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Salpa thompsoni is an important grazer in the Southern Ocean and most
abundant in the Antarctic Polar Front (APF) region. During recent decades,
their distribution expanded southwards. However, it is unclear whether
salps can maintain their populations in the high Antarctic regions through-
out the year owing to a poor understanding of their physiological responses
to changing environmental conditions. We examined gene expression signa-
tures of salps collected in two geographically close regions south of the APF
that differed in water mass composition and productivity. The observed
differences in the expression of genes related to reproductive, cellular and
metabolic processes reflect variations in water temperature and food
supply between the two regions studied here. Our study contributes to a
better understanding of the physiological responses of S. thompsoni to
changing environmental conditions, and how the species may adapt to a
changing environment through potential geographical population shifts
under future climate change scenarios.
1. Introduction
In the Southern Ocean, Salpa thompsoni occurs from the Subtropical Convergence
to high Antarctic coastal seas, being most abundant in the Antarctic Polar Front
region (APF) [1–3]. Salps are very efficient filter feeders, capable of exerting a graz-
ing pressure that regionally exceeds the total primary production [4]. Furthermore,
they are known to contribute to vertical carbon flux by creating fast sinking faecal
pellets. However, the contribution of salps to carbon export into deeper water
layers is still uncertain, because of increased retention of faecal pellets in the
upper (approx. 200 m) water layers owing to a higher fragmentation rate [5,6].

During past decades, the distribution of S. thompsoni has shifted southwards
together with a proposed decline in Antarctic krill (Euphausia superba) in those
regions [7]. The reasons for this observed shift are not fully understood, but
studies suggest ongoing ocean warming and sea ice decline as the major drivers
[2,8,9]. However, the ability of salps to maintain their populations in high Ant-
arctic regions year-round remains questionable, as successful reproduction and
development may be restricted to warmer areas (greater than 1°C) [9–11].
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Figure 1. (a) Map of sampling stations (Salpastan, 10°E) in the APF region and (b) principal component analysis (PCA) of variance- stabilized gene expression levels
covering samples analysed from Salpastan (n = 7) and station 10°E (n = 3). Different colours (yellow = Salpastan, red = 10°E) indicate the different sampling
stations, while different shapes indicate different reproductive forms (triangle = oozoids (Oz), circle = blastozooids (Bz)).
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Nevertheless, salp populations were recorded occasionally in
cold waters [12,13], suggesting an ability to also reproduce
under more adverse conditions. To fully understand the
conditions affecting salp development and reproduction, it is
therefore critical to gain additional knowledge of their
physiological responses to changing environmental conditions.

To date, inter-basin variability with respect to environ-
mental conditions was only rarely studied [13]. The two sites
investigated here, although geographically close (approx.
1250 km apart), were characterized by different environmental
conditions, Salpastan station (cold/unproductive) and station
10°E (warm/productive) [13,14]. The present study is based
on de novo transcriptomic data published by Müller et al. [15]
covering several seasons and forms (oozoids and blastozooids).
Using these data, we aimed to examine the physiological
responses to regional environmental conditions in the vicinity
of the APF in the Atlantic Sector of the Southern Ocean
during summer 2012. In particular, we focused on differences
in gene expression levels between (i) forms (oozoids versus
blastozooids) in the cold and unproductive environmental set-
ting (Salpastan), and (ii) oozoids from the two study sites with
contrasting environmental conditions (Salpastan versus 10°E).
This will contribute to an understanding if and how physio-
logical mechanisms may allow salps to increasingly occur in
areas formerly dominated by Antarctic krill.
2. Material and methods
(a) Field sampling
Samples of S. thompsoni considered for differential gene and
functional analysis were collected onboard RV Polarstern during
ANTXXVIII/3 using a Bongo net/multiple rectangular midwater
trawl from the top 450 m in the vicinity of the APF during
summer 2012 (electronic supplementary material, table S1). Ana-
lysed samples included blastozooids (n = 5) and oozoids (n = 2)
from the Salpastan (−52.0018, −8.00417) and oozoids (n = 3)
from the 10°E (−50.9867, 10.0185) station (figure 1a; electronic sup-
plementary material, table S1). The stomach and embryo were
removed prior to extraction (see Müller et al. [15] for further
sampling and extraction details). Environmental data were col-
lected using a conductivity, temperature, depth (CTD) sonde
(Sea- Bird Scientific SBE 911plus) and obtained from https://
doi.org/10.1594/PANGAEA.840334 [14]. Raw fluorescence data
were converted to chlorophyll a (Chl a) concentration using the
following equation: y = 0.075 + 1.42x (n = 53, R2= 0.91, p < 0.001)
(electronic supplementary material, figures S1 and S2). This
linear regression was derived by relating the fluorescence data
to Chl a concentration from 10 to 200 m depth, which were
measured using high performance liquid chromatography
during the same cruise [16].

