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Abstract
Phytoplankton are responsible for about 90% of the oceanic primary production, largely supporting marine

food webs, and actively contributing to the biogeochemical cycling of carbon. Yet, increasing temperature and
pCO2, along with higher dissolved nitrogen: phosphorus ratios in coastal waters are likely to impact phyto-
plankton physiology, especially in terms of photosynthetic rate, respiration, and dissolved organic carbon
(DOC) production. Here, we conducted a full-factorial experiment to identify the individual and combined
effects of temperature, pCO2, and N : P ratio on the antioxidant capacity and carbon metabolism of the diatom
Phaeodactylum tricornutum. Our results demonstrate that, among these three drivers, temperature is the most
influential factor on the physiology of this species, with warming causing oxidative stress and lower activity of
antioxidant enzymes. Furthermore, the photosynthetic rate was higher under warmer conditions and higher
pCO2, and, together with a lower dark respiration rate and higher DOC exudation, generated cells with lower
carbon content. An enhanced oceanic CO2 uptake and an overall stimulated microbial loop benefiting from
higher DOC exudation are potential longer-term consequences of rising temperatures, elevated pCO2 as well as
shifted dissolved N : P ratios.

Phytoplankton are responsible for about 90% of total oce-
anic primary production (Duarte and Cebri�an 1996), making
them major contributors to the biogeochemical cycling of car-
bon (Buesseler 1998; Bowler et al. 2010). Two distinct marine

carbon pools derive directly from the biological activity of
photosynthetic organisms: particulate organic carbon (POC),
bound in cell biomass, and dissolved organic carbon (DOC),
released by living phytoplankton or decaying cells, through
sloppy feeding of grazers, consumption, and excretion by
higher trophic levels or viral lysis (Jiao et al. 2010). Once fixed
as phytoplankton biomass, carbon can be transferred via tro-
phic processes through the food web or sink to the deep sea
(Honjo and Manganini 1993). These fluxes are essential com-
ponents of biogeochemical cycling and the “marine organic
carbon pump” and are influenced by phytoplankton cellular
physiological processes.

After inorganic carbon is assimilated into carbohydrates
through photosynthesis, it can take different pathways in a
phytoplankton cell: the carbon can be used for storage and
growth; it can be remineralized for mitochondrial energy gen-
eration and fuel cellular processes; or it can be exuded in the
form of organic molecules (Marra and Barber 2004; Tortell
et al. 2008; Thornton 2014). The relative proportions of these
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intracellular carbon fluxes are directly influenced by environ-
mental conditions, such as temperature, partial pressure of
carbon dioxide (pCO2), and concentration of dissolved nutri-
ents (Neori and Holm-Hansen 1982; Alipanah et al. 2015;
Padfield et al. 2016), all of which have experienced large per-
turbations due to human activities. Indeed, anthropogenic
CO2 emissions and the resulting increase in atmospheric
pCO2 contribute to the greenhouse effect, that is, global
warming. In addition, part of this CO2 dissolves into the
ocean, and lowers seawater pH, leading to ocean acidification
(Doney et al. 2009; Anderson et al. 2016). Human activities
have also altered dissolved nutrient concentrations through
nutrient runoffs, leading to coastal waters’ enrichment by
nitrogen and phosphorus. To minimize the impacts of eutro-
phication, European governments have applied different
methods to reduce nutrient loads into coastal waters. These
strategies have been more effective at reducing nitrogen than
phosphorus runoffs, causing not only a general reduction of
dissolved inorganic nutrient concentrations, but also an
increase of the N : P ratio, at least well documented in the
North Sea (Grizzetti et al. 2012), thus increasing the potential
of P limitation for phytoplankton (Peñuelas et al. 2013).

Increasing aqueous CO2 concentrations could have positive
effects on primary producers that profit from the higher avail-
ability of CO2 (Bach et al. 2019). However, other studies have
shown that responses of phytoplankton to increasing oceanic
pCO2 may be complex (Beardall and Raven 2004; Taucher
et al. 2015; Alvarez-Fernandez et al. 2018), and the conse-
quences for photosynthesis and wider phytoplankton eco-
physiology remain to be clarified. Studies have found different
effects of warming and ocean acidification on various physio-
logical processes related to carbon metabolism in phytoplank-
ton, including increase in photosynthesis and respiration rates
(Wu et al. 2010; Goldman et al. 2017), higher DOC produc-
tion (Engel et al. 2010), and downregulation of carbon-
concentrating mechanisms (Thangaraj and Sun 2021; Rokitta
et al. 2022). Environmental ratios of dissolved inorganic N : P
influence cellular quotas of POC, photosynthetic and growth
rate in phytoplankton (Rasdi and Qin 2014; Li and Sun 2016),
as well as DOC exudation (Obernosterer and Herndl 1995).
The uncertainties about the interactions of environmental
drivers and the co-dependency of cellular carbon pathways on
different environmental drivers make the responses of phyto-
plankton cells to future environmental change even more dif-
ficult to predict (Gao and Campbell 2014; Wolf et al. 2019).

Environmental conditions modulate the rates of respiration
and photosynthesis in phytoplankton (Hancke et al. 2008;
Padfield et al. 2016), and the associated electron transport rates
which determine the degree of reduction of the electron trans-
port chains (ETCs) in chloroplasts and mitochondria (Mittler
et al. 2004; Janknegt et al. 2008). When ETCs are overreduced,
electrons can “leak” and react with free O2, extensively gener-
ated as a photosynthesis by-product, creating superoxide radicals
(O2

�•) (Gechev et al. 2006). This primary reactive oxygen species

(ROS) is further converted into other oxidative compounds, such
as hydrogen peroxide (H2O2) and the highly reactive hydroxyl
radical (HO•), which are able to cause oxidative damage to lipids,
proteins, and DNA (Halliwell 1987). Oxidative damage can lead
to loss of photosynthetic capacity, due to membrane lipid perox-
idation, lower growth rates as well as decreased chlorophyll
a (Chl a) content (Rajagopal et al. 2000; Mallick et al. 2002; Yu
et al. 2004). Phytoplankton can apply different strategies to pre-
vent the formation of ROS and combat such compounds when
their formation cannot be avoided. In the chloroplast, excess
light absorbed by the antenna complex can be quenched as
thermal energy by activating the xanthophyll cycle (Janknegt
et al. 2008), while the proportions of photoprotective vs. light-
harvesting pigments can be rearranged to better tune energy
flow to the photosystems (Dubinsky and Stambler 2009). Activa-
tion of the alternative oxidase (AOX) pathway within the mito-
chondria can relieve electron flow through the ETC to prevent
leakages, yet at the cost of lowered ATP production by dark res-
piration (Day and Wiskich 1995; Allen et al. 2008). Antioxidant
enzymes also play an important role in scavenging ROS. Super-
oxide dismutases (SODs) are potent antioxidants widely utilized
to catalyze the dismutation of O2

�• into O2 and H2O2 (Janknegt
et al. 2008). Once formed, H2O2 can be further decomposed into
harmless O2 and H2O by other enzymes, such as catalase (CAT)
and glutathione peroxidase (GPx) (Barros et al. 2003; Vega-L�opez
et al. 2013). While several studies have reported modulation of
antioxidant response and oxidative stress by temperature, pCO2,
and dissolved nutrient concentrations in different classes of pho-
tosynthetic organisms (Lesser 1997; Choo et al. 2004; Yakovleva
et al. 2009; Gillespie et al. 2011; Brutemark et al. 2015; Kvernvik
et al. 2020), the potential interactions between these environ-
mental factors affecting the antioxidant capacity of marine phy-
toplankton remain poorly understood.

