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Driving forces of Antarctic krill abundance
Alexey Ryabov1,2,3*, Uta Berger2, Bernd Blasius3,4, Bettina Meyer1,3,4*

Antarctic krill, crucial to the Southern Ocean ecosystem and a vital fisheries resource, is endangered by climate
change. Identifying drivers of krill biomass is therefore essential for determining catch limits and designating
protection zones. We present a modeling approach to pinpointing effects of sea surface temperature, ice cover,
chlorophyll levels, climate indices, and intraspecific competition. Our study reveals that larval recruitment is
driven by both competition among age classes and chlorophyll levels. In addition, while milder ice and temper-
ature in spring and summer favor reproduction and early larval survival, both larvae and juveniles strongly
benefit from heavier ice and colder temperatures in winter. We conclude that omitting top-down control of
resources by krill is only acceptable for retrospective or single-year prognostic models that use field chlorophyll
data but that incorporating intraspecific competition is essential for longer-term forecasts. Our findings can
guide future krill modeling strategies, reinforcing the sustainability of this keystone species.
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INTRODUCTION
Climate change and ocean warming in the Southern Ocean are al-
tering both the extent of seasonal sea ice and chlorophyll levels,
leading to spatial shifts in marine ecosystems (1, 2). Assessing
climate-induced changes in the Antarctic ecosystem requires accu-
rate modeling of Antarctic krill, the centerpiece of the food chain.

There is little consensus regarding the main factors determining
krill abundance, which is perhaps expected given the extreme scales
among relevant environmental and climate factors involved.
Various studies indicate that krill survival can depend on ambient
environmental factors such as chlorophyll concentrations (3, 4), ice
coverage (5, 6), and water temperature (7) and on population factors
such as reproductive density dependence (8) and competition with
salps (5). However, since these local environmental factors fluctuate
according to global climate (Box 1), krill recruitment has also been
linked to climate indices such as the El Niño–Southern Oscillation
(ENSO) and Southern Annular Mode (SAM) (2, 3, 9, 10).

An additional source of uncertainty for krill modeling stems
from the fact that field results are often presented as correlations
between, for instance, driving factors and recruitment, which do
not capture the dynamics of underlying functional relationships
nor the relative strength and timing of the different drivers. There-
fore, mechanistic models of krill often rely on krill traits, such as
consumption or growth rate, which have been measured under
steady-state laboratory conditions. Moreover, traits such as egg pro-
duction, hatching, and starvation mortality are not fully studied and
are typically estimated using allometric scaling models (8, 11, 12).
As a consequence, the mechanisms of density regulation of repro-
duction are also poorly understood.

The dependence of recruitment on the number of producers can
be described by the phenomenological Beverton-Holt (BH) model
(13), which suggests that the number of larvae increases

monotonically with the number of adults to a level determined by
the maximum carrying capacity of larval habitats, e.g., under winter
sea ice (14, 15), where they are not affected by competition with
adults. Ricker (RK)’s alternative model suggests that reproduction
begins to decline because of intra- and intercohort competition as
the number of adults exceeds a critical level (16, 17). The RK model
has been successfully applied to describe fluctuation in abundance
of insects (18) and fish (19) and analyze intraspecific competition
(20, 21). Considering intercohort competition for a shared resource
may explain krill oscillations (8), but there is currently no firm in-
dication for or against this theory (22). A systematic test of this
theory by a modeling study could support or refuse its plausibility.

We aim to identify the environmental factors that control krill
recruitment and survival, and to analyze the dependence of recruit-
ment on adult density by comparing krill dynamics that are simu-
lated by the BH and RK models. We first fit models with time-
constant parameters and then find minimal annual deviations
(anomalies) of these parameters at which the model best reproduces
fluctuations in the abundance of juveniles and adult krill. Investigat-
ing links between the anomalies and environmental factors using
machine learning techniques allows us to determine the underlying
drivers of krill dynamics and to develop an environmental-driven
model that closely approximates observed krill dynamics.

RESULTS
Data
Summer postlarval krill abundance data at the Western Antarctic
Peninsula (WAP) were collected over 27 years as part of the
Palmer Long-Term Ecological Research (PAL-LTER) program (4,
9). The Palmer program’s sampling grid (Fig. 1A), approximately
600 km by 200 km in size, was selected because of the effect of its
local gyres, which tend to retain the krill population and minimize
advective emigration and immigration (23). We used data from the
northern and central parts of the grid (filled circles) because the krill
population in these areas was monitored throughout the entire
period and had coherent spatial population dynamics (9). Unfortu-
nately, the PAL-LTER data do not include larval abundances. To
adjust the reproductive functions in our models, we supplemented
our dataset with larval abundance in January to February (10) based
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on data from Antarctic Marine Living Resources program (AMLR)
(24). Although AMLR stations are located around 500 km north of
the Palmer stations at the North Atlantic Peninsula, the dynamics of
both populations are highly correlated (25). We used only a portion
of the AMLR data because the AMLR grid area is not a relatively
closed system like the Palmer grid region.

