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Current questions in ecology revolve around instabilities in the dynamics on spatial networks and
particularly the effect of node heterogeneity. We extend the master stability function formalism to
inhomogeneous biregular networks having two types of spatial nodes. Notably, this class of systems
also allows the investigation of certain types of dynamics on higher-order networks. Combined with
the generalized modeling approach to study the linear stability of steady states, this is a powerful
tool to numerically asses the stability of large ensembles of systems. We analyze the stability
of ecological metacommunities with two distinct types of habitats analytically and numerically in
order to identify several sets of conditions under which the dynamics can become stabilized by
dispersal. Our analytical approach allows general insights into stabilizing and destabilizing effects
in metapopulations. Specifically, we identify self-regulation and negative feedback loops between
source and sink populations as stabilizing mechanisms and we show that maladaptive dispersal may
be stable under certain conditions.

I. INTRODUCTION

Understanding the factors that stabilize or destabilize
nonlinear dynamics of networks is important when deal-
ing with natural or human-made complex systems. Ex-
amples are the conservation of ecological networks [1, 2],
the analysis of regulatory networks in biological cells
[3, 4], the robust construction of electrical power grids
[5, 6], or flow optimization on human traffic networks [7].
Many of these systems can be conceptualized as complex
multi-layer and/or higher-order networks. This allows
for a richer and more detailed description of the system
but complicates the analysis of the dynamics. For in-
stance, in ecology plant-pollinator networks are coupled
to herbivores that feed on the plants, and this can re-
duce the nestedness of the plant-pollinator network [8].
The spatial coupling of chemical reaction networks in dif-
ferent biological cells or of local foodwebs on different
habitat patches can give rise to Turing and wave insta-
bilities that destroy steady states that would be stable
in a spatially isolated network [9, 10]. Further, spatial
coupling of a heterogeneous set of networks can stabilize
networks that would be unstable otherwise, for instance
in ecological source-sink systems [11–15].

The theoretical study of multilayer systems is ham-
pered by the computational costs that increase rapidly
with the number of nodes and the number of parame-
ters and possible network structures to be explored. An
elegant tool to deal with the vast parameter space and
the great variety of possible models is generalized model-
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ing (GM) [16], which focuses on linear stability of steady
states and expresses the Jacobian of the system in terms
of scale parameters and exponent parameters. Scale pa-
rameters quantify the relative contributions of the differ-
ent types of gain and loss terms to the overall turnover of
each species. Exponent parameters quantify how the dif-
ferent growth and loss terms change with the population
densities in the vicinity of the considered steady state.
By specifying the ranges of these parameters, a general
class of models can be investigated without the need to
precisely fix the functional forms of the growth and loss
terms.

In networks with homogeneous nodes stability analysis
can build on master stability functions (MSF). This idea
is commonly credited to Ref. [17] who used it to study
oscillator synchronization. However, the mathematical
formalism was already used in ecology by Othmer and
Scriven [18] in the context of pattern formation and was
subsequently applied to complex networks by Segel and
Levin [19] and is also discussed in Refs. [20, 21].

The combination of GM and MSF was already used in
Ref. [10] to study a multiplex metafoodweb [22]. These
models describes a geographical network of M habitat
patches. Each of these patches is home to a complex
food web of N species, such that the dynamical dimen-
sion of the model is NM and stability of steady states
is captured by a Jacobian matrix of size MN × NM .
The GM+MSF approach disentangles the influence of the
structure of the spatial network on stability from that of
the local species network such that stability can be as-
sessed by examining the eigenvalues of an N × N and
an M ×M matrix. Besides computational efficiency, the
approach thus provides a deeper understanding of how
the spatial and the ecological network structures impact
stability.
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This MSF approach builds on the assumption that all
nodes of the spatial network are equivalent, so that the
species network has the same steady state on all habi-
tats. Recently, this approach was extended to the case
where only part of the species have populations on all
habitats, while others are global species that have a sin-
gle population that couples to its interaction partners on
all habitats simultaneously [23].

In this paper, we develop a generalization of the MSF
approach to biregular heterogeneous systems, namely
to metanetworks with different types of spatial nodes.
These systems are regular graphs in the sense that every
node of a given type is connected to the same number
of neighboring nodes. Moreover, they are bipartite such
that a node of a given type only interacts with the nodes
of the respectively other type.

Our motivation for choosing this particular system is
twofold. First, from a purely operational perspective it
provides a framework in which analytical insights can be
gained which allows a deeper understanding of the im-
portant ecological question of node heterogeneity. Sec-
ond, we are motivated by recent work on dynamics on
hypergraph or higher-order dynamical networks [24, 25],
which under certain conditions map to the biregular sys-
tem class.

In the ecological context the biregular system provides
an adequate model for the dispersal of individuals be-
tween patches. When dispersing many higher animals
enter a roaming-state where they are in transit between
patches while looking for a new home range. In this
roaming-state population dynamics (typically dominated
by losses) can still occur such that there is population
dynamics both on the links and the nodes of the geo-
graphical network, similary to the model in Ref. [24].
Representing the nodes in a regular graph by one node
type and the links connecting them as another node type
leads to a biregular network of the type considered here.

These ecological systems belong to the wider class
of source-sink systems, which are ubiquitous in hetero-
geneous landscapes. Sources are high-quality habitats
where populations exhibit a positive net growth rate,
while sinks are poor-quality habitats with negative net
growth rates. Coupling the two types of habitats can
maintain populations in sinks that would otherwise go
extinct, and outflow from sources as well as inflow from
sinks can affect the stability of sources.

Dispersal between sources and sinks cannot only hap-
pen through passive dispersal, but also through adaptive
dispersal, for instance from overcrowded sources to lower-
quality but less-crowded habitats [12, 26]. Such active
dispersal can, however, also be maladaptive [27, 28]. A
particular risk to wildlife are perceptual and ecological
traps, where individuals disperse actively out of high-
quality habitats or into low-quality habitats and thereby
reduce their rate of reproduction [29]. Many of these
traps are due to recent changes caused by human in-
terference [30], such as reflecting artificial surfaces which
attract mating water insects [31, 32], or developed moun-

tain valleys that attract grizzly bears [33]. Albeit detri-
mental to the population size, traps might sometimes
help to stabilize population dynamics [34]. As a specific
application of the methodological development presented
in this paper, we will show that such stabilizing effects of
perceptual and ecological traps are indeed possible under
generic conditions.

In the following, we first develop the generalized MSF
formalism for metanetworks with two types of spatial
nodes. Then, we define a class of generalized ecologi-
cal models of which the stability is explored with this
method. We find that there are two types of disper-
sal turnover rates in source-sink dynamics, and specify
general conditions under which increasing dispersal rates
can have a stabilizing effect. Analytical calculations for
one species in source-sink systems are supplemented by
numerical evaluations of systems with foodwebs consist-
ing of several species, giving similar stability conditions.
Among these conditions, we will identify a subset that
demonstrates a stabilizing effect of traps.

II. DIFFUSION-DRIVEN INSTABILITIES FOR
TWO TYPES OF PATCHES

We consider a system of N species and M patches.
The dynamics for the population density Xk

i of species i
on patch k of a metanetwork such as an ecological meta-
community has the general form

Ẋk
i =Gki (Xk)−Mk

i (Xk)

+

M∑
l=1

Ekli (Xk,X l)−
M∑
l=1

Elki (X l,Xk) . (1)

The first term describes local growth in patch k due
to primary production (for plants) and consumption of
other species, the second local losses (“mortality”) due
to predation and other causes of death, and the last two
terms describe dispersal into and out of patch k. We
assume that there are two types of patches, which we
will call sources and sinks, with species in sources hav-
ing a positive net growth rate Gki (Xk) −Mk

i (Xk) and
species in sinks having a negative one. We further as-
sume that all sources have identical parameters (includ-
ing patch size) and all sinks have identical parameters.
The numbers of sources (M+) and of sinks (M−) will
in general be different. We furthermore assume that
sources are connected only to sinks and vice versa. In
order to obtain identical steady states for all patches of
the same type, they must have the same degree, thus
the network has to be biregular. This means that at a
steady state the population densities of all source patches
are identical, (Xk+)∗ = X+ for k+ ∈ {1, . . . ,M+}
and those of all sinks are identical, (Xk−)∗ = X− for
k− ∈ {M+ + 1, . . .M+ +M−}.

The stability of a steady state is determined by the
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Jacobian

J(i+kN)(j+mN) =
∂Ẋk

i (X)

∂Xm
j

∣∣∣∣
X=X∗

. (2)

When we separate the within-patch and between-patch
terms, J has entries of the form

∂Ẋk
i

∂Xk
j

= P k
ij −

M∑
l=1

Ckl
ij

∂Ẋk
i

∂X l
j

= Ĉkl
ij (3)

with the matrix elements that result from taking the
derivatives of Gki and Mk

i in (1) being included in P k,
and those that involve the dispersal terms Ekli entering

the matrices Ckl and Ĉkl. Since the three types of ma-
trices are identical for all patches of the same type, we
can express the Jacobian in the compact block form

J =

(
I+ ⊗ (P+ − d+C+) M ⊗ Ĉ+

MT ⊗ Ĉ− I− ⊗ (P− − d−C−)

)
,

(4)
where I+ (I−) is the identity matrix of dimension M+

(M−), and the matrix M denotes which patches are con-
nected. It has M+ rows and M− columns. We allow mul-
tiple links between the same pair of patches, and hence
the entries of M are either 0 or a natural number. Since
all patches of one type have the same degree, M has a
constant row sum equal to the source’s degree d+ and a
constant column sum equal to the sink’s degree d−. The
symbol ⊗ denotes the Kronecker product.