In this study, we tested the influence of temperature, pCO2,
and dissolved N : P ratios on the cellular carbon fluxes and
antioxidant response of the diatom Phaeodactylum tricornutum.
Overall, our work assesses how multiple global change drivers
may act separately and in combination to influence physiolog-
ical processes related to carbon metabolism, mainly primary
production, respiration and DOC production. These processes
involve electron transfer chains in chloroplasts and mitochon-
dria and are directly related to the formation of ROS in phyto-
plankton cells. Therefore, we also assessed the antioxidant
response and oxidative stress in parallel to potential changes
in carbon metabolism.

Materials and methods
A full-factorial design was applied to test the influence of

two CO2 partial pressures (400 and 1000 μatm), temperatures
(18�C and 21�C), and N : P ratios of dissolved inorganic nutri-
ents (16 and 25 mol L�1), forming eight independent treat-
ments in quadruplicates. The pCO2 levels were chosen to
represent the contemporary and the RCP 8.5 scenario
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atmospheric pCO2 based on predictions of CO2 emissions by
the Intergovernmental Panel on Climate Change for the end of
the 21st century (IPCC 2021). 18�C is the mean temperature
value for summer (July–August) at the Helgoland roads time-
series station (North Sea) and 21�C represents the +3.0�C
increase expected according to the RCP 8.5 scenario. These tem-
peratures are in the range of the maximum growth rate of this
species, which has been found to be around 20�C (Kudo
et al. 2000; Kvíderov�a and Lukavský 2003; Bitaubé Pérez
et al. 2008). We included different nutrient regimes to this
experiment as well. The N : P of 16 represents the balanced Red-
field ratio, while an N : P of 25, achieved by lowering the con-
centrations of dissolved P, resembles the increasing P limitation
predicted for the future. The model diatom P. tricornutum was
chosen as it is native to the North Sea and does not form
chains, which allowed us to precisely determine cell concentra-
tions by flow cytometry. This diatom has a worldwide distribu-
tion and is common in coastal waters (Hendey 1964). Despite
the uncommon capacity of this diatom to grow in the absence
of silica (Hendey 1954), the sequencing of its genome, as well
as multiple ecophysiological studies, identified this species as a
model organism representative of the Bacillariophyceae group
(Oudot-Le Secq et al. 2007; Bowler et al. 2008; Martin-Jézéquel
and Tesson 2013). Nevertheless, the use of a single diatom
strain for this experiment (CCAP 1052/1A) might limit the
applicability of our results to other strains or species. In the lab-
oratory, phytoplankton strains become adapted overtime to the
artificial environments they grow in, and their response may
differ from natural conditions or other isolated strains
(Lakeman et al. 2009). Carbon fluxes were measured through
the rates of primary production, dark respiration, DOC produc-
tion and POC contents, representing organic carbon produc-
tion, organic carbon consumption, organic carbon exudation,
and organic carbon in the cells biomass, respectively. The anti-
oxidant response was assessed based on different biomarkers,
including the contents of protective carotenoids (β-carotene,
diadinoxanthin and violaxanthin), the prevalence of the AOX
pathway, antioxidant enzyme activities (CAT, manganese
superoxide dismutase [SOD-Mn], GPx, glutathione S-transferase
[GST]), and by determination of malondialdehyde (MDA) for-
mation as a proxy for oxidative damage to membrane lipids.

Culture conditions
Cultures of P. tricornutum (Strain CCAP 1052/1A) were

grown at 18�C or 21�C in a temperature-controlled room in
2 L glass bottles (Duran) closed with airtight lids. The cultures
were grown in F/20 medium (Guillard 1975) prepared with
artificial seawater according to the protocol of Harrison et al.
(1980), modified by Berges et al. (2001), and sterile filtered
(0.2 μm) to avoid contamination. Total alkalinity (TA) was
adjusted by the addition of NaOH until it reached natural sea-
water levels (� 2350 μmol kg SW�1). To yield N : P ratios of
16 and 25, nitrate was added to reach a concentration
of 88 μmol NO3 L

�1, and phosphate concentrations in the

growth medium were set to 5.5 μmol PO4 L
�1 and 3.5 μmol

PO4 L
�1, respectively (Supporting Information Fig. S1). The

pCO2 of the medium was adjusted by bubbling it for 24 h with
air mixtures containing either 400 or 1000 μatm CO2, which
were obtained from a CO2-mixing system (GDZ 401; Schoo
et al. 2013). Cultures were irradiated with 100 μmol
photons m�2 s�1 by LED light bars (Mitras 2 Daylight; GHL)
under a 14 : 10 h light : dark cycle. The culture bottles were con-
tinuously rotated on a roller table to prevent cell sedimentation.
The diatom cultures were pre-acclimated to every treatment for
at least 20 generations. The experiment was subdivided into two
periods. In the first period of 4 d, we measured DOC production
and POC, whereas the second period was focused on the mea-
surements of antioxidant response, pigments, and rates of photo-
synthesis and respiration. Samples for production rates of DOC
were collected daily over a 4-d period during the first incubation
phase, following the acclimation period (20 generations). Sam-
ples for POC were collected on the last day of the first incubation
phase. Initial cell concentration was always � 400 cells mL�1.
After the first incubation phase of 4 d, cells were diluted back to
400 cells mL�1 with described media and grown for a second
incubation phase of 4 d to acquire more biomass for further mea-
surements. On the last day of the second incubation phase, cells
were harvested for assessments of dark respiration, primary pro-
duction, AOX activity, antioxidant enzyme assays, and MDA
concentration, as well as for the analyses of pigments as indica-
tors of antioxidant capacity and photoprotective capacities. Cul-
tures were kept dilute to avoid self-shading, fluctuations in pH
during the experiment, and drifts in carbonate chemistry. Cells
were harvested at dilute concentration during the exponential
growth phase well before 10% of the dissolved inorganic carbon
(DIC) in the culture was consumed. This measure ruled out DIC
limitation, drifts in carbonate chemistry as well as NO3 and PO4

depletion. This limit was ascertained by modeling the carbonate
system with the help of the CO2SYS Excel Macro (Pierrot
et al. 2006).

