

v � (c − 1)2
c2

� r2

c2
, (100)

from which we can see in a different way that the v reaches 1
(and consequently the giant component breaks) when we have
removed half the links at random (i.e. r = c). Let’s focus instead on
finding the giant component size when it exists. Again following
Eq. 28 we compute

s � 1 − Ga(v) � 1 − (cv + r)3 � 1 − v(cv + r) � 1 − v(r + c)r/c
� 1 − vr/c � 1 − r3/c3.

(101)
This result shows that the regular graph is initially quite tough.

Before we start removing nodes or links, the giant component
contains all nodes. For a small attack, the reduction in giant
component size initially scales like r3 and hence removing a small
proportion of the nodes and/or links has almost no effect on the
size of the giant component in the remaining network. But, once a
significant proportion of nodes/links have been removed, the
impact on the giant component accelerates and quickly leads to
its destruction.

Let us compare these results from the regular graph with a
network where three-quarters of the nodes have degree 1 and one
quarter has degree 9. This network also has a mean degree z = 3,
but its mean excess degree is q = 6. The generating functions
before the attack are

G(x) � 3x + x9

4
, (102)

Q(x) � 1 + 3x8

4
. (103)

To find the size of the giant component before the attack, we
solve

v � 1
4
+ 3v8

4
. (104)

While we could solve this equation numerically, an insightful
shortcut is to note that the solution must be very close to v = 1/4.
Using this approximate solution, we can then compute the giant
component size as follows:

s � 1 − 3v + v9

4
� 1 − v

9 + (4v − 1)
12

( ), (105)

where we used v8 = (4v − 1)/3 to avoid the inaccuracy from raising
a numerical approximation to the 9th power. We can see that
the factor in the bracket is approximately 0 and hence s = 1 − 3v/4

= 1–3/16 = 0.8125, which is the correct result up to 4 digits of
accuracy.

The result shows that, in this heterogeneous network, the giant
component contains only about 81% of the nodes, even before the
attack. Conversely, we know that for a network with q = 6 removal
of 5/6 ≈ 83% of the network is necessary to break the giant
component.

To study the effect of the attack in more detail we have to solve

v � Qa(v) � Q(A(v)) � 1 + 3(cv + r)8
4

, (106)

which we now solve numerically. For teaching (or even a quick
implementation on a computer), it is interesting to note that
equations of this form can be quickly solved by iteration, i.e. we
interpret the equation as an iteration rule

vn+1 � Qa(v) � Q(A(v)) � 1 + 3(cvn + r)8
4

. (107)

Starting from an initial estimate, say v0 = 1/4, the iteration
converges in a few steps due to the high exponent. Once we have
obtained the value of v for a given value of r, we can compute the
corresponding giant component size as

s � 1 − G( ~A(v)), (108)
the result is shown in Figure 5. Although the figure confirms

that the giant component persists until 5/6 of the nodes or links
have been removed, it also shows that for moderate attacks, the
homogeneous topology has a giant component that is larger in
absolute terms and also initially less susceptible to attacks.

FIGURE 5 | Robustness of homogeneous and heterogeneous networks
to random damage. Plotted is the proportion of nodes in the giant component
versus removed links after the attack for a homogeneous (green, Eq. 101) and
heterogeneous (red, Eq. 108). The homogeneous networks resist small
attacks better whereas, the heterogeneous network survives a higher
proportion of removal (Random node removal is described by the same
curves, in this case, the proportion of the giant component refers to the
proportion of remaining nodes).
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This leads us to an important take-home message. We can say,
homogeneous networks are like glass: They are very hard when
hit lightly but, strong impacts shatter them. Heterogeneous
networks are like foam: Parts can be disconnected even
without an attack, and it is easy to tear bits off, but it is very
tedious to destroy the giant component in its entirety.