The eigenvalues λ of the Jacobian are obtained by solv-
ing

Ju = λu . (5)

The specific form (4) enables us to reduce the degree of
this equation similarly to what has been done with the
MSF approach by Brechtel et al. [10]. To this purpose,
we make the ansatz for the eigenvectors

u =

(
w+ ⊗ v+

w− ⊗ v−

)
. (6)

The N -dimensional normalized vectors v+ and v− give
the relative contribution of the different species to the
eigenvectors within sources and sinks respectively, and
w+ and w− denote the weights of these eigenvectors on
the different source and sink patches.

In the following, we will show that we can find all so-
lutions of the eigenvalue Eq. (4) by specifying that

MTw+ = βw− and Mw− = αw+ . (7)

Inserting this together with the ansatz (6) into the eigen-
value Eq. (5) leads to a reduced eigenvalue equation with

a reduced Jacobian j,

j

(
v+

v−

)
≡
(
P+ − d+C+ αĈ+

βĈ− P− − d−C−

)(
v+

v−

)
= λ

(
v+

v−

)
, (8)

provided that w+ and w− are nonvanishing. This re-
duced Jacobian is of dimension 2N instead of MN , while
the influence of topology is captured in the coefficients α
and β. Since the reduced eigenvalue Eq. (8) depends
only on the product αβ, we can choose

α = β (9)

for the purpose of calculating λ without loss of generality.
One class of solutions for the eigenvalue Eq. (5) can be
obtained by transforming (7) to

β2w+ = MMTw+ (10)

or

β2w− = MTMw− . (11)

Thus the positive β are the singular values [35] of M ,
i.e., β2 are the joint eigenvalues of MMT and MTM .
Their quantity is min{M+,M−}. The largest of these

singular values is
√
d+d− because MTM and MMT

have a constant row sum of d+d−. Since MTM and
MMT are symmetric and positive semidefinite, all of
their eigenvalues are real and non-negative, i.e., 0 ≤ β2 ≤
d+d−. From this, we find 2N∗min{M+,M−} eigenvalues
of the full Jacobian J in Eq. (4) by solving the reduced
eigenvalue Eq. (8) for each singular value β ∈ S, with S
being the set containing all singular values of M .

The remaining solutions are related to eigenvalues
αβ = 0 of MMT or MTM (α 6= β), whichever of these
two matrices has the larger dimension. This matrix has
|M+−M−| eigenvalues 0 in addition to the singular val-
ues of M (among which there might also be 0s). We find
the solutions associated with this eigenvalue by setting
α = 0 and w− = 0 in (7) if M+ > M−, and β = 0 and
w+ = 0 otherwise. In this case the eigenvalue Eq. (5)
simplifies to the two equations

Mkwk = 0 (12a)

(P k − dkCk)vk = λvk (12b)

where k = + and M+ = MT if M+ > M− and
k = − and M− = M if M− > M+. The corresponding
modes are nonvanishing only on the more numerous type
of patches. This gives N |M+−M−| additional solutions
of Eq. (5). Altogether we thus have found all 2N ∗
min{M+,M−}+N ∗ |M+−M−| = NM solutions of the
full eigenvalue equation for J . Compared to the direct
calculation of the eigenvalues of J , this procedure saves a
significant amount of computation time when the system
has many patches.
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The largest singular value β =
√
d+d− is obtained

when w+ and w− are vectors with all entries being 1.
In this case, the dynamics close to the steady state are
equivalent for all source and sink patches, respectively,
and the associated eigenvalues are those of a system with
one source and one sink patch. Since all eigenvalues λ
must be negative for a stable steady state, the steady
state of the M -patch system can only be stable if the
corresponding two-patch system is stable.

However, stability of the two-patch system is not suf-
ficient for stability of the entire network, as heteroge-
neous modes, which have different amplitudes on differ-
ent source and/or sink patches, may also be unstable,
leading to a generalized version of diffusion-driven Tur-
ing instabilities or of wave instabilities.

III. GENERALIZED MODELING OF
SOURCE-SINK DYNAMICS

In order to evaluate the stability of source-sink meta-
communities, we use the GM approach [16]. We will
choose a form for Eq. (1) that naturally reflects the
differences between sources and sinks. Local produc-
tion is larger than local mortality in sources and vice
versa in sinks. Similarly, emigration is larger than im-
migration in sources and smaller than immigration in
sinks. The steady state is defined by Ẋk

i = 0. Then
the difference between growth and mortality is equal to
the difference between immigration and emigration in
both patch types. We normalize all population densities
and functions to their values at the considered steady
state (marked with ∗) and use lower-case symbols for
these normalized quantities, setting xki = Xk

i /(X
k
i )∗ and

gki (xk) = Gki (Xk)/[Gki (Xk)]∗ and similarly for the other
three functions. Eq. (1) then can be put into a form
that reflects directly the surplus growth and emigration
of sources and the surplus immigration and mortality of
sinks (see Appendix A for a detailed calculation):

ẋ
k+
i = α+

Pi

[
g
k+
i (xk+)−mk+

i (xk+)

]
+ α+

Si

[
g
k+
i (xk+)− 1

d+

∑
k−

e
k−k+
i (xk− ,xk+)

]

+ α+
Ci

[
1

d+

∑
k−

e
k+k−
i (xk+ ,xk−)

− 1

d+

∑
k−

e
k−k+
i (xk− ,xk+)

]
(13)

for all sources and

ẋ
k−
i = α−Pi

[
g
k−
i (xk−)−mk−

i (xk−)

]
+ qα+

Si

[
1

d−

∑
k+

e
k−k+
i (xk− ,xk+)−mk−

i (xk−)

]

+ qα+
Ci

[
1

d−

∑
k+

e
k−k+
i (xk− ,xk+)

− 1

d−

∑
k+

e
k+k−
i (xk+ ,xk−)

]
(14)

for all sinks. The dk denote the degree of patch k, and
each of the sums has exactly dk nonzero terms. In gen-
eral, we assume that dispersal depends on a species’ own
population density (and on the density of other species
such as a predator or prey) on the donor and target patch.

The per-capita biomass turnover rates α have an intu-
itive meaning that will be useful for the stability analysis
further below. The rate αkPi

captures the turnover due

to local dynamics. In sources α+
Pi

is equal to the mor-

tality rate and in sinks α−Pi
is equal to the growth rate.

Turnover due to pure dispersal dynamics is denoted with
α+
Ci

being the rate of immigration to sources and qα+
Ci

the rate of emigration from sinks. We therefore call them
dispersal turnover. These are proportional to each other
with the factor q because the total biomass leaving a
donor patch needs to be equal to the biomass arriving
at the target patch (see Appendix A for further informa-
tion). In addition to these two rates, there is an excess
growth (not compensated by mortality) and an excess
emigration (not compensated by immigration) in sources,
and an excess mortality and immigration in sinks. This
excess leads to a net source-sink flow rate α+

Si
in sources

and qα+
Si

in sinks. It is a direct measure of the strength

of source-sink dynamics, which are absent if α+
Si

= 0. We
have thus two distinct types of dispersal rates in source-
sink dynamics. The rate α+

Ci
is due to dispersal between

sinks and sources, while α+
Si

is the rate of the net flow
from sources to sinks driven by excess growth in sources.
Below, we will investigate the impact of these two scale
parameters on stability.

The stability of the system is evaluated by analyzing
the Jacobian of Eqs. (13) and (14),

J(i+kN)(j+mN) =
∂ẋki (x)

∂xmj

∣∣∣∣
x=x∗

. (15)

It has the same eigenvalues as the Jacobian (2) and can
be evaluated for our biregular system with the methods
described in Sec. II.

For evaluating the Jacobian we need the derivatives
of the normalized functions at the steady state, which
are the so-called exponent parameters. In our model, we
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have the following exponent parameters:

φki =
∂

∂xki
gki (xki )

∣∣∣∣
x=x∗

, µki =
∂

∂xki
mk
i (xki )

∣∣∣∣
x=x∗

,

φkij=
∂

∂xkj
gki (xki )

∣∣∣∣
x=x∗

, µkij =
∂

∂xkj
mk
i (xki )

∣∣∣∣
x=x∗

,

ω̂kli =
∂

∂xki
ekli (xk,xl)

∣∣∣∣
x=x∗

,

ωkli =
∂

∂xli
ekli (xk,xl)

∣∣∣∣
x=x∗

,

κ̂klij=
∂

∂xkj
ekli (xk,xl)

∣∣∣∣
x=x∗

,

κklij=
∂

∂xlj
ekli (xk,xl)

∣∣∣∣
x=x∗

(16)

with i 6= j.
The exponent parameters are logarithmic derivatives

of the unnormalized functions with respect to the pop-
ulation density (also called elasticities). They give the
power law exponent that characterizes the relationship
between the function and the population density in the
vicinity of the steady state. For instance, an exponent
parameter of 1 describes a linear relationship, an expo-
nent of 2 a quadratic relationship and an exponent of −1
an inversely proportional relationship between a function
and its argument. Table I summarizes all generalized pa-
rameters and their ecological interpretation.

Ecological considerations fix the sign and the realistic
range of values of exponent parameters. In particular,
φki and µki must be positive since we expect local growth
and mortality to increase with population density. This
increase is expected to be linear (φki = 1, µki = 1) for
simple Lotka Volterra models. Predator saturation and
finite handling times of prey typically make growth sub-
linear (φki < 1). Intra-specific competition (e.g., due to
limitations of space, nutrients or nesting sites) leads to
self-regulation, making mortality superlinear (µki > 1).
This induces a self-regulating negative feedback between
net growth rate and population density which is stabi-
lizing [36]. The opposite situation is also possible. A
population may be subject to strong intra-specific facil-
itation, also known as the Allee effect, which typically
occurs at lower population densities, e.g., due to a bet-
ter protection against predators in large groups or an
increased probability to find mating partners. In this
situation we expect growth to correlate with population
density in a superlinear (φki > 1) and mortality to cor-
relate in a sublinear (µki < 1) manner. This is known to
have a destabilizing effect.