Over the 27-year monitoring period, the total abundance of
postlarval krill fluctuated by more than two orders of magnitude,
which is reflected in the fluctuations in larvae, juvenile (≤35
mm), and adult (body size >35 mm) abundances (Fig. 1B). Four
large 4 to 5 year cycles were followed by a period when the

abundance of adults was almost stable from 2013 to 2019. Similar
cycles are observed in krill size distribution dynamics, where 2 years
of successful reproduction led repeatedly to cohorts that dominated
the population for 4 to 5 years (3, 8). These cycles also correspond to
larval reproduction peaks in the AMLR data (green line, Fig. 1B)
and are likely related to variability in environmental factors (e.g.,
chlorophyll a; Fig. 1C), which, in turn, are driven by global
climate anomalies (e.g., SAM; Fig. 1D).

Life history labyrinth model
Time-constant model
Krill population dynamics can be schematically represented as the
movement of cohorts along a spiral labyrinth of life history
(Fig. 2A), where transitions from an inner ring to a functionally dif-
ferent stage on the next ring occur only during certain time periods.
We distinguish the following three krill cohorts (26). Larvae appear
in summer and are not only the most abundant but also the most
vulnerable group to starvation. Juveniles include individuals older
than 9 months that externally look like adults but are not yet ready
for spawning. The last group consists of adult, sexually mature krill
at least 2 years old. The seasonality of the krill life cycle is driven by
annual variations in sea surface temperature, chlorophyll concen-
trations, and ice coverage, whose relative values (averaged over
the observation period) are presented in the outer ring. Cohort
abundances increase via summer reproduction (L) and recruitment
from the previous developmental stage (J and A). A decrease in
cohort abundance may be caused by mortality or transitions to
the next stages.

The population dynamics comprises reproduction with rate R
(A) (larvae), mortality at ratesmL,mJ, andmA, and time-dependent
transitions between stages at maximal rate r that occur when the ac-
tivating transition functions (Fig. 2C) approach 1. The dynamics of
cohort abundance can be described by the following set of differen-
tial equations

d
dt
L ¼ RðAÞf sumðtÞ � rf sprðtÞL � mL L

d
dt
J ¼ rf sprðtÞL � rf wntðtÞJ � mJ J

d
dt
A ¼ rf wntðtÞJ � mAA

We assume that larval reproduction, R(A), follows the Deriso-
Schnute function (Fig. 2B), in which the parameter γ specifies a
smooth transition from a BH model (γ = −1, BH model), where
the maximum number of larvae increases monotonically with
adult abundance, to a RK model (γ → −0, RK model), where an
increase in adult population above a threshold value reduces the
number of survived larvae, implicitly modeling competition for a
shared resource (see Materials and Methods for the detailed de-
scription). We refer below to this model with time-independent pa-
rameters as a “time-constant” model.
Fitting procedure, time-constant model
To understand the mechanisms driving krill population dynamics,
we propose to use a three-step modeling approach. In the first step,
we describe krill dynamics using models with time-constant

Box 1. Planetary climate oscillations in the Southern Hemisphere.
El Niño Southern Oscillation
ENSO is an irregular fluctuation in temperature and pressure in the

tropical Pacific region. These fluctuations occur every 2 to 5 years and can
have strong impacts on global weather patterns. ENSO has two main
phases: El Niño, which is characterized by warm temperatures in the
eastern Pacific, and La Niña characterized by cool temperatures in this
region. ENSO events are characterized by the Southern Oscillation Index
(SOI), which measures air pressure variations in the surface layer of the
atmosphere between eastern and western Pacific waters, and by the
Niño3.4 index (see Materials and Methods), showing sea surface
temperature anomalies in the equatorial Pacific Ocean in the so-called
Niño 3.4 region.
The mechanisms driving ENSO are not fully understood, but the

transition is often linked to the strength of the trade winds (tropical winds
blowing steadily from east to west toward the equator). Trade winds drive
the North and South Equatorial Currents, which transport both cold
upwelling waters and the cold-water Humboldt Current (which originates
in the Southern Ocean) from east to west. As these surface waters move
westward, they warm, causing the western Pacific to become warmer than
the eastern Pacific. During La Niña years, the trade winds are strong,
resulting in temperatures in the western Pacific that are around 8° to 10°C
warmer than in the eastern Pacific. On the other hand, during El Niño years,
the trade winds and ocean currents weaken and sometimes reverse,
leading to a decrease in upwelling and a substantial warming of the
tropical eastern Pacific (60).
El Niño causes an anomalous anticyclone (counterclockwise

outspiralling wind) in the southeast Pacific with warm north winds that
heat the ocean and reduce ice levels in the Amundsen, Bellingshausen and
Ross seas and south winds that cool the ocean and increase ice levels in
both the South Atlantic (Weddell Sea) and Antarctic Peninsula (61). In
contrast, a cold La Niña period causes a cyclone (clockwisewind spiral) that
leads to a cooling of the South Pacific and warming of the Antarctic
Peninsula and the South Atlantic. This phenomenon is called the Antarctic
Dipole (62).
Southern Annular Mode
SAM, also known as the Antarctic Oscillation (AAO), describes the