5.2 Targeted Attack on a Heterogeneous
Network
Let us now consider a targeted attack on the heterogeneous
network from the previous section. For a simple start, we
explore what happens when we remove half of the nodes of
degree 9, i.e. we are only removing 1/8 of the total number of
nodes in the network. In this case, the generating function for the
targeted attack is

R � 1
8
x9, (109)

and hence we can compute

r � R(1) � 1
8

s � 1 − r � 7
8
, (110)

~r � R′(1)
z

� 9
24

~s � 1 − ~r � 5
8
, (111)

δ � R″(1)
z

� 3. (112)

We can now use the formulas derived above to compute the
mean degree and the mean excess degree after the attack

za � z
~c2

c
� 75
56

qa � q − δ � 3. (113)

So, in this case, removing 1/8 of the nodes already halves the
excess degree. We can also ask what proportion p of the nodes we
need to remove if we only target nodes having initially degree 9.
We can consider the attack R = rx9. Since we need qa = 1 to break
the giant component and start with q = 6,

δ � 5 � R″(1)
z

� 24r. (114)

Hence, we can break the giant component by removing r = 5/
24 of the nodes, which is a little bit more than 20%.

We can also compute the size of the giant component after
a proportion r of the nodes is removed in an attack that
targets only the high degree nodes. Considering again R = rx9,
we first compute the proportion of surviving endpoints using
Eq. 57

~c � 1 − 9r
3
� 1 − 3r, (115)

and the pruning function

~A � (1 − 3r)x + 3r. (116)
Which allows us to write the self-consistency condition for v as

v � Qa(v) � G′( ~A(v)) − R′( ~A(v))
z~c

� 1 + 3 1 − 4r( )((1 − 3r)v + 3r)8
4(1 − 3r) , (117)

and the giant component size as

s � 1 − Ga(v) � 1 − G( ~A(v)) − R( ~A(v))
c

� 1 − 3 ~A(v) + (1 − 4r) ~A(v)9
4(1 − r) . (118)

This again can be solved by numerical iteration or
parametrically. A comparison between the effect of the
targeted and the random attack on the heterogeneous network
is shown in Figure 6. This illustrates the fragility of
heterogeneous networks to targeted attacks [4, 39]. By
contrast, the effect of a targeted attack on a homogeneous
network is the same as a random attack, as it contains only
nodes of the same degree.

5.3 Viral Attack on a Heterogeneous
Network
For our final example, we study a viral attack on the
heterogeneous example network. For illustration, we consider
the case where 80% of the links are non-conducting, i.e. w = 0.8.

Following Eq. 74, we can prune the none conducting links
from the network by the pruning function

A � 0.2x + 0.8, (119)

FIGURE 6 | Effect of different types of attacks on heterogeneous
networks. Shown is the giant component size of the heterogeneous example
network after a random attack (red, Eq. 108), a viral attack (green, Eq. 128)
and an optimal degree-targeted attack (blue, Eq. 118). Targeting the
nodes of highest degree destroys the giant component very quickly. The viral
attack is almost as efficient in destroying the network, while requiring much
less information on the node degrees.
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and hence the generating functions of the conducting
network are

Ga � G(A) � 3(0.2x + 0.8) + (0.2x + 0.8)9
4

(120)

Qa � Q(A) � 1 + 3(0.2x + 0.8)8
4

. (121)

We find the giant conducting component solving Eq. 75 by
iteration:

v � Qa(v), (122)
which yields v ≈ 0.735, and then compute the conducting
component size from Eq. 76,

sc � 1 − Ga(v) ≈ 0.136. (123)
This tells us that an attack that starts from a randomly-

selected node will lead to a large outbreak with a
13.6% probability, and if it does, it will remove 13.6% of
the nodes.

To explore the effect that the removal has on the remaining
network, we compute y using Eq. 89,

y � A(v) ≈ 0.947, (124)
so almost 95% of links are not in the giant conducting
component.

Now that we know y, we can use Eq. 83 to compute the
proportion of surviving endpoints after the attack,

~c � yG′(y)
z

� 3y + 9y9

12
≈ 0.697, (125)

and the proportion of removed endpoints,

~r � 1 − ~c ≈ 0.303. (126)
We can now construct our pruning function, ~A, for the viral

attack itself (Eq. 85) and then compute the giant component size
by first solving

v � Qa(v) � Q( ~A(v)), (127)
which yields v ≈ 0.252. And then computing the remaining giant
component size as

s � 1 − Ga(v) ≈ 0.640. (128)
In summary, we have studied an example where only 20% of

the links actually conduct the attack. With so few links, there is
only a 13% chance that it causes a significant outbreak. However,
while such an outbreak, if it occurs, removes only 13% of the
nodes, it preferentially hits the nodes of high degree and, as a
result, only 64% of the nodes in the surviving network remain in
the giant component.