Movement behavior can be described by how dispersal
rates depend on population densities in the donor (ωkli )
or target (ω̂kli ) patch. If dispersal is passive, then we
expect a fixed proportion of the population in the donor
patch to emigrate. Then the per-capita emigration rates
are constant. In this case dispersal rates are independent
of the density in the target patch k and linear in the

density of the donor patch l such that ωkli = 1 and ω̂kli =
0. Individuals might be more likely to avoid their own
species (ωkli > 1, ω̂kli < 0, e.g., due to competition) or
other species (κklij > 0, κ̂klij < 0, e.g., due to predation
by that species) or they might be more likely to seek
their own species (ωkli < 1, ω̂kli > 0, e.g., due to an Allee
effect) or other species (κklij < 0, κ̂klij > 0, e.g., when
seeking prey). In cases of strong facilitation, emigration
from a patch might even be negatively correlated with its
density (ωkli < 0). Movement behavior might even lead
to a decrease of per-capita growth rates. Such movement
is maladaptive and can give rise to so-called traps. We
will show below that such maladaptive situations may
arise under generic conditions.

These considerations show that by imposing conditions
on the generalized parameters one can specify classes of
ecological systems that share essential characteristics of
their dynamics. In Table I we list the realistic ranges
in which the generalized parameters can lie. In the next
section, we will show that there are qualitatively different
classes of systems within these ranges that show different
stability properties.

IV. ANALYTICAL RESULTS FOR ONE
SPECIES ON MULTIPLE PATCHES

The reduced eigenvalue Eq. (8) becomes analytically
solvable if only one species is present. This analytical so-
lution provides a wealth of insights about the stability of
the system, part of which we will derive in the following.

A. Eigenvalues of the Jacobian

As outlined in Sec. II, there are two types of eigen-
values of the Jacobian. First, there are two eigenvalues
λi(β) (i ∈ 1, 2) for each singular value α = β of the ma-
trix M . These eigenvalues are obtained by solving the
reduced eigenvalue Eq. (8). For one species, the reduced
Jacobian j simplifies to

j =

(
P+ − d+C+ βĈ+

βĈ− P− − d−C−

)
(17)

with

P+= α+
P (φ+ − µ+) + α+

Sφ
+ (18)

P−= α−P (φ− − µ−)− qα+
Sµ
− (19)

C+= [α+
C(ω−+ − ω̂+−) + α+

Sω
−+]/d+ (20)

C−= [qα+
C(ω+− − ω̂−+)− qα+

S ω̂
−+]/d− (21)

Ĉ+= [α+
C(ω+− − ω̂−+)− α+

S ω̂
−+]/d+ (22)

Ĉ−= [qα+
C(ω−+ − ω̂+−) + qα+

Sω
−+]/d− . (23)

Second, if the number of source patches M+ is differ-
ent from the number of sink patches M−, then there is
one additional eigenvalue λk0 that is obtained by setting
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α = 0 (β = 0) if M+ > M− (M+ < M−) and solving
Eq. (12). The considered steady state is stable if the real
part of all eigenvalues of the reduced Jacobian j and the
additional eigenvalue λk0 (which is real) are negative, i.e.,
if Re[λi(β)] < 0 ∀β ∈ S and if

P k − dkCk = λk0 < 0 , (24)

with k = + if M+ > M− and k = − if M− > M+. The
biregular spatial distribution of patches affects stability
only through the parameters d+, d−, and β.

In the absence of dispersal, the dispersal-dependent
turnover rates α+

S and α+
C vanish. Then the Jacobian has

a diagonal form with the entries P+ and P−. According
to eqs. (18) and (19), both types of patches are stable if

φ+ < µ+ , φ− < µ− . (25)

In the following we refer to the term

αkP (φk − µk) (26)

as local feedback. If the local feedback in both patch
types is negative, then local dynamics exhibit a stable
steady without dispersal because the local populations
are able to self-regulate their sizes.

B. When is the net source sink flow stabilizing?

We consider systems that are unstable in the absence of
dispersal and explore under which conditions an increase
of the net source-sink flow α+

S can stabilize the steady
state (see Appendix C for the complete calculation).

For the sake of simplicity we assume that α+
C = 0. We

identify two effects of α+
S on the entries of the Jacobian.

First, the additional eigenvalue λk0 (24) and the diag-
onal entries P k − dkCk of the Jacobian depend linearly
on α+

S . We call the diagonal entries intrapatch feedbacks
since they indicate how the net growth rate of a popula-
tion correlates with its local size at the steady state. Neg-
ative intrapatch feedbacks at a steady state are known to
increase stability [1, 36] because they indicate that a pop-
ulation is able to self-regulate its population size. Due to
dispersal, these intrapatch feebacks are shifted by

α+
S (φ+ − ω−+) and qα+

S (ω̂−+ − µ−) (27)

for sources and sinks respectively. We say that these
terms are induced by the net source-sink flow α+

S . We
therefore call these terms ”induced intrapatch feedback”.

Second, the off-diagonal entries of the reduced Jaco-
bian become nonzero due to dispersal. The product

− q(α+
S )2

β2

d+d−
ω̂−+ω−+ (28)

of the off-diagonal elements of j indicates a feedback
[37] between the source and sink populations. We call
this ”induced interpatch feedback”. Whether this feed-
back is stabilizing or destabilizing, depends on the sign

of −ω̂−+ω−+. For example, if ω−+ > 0, then a positive
perturbation to source populations increases immigration
to sinks and thus the population size of sinks. But be-
cause of ω̂−+ < 0 this also decreases emigration from
sources and thus increases the source population further.
If this positive interpatch feedback is not opposed by suf-
ficiently strong negative intrapatch feedbacks (27), then
a positive feedback loop is present which destabilizes the
equilibrium. By the same type of reasoning, the case
−ω̂−+ω−+ < 0 implies a negative interpatch feedback,
which has a stabilizing effect.

Since all Jacobian eigenvalues need to be negative for
all β2, it is sufficient to restrict the analysis to values
for β2 where (28) is maximal (see Appendix C), which is
β2 = d+d− if −ω̂−+ω−+ > 0 or β2 = β2

0 = min(β ∈ S)2

if −ω̂−+ω−+ < 0. In the latter case, stability is more
easily achieved when β0 is larger. This means that the
topology of the source-sink network affects stability, since
the β2 are the eigenvalues of MMT and MTM , see (11).

In our analytical considerations, we set β2
0 = 0 in order

to keep calculations feasible, which means that our sta-
bility criteria are sufficient, but that part of the systems
that do not satisfy the criteria can also be stable.

We obtain five different ways how a net source-sink
flow can stabilize a system that would be unstable in
the absence of dispersal. The first three cases are such
that there exists a threshold value of α+

S above which
the maximal real part of all eigenvalues is negative. This
means that the system eventually becomes stable when
α+
S is increased far enough. A prerequisite for this to

be possible is that dispersal and density are positively
correlated in sources (ω−+i > 0). We find (for further
details see Appendix C 1):

I A sufficiently large net source-sink flow α+
S

stabilizes source-sink dynamics if it induces
a negative intrapatch feedback in all patches
(φ+ < ω−+ and ω̂−+ < µ−) and no or a neg-
ative interpatch feedback (−ω−+ω̂−+ ≤ 0).

II If α+
S induces a positive interpatch feedback

(−ω−+ω̂−+ > 0), a stabilization of source-
sink dynamics is possible if it also induces
a negative intrapatch feedback in all patches
(φ+ < ω−+ and ω̂−+ < µ−), which has to
be strong enough to suppress a potential pos-
itive feedback loop between source and sink
populations. This is the case if |ω̂−+| <
µ−
(
ω−+

φ+ − 1
)

.

III A sufficiently large net source-sink flow
α+
S stabilizes source-sink dynamics even if it

induces a positive intrapatch feedback in one
of the two patch types (φ+ > ω−+ or ω̂−+ >
µ−). This has to be in the less numerous
patch type (so that condition (24) does not
apply to it), and the absolute value of the in-
duced feedback has to be smaller than the neg-
ative intrapatch feedback which is induced in
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the more numerous patch type. In addition,
α+
S must induce a sufficiently strong negative

feedback loop between source and sink popula-
tions (−ω−+ω̂−+ < 0, β2

0 > 0) to overcome
local Allee effects (see Appendix C 1).

In the remaining two cases the model is unstable not
only in the absence of dispersal but also in the limit of
very large net source-sink flow α+

S . This means that there

exists an intermediate interval of α+
S values for which the

system is stable. In order to specify these two cases, it
is useful to define the resistances R+

S and R−S of sources

and sinks to changes of the net-source sink flow α+
S ,

R+
S = −α+

P

φ+ − µ+

φ+ − ω−+
, R−S = −

α−P
q

φ− − µ−

ω̂−+ − µ−
. (29)

Since a diagonal entry of the Jacobian (17) is zero if
α+
S = RkS , these resistances also measure how sensitive

the diagonal entries (intrapatch feedbacks) are to changes
in α+

S .
We find the following two situations where the system

can be stable for an intermediate range of α+
S values (for

further details on the analysis and for the specification
of necessary conditions see Appendix C 2):

IV If the resistance of patch type k1 with a
negative local feedback (φk1 < µk1) is larger

than the resistance (Rk1S > Rk2S ) of the other
patch type k2 with a positive local feedback
(φk2 > µk2), then the net source-sink flow α+

S
can stabilize the system for an intermediate
range of values. This requires that α+

S induces
a positive intrapatch feedback (27) in the for-
mer (k1) and a negative intrapatch feedback in
the latter (k2). The induced interpatch feed-
back may be negative or positive, but has to
be sufficiently weak in the latter case.