latitudinal shift of the belt of westerly winds circulating around Antarctica
and governs the distribution of precipitation and temperature from the
subtropics to Antarctica (63). The positive phase of SAM corresponds to
stronger westerly winds over middle and high latitudes (50° to 70°S) and
weaker westerly winds in mid-latitudes (30° to 50°S). Temperatures and
chlorophyll concentrations around the Antarctic Peninsula are positively
correlated with the current SAM index (45). However, the concentration of
large diatoms, the preferred prey of adult krill, may decrease during
positive SAM phases (3). This mode is characterized by Marshall’s SAM
index, which is based on the zonal pressure difference between 40° and
65°S or, correlated with it, the AAO index calculated by the National
Oceanic and Atmospheric Administration based on isobar height
anomalies poleward of 20°S, which is considered to be the best indicator of
SAM behavior (64).
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parameters, where krill recruitment can only vary with the abun-
dance of adult krill. In the second step, we account for environmen-
tal interannual variability by determining annual anomalies
(deviations) in the mortality of larval and juvenile krill. Last, by an-
alyzing the relationship between these anomalies and environmen-
tal factors, we can identify and compare the key drivers of krill
population dynamics for both models.

The best fits of the time-constant models are shown in Fig. 3. The
BH model cannot reproduce population oscillations and predicts
population stabilization at an average level, regardless of initial con-
ditions (Fig. 3, A to C, green line). Note also that the best fit resulted
in a relatively steep initial slope of the reproduction function
(Fig. 2B, orange line). In contrast, the RK model gives a good ap-
proximation of larvae, juvenile, and adult abundance oscillations
over about 20 years but loses synchronization with the data in the
last third of the observation period (Fig. 3, D to F, green line). The
discrepancy between both models and data occurs because the
models do not account for interannual climate variability, so
these results can only be interpreted as an expected abundance of
krill under unchanging year-to-year climate conditions.
Model with annually varying mortality
To account for climate variability, we introduce annual anomalies of
losses. We define an anomaly of loss in cohort k and year Y as a
coefficient δk,Y such that the mortality in year Y equals m0k;Y ¼ mk
exp δk,Y, where mk is the standard cohort mortality (Table 1). Thus,
the loss rate mk characterizes the background level of losses from
factors such as aging, fishing, and predation that are either constant

over time or that we do not have sufficient data to analyze (preda-
tion). By contrast, anomalies characterize deviations from the back-
ground level in year Y favorable (δk,Y < 0) or unfavorable (δk,Y > 0)
for that cohort. Thus, we include interannual variations only in the
mortality, while the other parameters, e.g., the reproduction func-
tion, remain the same as in the time-constant model. Therefore, the
larval mortality anomalies should be viewed as effective parameters
reflecting variations in both mortality and larval reproductions.

Determining the loss anomalies is a complex task of searching
for a global minimum in a high-dimensional space. To avoid
model overfitting and to reduce outliers among loss anomalies
that could arise, for example, from possible krill abundance mea-
surement errors, we searched for loss anomalies that provided the
best fit between the model and the data but had the minimum sum
of their squares (see Materials and Methods). To test the robustness
of our results, we ran 300 minimization cycles. Anomalies from the
minimization cycle that provided the closest fit of the model to the
data are shown by red dots in Fig. 4, anomalies from other cycles are
shown by blue dots. Across all cycles, the model fit remained virtu-
ally unchanged (less than 2% variation in the model to data devia-
tion), which allows us to interpret the spread of the blue dots in
Fig. 4 as a confidence interval. We consider an anomaly significant
(filled circle) if at least 95% of the blue dots are on the same side of
zero; otherwise, it is considered insignificant (open circle). On the
basis of this analysis, we excluded adult loss anomalies because most
of them were insignificant.

Fig. 1. Dynamics of krill abundance and driving factors. (A) PAL-LTER grid station locations for summer krill sampling (red circles). Only filled circles (center and north
lines) were used to parameterize the model. The black circle shows the location of regular conductivity, temperature, and depth data sampling stations: B (coastal; depth
≈ 75m) and E (offshore; depth≈ 200m). (B) Average abundance of larval (green), juvenile (blue), and adult (orange) krill. Note that larval abundancewasmeasured in the
AMLR grid north of the Palmer grid. (C and D) Dynamics of chlorophyll concentrations (Chl-a; green) and SAM index (blue).
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The introduction of annual loss anomalies substantially im-
proves the fit of both models to the data (Fig. 3, blue lines). Note
that in the BH model, larval abundance remains steady (Fig. 3A)
because its 1 January level is primarily influenced by the reproduc-
tion function and because the adult abundance largely varies within
the saturation region of the stock-recruitment function (orange line
in Fig. 2B). However, the annual deviations in larvae losses translate
the nearly constant larval abundances into oscillations in juvenile
and adult populations, aligning the model output with the data.
In contrast, the reproductive function in the RK model directly
translates oscillations in adult abundance into oscillations in
larval abundance (Fig. 3D). Therefore, it is expected that the
larval loss anomalies in the RK model are different from those in
the BH model.