Seawater carbonate system and dissolved macronutrients
The seawater carbonate system was calculated based on

determined DIC, pH, temperature, and salinity using the
CO2SYS Excel Macro (Pierrot et al. 2006) with acidity constants
defined by Mehrbach et al. (1973) refitted by Dickson and
Millero (1987). Salinity was measured with a salinometer
(WTW Cond 3110 SET 1) directly from TA samples. An aliquot
of each culture was taken daily to measure pH with a WTW
Tetracon® 925 probe. Samples for dissolved inorganic nutrients,
salinity, TA and DIC were taken from the medium before cell
inoculation, and on the last day of each incubation phase. TA
samples were taken by filling an airtight 100 mL transparent
glass bottle, avoiding air bubbles, with a filtered culture
medium (GF/F filter 0.45 μm; Whatman). The samples were
stored at 4�C before analysis through linear Gran-titration
(Dickson 1981) using a TitroLine alpha plus (Schott). Samples
for DIC were filtered through 0.45 μm polytetrafluoroethylene
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(PTFE) filters and kept in 5 mL brown glass bottles, free of air
bubbles, at 4�C before analysis with the colorimetric method of
Stoll et al. (2001). Dissolved inorganic nutrients (DIP = PO4

3�

and DIN = NOx) samples were kept frozen at �20�C until being
measured with a continuous-flow analyzer (QuAAtro39; Seal
Analytical) according to Strickland and Parsons (1972). Results
of dissolved inorganic nutrient analyses and seawater carbonate
chemistry are available as Supporting Information Fig. S1 and
Supporting Information Table S1, respectively. There was not
enough biomass growth during the experiment to exhaust the
dissolved nutrient supply. Thus, the cells did not face nutrient
limitations during the experiment (Supporting Information
Fig. S2).

Photosynthesis and dark respiration rate
Photosynthesis and dark respiration rates were measured as

net O2 evolution rates. We used a high-resolution O2k-
FluoRespirometer (Oroboros Instruments) calibrated with each
treatment medium. The 2 mL incubation chambers of the res-
pirometer are airtight, temperature controlled, and equipped
with magnet stirrers to keep the cells in suspension. To
acquire enough cells to reach rates within the equipment reso-
lution, cells were concentrated by gently filtering 100–200 mL
of each culture on a polycarbonate filter (0.45-μm pore size)
with a suction pressure lower than 200 mbar relative to the
atmosphere. The volume used depended on cell concentration
in the culture. Concentrated phytoplankton cells were
resuspended in 5 mL of 30 μmol L�1 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid-buffered culture medium to
maintain constant pH during the measurements. This aliquot
was dark acclimated in the instrument for 10 min at the
respective experimental temperatures before applying a rapid
light curve (RLC), where the aliquot was exposed for 10 min
to irradiance of 50, 100, 150, and 300 μmol photons m�2 s�1

provided by LEDs. A last light intensity step of 600 μmol
photons m�2 s�1, was provided by a Zeiss/Schott CL 1500
ECO lamp. Each light step was followed by 10 min of darkness
to account for variation in dark respiration due to a higher
photosynthetic rate. Dark respiration was calculated as the
mean of all respiration measurements taken during every dark
period. To quantify carbon fluxes, O2 fluxes were converted
into CO2 fluxes using a photosynthetic quotient of 1.56 and a
respiratory quotient of 0.6 determined for P. tricornutum
(Wagner et al. 2006). We used least-squares fitting on the
obtained data to derive physiological photosynthesis parame-
ters, such as compensation point, as well as photochemical
efficiency (α), light acclimation index (Ik) and maximum net
photosynthesis rate (Vmax), following equations from Rokitta
and Rost (2012). The compensation point obtained in the pro-
cedure represents the irradiance where the respiration rate is
equal to the photosynthesis rate. α is the initial slope of the
RLC and indicates the efficiency of light energy conversion
into chemical energy via photosynthesis. Ik represents the irra-
diance where photosynthesis transitions into saturation and

Vmax shows the highest electron transport rate attained during
the RLC. Raw data of the RLC are available in the Supporting
Information Fig. S3.

Determination of growth rates, elemental quotas, and DOC
production

Cell concentrations were measured by flow cytometry
(BD Accuri C6 Plus; BD Biosciences) with 100 μL samples
processed at a flow rate of 35 μL min�1. The specific growth
rate (μ) was calculated as:

μ¼ lnC1� lnC0ð Þ�Δt�1,

where C0 and C1 are the initial and final cell concentrations
and Δt is the time interval in days. The growth rate was calcu-
lated based on cell concentrations on the initial and final day
of each incubation phase and computed as mean of both
incubation phases, generating one growth rate value per
replicate.

Samples for POC were taken by filtering 200 mL of each
phytoplankton culture on precombusted (12 h, 500�C) GF/F
filters (0.45 μm; Whatman), with suction pressure of 200 mbar
relative to the atmosphere. The filters were then soaked with
200 μL of 0.2 mol L�1 HCl to remove any calcite or other inor-
ganic carbon contaminants, and dried in an oven at 60�C.
The filter acidification ensured that of all carbon measured on
the filters was the carbon contained in the phytoplankton
cells. Carbon content on the filters was determined with an
elemental analyzer (Vario Micro Cube; Elementar).

To quantify DOC, samples of 20 mL were collected from
the artificial seawater batch produced to prepare the medium
before cells’ incubation (initial), and from every culture bottle
on the final day of the first incubation. Samples were collected
with a sterile plastic syringe and filtered through a 0.45 μm
PTFE filter. The first 2 mL of the sample was used to rinse the
filter and were discarded. The samples were collected in tech-
nical duplicates and stored in HCl washed and precombusted
glass vials. Samples were acidified with HCl and kept at �20�C
until analysis. DOC was determined by high-temperature cata-
lytic oxidation and subsequent nondispersive infrared spec-
troscopy and chemiluminescence detection, automatically
conducted in a TOC-LCPH/CPN analyzer (Shimadzu). Net DOC
production per cell (D) was calculated based on the following
formula derived from the integral of total DOC production in
the culture and cell growth:

D¼DOCp

C0
� μ

C1
C0
�1

� � ,

where DOCp is the total DOC production in the culture over
the whole incubation period (pmol mL�1), C0 and C1 are the
initial and final phytoplankton cell concentrations (cells mL�1),
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and μ is the specific growth rate (d�1; see Supporting
Information S1 for the integral resolution).