V If the net source-sink flow α+
S induces a

stabilizing negative intrapatch feedback in both
sources and sinks (φ+ < ω−+ and ω̂−+ <
µ−), then an intermediate range of stability
is possible if α+

S also induces a destabilizing
positive interpatch feedback (−ω̂−+ω−+ > 0),
which has to dominate the induced negative
intrapatch feedbacks for a large net source-
sink flow, which is the case if |ω̂−+| >

µ−
(
ω−+

φ+ − 1
)

. It is required that one patch

type has a negative local feedback (φk1 < µk1),
while the other has a positive one (φk2 >

µk2), with the resistances satisfying −Rk1S >

Rk2S .

C. When is dispersal turnover stabilizing?

Next, we analyze the conditions under which the dis-
persal turnover α+

C stabilizes the system. Proceeding

similarly as before, we identify the intrapatch feedbacks

α+
C(ω̂+− − ω−+) and qα+

C(ω̂−+ − ω+−) (30)

which are induced by the dispersal turnover α+
C . Again

we define the resistance of sources R+
C and resistance of

sinks R−C to changes in dispersal turnover α+
C ,

R+
C = −α

+
P (φ+−µ+)+α+

Sφ
+

ω̂+−−ω−+ ,

R−C = −α
−
P (φ−−µ−)−qα+

Sµ
−

q(ω̂−+−ω+−) . (31)

Compared to the resistances to the net source-sink flow
(29), the denominators are replaced by the intrapatch
feedbacks induced by the dispersal turnover (30). The
numerators

α+
P (φ+ − µ+) + α+

Sφ
+ and α−P (φ− − µ−)− qα+

Sµ
−

(32)
represent extended local feedbacks, which have an addi-
tional term due to source-sink dynamics. We identify two
regimes of stability for α+

C , one for sufficiently large and

one for intermediate α+
C . First, we find (see Appendix

D 1 for further details on the analysis):

VI A sufficiently large dispersal turnover α+
C

is stabilizing if it induces a negative intrap-
atch feedback in both patch types (ω̂+− < ω−+

and ω̂−+ < ω+−) and if their extended local
feedbacks (32) have opposite signs (k1 with a
negative and k2 with a positive extended local
feedback). Additionally, the absolute value of
the resistance of the patch type with a neg-
ative extended local feedback has to be larger
than the absolute value of the resistance of the
other (Rk1C > −Rk2C ).

For the intermediate regime of stability we assume
α+
S = 0 for simplicity and find (see Appendix D 2 for

details):

VII The dispersal turnover α+
C can stabilize

the system for an intermediate range of val-
ues if the induced intrapatch feedback in a
patch type k1 with a negative local feedback
(φk1 < µk1) is positive (ω̂k1k2 > ωk2k1) and
the induced intrapatch feedback in a patch type
k2 with a positive local feedback (φk2 > µk2)
is negative (ω̂k2k1 < ωk1k2). Further it is
required that the resistance of the former is
larger than the resistance of the latter (Rk2C >

Rk1C ).

These conditions for stabilization do not depend on in-
duced interpatch feedbacks. Hence stabilizing effects of
dispersal turnover mainly depend on the intrapatch feed-
backs it induces, though thresholds for stability may be
shifted due to induced interpatch feedbacks.



8

D. Maladaptive dispersal can be stabilizing

The conditions identified in the previous sections are
so general that they include instances of maladaptive dis-
persal. To model maladaptive dispersal we consider the
exponent parameters that are related to the local per-
capita net growth rates

W k
i (Xk) =

Gki (Xk)−Mk
i (Xk)

Xk
i

, (33)

as these are a measure for patch quality. The exponent
parameters related to these net growth rates can be ex-
pressed in terms of the already defined parameters as

η+i =
∂W

k+
i

∂X
k+
i

X+∗
i

W+∗
i

∣∣∣∣
X=X∗

=
α+

Pi

α+
Si

(φ+i − µ
+
i ) + φ+i − 1 ,

η−i =
∂W

k−
i

∂X
k−
i

X−∗
i

W−∗
i

∣∣∣∣
X=X∗

=
α−

Pi

α−
Si

(φ−i − µ
−
i )− µ−i − 1(34)

for sources and sinks respectively.
Usually it is expected that individuals disperse adap-

tively such that they increase their local per-capita net
growth rate, and thus on average they should prefer
sources over sinks. However, the local per-capita net
growth rate can decrease with density (η+i < 0) even
if W k

i (Xk) > 0, for instance if there is competition for
a limited resource. Then it might be favorable for part
of the population to move from a source to a sink. In
addition to this adaptive type of movement, maladaptive
movement is also possible. In this case the per-capita net
growth rate decreases due to dispersal.

Here we consider two cases of maladaptive movement.
First, if a source is subject to an Allee effect or growth
facilitation (η+i > 0), then an increase in the source’s
population size also increases W k

i (X+). Then move-
ment is certainly maladaptive if individuals additionally
are more likely to leave (ω−+i > 1, positive density de-
pendence) or avoid to settle (ω̂+−

i < 0) in the source
when the source population becomes larger. This can be
called a perceived trap, since individuals falsely identify
a high-quality habitat as a bad one and avoid it [38, 39].
Second, if a sink is subject to competition (η−i < 0), then
an increase in its population size decreases W k

i (X−).
Then movement is certainly maladaptive if individuals
are more likely to settle (ω̂−+i > 0) or to stay (ω+−

i < 1,
negative density dependence) in sinks when the sink pop-
ulation size is larger. In this case we have an ecological
trap since individuals actively prefer to settle in a poor-
quality habitat [40].

We find from Sec. IV B that there always exists a
threshold value for α+

S above which the system is stable
irrespective of the sign of local feedbacks αkP (φk−µk), as
long as the according conditions are satisfied. Hence we
can choose η+ > 0 (η− < 0) and ω−+ > 1 (ω̂−+ > 0),
so that there exist stable steady states according to cases
I-III (I and III) if we chose the other parameters accord-
ingly.

There also exist intermediate ranges of α+
S for which

stabilization is possible if a trap is present. For instance
in case IV we can choose φ+−µ+ > 0 and ω−+ > φ+ > 1
and obtain η+ > 0, implying a perceptual trap. Then a
stable steady state is obtained when the other parameters
are chosen accordingly. Similarly we can choose φ+ −
µ+ < 0 and ω̂−+ > µ− > 0 with η− < 0 and obtain
an ecological trap that is stable with the right choice of
parameters. The conditions for both types of traps can
even be satisfied simultaneously.

Even in cases where maladaptive dynamics cannot be
stabilized by increasing the net source-sink flow alone,
they can be stabilized by an additional dispersal turnover
α+
C (case VI) if it induces a negative intrapatch feedback

in both patch types, which is the case if 0 < ω̂−+ < ω+−

and ω̂+− < 1 < ω−+. A perceptual and ecological trap
can be simultaneously stable if φ+ > µ+ and φ− > µ−

and all other conditions for ηk and RkS are satisfied.

V. NUMERICAL RESULTS AND LARGER
FOOD WEBS

To confirm the analytical results and to check how
these translate to metacommunities with more species,
we performed numerical analysis by varying the net
source-sink flow α+

Si
or the dispersal turnover α+

Ci
. The

parameter regions where the stability criteria I to VII are
satisfied are indicated in Fig. 1. We evaluated the pro-
portion of stable webs in dependence of the normalized
turnover rates α+

Si
/αki (with α+

Ci
= 0) or α+

Ci
/αki (with

α+
Si

= 0), with

αki = αkPi
+ αkSi

+ αkCi
. (35)

The second parameter that we varied is either ω+−
i or

ω̂+−
i , as these two parameters play a central role in the

stability conditions. For the metacommunities with sev-
eral species these parameters were varied for only one
species. The yellow dashed lines mark transitions where
all eigenvalues become negative (see Appendices C and
D for the formulas), and hence these are the boundaries
of the stable regions. The solid horizontal and curved
orange lines give the values of the resistances, and the
vertical green lines indicate the transition between dif-
ferent stable regimes when changing ω+−

i or ω̂+−
i . These

lines are marked in the plots for larger metacommunities
(N = 10) as well, such that we can compare the nu-
merical results to the analytical results for one species.
For more details of the numerical procedure (parameter
values, methods used, etc.), see Appendix E.

The black areas in Figs. 1(a), 1(c), 1(e), and 1(g)
indicate parameter ranges where all systems are stable.
These regions are delimited by the lines that were calcu-
lated analytically in the previous section. Region III in
Fig. 1(a), however, has only ≈ 50% stable systems. The
reason is that the number of source and sink patches was
chosen randomly, but only systems with more sources
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than sinks (M+ > M−) are stable since then the addi-
tional eigenvalue (24) is λ+0 and is negative in region III
for the chosen parameter set. Otherwise, the additional
eigenvalue is λ−0 which is positive since ω̂−+ > µ−.

Figs. 1(a), 1(e), and 1(g) include parameter regions
marked with an X, where part of the systems are stable.
These are regions where the topology of the source-sink
network affects stability since stability depends on the
smallest value of β2, which we labeled β2

0 in the previous
section, and which we set to 0 in the analytical calcula-
tions to derive sufficient stability criteria (see Appendix
C). With this simplification, the affected regions of sta-
bility are delimited by the resistances, marked by the
orange lines in the figure. This explains why the regions
marked by an X occur when an orange line is crossed from
a black region. Since β2

0 must be larger further beyond
the orange line for a system to be stable, the proportion
of stable systems decreases with distance from this line.