The anomalies of losses obtained in the RK model and the BH
model do not correlate with each other, suggesting that they are
likely related to different environmental drivers (Fig. 4). In both
models, larval loss anomalies are larger and more precisely
defined than juvenile anomalies. For larvae, there are groups of con-
secutive years where loss anomalies were significantly positive (high
losses) and negative (low losses). In contrast, about half of the juve-
nile loss anomalies differ only insignificantly from zero (compare
Fig. 4, A and C and B and D). Thus, we can expect that environmen-
tal variability influences the larval population stronger than the ju-
venile population.

Statistical analysis
Correlations between annual loss anomalies and
environment
To link the obtained anomalies with environment, we considered
their correlations with monthly average values of environmental
factors and climate indices (Fig. 5). We use monthly averaged chlo-
rophyll concentrations (Chl-a) and sea surface temperature (T ),
regularly measured at stations B and E (Fig. 1A), and satellite esti-
mates of ice coverage in the Palmer grid region (Ice). As global
climate characteristics, we rely on four indices: two related to the
ENSO, namely, the Southern Oscillation Index (SOI) and the
Niño 3.4; in addition, the Antarctic Oscillation (AAO) and the
closely related SAM index. See Box 1 and Materials and Methods
for more details. As these indices change rapidly and determine
water temperature and ice conditions in WAP with a lag, they are
usually replaced by a moving average with sampling window of 6 to
12 months (7, 10). We used 9-month moving averages to match the
analysis by Atkinson et al. (7), which demonstrated that average
SAM anomalies from January to September predict recruitment
in the following summer. To evaluate the influence of anthropogen-
ic factors, we also examined the correlations between loss anomalies
and fishery data in this area (27). However, this analysis did not
reveal any statistically significant correlations. Note that the
absence of these correlations does not exclude the presence of an
effect because fishery efforts in this region display a relatively
small year-to-year variability, changing rather on decadal scales,
and therefore their effect is difficult to capture with correlation
analysis.

The larval loss anomalies obtained for the BHmodel show a neg-
ative correlation with chlorophyll concentrations and temperature

Fig. 2. The krill reproduction cycle. (A) Schematic representation of the krill life history labyrinth model. The inner circles show the different functional stages: larvae (L),
juveniles (J), and adults (A). The life cycle (blue line) starts from the center of the labyrinth, rotates clockwise with the season, and spirals outward when the transition is
open (black lines represent the walls of the labyrinth); different seasons are labeled with different colors (for example, summer is yellow). The outer circles show themean
values of chlorophyll concentrations (green), temperature (red-blue color map), and ice coverage (gray) in Palmer grid. (B) Generalized Deriso-Schnute stock-recruitment
function (seeMaterials andMethods). In this function the control parameter γ defines a smooth transition from the BHmodel (orange, γ =−1) to the RKmodel (green, γ→
0). (C) Functions controlling the activation of the transition windows between krill stages, plotted over the course of 24 months.
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at the beginning and end of the summer period and a negative cor-
relation with SOI during the spring maturation to spawning period
and positive correlations with the SAM index (Fig. 5A). In contrast,
larval loss anomalies in the RK model are not correlated with chlo-
rophyll, but we observe a block of significant positive correlations
both with SAM and with AAO fromOctober to June, as well as neg-
ative correlations with temperature in November and February
(Fig. 5B). In both models, a decrease in larval losses aligns with
an increase in ice cover during late winter (negative correlations
in July and August).

Both models indicate that environmental factors that have a pos-
itive impact on one developmental stage may have no effect or a
negative effect on the other stage, suggesting a niche partitioning
between these two krill stages. For example, expanding ice cover
and lower temperatures in spring, fall, and winter can reduce juve-
nile losses (Fig. 5, C and D), but lower temperatures in spring and
summer can increase larval losses (Fig. 5, A and B).

Climate indices also exhibit opposing correlations with larval
and juvenile survival. These correlations are stronger in the RK
model, but the BH model reveals similar trends. Specifically, both
AAO and SAM display a significant positive correlation with larval
losses in RKmodel, while these indices during the period from Sep-
tember to November demonstrate negative correlations with juve-
nile losses. Thus, a negative SAM and AAO phase correspond to the
success of larvae reproduction and survival, while the success of ju-
venile stage can be associated with a positive phase of these indexes.
Correlations with SOI and Nino 3.4 demonstrate similar patterns,
but these correlations are much weaker. Nevertheless, they align
with observations made by Loeb and Santora (10), who associated
negative Nino 3.4 with larval survival and positive Nino 3.4 with the
successful transition to the juvenile stage.
Disentangling environment effects on krill survival during
their first 2 years
To reconstruct a continuous time pattern of specific environmental
effects on krill loss anomalies during the first 2 years of their life