(b) Sequence data and de novo transcriptome source
Seasonal- and form-specific sequence data of S. thompsoni pub-
lished by Müller et al. [15] (Bioproject accession number
PRJNA822688) and Batta-Lona et al. [17] (Bioproject accession
number PRJNA279245) were used to generate the de novo tran-
scriptome assembly and annotation as described in detail in
Müller et al. [15].

(c) Differential gene expression analysis and gene
ontology enrichment analysis

Normalization of gene expression values and differential gene
expression (DGE) analysis was conducted by the Bioconductor
R package DESeq2 v. 1.32.0 [18]. Principal component analysis
(PCA) was performed to estimate variation within and between
groups using normalized and variance stabilized gene expression
data via the vst transformation implemented in DESeq2. We ident-
ified differentially expressed genes (DEG) between forms (oozoids
versus blastozooids) at Salpastan station and between regions
(Salpastan versus 10°E) among oozoids using the Benjamini-
Hochberg (BH) adjusted p-value < 0.001 and by setting the log
fold change threshold (LFCT) to 1 in gene expression levels.
Gene ontology (GO) enrichment analyses was performed for sig-
nificantly up- and downregulated genes together using the R
package topGo v. 2.44.0 and ‘weight01’ algorithm [19]. We filtered
the GO hierarchy by having at least 10 annotated genes. Only GO
terms within biological processes (BP) and a p-value < 0.05
(Fisher`s exact test) were considered significant.
3. Results
Salpastan station was characterized by a mean seawater temp-
erature of 1.42 ± 0.50°C (range of 0.48–1.93°C) at a maximum
sampling depth (200 m) and was mainly characterized by a
cold water intrusion (approx. 0.5°C) between 100–200 m
depth (electronic supplementary material, figure S2 and table
S1). Chl a concentrations were exceptionally low (0.15 ±
0.03 mg m−3) in all water layers. At 10°E station,
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environmental conditions were mainly characterized by a pyc-
nocline at approximately 100 m depth. The mean seawater
temperature was 2.38 ± 0.53°C (range of 1.91–3.38°C) and the
Chl a concentration was 0.34 ± 0.45 mg m−3 (range of 0.08–
1.40 mg m−3) at the maximum sampling depth (450 m). All
samples were taken during the night/just after sunrise. Total
length of oozoids from Salpastan station was 17–19 mm and
those from 10°E station were 22–25 mm. Blastozooids sampled
at Salpastan station were 17–22 mm in length and showed a
developing embryo prior to extraction. Filtering for more
than 10 counts per gene among all samples resulted in 45
698 genes for downstream analyses. PCA revealed three clus-
ters, reflecting geographical positions and reproductive forms
(figure 1b). The regional and form effects accounted for 68%
(PC1) and 11% (PC2) of the variance, respectively.
 Lett.19:20230274
(a) Differential gene expression analysis between
reproductive forms (oozoids versus blastozooids)

About 167 genes were found to be differentially expressed
(LFCT = 1, BH adjusted p-value < 0.001) between oozoids
(n = 2) and blastozooids (n = 5) at Salpastan, of which 68.3%
(114 genes) were annotated. The majority of DEG (approx.
95%) were upregulated in oozoids compared to blastozooids
(electronic supplementary material, figure S3). Analysis of
GO term enrichment revealed 39 enriched terms ( p < 0.05)
within BP (electronic supplementary material, table S2).
Most genes (n = 40) were assigned to the enriched GO
terms translation (40S and 60S ribosomal proteins) and pro-
cesses related to muscle structure development (eight
genes, e.g. troponin T, myosin heavy chain, muscle).
(b) Differential gene expression analysis between regions
(Salpastan versus 10°E)