When metacommunities of more than one species are
evaluated (Figs. 1(b), 1(d), 1(f), and 1(h)) the stability
criteria obtained for metapopulations with one species
still play an important role, even though the black regions
now become less dark, indicating that no longer 100% of
systems are stable. On the other hand, parameter regions
that were always unstable for the metapopulations, now
include stable systems. This extension of parameter re-
gions that allow for stable systems is most striking in 1
(b). Interestingly, in Fig. 1(f) and Fig. 1(h) orange re-
sistance lines that were lying in the fully unstable regions
in the single species case, now mark transitions between
a higher and lower percentage of stable systems. In these
regions stabilization was not possible for a single species
due to positive interpatch feedbacks which cause a pos-
itive feedback loop. This suggests that the presence of
other species might suppress positive feedback loops be-
tween source and sink populations.

VI. DISCUSSION AND CONCLUSION

In this paper, we have generalized the master stability
function approach for metanetworks to systems with two
types of patches. Combined with the generalized model-
ing approach, which allows to explore efficiently the linear
stability of large networks, we have thus a powerful tool
to evaluate the conditions under which large inhomoge-
neous metanetworks are stable. However, the advantages
of the method come at the cost of limiting the model
to steady states that are identical on all patches of the
same type and to biregular patch topologies. Neverthe-
less, previous work shows that results obtained with such
restrictions are usually more generally valid [23].

We demonstrated the usefulness of the method by
studying an explicit system, which is a metafoodweb on
a spatial network of sources and sinks. Often, the dy-
namics of source-sink systems are either modelled only
with one patch of each type [11, 14, 41, 42] or with ex-
plicit population dynamics [11, 12, 14, 41–44] or both.

The choice of population dynamics equations fixes the
values of most exponent parameters, for instance logistic
growth in sources implies φ+ = 1, µ+ = 2. Often the
sinks are modelled with a positive local feedback such
that they are unable to maintain a population without
immigration. The exponent of dispersal is also fixed in
these models. This means that no variation of the ex-
ponents is taken into account, and therefore the insights
about the stability of steady states in these studies is
very limited. The study by P. Amarasekare [14] varied
the exponent s of emigration rates from the source and
found that if s > 1 dispersal is stabilizing if large enough.
The same was done for logistic growth in sinks with an
identical result. In the light of our findings, these results
are merely a special case: Logistic growth in sources cor-
responds to φ+ = 1, and s is the same exponent as our
exponent ω−+, such that the condition ω−+ > φ+ is sat-
isfied. The other exponents are chosen as ω̂−+i = 0 and
µ− = 1 and fulfill our condition ω̂−+i < µ−.

Our approach thus allows a far broader investigation,
not just for broad ranges of exponent parameters, but
also for source-sink systems with more than two patches.
Indeed, one source may be sustaining more than one sink
and one sink can have more than one source as origin
of its immigrating biomass [45]. Hence a biregular set
of patches poses a generalization of the often used two-
patch approximation. In fact, there are natural topolo-
gies which are close to bipartite sets of patches. In ad-
dition to the home ranges and roaming regions of higher
animals mentioned in the Introduction, further examples
are given by ponds in deserts or dry lands, mainland-
island structures, and landscapes sprinkled with lakes.
Other examples with more than one patch of both types
are mountains and valleys or lakes and rivers. More gen-
erally, each metafoodweb where per-capita growth rates
are distributed heterogeneously can be seen as a network
of sources and sinks because some patches are net ex-
porters of biomass, while others are net importers.

We found that two distinct types of dispersal related
turnover rates emerge naturally from the generalized
model framework. One is the dispersal turnover α+

Ci

which corresponds to the amount of biomass which is
exchanged between sources and sinks. The other is the
net source-sink flow α+

S which denotes the flow of biomass
from sources to sinks and therefore the strength of source-
sink dynamics. We performed an analytical evaluation of
a metacommunity with only one species as well as a nu-
merical evaluation of metafoodwebs with many species in
order to explore the capacity of both types of turnover
rates to stabilize a system. In both situations, we found
similar but not identical general conditions for such stabi-
lizing effects. Stabilization can occur when rates become
sufficiently large, but we also identified conditions under
which a system is unstable for large and small rates but
stable for an intermediate range of values of the rates.
Such stabilizing effects of dispersal cannot occur in sys-
tems that are completely homogeneous [10].

We found two basic mechanisms which are stabiliz-
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FIG. 1. The percentage of stable webs for metapopulations ((a), (c), (e), and (g)) or metacommunities with 10 species ((b),
(d), (f), and (h)) in dependence of the normalized net source-sink flow α+

Si
/α+

i or dispersal turnover α+
Ci
/α+

i and exponents

of dispersal ω−+
i or ω̂−+

i . The different areas are marked with the corresponding stability criterion I-VII. Their boundaries
(dashed yellow lines), the resistances (solid horizontal or curved orange lines), and transitions between cases I-VII that depend
on ω+−

i or ω̂+−
i (solid vertical green lines) are marked. (Color online)
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ing in source-sink dynamics for a single metapopulation,
namely self-regulation (i.e., a decrease of growth rate
with population size), and negative feedback loops be-
tween source and sink populations. The net source-sink
flow α+

S affects self-regulation through local dynamics
as well as through dispersal, and its increase stabilizes
the system under suitable conditions. But even if an in-
creased net source-sink flow reduces the ability of a popu-
lation to self-regulate, it can still have a stabilizing effect
if it induces a negative feedback loop between source and
sink populations. The stabilizing effect of these negative
feedback loops depends on the spatial structure of the
web, which is captured in the spectrum of singular values
of the biregular network of patches. Conversely, a posi-
tive feedback loop between source and sink populations
of a single species can destabilize dynamics even if the net
source-sink flow increases self-regulation. Our numerical
analysis suggests that these positive intra-specific feed-
back loops may be suppressed by the presence of other
species in source-sink dynamics. Though further research
is needed for clear insights on that topic.

One particularly interesting finding is that dispersal
can be stabilizing even if both patch types have a posi-
tive local feedback (26). This means that source-sink dy-
namics can stabilize metapopulations that are subject to
strong local facilitation, which is equivalent to a positive
local feedback. In particular, source-sink dynamics can
be relevant for stabilizing not just sinks, but also sources.
Sinks can provide mortality to source populations which
would otherwise suffer from detrimental effects due to
overcrowding. In contrast strong dispersal from sources
to sinks may destabilize source populations (and thus
possibly the whole source-sink system) due to the extent
of losses [14]. Underestimating the importance of sinks
coupled to these sources might have catastrophic conse-
quences for ecosystems. Hence it is important to evaluate
the interaction between sources and sinks. Since expo-
nent parameters are relatively easy to obtain from data
[46, 47] the findings of our study can be of practical use
for identifying appropriate measures that preserve the
stability of source-sink systems.

Another striking finding is that there exist generic
conditions under which ecological and perceptual traps
can be stable, even though dispersal is maladaptive in
these situations. So far traps have mostly been seen as
detrimental [48], but may provide a mechanism to sta-
bilize metacommunities by limiting strong Allee effects.
Clearly further research is needed to identify the effects
of traps on metacommunity persistence.

The listed general results are only a small part of what
can still be achieved with the method. We expect that
the formalism can be used to evaluate properties of other
bipartite metanetworks, such as mutualistic ecological
networks.
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Appendix A: Calculation of the generalized model of
source-sink dynamics

We start with Eq. (1),

Ẋk
i =Gki (Xk)−Mk

i (Xk)

+

M∑
l=1

Ekli (Xk,X l)−
M∑
l=1

Elki (X l,Xk) (A1)

and rewrite it as a generalized model following the frame-
work in [16]. We assume that there exists a steady state
(Xk)∗. All population densities and functions are nor-
malized to their respective values at the steady state,
and hence we define the normalized population densities
xk with xki = Xk

i /(X
k
i )∗ and the normalized functions

gki (xk) = Gki (Xk)/(Gki )∗, mk
i (xk) = Mk

i (Xk)/(Mk
i )∗,

and ekli (xk,xl) = Ekli (Xk,X l)/(Ekli )∗. Inserting these
into the model equation we find

ẋki =
(Gki )∗

(Xk
i )∗

gki (xk)− (Mk
i )∗

(Xk
i )∗

mk
i (xk) (A2)

+

M∑
l=1

(Ekli )∗

(Xk
i )∗

ekli (xk,xl)−
M∑
l=1

(Elki )∗

(Xk
i )∗

elki (xl,xk) .

At the steady state we have ẋki = 0 and xki = 1, gki (xk) =
1, mk

i (xk) = 1, elki (xl,xk) = 1. Hence the sum of the
coefficients of all gain terms has to be equal to the sum of
the coefficients of all loss terms. This allows us to define
the total biomass turnover rate αki as

αki =
(Gki )∗

(Xk
i )∗

+
M∑
l=1

(Ekli )∗

(Xk
i )∗

=
(Mk

i )∗

(Xk
i )∗

+
M∑
l=1

(Elki )∗

(Xk
i )∗

. (A3)

Further we define scale parameters for the gain

νki =
1

αki

(Gki )∗

(Xk
i )∗

,

ν̃ki = 1− νki =

M∑
l=1

ν̃kli ν̃
k
i =

1

αki

M∑
l=1

(Ekli )∗

(Xk
i )∗

, (A4)

and for the loss terms

ρki =
1

αki

(Mk
i )∗

(Xk
i )∗

,

ρ̃ki = 1− ρki =

M∑
l=1

ρ̃lki ρ̃
k
i =

1

αki

M∑
l=1

(Elki )∗

(Xk
i )∗

. (A5)
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These denote the contribution of the respective gain
(loss) term to the total gain (loss) of species i on patch
k. There are dk nonzero parameters ν̃kli and ρ̃lki , respec-
tively, and we set them to equal values to satisfy the
constraints imposed in Sec. II. These parameters denote
the contribution of each link to the total gain (ν̃kli ) or
loss (ρ̃lki ) in patch k. Hence we set ν̃kli = ρ̃lki = 1/dk. We
thus find

ẋki =αki

[
νki g

k
i (xk)− ρkimk

i (xk) (A6)

+
1− νki
dk

M∑
l=1

ekli (xk,xl)− 1− ρki
dk

M∑
l=1

elki (xl,xk)

]
.