Fig. 3. Fittingmodels to data. Larvae (A andD), juvenile (B and E), and adult (C and F) abundances obtained from krill sampling andmodeled with the BHmodel [(A) to
(C)] and RKmodel [(D) to (F)]. Shown aremean krill abundance (gray), abundance from time-constant models (green), and abundance frommodels with annual variability
of larvae and juvenile mortalities (blue). To match the data here and below, we showmodel outputs on 1 January. Note that larval abundancewas measured in the AMLR
grid north of the Palmer grid, while juvenile and adult abundance from PAL-LTER data.
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cycle, we applied a machine learning technique called fused least
absolute shrinkage and selection operator (LASSO) regression
(28). On the basis of correlation analysis, we identified chlorophyll,
C, temperature, T, ice coverage, I, and SAM, S, as potential drivers of
anomalies. All variables were standardized to zero mean and unit
variance, and we represented the loss anomalies for cohort k and
year Y as the sum of factors over consecutive months

δk;Y ¼ ak0 þ
X

ia
k;C
i Ci

Y þ
X

ia
k;T
i Ti

Y þ
X

ia
k;I
i IiY

þ
X

ia
k;S
i SiY ð1Þ

where the index i spans 16months (from September to December of
the next calendar year, as shown in Fig. 5), and the coefficient ak;Fi
characterizes the impact of factor F on losses in cohort k during
month i.

This linear model encompasses four factors measured over the
16-month span, totaling 54 variables. In these cases, traditional
linear regression often tends to overfit the data, leading to subopti-
mal performance on unseen datasets. To address this, we need to
reduce the model’s degrees of freedom. Fused LASSO offers an ef-
fective approach for extracting maximum information from small
datasets with a large number of variables (29), when we can
assume that closely related variables, like consecutive monthly chlo-
rophyll levels (e.g., in December and January), have similar effects
on the target variable. Thus, the difference between adjacent

coefficients, ðak;Fi � ak;Fiþ1Þ, should be minimal. Unlike traditional
feature selectionmethods, fused LASSO retains correlated variables,
such as consecutive monthly chlorophyll values, while aiming for a
sparse linear model with minimal differences between adjacent co-
efficients. In Materials and Methods, we provide a detailed descrip-
tion of this algorithm, describe the hyperparameter selection, and
evaluate the relative importance of different factors (fig. S1). The
coefficients ak;Fi of the selected models are shown in Fig. 6 A to D.

First, we consider the dependencies of anomalies on environ-
mental factors common to both models. Both the BH and RK
models indicate that from late spring to autumn (spawning and
larval development), increasing temperature and decreasing ice cov-
erage reduce larval losses (Fig. 6, A and C). However, in winter, the
pattern reverses, and larval losses are reduced with increasing ice,
emphasizing ice’s protective role for overwintering. Simultaneously,
the variations in water temperature seem to have little to no effect on
larval losses in winter.

The reduction of larval losses with increasing temperature has
several mechanistic explanations. First, during spring and
summer, warmer temperatures boost phytoplankton productivity
(30). Second, an increase in temperature from −2° to 2°C might ac-
celerate embryo and early-stage development (31, 32). However,
this is valid for Palmer-grid region only, where summer tempera-
tures stayed below 2°C, while higher temperatures have a strong
negative impact on hatching success and embryo development (33).

The impact of strong winter with long and intense ice coverage
until late spring/early summer on krill spawning success and larvae
survival is debated. Our findings suggest that late ice retreat might
reduce recruitment success. This challenges older views that a late
ice retreat promotes early krill spawning and favors recruitment (3,
34). Instead, our results align with studies indicating that krill repro-
duction success is favored by moderate winter before spawning and
moderate spring ice conditions (6, 23, 35).

In contrast to in summer, both models predict that the effects of
temperature and ice on krill larval survival are reversed in winter.
Larval krill losses in winter decrease with increasing ice coverage
(both models) and increase with increasing temperature (BH
model). This aligns with the hypothesis that strong winter with
large sea ice extent promotes higher krill larvae survival (23).
Pack ice serves as a vital nursery habitat for krill larvae (36), offering
complex under ice structures that afford protection from predators
(15). Sea ice biota and the associated zooplankton community are
essential food sources (37), which, in some cases, fully cover the
winter energy budget (38).

The main difference between the BH and RK models lies in the
most critical factors linked with larval losses. In the BHmodel, chlo-
rophyll concentration plays a central role, consistently reducing
larval losses. Its impact is most pronounced in late spring and
summer during female maturation, spawning and larval weight
gain in summer and early autumn. The impact of chlorophyll
reduces in winter and then increases again in the next spring
during the transition from the larval to the juvenile stage
(Fig. 6A). In contrast, the RK model reveals that larval losses in-
crease with a rising SAM climatic index (Fig. 6C). This relationship
is the strongest in spring and summer and gradually decreases as
larvae approach the juvenile stage the following spring.

The mechanistic effects of chlorophyll on recruitment (Fig. 6A)
is multifaceted, as phytoplankton is an important component of the

Table 1. Parameters of the time-constant RK and BH models.
Parameters were obtained by minimizing the weighted SD between the
logarithms of modeled and field-estimated adult, juvenile, and larval
abundances (Fig. 3, gray and green lines). Weights (wL = 2/3,wJ = 1, andwA
= 2) were chosen such that each cohort contributed equally to the
overall SD.