DGE analysis between oozoids obtained at Salpastan (n = 2)
and 10°E station (n = 3) revealed 1623 DEG (LFCT = 1, BH
adjusted p-value < 0.001) with most genes (approx. 61%, 989
genes) being significantly upregulated in oozoids at Salpa-
stan compared to 10°E station (electronic supplementary
material, figure S4); 43.7% (709 genes) of DEG were anno-
tated. GO enrichment analysis identified 144 enriched terms
( p < 0.05) (electronic supplementary material, table S3).
Within cellular processes, most genes were assigned to GO
terms cellular adhesion (n = 61), and cell division (n = 41).
Forty-one and 32 of those DEG, respectively, were upregu-
lated at 10°E station (i.e. downregulated at Salpastan;
figure 2a). The majority of DEG involved in metabolic pro-
cesses was related to translation, covering 101 DEG
(approx. 80% ribosomal proteins), of which 92 genes (91%)
were upregulated in oozoids at Salpastan (figure 2b). Further,
genes (e.g. chymotrypsinogen, trypsin-1) involved in diges-
tion, axonogenesis and angiogenesis were differentially
expressed between both regions (figure 2c) with digestion
being the most significant process ( p = 7.7e-07; 14 of 16
genes upregulated in oozoids of 10°E station). Within repro-
ductive processes, 20 of 24 genes related to reproductive
processes (e.g. female pregnancy) were found to be upregu-
lated in oozoids at 10°E station compared to Salpastan
(figure 2d; electronic supplementary material, figure S4).
4. Discussion
In recent decades, the abundance of salps has increased in the
Southern Ocean and their distribution has shifted southwards
[2,7]. However, it is still unclear whether or how salps are able
to physiologically maintain their populations in the high Ant-
arctic environment [9,11]. Here, we assessed how S. thompsoni
copes with different environmental conditions within one
season and basin. This study revealed both form-specific
(oozoids versus blastozooids) and region-specific (Salpastan
versus 10°E station) gene expression patterns (figure 1b).
(a) Differences between reproductive forms at Salpastan
station

At Salpastan, DEG analysis revealed an upregulation of pro-
cesses linked to higher investment in translational capacity
and active muscle development in oozoids compared to
blastozooids (electronic supplementary material, figure
S3 and table S2). Salpastan station was located within the per-
sistent cold water meander and was characterized by an
exceptionally low food supply (electronic supplementary
material, figure S2) [13,14]. A similar difference between
forms at Salpastan has previously been shown in winter
samples obtained from Bransfield Strait [15], however, the
upregulation of translation and increased investment in
muscle development observed here probably reflects a gen-
eral dissimilarity between the reproductive forms,
independent of environmental conditions, owing to basic
morphological differences between both forms, e.g. shape
and size of muscle bands [15,20].
(b) Response of oozoids to regionally different
environmental conditions

Physiological responses to seasonally and geographically
variable environmental conditions have already been studied
in Antarctic species such as Antarctic krill [21,22]. However,
to date the influence of environmental changes on S. thomp-
soni owing to variability between regions has rarely been
studied [13]. Here, we investigated the physiological response
to regionally different environmental conditions, to our
knowledge for the first time. In this study, the biggest differ-
ences in gene expression patterns were observed between
similarly sized oozoids sampled from the two locations (Sal-
pastan station and 10°E station; PC1: 68%) located only
approximately 1250 km apart south of the APF. The environ-
mental conditions at 10°E station were more favourable
compared to Salpastan station (electronic supplementary
material, table S1 and figure S2), which may explain the
strong differences in gene expression patterns observed
here. Some uncertainty exists regarding the exact depth at
which salp samples were collected and the environmental
conditions they experienced, as samples were collected at
maximum depths of 200 and 450 m at Salpastan and station
10°E respectively. However, small oozoids have been shown
to migrate vertically to depths of approximately 100 m
during the night [23], therefore it is likely that the small
oozoids (17–25 mm) in this study were sampled near the
surface, where they may have experienced the greatest differ-
ences in environmental conditions between the two stations
(electronic supplementary material, table S1 and figure S2).
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The distinct pattern between both regions was related to
differences in the expression of genes related to metabolic,
reproductive and cellular processes (figure 2). Most genes
involved in cell adhesion and division were downregulated
at Salpastan compared to 10°E station (figure 2a). The downre-
gulation of physiological processes, such as cell division, could
be an indication that energy has to be re-allocated in a cold
and/or poor-food environment [24]. In addition, translation
was strongly upregulated in oozoids from Salpastan station,
indicating a higher demand for translational capacity under
low water temperatures (figure 2b). This is consistent with an
upregulation of genes encoding for ribosomal proteins in blasto-
zooids during winter in the Bransfield Strait [15]. An increased
expression of genes involved in ribosome biogenesis may be
related to a quantitative compensation (e.g. of reduced enzyme
activities) in response to low temperatures, to ensure basal main-
tenance in an organism [25–27], and may therefore represent
certain flexibility of S. thompsoni to cope with the extreme
environmental conditions in Antarctic regions [15,28]. Several
genes related to angiogenesis and axonogenesis were also differ-
entially expressed between oozoids from both regions
(figure 2c). Cold-induced angiogenesis results in an increased
capillary density, which may overcome the effect of impaired
tissue perfusion owing to increased fluid viscosity in the cold
[29,30].