We will choose a form of Eq. (A6) that naturally re-
flects the differences between sources and sinks. Local
production is larger than local mortality in sources and
vice versa in sinks. Similarly, the rate of emigration is
larger than that of immigration for sources and smaller
than that of immigration for sinks. Then the difference
between growth and mortality is equal to the difference
between immigration and emigration in both patch types.
By making appropriate parameter substitutions, taking
into account that all sources have the same set of param-
eters, and all sinks have the same set of parameters, we
can write Eq. (A6) as

ẋ
k+
i = α+

Pi

[
g
k+
i (xk+)−mk+

i (xk+)

]
+ α+

Si

[
g
k+
i (xk+)− 1

d+

∑
k−

e
k−k+
i (xk− ,xk+)

]

+ α+
Ci

[
1

d+

∑
k−

e
k+k−
i (xk+ ,xk−)

− 1

d+

∑
k−

e
k−k+
i (xk− ,xk+)

]
(A7)

for all sources and

ẋ
k−
i = α−Pi

[
g
k−
i (xk−)−mk−

i (xk−)

]
+ α−Si

[
1

d−

∑
k+

e
k−k+
i (xk− ,xk+)−mk−

i (xk−)

]

+ α−Ci

[
1

d−

∑
k+

e
k−k+
i (xk− ,xk+)

− 1

d−

∑
k+

e
k+k−
i (xk+ ,xk−)

]
(A8)

for all sinks.
Fig. 2 illustrates the relationship between the scale

parameters and the turnover rates αkPi
, αkSi

, and αkCi
.

In addition we take into account that the total biomass
outflow from patch l into patch k has to be identical to
the biomass inflow into patch k from patch l, requiring

that

αli(1− ρli)
X l∗
i

dl
= αki (1− νki )

Xk∗
i

dk
. (A9)

Applying condition (A9) to the situation where l is the
sink and k is the source, and vice versa, we obtain

qα+
Ci

= α−Ci
and qα+

Si
= α−Si

(A10)

with

q =
X+∗
i

X−∗i

d−

d+
. (A11)

By using these relations we arrive at the generalized
model given in Eqs. (13) and (14). The meaning and
realistic range of values of all generalized parameters are
given in TABLE I.

Appendix B: Analytical calculation of the
eigenvalues of the Jacobian for one species

In the following we calculate the eigenvalues of the re-
duced Jacobian j (17) for one species. Since this is a 2×2
matrix, its eigenvalues λi are given by its trace tr(j) and
determinant det(j) by

λi =
tr(j)

2
±
√

tr(j)2

4
− det(j) . (B1)

In our system, the trace of j is

tr(j) = P+ + P− − d+C+ − d−C−

= α+
P (φ+ − µ+) + α−P (φ− − µ−)

+α+
S (φ+ − ω−+ + qω̂−+ − qµ−)

+α+
C(ω̂+− − ω−+ + qω̂−+ − qω+−) , (B2)

and the determinant is

det(j) = (P+− d+C+)(P−− d−C−)−β2Ĉ+Ĉ− . (B3)

Stability is given if tr(j) < 0 and det(j) > 0. In the fol-
lowing we will use these conditions to determine stability
of a given system.

Appendix C: Influence of the net source-sink flow on
stability

1. Stability for large net source-sink flows

If making α+
S arbitrarily large shall have a stabilizing

effect, then the trace of the reduced Jacobian j must
become negative and the determinant positive for suffi-
ciently large α+

S . According to Eqs. (B2) and (B3), the

trace is linear in α+
S and the determinant is a quadratic

function in α+
S . Further, the additional eigenvalue λk0 in

(24) must be negative for sufficiently large α+
S . Hence,
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Pi

(b)

αl
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l
i
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αl
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αl
Si

αl
Pi

FIG. 2. Illustration of the relation between the original scale parameters in Eqs. (A6) and the turnover rates introduced in
Eqs. (13) and (14) for (a) sources and (b) sinks.

Parameter Interpretation realistic range
Turnover

αk
i Total biomass turnover > 0
αk
Pi

Purely local biomass turnover consisting of parts of local growth and mortality > 0
αk
Si

Biomass turnover due to source sink dynamics ≥ 0
αk
Ci

Biomass turnover due to pure dispersal dynamics ≥ 0
Scale

νki Fraction of local growth Gk
i (xk) to total gain. [0,1]

ρki Fraction of local mortality Mk
i (xk) to total loss. [0,1]

1 − νki Fraction of immigration
∑

l E
kl
i (xk,xl) to total gain. [0,1]

1 − ρki Fraction of emigration
∑

lE
lk
i (xl,xk) to total loss. [0,1]

νkli Fraction of immigration Ekl
i (xk,xl) along the link from l to k [0,1]

ρkli Fraction of emigration Elk
i (xl,xk) along the link from l to k [0,1]

Exponent

φk
i Exponent of Gk

i (xk) with respect to population i [0,2]
φk
ij Exponent of Gk

i (xk) with respect to population j [0,2]
µk
i Exponent of Mk

i (xk) with respect to population i [0,2]
µk
ij Exponent of Mk

i (xk) with respect to population j [0,2]
ω̂kl
i Exponent of Ekl

i (xk,xl) with respect to population i in target patch k [-2,2]
ωkl
i Exponent of Ekl

i (xk,xl) with respect to population i in starting patch l [-2,2]
κ̂kl
ij Exponent Ekl

i (xk,xl) with respect to population j in target patch k [-2,2]
κkl
ij Exponent of Ekl

i (xk,xl) with respect to population j in starting patch l [-2,2]

TABLE I. Generalized parameters of species i and their ecological interpretation. The exponent parameters are elasticities of
the respective function with respect to population sizes. k = +,− is associated with either sources (+) or sinks (-).

the one-species source-sink dynamics are linearly stable
for large α+

S if either

ω−+ > φ+ if M+ > M− (C1)

or

µ− > ω̂−+ if M− > M+ , (C2)

and

∂tr(J)

∂α+
S

= φ+ − ω−+ + q(ω̂−+ − µ−) < 0 (C3)

and

∂2det(J)

∂(α+
S )2

=q[(φ+ − ω−+)(ω̂−+ − µ−)

+ β2

d+d− ω̂
−+ω−+] > 0 . (C4)

The topology of the patch network affects stability only
through the singular values β. Condition (C4) has to be
satisfied for all β ∈ S. For the special case that M+ =
M− there is no additional eigenvalue λk0 and thus no
condition (C1) or (C2).

If ω−+ < 0, then condition (C1) cannot be satisfied.
Further, conditions (C2), (C3), and (C4) cannot be sat-
isfied simultaneously, and hence we find:

A large net source-sink flow α+
S cannot sta-

bilize the system if emigration and density
in sources are negatively correlated, i.e., if
ω−+ < 0.

We therefore assume in the remainder of this section
that ω−+ ≥ 0, and we identify several sets of conditions
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under which relations (C1) to (C4) can be satisfied for
all β ∈ S.

We obtain different stabilizing conditions depending
on whether (C1) and (C2) are both satisfied simultane-
ously or only one of them, i.e., if the net source-sink flow
induces a negative intrapatch feedback in either both or
only one patch type. In the first case, either a nega-
tive (−ω̂−+ω̂−+ < 0) or a positive interpatch feedback
(ω̂−+ω̂−+ > 0) is possible; in the second case a negative
interpatch feedback is needed (-ω̂−+ω̂−+ < 0). Hence we
find three ways α+

S can have a stabilizing effect, which
result in the cases I-III in Sec. IV B.

a. Case I: the net source-sink flow induces negative
intrapatch feedbacks and a negative interpatch feedback

If conditions (C1) and (C2) are satisfied and addition-
ally ω̂−+ > 0, the two intrapatch feedbacks are negative
as well as the interpatch feedback (see Sec. IV B).
ω̂−+ > 0 means that condition (C4) is satisfied for

all β, and we need no further restrictions on the pa-
rameters. Thus the negative intrapatch feedbacks (27)
induced by αS are sufficient for stabilization. In par-
ticular condition (C2) assures that the positive effect of
immigration on sink population growth is limited by the
density-dependent increase in mortality for population
sizes above the steady state. A large enough net source-
sink flow α+

S can thus potentially stabilize a sink that
would be unstable otherwise. This is the well-known res-
cue effect [49, 50].

b. Case II: the net source-sink flow induces negative
intrapatch feedbacks and a positive interpatch feedback

Again conditions (C1) and (C2) are satisfied, but now
ω̂−+ < 0. This means that condition (C4) has a negative
last term, the absolute value of which is largest for β2 =
d+d−. Condition (C4) can be rewritten in this case as a
condition for |ω̂−+|,

|ω̂−+| < µ−
(
ω−+

φ+
− 1

)
(C5)

which must be satisfied for stability. Otherwise a detri-
mental positive feedback loop is present.

c. Case III: the net source-sink flow induces a positive
intrapatch feedback in one patch type and a negative one in

the other

Now we consider the case that only one of the condi-
tions (C1) and (C2) is satisfied. In this case (C4) can
only be satisfied if ω̂−+ > 0. If we denote with β0 the
smallest value of all β ∈ S, condition (C4) now becomes

|(φ+ − ω−+)(ω̂−+ − µ−)| < β2
0

d+d−
ω̂−+ω−+ . (C6)

Furthermore, condition (C3) becomes

|φ+ − ω−+|
q|ω̂−+ − µ−|

≷ 1 if M− ≶M+ . (C7)

In both cases the less numerous patch type has a positive
diagonal entry in the Jacobian when the net source-sink
flow α+

S is large. Hence a positive intrapatch feedback is
induced which has to be smaller than the negative intra-
patch feedback which is induced in the more numerous
patch (see (C7)). As discussed before this is destabilizing
due to a nonlocal demographic Allee effect. This desta-
bilizing effect can be countered by a negative interpatch
feedback (−ω−+ω̂−+ < 0). The induced feedback loop
has to be strong enough to suppress the demographic
Allee effect, which is reflected by condition (C6).