BH RK Units Meaning

Preset model parameters

γ −1 −0.09 Controlling transition from BH
to RK model

r 30 30 Year−1 Transition rate between stages

τ 0.2 0.2 Year Duration of the window
(Fig. 2C) when the transition
between stages is allowed

Fitted standard parameters of the time-constant model

Lmax 3368 2481 Eggs/year
per ind

Maximal number of larvae
produced by one adult per

time unit

Gmax 101 353 Eggs/year
per

square
meter

Maximal number of larvae per
square meter per time unit

mL 2.6 1.76 Year−1 Larval mortality

mJ 1.31 1.13 Year−1 Juvenile mortality

mA 0.6 0.51 Year−1 Adult mortality

Initial conditions on 1 January 1993

L0 1.9 0.75 Ind/m2 Larvae

J0 2.94 2.6 Ind/m2 Juveniles

A0 5.07 3.9 Ind/m2 Adults
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krill diet (39, 40), influencing reproduction, growth, and develop-
ment (14, 41, 42) as well as krill lipid levels (43). Although krill is
mainly considered omnivorous, this mainly comes into play in
seasons when phytoplankton biomass is low, such as in autumn
and winter (44). Therefore, warmer summer temperatures, with in-
creased chlorophyll levels and associated zooplankton biomass, can
cause favorable feeding conditions for krill larvae and facilitate
larval development to advanced stages with sufficient lipid reserves
for overwintering (37). Furthermore, high food availability in
autumn may reduce competition between cohorts of different
ages (8). In late winter and early spring, late larvae stages require
abundant phytoplankton to meet their energy demands for rapid
growth and transitioning to the juvenile stage (15). These findings
also align with the observation that recruitment peaks in WAP
region are linked to chlorophyll anomalies in the preceding year (3).

The positive correlation between SAM and larval losses in the
RK model (Fig. 6C) can also be explained mechanistically. The
largest regression coefficients (Fig. 6C) and highest correlations
(Fig. 5B) are found between larval losses and 9-month averages of
SAM values for November to March of the following year. All of
these 9-month moving average values encompass the prespawning
overwintering period. Thus, given that positive SAM values are typ-
ically associated with warmer temperatures (45), an increase in
larval loss corresponding to increases in these averages suggests
that increased temperature during the prespawning overwintering
period may negatively affect the abundance of adult krill matured
for spawning in the spring. Note that the SAM effect we identified
occurs at an earlier time point compared to the results of Atkinson
et al. (7). The average January to September SAM index they use
coincides with our moving average in September. As shown in
the regression (Fig. 6C) and correlation (Fig. 5B) analyses, this

value does not show a significant link with krill losses. This discrep-
ancy can be explained by the fact that the Palmer grid is located
south of the 60° to 62.5°S belt included in the study of Atkinson
et al. (7).

The dependence of juvenile losses on environmental factors ex-
hibits similar trends in both models (Fig. 7, B and D). Losses rise
with increasing temperature (in the BH model throughout the
year and in the RK model during winter and spring). In addition,
losses increase with decreasing ice coverage in the RK model.
Notably, temperature and ice display a negative correlation, indicat-
ing a close inverse relationship between these factors. These find-
ings support hypotheses suggesting that elevated temperatures
can have adverse effects on subadult and adult krill (2, 7) and that
during winter, high ice coverage, offering shelter and food, benefits
both juvenile and larval survival. Specifically, in autumn, late juve-
nile krill can accumulate essential omega-3 fatty acids by feeding on
sea ice biota, facilitating their maturation into the adult stage (46).

Overall, environmental factors explain approximately 70% of the
larval loss anomalies in the BH model and about 50% of the loss
anomalies in other cases (Fig. 6, E to H). Using these relationships,
we parametrized environmentally driven models for krill popula-
tion dynamics, wherein annual loss anomalies were determined
by the corresponding linear dependences on environmental
factors (fig. S2). With this parameterization, both the RK and BH
models could account for approximately 60% (the RK model) to
70% (BH model) of the variation in juvenile abundance and
yielded comparable predictions for adult abundance (R2 = 0.45
for BH model and R2 = 0.42 for the RK model).
Chlorophyll, SAM, or both?
Therefore, both models, when driven by environmental factors, can
provide comparable predictions of krill dynamics. However, the BH

Fig. 4. Anomalies of larvae and juvenile losses.Minimal annual anomalies of larval (A and C) and juvenile (B andD) losses in the BH (A and B) and RK (C and D) models
that provide best fits of the annually varyingmodel to data. Blue dots showanomalies resulting from 300 reruns of the parameter optimization cycle. The red dots indicate
the anomalies yielding the best fit across these cycles (solid circle for significant and open circle nonsignificant anomalies); these anomalies were used for the annually
varying models in Fig. 3.
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model suggests that larval survival is primarily linked to chloro-
phyll, while the RK model shows that larval survival depends on
the SAM index. Although both chlorophyll and SAM can be con-
nected to recruitment, the question remains as follows: Why does
dependence on chlorophyll appear in the BHmodel, which does not
explicitly account for between-cohort competition, while depen-
dence on SAM appears in the RK model, which does consider
such competition?