We chose not to work with axenic cultures to avoid the
potential effects of the absence of a microbiome in the culture,
which interacts with phytoplankton in natural conditions
(Stock et al. 2019). We also wanted to avoid the negative
impacts that antibiotics would have had on phytoplankton
physiology (Siedlewicz et al. 2020), if we had decided to steril-
ize the cultures. Therefore, to account for bacterial DOC con-
sumption, 200 mL of each culture was filtered through a
polycarbonate filter (3-μm pore size; Millipore) to remove phy-
toplankton cells, and subsequently filtered through a polycar-
bonate filter (0.45-μm pore size). The bacterial cells captured
on the 0.45-μm filter were resuspended and incubated in an
O2k-FluoRespirometer to measure their respiration rate for the
phytoplankton cells (see above). This procedure ensured
enough bacterial cell biomass for accurate measurements. The
aliquots of each incubation for respirometry were also subse-
quently preserved to determine bacterial cell concentrations.
The bacterial respiration rate (pmol O2 cell

�1 d�1) was also
converted to C consumption using an average respiratory quo-
tient of 1.55 (Allesson et al. 2016), and the bacterial carbon
consumption was added to the phytoplankton DOC produc-
tion since DOC is the carbon source for bacteria in the culture.
Bacterial DOC consumption (DOCc) was calculated using the
formula:

DOCc ¼
B0� B1=B0

�1
� ��C

μ
,

where c is the bacterial respiration rate (pmol C cell�1 d�1), B0

and B1 are the bacterial cell initial and final concentrations in
the cultures (cells mL�1), and μ is the specific bacterial growth
rate (d�1) based on the initial and final bacterial cell concen-
tration in the culture and calculated as for phytoplankton.
Data on bacterial biomass used for the calculation of DOC
consumption is available in the Supporting Information
Fig. S4.

Bacterial cell concentration was also determined from each
phytoplankton aliquot incubated in the respirometer for pho-
tosynthesis and dark respiration rates to ensure that bacterial
biomass accounted for less than 10% of the total carbon bio-
mass. These samples were fixed with glutaraldehyde (0.1%
final concentration) and frozen at �80�C until analysis. The
samples were thawed in a water bath (20�C) and stained with
SYBR Green (Invitrogen) as described in Marie et al. (2005).
Bacterial cells were quantified by processing the samples
through flow cytometry (BD AccuriTM C6 Plus; BD Biosci-
ences) at a flow rate of 12 μL min�1 for 1–2 min. Samples were
diluted with sterile filtered seawater (0.2 μm) when flow cyto-
metry events were higher than 400 events s�1. Bacteria cell
counts were converted into carbon using the 20 fg C cell�1

factor defined by Lee and Fuhrman (1987). Nevertheless,

bacteria concentration was low, representing on average
11.6% of total carbon biomass in the culture on the
harvesting day and less than 5% during measurements with
the respirometer.

Enzyme assays and pigment detection
A concentrated phytoplankton aliquot (obtained as

described in “Photosynthesis and dark respiration rate”) was
incubated in the two chambers of the O2k-FluoRespirometer
(Oroboros Instruments). AOX activity was determined using
Substrate-uncoupler-inhibitor titration (SUIT, 022 www.
bioblast.at/index.php/SUIT-022_O2_ce_D051 and 023 www.
bioblast.at/index.php/SUIT-023_O2_ce_D053) protocols spe-
cifically developed to distinguish between oxygen consump-
tion derived from mitochondrial AOX and from respiratory
complex IV (CIV). As a first step, routine dark respiration was
measured for both chambers. Then, one of the chambers was
used to quantify AOX-dependent respiration after inhibition
of CIV with 1 mmol L�1 potassium cyanide (KCN), while the
other was used for CIV dependent respiration after inhibition
of AOX with 1 mmol L�1 salicylhydroxamic acid (SHAM). We
expressed AOX as the ratio between SHAM-inhibited respira-
tion rate and routine respiration (AOX : Resp). The AOX : Resp
ratio indicates the proportion of electrons that ends up in the
AOX pathway compared to all electrons used during the dark
respiration process.

Samples for the assessments of antioxidant enzyme activi-
ties and MDA as an oxidative stress marker were collected by
filtering 200–250 mL of the culture through a polycarbonate
membrane filter (3-μm pore size; Millipore) to concentrate
cells. The cells caught on the filter were resuspended in culture
medium, transferred into a 1.5 mL assay reaction tube
(Eppendorf) and centrifuged at 27,000 RCF for 3 min at treat-
ment temperature to form a cell pellet. Then, the supernatant
was removed and the phytoplankton cells were immediately
frozen in liquid N2 and kept at �80�C until analysis. For deter-
mination of MDA, the samples were thawed and homogenized
in 250 μL of 1.1% H3PO4 (Mixer Mill MM301; Retsch) for
1 min with the frequency of 30 rotations s�1. Measurements
of MDA content were done in triplicate according to
Uchiyama and Mihara (1978).

To quantify the antioxidant enzyme activities and solu-
ble proteins, samples were homogenized with 125 μL of
phosphate buffer solution (50 mmol L�1 potassium phos-
phate dibasic and monobasic mixture [K2HPO4/KH2PO4],
50 mmol L�1 ethylenediaminetetraacetic acid [EDTA],
1 mmol L�1 phenylmethylsulfonyl fluoride [PMSF;
C7H7FO2S], pH 7.5) and centrifuged at 27,000 RCF for
5 min at 4�C. The same supernatant extract was measured
in technical triplicates for CAT following Aebi (1984), SOD-
Mn following Suzuki (2000), GPx following Ahmad and
Pardini (1988), and GST following the protocol from Habig
and Jakoby (1981). Soluble protein contents were
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Table 1. Statistical results of three-way ANOVA models indicating treatment effects.

Variable Factor 1 Factor 2 Factor 3 MS F p Value
Effect indicated by Tukey’s post

hoc test

Primary production Temperature – – 0.819 9.918 0.004* Higher at 21�C
– pCO2 – 0.401 4.854 0.037* Higher at 1000 pCO2

– – N : P 0.194 2.348 0.138 –

Temperature pCO2 – 0.152 1.843 0.187 –

Temperature – N : P 0.301 3.644 0.068 –

– pCO2 N : P 0.052 0.632 0.434 –

Temperature pCO2 N : P 0.036 0.435 0.516 –

Dark respiration rate Temperature – – 0.061 30.34 < 0.001* Lower at 21�C
– pCO2 – 0.005 2.406 0.134 –

– – N : P 0.005 2.297 0.143 –

Temperature pCO2 – 0.065 30.86 < 0.001* Lower dark respiration rate at 21�C
when pCO2 is 1000

Temperature – N : P 0.005 2.688 0.114 –

– pCO2 N : P 0.006 3.158 0.088 –

Temperature pCO2 N : P 0.001 0.659 0.425 –

DOC production Temperature – – 7.276 400.2 < 0.001* DOC exudation at 21�C and DOC

uptake at 18�C
– pCO2 – 0.010 0.523 0.476 –

– – N : P 0.128 7.023 0.014* Higher DOC production when N : P

is 25

Temperature pCO2 – 0.173 9.542 0.005* Higher DOC production at 21�C
when pCO2 is 1000

Temperature – N : P 0.001 0.054 0.817 –

– pCO2 N : P 0.029 1.602 0.218 –

Temperature pCO2 N : P 0.020 1.127 0.299 –

Particulate organic

carbon

Temperature – – 1.096 272.8 < 0.001* Lower at 21�C
– pCO2 – 0.023 5.728 0.025* Lower at 1000 pCO2