2. Stabilization for intermediate net source-sink
flows

In the following, we will consider the case that there is
an unstable steady state at α+

S = 0 and at α+
S →∞, and

we will demonstrate that there can be an intermediate
interval of values of the net source-sink flow α+

S for which
the dynamics are stable. We will explicitly give three
examples of parameter sets which satisfy the conditions
for stability. Again we assume that α+

C = 0 for the sake
of simplicity. We write the determinant (B3) as

det(α+
S ) = A(β2)(α+

S )2 +Bα+
S + C (C8)

and the trace (B2) as

tr(α+
S ) = Dα+

S + E , (C9)

which means that

A(β2) = q[(φ+ − ω−+)(ω̂−+ − µ−)

+ β2

d+d−ω
−+ω̂−+] (C10)

B = α−P (φ+ − ω−+)(φ− − µ−)

+ qα+
P (ω̂−+ − µ−)(φ+ − µ+) (C11)

C = α+
Pα
−
P (φ+ − µ+)(φ− − µ−) (C12)

D = φ+ − ω−+ + q(ω̂−+ − µ−) (C13)

E =α+
P (φ+ − µ+) + α−P (φ− − µ−) . (C14)

If the steady state shall be unstable when dispersal is
absent (α+

S = 0), then at least one local feedback must
be positive, and thus either φ+−µ+ < 0 or φ−−µ− < 0
must be violated [see eq. (25)]. Further, if the steady
state shall be unstable for large α+

S , then condition (C3)
(D < 0) or condition (C4) (A(β2) > 0) or both must
be violated. Here we focus on the violation of (C4) and
assume that A(β2) < 0 for at least one β ∈ S. (In fact, if
A(β2) > 0 for all β ∈ S, then the conditions required to
obtain an intermediate range of stability appear difficult
to satisfy, as a numerical exploration of selected param-
eter combinations did not yield any positive results.)
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Now, a straightforward way of obtaining a range of α+
S

values outside of which the system is unstable is when
the determinant (B3) has two positive roots, so that the
determinant is positive within and negative outside these
two roots. This means that B > 0 and C < 0 [see Fig.
3(a)]. If an intermediate region shall be stable, then the
determinant has to be positive for all β ∈ S within this
region. Since β enters the determinant only via A, the
determinant is positive for all β ∈ S in the intermediate
region if it is positive for the value β2 for which A(β2) is
minimal.

Which value of β2 minimizes A, depends on the sign
of ω̂−+ω−+ [see (C10)],

β2 =

{
d+d− if − ω̂−+ω−+ > 0

β2
0 if − ω̂−+ω−+ < 0 .

(C15)

We assume in the following for simplicity that the lowest
singular value is β0 = 0. The conditions for stability that
we will find with this assumption are sufficient conditions.
The parameter regions that show stability can therefore
be somewhat larger than the ones calculated by us.

Besides the conditions B > 0, C < 0, and A < 0 for at
least one β, we additionally require the condition

B2 − 4AC > 0 (C16)

in order to obtain two positive roots of the determinant
(C8). Let us write the expression (C11) as B = B1 +
B2. In the case β = 0 we have B2 − 4AC = (B1 −
B2)2 > 0 such that we need no further constraints on
A,B, and C. If β > 0, then the condition B2− 4AC > 0
is still satisfied if −ω̂−+ω−+ ≤ 0. But if −ω̂−+ω−+ > 0
[in which case β2 = d+d− minimizes A(β), see (C15)],
then the requirement that B2 − 4AC > 0 must be met
explicitly. We rewrite this condition (setting β2 = d+d−)
as

(B1 −B2)2 > 4|C||ω̂−+ω−+|. (C17)

A comparison with the explicit expressions for B1 and
B2 in (C11) shows that this inequality can be satisfied
by increasing α−P or α+

P or q or |φ+ − µ+| or |φ− − µ−|
sufficiently far while keeping the signs of the other terms
A to E fixed. One of these possibilities will always be
available without violating the conditions imposed on the
signs of the terms or the other conditions for stability.
This will be clear when looking at the examples below.

If the model shall be stable between the two roots of
the determinant, then we have to satisfy two more con-
ditions, namely that the trace (C9) and the additional
eigenvalue given by (24) are negative. In order to specify
constraints on the parameters that ensure these condi-
tions, it is useful to define the source’s and sink’s resis-
tances R+

S and R−S to changes in the net-source sink flow

α+
S as

R+
S = −α+

P

φ+ − µ+

φ+ − ω−+
, R−S = −

α−P
q

φ− − µ−

ω̂−+ − µ−
.

(C18)

They are the roots of the determinant (C8) for β2
0 = 0 if

the above-mentioned conditions (A < 0, B > 0, C < 0)
are satisfied. In two of our three examples below, we will
have −ω̂−+ω−+ < 0 such that β2 = β2 = 0 minimizes
A, and R+

S and R−S are the two values of α+
S that delimit

the stable region.

The additional eigenvalue given by (24) is

λk0 =

{
α+
S (φ+ − ω−+) + α+

P (φ+ − µ+) if M+ > M−

α+
S q(ω̂

−+ − µ−) + α−P (φ− − µ−) if M− > M+.

(C19)
Both expressions are linear in α+

S and go through zero

for α+
S = R+

S if M+ > M− and for α+
S = R−S if M+ <

M−. A larger resistance therefore means that the value
of α+

S required to change the sign of λk0 is larger, i.e., the

stability (or instability) of the uncoupled (i.e., α+
S = 0)

system is more resistant to an increase of α+
S . (And a

negative value of the resistance means that an increase
of α+

S cannot change the sign of λk0 at all since α+
S cannot

be negative.)

The following three examples are chosen such that, by
fixing the signs of the slope and intercepts of the addi-
tional eigenvalue, we can make sure that λk0 is negative
between the two roots of the determinant. Similarly, by
fixing the signs of D and E in the trace (C9) of the Ja-
cobian, we can make sure that it is negative between the
two roots of the determinant. For the first two examples
the net source-sink flow α+

S induces intrapatch feedbacks
(27) with opposite signs. Those correspond to the case IV
found in Sec. IV B. For the third example α+

S induces a
negative intrapatch feedbacks in both patch types, corre-
sponding to case V. Then the destabilization for large α+

S
occurs due to a positive feedback loop (−ω̂−+ω−+ > 0).

a. Case IV: the net source-sink flow induces intrapatch
feedbacks with opposite signs

An example for how the conditions A(β2) < 0, B > 0,
C < 0, and (C16) can be satisfied is given by φ+− µ+ <
0, φ− − µ− > 0, φ+ − ω−+ > 0, q(ω̂−+ − µ−) < 0,
R+
S > R−S , and −ω̂−+ω−+ ≤ 0. According to (C10) A

is minimal if β2 = β2
0 = 0. If we compare the choice of

parameters with the expressions (C10) to (C14), then it is
straightforward to see that A(0) < 0, B > 0, C < 0, thus
fulfilling the condition that the determinant with β2 = 0
has two positive roots, between which all determinants
are positive.

The additional eigenvalue (C19) is negative between
the two roots R+

S and R−S due to the requirement R+
S >

R−S , regardless of the choice of M+ and M−. This situ-
ation is illustrated in Fig. 3(b).

Finally, we have to show that the trace (C9) is nega-
tive between R+

S and R−S . We start with R+
S > R−S and
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transform this inequality,

−α+
P (φ+ − µ+)

φ+ − ω−+
>
−α−P (φ− − µ−)

q(ω̂−+ − µ−)
(C20)

−α−P (φ− − µ−)

q(ω̂−+ − µ−)
> −

α−P (φ− − µ−) + α+
P (φ+ − µ+)

q(ω̂−+ − µ−) + (φ+ − ω−+)
.

The right-hand side in the last line is the root of the
trace (C9) and the left-hand side is the lower root of
the determinant (C8). With the choice D < 0 we have
made sure that the trace is negative between the two
roots of the determinant [see Fig. 3(b)]. Our second
example is obtained by exchanging the sources and sinks
in the first example. This means that φ+ − µ+ > 0,
φ−−µ− < 0, φ+−ω−+ < 0, q(ω̂−+−µ−) > 0, R+

S < R−S ,
and−ω̂−+ω−+ ≤ 0. Additionally, we choose againD < 0
and obtain by a calculation similar to (C20) that the root
of the trace is smaller than the smaller of the two roots
of the determinant, which is now R+

S .

b. Case V: the net source-sink flow induces negative
intrapatch feedbacks in both patch types and a positive

feedback loop between source and sink populations

The third example is given by φ+ − µ+ > 0, φ− −
µ− < 0, φ+ − ω−+ < 0, q(ω̂−+ − µ−) < 0, −R+

S <

R−S , and −ω̂−+ω−+ > 0, which implies ω̂−+ < 0. Now

an increasing net source-sink flow α+
S induces a negative

intrapatch feedback (27) for both types of patches. Now
we find according to Fig. 3 that A(β2) < 0 is minimal if
β2 = d+d−, implying

|ω̂−+| > µ−
(
ω−+

φ+
− 1

)
. (C21)

The above choice of parameters satisfies C < 0 and
D < 0 for the expressions (C12) and (C13). The con-
dition B > 0 for the expression (C11) is also satisfied

since R+
S < R−S . Condition (C17) can be satisfied with-

out conflict with the other conditions by making α−P or
|φ−−µ−| large enough. In this way, we will additionally
achieve that E is negative, such that the trace (C9) of the
reduced Jacobian is always negative. The final condition
that we need to satisfy is a negative additional eigen-
value (C19) between the two roots of the determinant.
For M+ < M−, the eigenvalue λk0 is negative for all α+

S .