We believe that both results can be explained within a single
framework, assuming that chlorophyll is a shared resource and its
concentration depends not only on climatic factors but also on krill
biomass. Since the BH model does not account for the feedback
between resource (chlorophyll concentrations) and consumers
(krill), chlorophyll concentrations appear to be the main driving
factor in it. However, this prediction only works as long as we
know the in situ chlorophyll concentrations in the presence of
krill. In contrast, the RK model already accounts for competition
between cohorts for a shared resource and shows that larval loss
anomalies are linked to a climatic index, SAM, independent of
krill biomass. AAOs affect temperature, sea ice extent, and
primary production, so they can determine variations in the carry-
ing capacity of krill habitat and adult productivity, which manifest

in the RK model as annual deviations of larval losses from the time-
constant model parameters.

This hypothesis is supported by the fact that in PAL-LTER
region chlorophyll concentrations in spring and summer decrease
with increasing adult abundance, which is characteristic of top-
down control systems (Fig. 7D). Furthermore, in both the data
and models, the number of recruits is negatively correlated with
the number of adult krill (Fig. 7A). This relationship naturally
occurs only in the RK model and requires a specially tailored se-
quence of larval losses in the BH model. To test this hypothesis,
we conducted model runs in which the sequence of loss anomalies,
shown in Fig. 4, was randomized to mimic an arbitrary sequence of
favorable and unfavorable years. In this case, for the BH model, we
obtained a neutral dependence of recruits on the number of adults,
while the RK model still resulted in a negative correlation between
adults and recruits (Fig. 7B).

DISCUSSION
To examine the driving forces of krill abundance, we introduce a
modeling approach consisting of three stages. First, we fit a
system of differential equations with time-constant parameters to

Fig. 5. Effects of the environment on krill losses. Pearson correlations between average values of environmental factors and annual anomalies of larval (A and B) and
juvenile (C and D) losses were calculated for the BH [(A) and (C)] and RK [(B) and (D)] models. Rows in each plot correspond to the month in which a factor was measured,
and columns present the factor itself. Monthly averages were used for chlorophyll concentrations, temperature, ice coverage, and a 9-month moving average for the
climate indices. The bar on the left side roughly shows the stages of krill development in each month. Yellow dots indicate significant correlations (P < 0.05).
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species abundance data, creating a null model representing the
system dynamics’ baseline. Second, we identify the minimum
annual deviations (anomalies) in model parameters that optimize
the model fit to the data. Third, we analyze how these anomalies
depend on environmental factors. This approach is parameter-
free, as it avoids defining specific functional relationships between
model parameters and environmental factors, particularly given the
often complex and poorly understood nature of these dependencies,
typically defined only under controlled laboratory conditions.
Instead, in the final step, we derive “field” functional dependencies
of anomalies on environmental factors.

We determine loss anomalies by minimizing both the deviation
of the model from the data and the variance of anomalies across the
entire dataset. Compared to traditional approaches, where fluctua-
tions in recruitment are estimated from adult and juvenile abun-
dances in two consecutive years (3, 10), our method offers more
robust estimations, effectively suppressing potential outliers. Tradi-
tional methods can be likened to finding the slope of a line passing
through only two experimental points, while our approach is closer
to a least-squares fit of a function generated by the dynamic model
to all data points. In the traditional approach, errors in each calcu-
lation are primarily influenced by the uncertainty in krill abun-
dance in the two selected years, neglecting the impact of prior
and subsequent population abundances. In contrast, fitting
annual anomalies in our approach relies on the entire dataset,
thus accommodating possible model feedback and reducing uncer-
tainties. Our approach is close to the one used by Kinzey et al. (22)
for determining krill recruitment. However, we take an additional
step by linking anomalies to environmental conditions, enabling us

to quantify the effects of environmental factors on krill survival and
parameterize predictive population models.

Our life history labyrinth model blends iterative models with
time-continuous models, yielding two key advantages. First, being
based on differential equations, our modeling approach allows us to
predict the krill population continuously throughout the year. This
flexibility simplifies integration of factors influencing krill popula-
tions during specific seasons and estimation of krill abundance on
any given day. This is an advantage over iterativemodels, which typ-
ically provide krill biomass estimates for isolated time points, e.g., in
mid-summer (6, 22), making it challenging to incorporate processes
that vary continuously throughout the year, such as fisheries
impact, predation, ocean currents, etc. Second, the use of predeter-
mined time windows for transition between krill developmental
stages makes our model relatively insensitive to the rate of this tran-
sition (see Materials and Methods). As transition windows between
stages do not overlap, our model is free from artifacts such as the
instantaneous transition of a fraction of larvae to the adult stage im-
mediately after spawning, which potentially arise in typical differen-
tial equation-based models.