– – N : P 0.001 0.378 0.545 –

Temperature pCO2 – 0.015 3.685 0.067 –

Temperature – N : P 0.027 6.730 0.016* Lower carbon content at 21�C when

N : P is 25

– pCO2 N : P 0.013 3.282 0.083 –

Temperature pCO2 N : P 0.001 0.135 0.717 –

Growth rate Temperature – – 0.035 38.71 < 0.001* Higher at 21�C
– pCO2 – 0.001 0.266 0.610 –

– – N : P 0.002 1.946 0.176 –

Temperature pCO2 – 0.014 15.39 < 0.001* No significant increase at 21�C when

pCO2 is 1000

Temperature – N : P 0.001 0.857 0.364 –

– pCO2 N : P 0.008 8.427 0.008* Higher growth rate at 1000 pCO2

when N : P is 25

Temperature pCO2 N : P 0.001 0.204 0.656 –

Compensation

point

Temperature – – 31.81 44.74 < 0.001* Lower at 21�C
– pCO2 – 0.170 0.241 0.628 –

– – N : P 1.090 1.532 0.228 –

Temperature pCO2 – 34.35 48.13 < 0.001* Lower when temperature is 21�C and

pCO2 is 1000

Temperature – N : P 0.030 0.038 0.847 –

(Continues)
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Table 1. Continued

Variable Factor 1 Factor 2 Factor 3 MS F p Value
Effect indicated by Tukey’s post

hoc test

– pCO2 N : P 0.520 0.728 0.402 –

Temperature pCO2 N : P 0.260 0.369 0.549 –

Photochemical

efficiency

Temperature – – 0.002 0.124 0.728 –

– pCO2 – 0.048 3.370 0.079 –

– – N : P 0.001 0.083 0.775 –

Temperature pCO2 – 0.001 0.090 0.767 –

Temperature – N : P 0.033 2.309 0.142 –

– pCO2 N : P 0.004 0.298 0.590 –

Temperature pCO2 N : P 0.012 0.832 0.371 –

Maximum electron

transport rate

Temperature – – 0.050 4.885 0.037* Higher at 21�C
– pCO2 – 0.018 1.785 0.194 –

– – N : P 0.001 0.153 0.699 –

Temperature pCO2 – 0.014 1.321 0.262 –

Temperature – N : P 0.235 2.273 0.145 –

– pCO2 N : P 0.001 0.801 0.379 –

Temperature pCO2 N : P 0.134 1.294 0.266 –

Light saturation

point

Temperature – – 2463 14.03 < 0.001* Higher at 21�C
– pCO2 – 311.1 1.772 0.196 –

– – N : P 1.200 0.007 0.937 –

Temperature pCO2 – 565.7 3.222 0.852 –

Temperature – N : P 34.40 0.196 0.662 –

– pCO2 N : P 7.500 0.430 0.838 –

Temperature pCO2 N : P 5.600 0.032 0.859 –

Chlorophyll a Temperature – – 0.001 2.115 0.159 –

– pCO2 – 0.001 0.380 0.543 –

– – N : P 0.001 0.386 0.540 –

Temperature pCO2 – 0.001 0.887 0.356 –

Temperature – N : P 0.001 1.207 0.283 –

– pCO2 N : P 0.001 1.814 0.191 –

Temperature pCO2 N : P 0.001 1.006 0.326 –

Integrated

biomarker

response

Temperature – – 3.295 19.41 < 0.001* Higher at 21�C
– pCO2 – 0.051 0.301 0.591 –

– – N : P 0.181 1.068 0.317 –

Temperature pCO2 – 0.004 0.026 0.875 –

Temperature – N : P 0.046 0.272 0.609 –

– pCO2 N : P 0.191 1.126 0.304 –

Temperature pCO2 N : P 0.139 0.820 0.378 –

AOX : Resp Temperature – – 0.234 15.97 < 0.001* Higher at 21�C
– pCO2 – 0.001 0.024 0.879 –

– – N : P 0.028 1.883 0.183 –

Temperature pCO2 – 0.053 3.621 0.069 –

Temperature – N : P 0.009 0.600 0.446 –

– pCO2 N : P 0.001 0.089 0.768 –

Temperature pCO2 N : P 0.106 7.357 0.012* No significant increase when N : P is

16 and pCO2 is 400

PPC : PSP Temperature – – 0.012 208.3 < 0.001* Lower at 21�C
– pCO2 – 0.001 0.865 0.362 –

– – N : P 0.001 0.630 0.435 –

(Continues)
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determined following Bradford (1976) to report enzymatic
activity in activity unit (U) mg protein�1. To obtain comparable
data, all measurements were conducted by a spectrophotometer
(Multiskan® Spectrum; Thermo Fisher Scientific) at room tem-
perature (20�C). Activities of antioxidant enzymes and MDA
contents are shown in a star plot and were analyzed using the
integrated biomarker response (IBR) method suggested by
Beliaeff and Burgeot (2002), which merges the results into one
index. The IBR method allows clear visualization (using radar
plots and one index) of the biological effects of treatments and
simplifies the interpretation as all data is normalized to the
same scale with arbitrary units. The IBR only simplifies the data
analysis and indicates changes in antioxidant response. A high
IBR value can undercover negative or positive changes, that is,
great antioxidant defense or oxidative stress, which become
clear by looking at the corresponding radar plots. Individual
results of antioxidant enzymatic activity and MDA concentra-
tion are shown in Supporting Information Figs. S5, S6. Details
concerning the calculation of the IBR are available in Beliaeff
and Burgeot (2002).

Samples for Chl a and photosynthetic pigments (PSPs) were
taken by filtering 250 mL of the culture onto a polycarbonate
filter (0.45-μm pore size; Millipore) protected from direct irra-
diance. The filter was conserved in 2 mL of 100% acetone at
�80�C until analysis. Pigments were extracted and subse-
quently analyzed by high-performance liquid chromatography
(Waters Alliance 2695; Agilent), following methods described
in Wiltshire et al. (2000). Pigments quantified in the analysis
were Chl a, fucoxanthin, diadinoxanthin, β-carotene and
violaxanthin. Pigments were divided into “PSPs” (including
Chl a and fucoxanthin), and “photoprotective carotenoids”
(PPC; including diadinoxanthin, violaxanthin, and β-caro-
tene). Individual results of carotenoid contents are shown in
Supporting Information Fig. S7.

Statistical analyses
Statistical analyses were performed using R 3.4.3 software

(R Core Team 2022). For all analyses, the threshold of signifi-
cance was set to 0.05. Effects of different temperatures, pCO2

and N : P were assessed through a three-way ANOVA (three-
way ANOVA) followed by a pairwise Tukey post hoc test. Data
was log-transformed when normality and homoscedasticity of
residuals were not met. All results of the three-way ANOVAs

are presented in Table 1. Principal component analysis (PCA)
was applied to assess multivariate response to the experimen-
tal treatments on the dependent variables using temperature,
pCO2 and N : P ratio as supplementary variables.