For M+ > M−, it becomes negative for α+
S > R+

S . Now,
from Fig. 3(a) we can conclude that the two roots of the
determinant with β2 = d+d− both are to the right-hand
side of R+

S . For β2 = 0, we have A > 0 and the determi-
nant is a parabola that opens upwards and has its larger
root at R+

S . For β2 = d+d−, the curvature becomes neg-
ative, which means that the two roots of the determinant
must lie to the right of R+

S . An analogous calculation can

be done if φ+ − µ+ < 0, φ− − µ− > 0, and −R+
S > R−S .

Appendix D: Influence of the dispersal turnovers on
stability

Next, we analyze the conditions under which either a
sufficiently large or an intermediate dispersal turnover
α+
C stabilizes the system. These correspond to the cases

VI and VII which are outlined in Sec. IV C. Proceed-
ing similarly as before, we write the trace (B2) and the
determinant (B3) as functions of α+

C ,

tr(α+
C) = DCα

+
C + EC , (D1)

and

det(α+
C) = AC(β2)(α+

C)2 +BC(β2)α+
C + CC(β2). (D2)

All three coefficients in the determinant depend on β2 if
the net source-sink flow α+

S does not vanish.

1. Case VI: Stabilization for large dispersal
turnover

If the source-sink dynamics shall be stable for α+
C →

∞, then we require DC < 0 and AC(β2) > 0 for all β ∈ S.
Further the additional eigenvalue

λk0 =

{
α+
C(ω̂−+ − ω+−) + α+

S (φ+ − ω−+) + α+
P (φ+ − µ+) if M+ > M−

α+
Cq(ω̂

+− − ω−+) + α+
S q(ω̂

−+ − µ−) + α−P (φ− − µ−) if M− > M+
(D3)

given by (24) must become negative for large α+
C . From

the first two requirements

AC(β2) = q(ω̂+− − ω−+)(ω̂−+ − ω+−)(1− β2

d+d−
) > 0

(D4)

and

DC = ω̂+− − ω−+ + q(ω̂−+ − ω+−) < 0 (D5)

we find that

ω−+ > ω̂+−

ω+− > ω̂−+ . (D6)
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FIG. 3. Parabolas with Ax2 + x − 0.75, thus B > 0, C < 0, and with varying A (a). The region between the two roots (if
they exist) is positive for a fixed A0 < 0 and all parabolas with A > A0 are positive too within that region, even when A > 0.
Determinant, trace, and additional eigenvalues (C19) depending on the relation of numbers of sources (M+) and sinks (M−)
for the parameter choice of the first example with φ+ − µ+ < 0, φ− − µ− > 0, φ+ − ω−+ > 0, q(ω̂−+ − µ−) < 0, R+

S > R−S ,
and ω̂−+ω−+ ≥ 0 (b). The trace and additional eigenvalues are always negative between the determinants roots.

for all β2 < d+d−. For β2 = d+d− we have AC = 0, and
the sign of the determinant for large α+

C is not determined
by AC but byBC . We therefore have to add the condition
BC(d+d−) > 0. To evaluate this condition further, we
define again the resistances of sources and sinks R+

C and

R−C as

R+
C = −α

+
P (φ+−µ+)+α+

Sφ
+

ω̂+−−ω−+ ,

R−C = −α
−
P (φ−−µ−)−qα+

Sµ
−

q(ω̂−+−ω+−) . (D7)

These are identical to the roots of the determinant for
β2 = 0. Compared to the resistances to the net source-
sink flow (29), the denominators are replaced by the
dispersal-induced intrapatch feedbacks α+

C(ω̂+− − ω−+)

in sources and qα+
C(ω̂−+−ω+−) in sinks. The numerators

α−P (φ− − µ−)− qα+
Sµ
− and α+

P (φ+ − µ+) + α+
Sφ

+

(D8)
represent extended local feedbacks, which have an addi-
tional term due to source-sink dynamics depending on
the net source-sink flow α+

S . From

BC(d+d−) = (ω̂+− − ω−+)[α−P (φ− − µ−)− qα+
Sµ
−]

+ q(ω̂−+ − ω+−)[α+
P (φ+ − µ+) + α+

Sφ
+] > 0 (D9)

follows that stability for large α+
C is only possible if the

extended local feedback is negative for at least one type of
patches. If both patches have a negative extended local
feedback, then the system is already stable for α+

C =
0 according to (25), and thus an increase of dispersal
turnover has no positive effect on stability.

More interesting is the case where the extended local
feedbacks (32) have opposite signs, since then the system
is unstable for α+

C = 0. For a large dispersal turnover to
be stabilizing we find according to condition (D6) that
α+
C needs to induce a negative intrapatch feedbacks. Ad-

ditionally from condition (D9) follows that the absolute

value of the resistance of the patch type with a nega-
tive extended local feedback has to be larger than the
absolute value of the resistance of the other.

2. Case VII: Stabilization for intermediate
dispersal turnover

To find an intermediate region of stability we follow the
same approach as for α+

S . We set α+
S = 0 for the sake of

simplicity. This means that the coefficients BC and CC
are now independent of β2. As in the previous subsection
we assume that AC(β2) < 0 for at least one β ∈ S, BC >
0, and CC < 0. From the expression (D4) we can deduce
that AC(β2) < 0 is actually fulfilled for all β2 6= d+d−

if the induced intrapatch feedbacks have opposite signs,
i.e., if one of the two conditions (D6) is satisfied while
the other is violated. For β2 = d+d− the determinant is
a linear function of α+

C with a positive slope, and its root
is smaller than all roots of determinants with smaller β2

[see Fig. 3(a)]. The intermediate region of stability is
again bounded by the roots of the determinant with a
minimal AC(β2), and we therefore focus on the situation
β = β0. From

CC = [α+
P (φ+ − µ+)][α−P (φ− − µ−)] < 0 (D10)

we conclude that the local feedback (26) of sources
and sinks have opposite signs. Then the assumption
BC > 0 requires that the induced intrapatch feedback
[α+
C(ω̂+− − ω−+) and qα+

C(ω̂−+ − ω+−)] and the local
feedback (26) need to have opposite signs for each patch
type respectively. We further note that the roots of the
determinant only exist if

B2
C − 4ACCC > 0 . (D11)
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Since the resistances R+
C and R−C are the absolute values

of the determinants roots, the additional eigenvalue (D3)
is negative between the roots if we further require that
the resistance of the patch with a positive local feedback
(26) is lower than the resistance of the other patch type
[see also Fig. 3(b)]. Then the intermediate region of
stability is bounded by the roots of the determinant with
β = β0 [see Fig. 3(a)].
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Fig. 1 φ+
i µ+

i φ−i µ−i ω−+
i ω̂−+

i ω+−
i ω̂+−

i α+
Pi
/α−Pi

α+
Pi
/α+

i

(a) and (b) 1 1/2 1/2 1 3/2 1/2 0 0 1 0.1
(c) and (d) 0.75 0.7 1/4 1/2 1.75 −1/2 0 0 3 0.1
(e) and (f) 1/2 1 2 1 1.75 −1 0 0 1 0.1
(g) and (h) 1 2 2 1 1.75 1/2 2 1 1 0.1

TABLE II. Parameter values of exponent parameters and turnover rates used in the plots in Figs. 1(a) to 1(h) for metapop-
ulations [(a), (c), (e), and (g)] and metacommunities with N = 10 [(b), (d), (f), and (h)]. The last column shows the ratio of
the local turnover to the total turnover α+

Pi
/α+

i , which is only relevant for the species within the respective metacommunity
for which no turnover rates are varied.
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Appendix E: Details of the numerical analysis

For each set of exponent and scale parameters, we gen-
erated an ensemble of 100.000.000 biregular systems with
variable patch numbers drawn uniformly from 10 to 25.
Metacommunities with N = 10 species were generated
using the niche model [51], in which the number of links
were drawn using a β distribution such that the mean
connectance is C = 0.1. The link strengths lij were
drawn from a narrow Gaussian distribution with mean
value 0 and a 10% coefficient of variation. Based on
these link strengths, we defined the inter-specific expo-

nent parameters as φkij = µkj |lij |/
∑N
n=1 |lin| and µkij =

φkj |lij |/
∑N
n=1 |lnj |, such that the exponent of growth

(loss) of species i became proportional to the exponent
of loss (growth) of species j with a prey (predator) cen-
tric normalization of the link strength. Further we em-
ploy allometric scaling [52, 53] for the local turnover rates
αkPi

= 10−2ni . We chose q = 1 for simplicity. Other val-
ues of q shifted the transition lines, but the qualitative
results were not affected by changes in q.

Our parameter choices were such that the stability cri-
teria I to VII found in the previous section can be indi-
cated easily in the plots. All remaining parameters were
fixed to the values given in TABLE II.
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