In a previous study [13], distribution and population
demography were investigated at the same stations (Salpastan
and 10°E station). The temporal dynamics of both, seawater
temperature and Chl a concentration (electronic supplemen-
tary material, figure S5), as well as the observed salp
population development pointed towards an earlier initiation
of the salp reproduction at Salpastan station [13]. Furthermore,
the exceptionally high abundances observed at Salpastan
station suggested a limited spawning event that started
approximately 2–3 months ago prior to field sampling, suc-
cessful enough to produce high salp densities subsequently
reducing local phytoplankton bloom development through
grazing [13]. By contrast, 10°E station showed an ongoing
salp reproduction, low salp densities [13] and an increasing
Chl a trend (electronic supplementary material, figure S5).
Here, expression of genes involved in reproductive processes
were downregulated in oozoids from Salpastan station
(figure 2d ), indicating that reproduction may have ceased at
a certain point, probably owing to low water temperatures
and decreasing food concentrations (electronic supplementary
material, figure S5). This hypothesis is supported by the fact
that genes related to digestion were downregulated in oozoids
from Salpastan, which also reflects the low Chl a concentration
and therefore, low food supply. Furthermore, this is consistent
with an analysis of gut pigment levels, whichwas significantly
lower in S. thompsoni from Salpastan compared to other
regions within the APF [13].

Recent studies showed that sexual reproduction of blasto-
zooids may suffer from unfavourable conditions [10,11]. Our
analysis focused on small oozoids and therefore provides, to
our knowledge, the first evidence that asexual reproduction
in salps may also be affected in response to low temperature
and food conditions. At Salpastan, water temperatures
ranged from 0.48 to 1.93°C, roughly in line with previous find-
ings of a proposed temperature threshold (greater than 1°C)
for successful reproduction of salps [9,11,31]. However,
owing to the uncertainty of the exact sampling depth, it
cannot be confirmed that the generally proposed temperature
threshold of greater than 1°C for successful reproduction can
be applied to all circumstances and reproductive stages. Fur-
thermore, if the observed patterns are an effect of low
temperatures alone or a combination of both, the low water
temperatures and very low food concentrations (approx.
0.15 mg m−3), remains questionable. Our findings may be in
contrast to older oozoids at more advanced developmental
stages, which are suggested to overwinter and prepare for
reproduction at depth during winter [1,3]. The oozoids ana-
lysed here were relatively small (electronic supplementary
material, table S1), indicating a more complex and possibly
life stage-dependent sensitivity to environmental conditions
of S. thompsoni.

(c) Concluding remarks
We conducted transcriptomic analyses that were restricted to
low replicate numbers (n = 2–5). By using DESeq2, which pro-
vides consistent performance even for small studies with few
replicates [18], and applying a threshold (LFCT = 1) in DGE
analysis, we increased sensitivity to true DGE signals, there-
fore mitigating the effect of small replicate numbers [32].
Furthermore, we only observed responses at transcriptomic
level. While these were in line with salp biology data [13],
responses of physiological processes may also occur at the
post-translational and whole-animal level. Nevertheless, our
study showed how regional differences in temperature and
food supply affect the expression of genes involved in cellular
processes, metabolism and reproduction in oozoids, to our
knowledge for the first time. Our results therefore provide a
very important insight into how S. thompsoni may respond
to changing environmental conditions, which is crucial
given the projected range shift of the Southern Ocean salp
populations under climate change.
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