Results
Carbon fluxes and cellular carbon content

Primary production, which represents the major share of
organic carbon flow into the cell, was significantly affected by
temperature as well as by pCO2, but not by N : P ratios, or
by any of the driver combinations. The primary production of
P. tricornutum was 2.06 pmol C cell�1 d�1 at 18�C and was
higher at 21�C (2.38 pmol C cell�1 d�1, F1,24 9.918, p = 0.004;
Fig. 1; Table 1). Primary production was also higher at
1000 μatm pCO2 than at 400 μatm pCO2 (2.33 vs. 2.11 pmol
C cell�1 d�1, F1,24 4.854, p = 0.037; Table 1). The dark

Table 1. Continued

Variable Factor 1 Factor 2 Factor 3 MS F p Value
Effect indicated by Tukey’s post

hoc test

Temperature pCO2 – 0.001 0.845 0.367 –

Temperature – N : P 0.001 0.067 0.798 –

– pCO2 N : P 0.001 0.309 0.583 –

Temperature pCO2 N : P 0.001 0.749 0.395 –

*Highlights significant p values (< 0.05).

Fig. 1. Carbon fluxes in the Phaeodactylum tricornutum cell under differ-
ent treatments. Carbon production (primary production) and carbon con-
sumption (net DOC production and dark respiration). Positive DOC
production represents DOC uptake by the cell, while negative DOC pro-
duction represents DOC exudation by the cell. The X-axis represents N : P
ratios and pCO2. Colors represent temperature (blue = 18�C,
red = 21�C). Different shades represent primary production, respiration,
and net DOC production. Data as mean � standard deviation, n = 4.
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respiration rate did not differ between temperatures at pCO2 of
400 μatm, but it was negatively affected by higher temperatures
when pCO2 was 1000 μatm (F1,24 30.86, p < 0.001; Fig. 1;
Table 1). Dark respiration rates were unaffected by dissolved N :
P ratios. Concerning DOC production, under 21�C, we observed
a significant increase for 1000 pCO2 compared to 400 pCO2,
independent of N : P ratio (0.36 vs. 0.25 pmol cell�1 d�1, F1,24
9.542, p = 0.005; Fig. 1, Table 1). In addition, DOC production
was also significantly stimulated at higher N : P ratios, about
0.13 pmol cell�1 d�1 on average, independent of temperature
and pCO2 (F1,24 7.023, p = 0.014; Table 1). In all 21�C treat-
ments, we observed DOC exudation rates of 0.31 pmol
C cell�1 d�1 on average, independent from N : P and pCO2,
while under 18�C, we found DOC uptake, with rates of
0.65 pmol C cell�1 d�1, independent from N : P and pCO2 (F1,24
400.2, p < 0.001; Table 1). Cellular carbon contents were signifi-
cantly influenced by temperature, being higher at 18�C than at
21�C (1.26 vs. 0.89 pmol C cell�1, F1,24 272.8, p < 0.001; Fig. 2a).

Growth rate
Growth rates of P. tricornutum were positively affected by

higher temperature at 400 μatm pCO2, but the increase was
lower at 1000 μatm pCO2 (F1,24 15.39, p < 0.001; Fig. 2b;
Table 1). Furthermore, pCO2 and N : P ratios in isolation did
not significantly influence growth rates, but in combination,
a significantly higher growth rate was achieved under
1000 μatm pCO2 and an N : P of 25, thereby indicating an
interactive effect of these drivers. The interaction of tempera-
ture and N : P ratios, as well as interactions of all three drivers
simultaneously, did not show significant statistical results on
growth rates.

Photochemical performance and Chl a content
Photochemical efficiency (α) was 0.016 on average in all

treatments, and was neither affected by temperature, nor by
pCO2 or N : P ratio (p > 0.05; Tables 1, 2). The compensation
point (cp) was significantly lower under 21�C and high pCO2

(10.49 vs. 6.51 μmol photons m�2 s�1), but no temperature
effect could be detected under low pCO2, showing the interac-
tivity of these drivers (F1,24 48.31, p < 0.001; Tables 1, 2). Maxi-
mum rates of net photosynthesis (Vmax) were positively
affected by higher temperature (F1,24 4.885, p = 0.037; Table 1),
increasing from 1.25 to 1.46 μmol O2 μg Chl a�1 h�1. No effects
of pCO2 and N : P were detected. The light saturation point (Ik)
was higher under high temperature (� 85 vs. � 100 μmol
photons m�2 s�1, F1,24 14.03, p < 0.001, Tables 1, 2),
irrespective of the applied pCO2 levels and N : P ratios. None of
the above-mentioned photochemical parameters was affected
by N : P ratio (p > 0.05, Tables 1, 2). Chl a content was, on aver-
age, 0.15 pg cell�1 and was not affected by temperature, pCO2

or N : P ratio (p > 0.05; Tables 1, 2). Table 2 presents the RLC-
fitted parameters under different treatments. Apparent photo-
chemical efficiency (α), light compensation point (cp), maxi-
mum electron transport rate (Vmax), light saturation point (Ik)
based on the rates of μmol O2 μg Chl a�1 h�1. Chl a content as
pg cell�1. Data as mean � standard deviation, n = 4.

Antioxidant response
The IBR index was, on average, 4.48 under 18�C, but it was

lower at 21�C (0.61, F1,16 19.41, p < 0.001; Fig. 3a,b; Table 1),
showing that temperature is the main driver for antioxidant
responses. We observed no statistically significant effect of
pCO2, dissolved N : P ratios, nor of any driver combination on

Fig. 2. Cellular carbon content and Phaeodactylum tricornutum-specific growth rate. (a) Particulate organic matter. (b) P. tricornutum specific growth
rate. The X-axis represents N : P ratios and pCO2. Colors represent temperature (blue = 18�C, red = 21�C), n = 4.
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the IBR. The temperature-driven decrease in IBR was mainly
caused by the lower activity of antioxidant enzymes, espe-
cially GPx, GST, and SOD-Mn (Fig. 3a,b; Supporting Informa-
tion Fig. S5). Cellular MDA concentrations were stimulated by
temperature in all treatments (F1,16 18.06, p < 0.001; Table 1).
In all 18�C treatments, MDA concentrations were highest
under high pCO2 and high N : P (Fig. 3a). The ratio of AOX to
dark respiration was significantly stimulated by high tempera-
tures in all driver constellations, going from 0.20 to 0.40,
except under low pCO2 and low N : P (Fig. 4a). The ratio of
PPCs (violaxanthin, diadinoxanthin, β-carotene) to PSPs (Chl
a, fucoxanthin; PPC : PSP) decreased under high temperatures
in all treatments (F1,24 208.3, p < 0.001; Fig. 4b; Table 1). Since
PSPs were not different across treatments, the reduction of this
ratio was primarily driven by the decrease in PPCs (Supporting
Information Fig. S7; Tables 1, 2).