Repeating the calculation for different values of w reveals that
the viral attack is an intermediate case between random and
optimal degree targeted attacks (Figure 6). In heterogeneous
networks, they are almost as damaging as the optimal degree
targeted attack while not requiring the attacker to know the
complete degree sequence of the network.

6 CONCLUSION AND DISCUSSION

In this paper, we revisited the well-known topic of attacks on
networks. We aimed to present this topic in a consistent and
didactic way and show that the effect of four types of attacks
(random removal of links, random removal of nodes, degree-
targeted removal of nodes, and viral attacks) can be summarized
in compact equations. In many cases these equations, can be
solved with pen and paper.

Our examples illustrate some important and widely-known
take-home messages about the robustness of networks. As these
are sometimes misconstrued in the wider literature, let us try to
restate these messages clearly:

• Networks with homogeneous degree distributions are like
glass, they are incredibly hard when attacked lightly, but
heavier attacks can shatter them easily.

• Networks with heterogeneous degree distributions are like
foam. Random attacks can quickly detach parts of the giant
component. However, shedding the weakest parts enables
the giant component to survive significant damage.

• Degree-targeted attacks are relatively pointless against
homogeneous networks as the variation in node degrees
is low.

• Degree-targeted attacks against heterogeneous networks are
devastating and can quickly destroy the giant component.

• Propagating/viral/cascading attacks that spread across the
network itself are almost as dangerous as degree targeted
attacks as they hit high-degree nodes with high probability.

We emphasize that these are only the most basic insights into
configuration-model type networks, and thus strictly hold only in
the absence of additional organizing principles such as strong
embedding in physical space or the presence of degree
correlations and short cycles. Several other papers have
extended the theory reviewed here to alleviate these
constraints. Notable results include the positive effect of
positive degree correlations, which can make the network
much more robust against targeted attacks [16, 17], and the
effect of clustering of short cycles, i.e., network clustering [18, 19].

For the class of random and degree-targeted attacks, we
showed that the effect of these attacks on the mean and mean
excess degree can be captured by very simple equations that can
be derived relatively straight-forwardly. Moreover, we pointed
out a case (the three-regular-graph) for which the giant
component size after all types of attacks can be computed
analytically in closed form. For other networks, numerical
solutions are needed, but they can be solved by quick
numerical iteration on a calculator, rather than requiring full-
scale numerics.

In this paper, we have often referred to the example of
vaccination campaigns, and hence a scenario where we want
the attack to succeed. However, many of the insights gained can
also be applied to make networks more robust against attacks.
Many of the conclusions that have been drawn have been
discussed abundantly in the literature. Instead of reiterating
these, let us point out some issues that have gained
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comparatively less attention. While it is widely known that the
giant component in scale-free networks is highly robust, the
results from our examples show that more homogeneous
networks are robust in a different way: They resist weaker
attacks exceptionally well and are also much less susceptible to
targeted and viral attacks. It is interesting to reflect on the stability
of homogeneous networks against small-scale attacks and
damage in a business context. For private businesses,
catastrophic events that cause large-scale damage are often not
a primary concern, as government actors are expected to
intervene in the case of such an event. In comparison, small-
damage events typically arrive at a higher rate and will have to be
dealt with by the network operator on their own. In this light
operating, a very homogeneous network might be in the interest
of a business that operates it. However, for governments and the
general public optimizing networks in this way, may be
detrimental as it leads to low disaster resilience.

The example illustrates a deeper insight into the nature of
network robustness: By adjusting topological properties, we can
make networks more resilient against certain types of attacks and
damage (cf. [20]). However, unless we increase the overall
connectivity, this resilience is usually gained at the cost of
increasing vulnerabilities to other attacks. In the real world,
where increasing connectivity often comes at a steep price, we
can still optimize the robustness by shaping the network such that
it can optimally withstand the most likely types of damage.
However, care must be taken to make sure we also understand
the downsides of such optimization.

Perhaps a more important conclusion from the present work is
that the physics of attacks on networks is a rewarding field of study.
The authors greatly enjoyed revisiting the relevant calculations, and
the results highlighted here provide a flexible toolkit that, in our
opinion, still has large potential to be more widely used in a broad
range of fields. We hope that readers likewise find this review of the
foundations of network robustness helpful and will carry this topic
into university curricula and new fields of application.
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