Synthesis of cellular responses
Results from the PCA identified temperature as the most

influential driver of changes in the measured variables,
followed by pCO2 and, to a lower degree, N : P ratio (Fig. 5).
The first two principal component axes of the PCA explained
60.2% of variance within all observations (Fig. 5). Higher
DOC production, growth rate, and MDA concentration were
related to higher temperature (21�C), whilst higher POC, dark
respiration rate, and antioxidant response were positively cor-
related to the lower temperature we tested (18�C). On the
other hand, primary production and maximum net photosyn-
thesis rates (Vmax) were rather influenced by pCO2 than by
temperature, whereas contents of PSPs, Chl a and fucoxan-
thin, were the least influenced by the environmental drivers.

Discussion
The full-factorial design of our experiment enabled us to

identify that in the global change context tested in this study,
temperature has a greater influence than higher pCO2 and dis-
solved N : P ratios on the antioxidant capacity and carbon
metabolism of P. tricornutum. Higher temperatures led to
higher photosynthesis, DOC exudation, growth rate and respi-
ration, overall yielding a decrease in net C fluxes into the cell,
and cells with lower carbon content. We also observed a syn-
ergy between temperature and pCO2, and, to a lesser extent,
between temperature and N : P. The cells were mostly unaf-
fected by pCO2 and N : P ratio at 18�C, and only under
increased temperatures, cells became prone to these environ-
mental drivers. At 21�C, the phytoplankton cells had higher
oxidative stress and lower antioxidant enzymatic activity,
indicating a reduced capacity to combat ROS generated under
warmer conditions. These results indicate that the RCP 8.5
scenario predicted for 2100 may influence the carbon metabo-
lism and oxidative stress management of phytoplankton with
implications for oceanic carbon fluxes. A decrease in cellular
carbon content and increase of DOC production mightT
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represent a higher carbon input into the surface microbial
loop and less export of organic matter to deeper waters, since
carbon fixed as biomass can be assimilated to higher trophic
levels, while DOC is usually a source of energy for planktonic
bacteria (Azam et al. 1983).

We observed higher cellular contents of MDA, and a higher
electron flow through the AOX pathway under 21�C than at
18�C. Both are indicators of oxidative stress, because the cells
reroute electrons through the AOX pathway to alleviate flow
through the inner mitochondrial membrane, and because
MDA arises from harmful oxidation reactions in lipid mem-
branes (Uchiyama and Mihara 1978). The chloroplast and
mitochondrion constantly exchange compounds such as
ADP/ATP and electron carriers, whereby the mitochondrion
can serve as an extra electron sink under photosynthetic

overproduction by activating the AOX pathway. This gener-
ates less energy, but allows a more rapid supply of ADP and
electron carriers to the chloroplast, avoiding photoinhibition
due to the lack of these compounds in the chloroplast
(Bailleul et al. 2015; Launay et al. 2020). The increase of
AOX : Respiration we observed under elevated temperature,
despite lower dark respiration and higher photosynthetic
rates, suggests that the mitochondrion was acting as an elec-
tron sink as a stress response mechanism (Allen et al. 2008;
Prihoda et al. 2012). Regarding the detoxification of oxidative
stress, we observed an overall lower activity of most antioxi-
dant enzymes under high temperatures (GPx, GST, SOD-Mn;
CAT under low N : P). This is counterintuitive, since higher
temperatures should increase molecular movements and thus,
enhance enzymes activity. However, these results are

Fig. 3. Antioxidant enzymatic response and oxidative stress. (a) Normalized radar plots of antioxidant enzyme activities and MDA as a biomarker for oxi-
dative stress. MDA = malondialdehyde, SOD-Mn = manganese superoxide dismutase, GST = glutathione S-transferase, CAT = catalase,
GPx = glutathione peroxidase. All radar plots are to the same scale. (b) Integrated biomarker response. The X-axis represents N : P ratios and pCO2.
Colors represent temperature (blue = 18�C, red = 21�C), n = 3.
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supported by another study which also observed decreased
activities of antioxidant enzymes in phytoplankton after high-
temperature acclimation (Perelman et al. 2006). We hypothe-
size that these lower enzyme activities reflect the inability of
the mitochondria to maintain the respective gene expression,
suggesting that 21�C is the supraoptimal temperature for
P. tricornutum, similar as in other studies (Bitaubé Pérez
et al. 2008; He et al. 2014; Tong et al. 2021).

We observed a higher photosynthetic rate at 21�C than at
18�C, which may originate from a thermal enhancement of
electron flow in photosynthetic light reaction, and/or from an
enhanced activity of the CO2 fixing enzyme RuBisCo under
higher temperatures (Table 2; Ras et al. 2013). In addition to
warming, elevated pCO2 further increased photosynthetic
activity, likely as a result of higher C availability, which may
enable a reallocation of energy, possibly due to lower demand
for the carbon concentration mechanism activity (Young
et al. 2015; Rokitta et al. 2022). Light-harvesting pigments
(Chl a, fucoxanthin) were not affected by any of the drivers,
indicating that the light-harvesting portion of the antenna
complex was not affected by temperature, pCO2, or dissolved
nutrient ratios. However, the concentration of protective
carotenoids (especially diadinoxanthin and violaxanthin;
Arbones et al. 2000; Wagner et al. 2006; Janknegt et al. 2008)
and their precursor, β-carotene (Kuczynska et al. 2015),
decreased under high temperature. This likely enhanced the
overall photosynthetic activity, because relatively more cap-
tured photons were directed to the light-dependent reactions
of photosynthesis. Protective carotenoids compete for light
energy trapping in the photosystem and dissipate it as thermal
energy before it reaches the reaction center, a useful

photoprotection mechanism when light irradiance is higher
than needed (Arbones et al. 2000; Wagner et al. 2006; Janknegt
et al. 2008). On the one hand, the lower concentration of carot-
enoids can increase photosynthetic rates, on the other hand,
this reduction decreases photoprotection, the main short-term
response against the formation of ROS in the chloroplast
(Kuczynska et al. 2015). These results, then, suggest that photo-
synthesis was not a major source of ROS under the tested
conditions.

High pCO2 increased the photosynthetic compensation
points (Table 2), meaning that cells needed more light to
reach positive net primary production, at 18�C, whereas at
21�C, high pCO2 lowered the photosynthetic compensation
point. Although elevated pCO2 represents a higher availability
of DIC for phytoplankton and could stimulate their growth
(Riebesell et al. 2007), it also represents a higher [H+] concen-
tration. This lowers seawater pH, which influences the mem-
brane potential, intracellular pH, activity of enzymes, and
energy partitioning (Riebesell 2004; Giordano et al. 2005;
Rokitta et al. 2012), and can even lead to lower growth rates
(Berge et al. 2010), counterbalancing the positive effect of DIC
fertilization. We hypothesize that the overall mitochondrial
function was negatively affected by increasing temperature,
which was exacerbated under high pCO2. In other words, res-
piration had the opposite reaction to temperature and pCO2

as photosynthesis. This is unexpected since, typically, dark
respiration is positively correlated with photosynthesis, acting
as a sink for organic carbon (Yoshida et al. 2007), and also for
the reduction equivalents (Bailleul et al. 2015). This disparity
of chloroplast and mitochondrial activity reveals an imbalance
under high temperature, which has been observed previously

Fig. 4. Alternative oxidase activity and carotenoids. (a) Ratio of alternative oxidase (AOX) activity relative to dark respiration rate. (b) Ratio of
photoprotective carotenoids (PPC, diadinoxanthin, violaxanthin, and β-carotene) relative to photosynthetic pigments (PSP, chlorophyll a and fucoxan-
thin). The X-axis represents N : P ratios and pCO2. Colors represent temperature (blue = 18�C, red = 21�C), n = 4.
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in this species, for instance, by Tong et al. (2021), who found
that respiration peaked at 18�C while photosynthesis had an
optimum around 20�C. The negative effect of high pCO2 on
dark respiration has also been observed in diatoms before (Shi
et al. 2019). This imbalance causes high photosynthetic
organic carbon production, as well as reduced respiration,
which should lead to higher organic carbon retention, that is,
both processes should support the net POC production of the
cells. However, phytoplankton cells did not accumulate POC,
but rather, we observed an increased DOC exudation (espe-
cially under a high N : P ratio), which may represent a mecha-
nism to regulate cellular POC production rates. DOC
exudation has previously been shown to range from 1% to
55% of the total carbon fixation in different phytoplankton

taxa. In line with our data, DOC production was found to be
stimulated by high temperatures, as well as by higher pCO2

(Zlotnik and Dubinsky 1989; Baines and Pace 1991; Riebesell
et al. 2007; Wetz and Wheeler 2007; Engel et al. 2010; Tor-
stensson et al. 2015). The stimulating effect of high N : P
ratios on DOC production has been found before in phyto-
plankton (Li and Sun 2016), and seems to be an additional
supporting mechanism to balance cellular elemental stoichi-
ometry (Thornton 2014), since RuBisCO activity is more sensi-
tive to low supplies of nitrogen than of phosphorus (Geider
et al. 1993). It is important to note that, throughout the
experiment, cells had a replete supply of nutrients, meaning
that the effects of nutrients seen here are solely assigned to
the ratios of N : P ratio. Effects of higher N : P ratios might

Fig. 5. Principal component analysis (PCA) of the Phaeodactylum tricornutum response to climate change factors. Dependent variables are displayed in
green, supplementary variables are displayed in purple and black dots represent the individual observations (replicates). The two first principal compo-
nent axes explain 60.2% of all variation within observations. Location of dependent variables near to supplementary variables indicates positive correla-
tion of that experimental factor on the dependent variable. The position of the supplementary variables (drivers) relative to the point 0 show the intensity
of the drivers on the dependent variables. The further the drivers are from point 0, the stronger their effect is. Black dots represent individual replicates:
1–4 (T: 18�C, pCO2 400 μatm, N : P 16), 5–8 (T: 18�C, pCO2 400 μatm, N : P 25), 9–12 (T: 18�C, pCO2 1000 μatm, N : P 16), 12–16 (T: 18�C, pCO2

1000 μatm, N : P 25), 17–20 (T: 21�C, pCO2 400 μatm, N : P 16), 21–24 (T: 21�C, pCO2 400 μatm, N : P 25), 25–28 (T: 21�C, pCO2 1000 μatm, N : P
16), and 29–32 (T: 21�C, pCO2 1000 μatm, N : P 25).
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have been even more pronounced when cells experience
nutrient limitation. Although, P. tricornutum and other phyto-
plankton species can take up DOC (Villanova et al. 2017), the
net cellular flows of DOC were sensitive to the environmental
drivers tested here. We measured DOC uptake at 18�C and
exudation at 21�C, with a synergistic influence of warming,
elevated pCO2, and elevated N : P ratios on the degree of DOC
exudation. These results are supported by another study,
which found higher DOC exudation by phytoplankton under
oxidative stress as well (Mohamed 2008). While the stimulated
photosynthetic POC production and the lower consumption
by mitochondrial respiration under high temperature were
compensated by DOC exudation, other temperature effects
could not be compensated, for instance, the stimulation of
growth rates that typically derive from enhanced nutrient
uptake, more rapid DNA duplication, and so forth. Conse-
quently, given the steady net POC production, the increased
division rates resulted in cells with overall lower carbon con-
tent. Our study shows that, while warmer temperatures stimu-
late the growth rate of the phytoplankton P. tricornutum, there
are significant tradeoffs between growth and other metabolic
processes in the cell. At higher growth rates, we found evi-
dence of oxidative stress, deviating route via the AOX path-
way and higher DOC exudation.

If the results obtained for this single strain of one species
are indicative of what would happen with other species as
well, an expected scenario for 2100 corresponding to RCP 8.5
with higher temperature and pCO2 combined with increasing
N : P ratio might significantly alter metabolic fluxes of micro-
algae and have the potential to alter the biogeochemical
cycling of carbon in the oceans. An increased photosynthesis,
as well as a decreased respiration might lower the overall CO2

concentrations in surface waters and could enhance air-sea gas
exchange, that is, the uptake of atmospheric CO2. The fact
that organic carbon is not channeled into biomass and fed to
higher trophic levels, but rather exuded, suggests an enhanced
carbon input into the microbial loop (Azam et al. 1983). In
line with this, cells with lower C content might be smaller
and likely to have lower sinking velocities and also to become
better prey, especially for microzooplankton, which again will
feed more carbon into the microbial loop (Legendre and Le
Fèvre 1995; Mor�an et al. 2010; Hillebrand et al. 2022). Similar
results were obtained in a mesocosm experiment during
which plankton communities were subjected to simultaneous
changes in temperature, pCO2, and N : P ratios (Moreno
et al. 2022), and which identified an intensification of the
microbial loop. Evidence have been also found that higher
DOC availability (Hitchcock et al. 2010) and warming (Hoppe
et al. 2002, 2008) lead to a higher abundance of bacter-
ioplankton. Nevertheless, clearer effects on bacteria abun-
dance might be seen after phytoplankton reach the stationary
phase and nutrient depletion, when bacteria abundance
increases considerably (Moreno et al. 2022). These results
highlight the sensitivity of microalgal physiology to the

combined effects of multiple drivers. Remarkably, the manifes-
tation of further effects of pCO2 and N : P were enabled by ele-
vated temperatures, underlining that temperature functions as
a “master variable” for phototrophic phytoplankton. An
enhanced oceanic CO2 uptake and an overall stimulated
microbial loop may be the longer-term consequences of rising
temperatures, elevated pCO2 as well as shifted dissolved N : P
ratios.

Data availability statement
The data that support the findings of this study are openly

available in the PANGAEA platform at https://doi.org/10.
1594/PANGAEA.947112.
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