Our study synthesizes many previous findings, indicating that
krill recruitment is a complex process jointly influenced by chloro-
phyll concentrations, temperature, ice, and SAM index, and their
effects change with season and krill stage. In addition, we conjecture
that fluctuations in krill biomass are likely the result of competition
between adults and larvae for shared resources. This is demonstrat-
ed by the fact that the anomalies observed in the RK model, which
accounts for intercohort competition, do not depend on chloro-
phyll concentrations. In contrast, the best fit of the BH model,

Fig. 6. Forecasting of loss anomalies based on environmental factors for the BH and RK models. (A to D) Solid lines show coefficients aiF in Eq. 1 selected by fused
LASSO regression for the effects of chlorophyll (green), temperature (red), ice (blue), and SAM (gray) on losses of larvae and juvenile krill. Shading shows 90% confidence
intervals calculated by fused LASSO regression for bootstrapped data sequences. (E to H) Comparison of larval/juvenile loss anomalies fitted from the annually varying
model (red circles in Fig. 4A) and those predicted by Eq. 1 with the coefficients shown in (A) to (D).
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which does not account for this competition, requires the modula-
tion of the model by local chlorophyll values, which, in turn, are not
independent variables, but can be negatively affected by krill popu-
lations. Therefore, the interspecific competition included in the RK
model is manifested through the dependence of resources on adult
abundance in the BHmodel. This result supports our earlier finding
that cycles of krill biomass are driven by intercohort competi-
tion (8).

Substantial top-down control of resources by krill is supported
by earlier studies. First, Loeb et al. (5) note significant negative local
correlations between phytoplankton and abundance of krill and
salps. Second, the peak of the dependence of larvae losses on chlo-
rophyll fluctuations occurs in December (Fig. 6A), coinciding with
the maximum grazing impact of krill (47). Third, although larvae
and adults usually occupy distinct habitats (48), they can still
compete for the same resources. This can be seen in populations
of salps and krill, which also lack spatial correlation (49), but
their abundances show that an inverse relationship and competition
for resources are two of the potential hypotheses (4, 5). Last, study-
ing krill top-down control on phytoplankton through simple

correlation analysis poses challenges due to krill actively seeking
feeding grounds with higher chlorophyll concentrations, resulting
often in a positive correlation between krill abundance and local
chlorophyll concentration (50). A comprehensive investigation
would require an experiment comparing the balance of particulate
organic carbon, primary productivity, krill grazing rate, and carbon
bound in krill fecal pellets andmicrobial recycling loop. In addition,
one should take into account sinking and diffusion rates of fecal
pellets and phytoplankton.

Consequently, we argue that long-term modeling of future krill
dynamics needs to account for population pressure on resources. In
the environmental-driven RK model, this happens automatically,
and it is sufficient to use forecasted SAM, ice coverage, and temper-
ature as the controlling parameters. In the BHmodel, we should ad-
ditionally consider the dynamics of chlorophyll growth and
consumption and use resulting values of chlorophyll and predicted
ice coverage, temperature, and SAM as control variables. On the one
hand, the first approach may seem somewhat more straightforward,
but as the telekinetic relationships between the global SAM index
and local environmental conditions vary notably seasonally and

Fig. 7. Negative effect of adult population on chlorophyll and recruitment. (A) Relationship between the adult abundance and juvenile abundance obtained in the
following year for the data and annually varying BH and RK models (see Fig. 3). (B) Comparison of BH and RK models results with randomly permuted loss anomalies. (C
and D) Effect of juveniles and adults on mean chlorophyll concentrations in different months before and after abundance sampling. Thick lines show significant rela-
tionships (P < 0.01) as identified by the linear mixed-effects model, where months of chlorophyll observations were considered as random effect terms.
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geographically (45, 51), it is critical to emphasize that the relation-
ship between SAM and krill recruitment may be specific to the con-
sidered region only. On the other hand, the BH model is
immediately suited for retrospective modeling or 1-year prognose
based on known data on resources and environmental conditions.
For example, the BH model, similar to the approach by Veytia et al.
(52), for modeling krill growth potential can easily be applied to
simulate krill abundance history across the Southern Ocean based
on satellite data.

Our study demonstrates niche separation between larvae and ju-
veniles, when factors favoring larval abundance possibly hamper ju-
venile survival and vice versa. For example, bothmodels have shown
that increased temperature and reduced ice cover during spawning
(spring) and initial larval development (summer to early fall)
reduce larval losses. In contrast, increased temperature and
reduced ice cover may negatively affect juvenile survival. This is
most pronounced in spring during the development from the late
larval stage (Furcilia VI) to the juvenile stage and in winter before
the transition from the juvenile to the adult stage. The reason might
be the different physiological demands and different food sources
between larval and juvenile krill.

Climate indices also have opposing correlations with larval and
juvenile survival: A negative SAM and AAO phase correspond to
the success of larvae reproduction and survival, while the success
of the juvenile stage can be associated with a positive phase of
these indices. This result is close to the findings by Loeb and
Santora (10), who showed that a positive SOI phase favors larvae,
while a negative SOI phase favors juveniles. Such an inverse rela-
tionship of climate indices and environmental conditions with
larval and juvenile losses can reduce intercohort competition as a
year that favors juvenile survival may not promote the development
of a large larval cohort and vice versa.

Our study has demonstrated that krill recruitment is substan-
tially affected by chlorophyll concentration, ice coverage, and tem-
perature and that fluctuations in krill biomass are likely caused by
competition between adults and larvae for shared resources. We
have also found that a model that considers intercohort competi-
tion, such as the RK model, provides a better fit to the data with
time-constant parameters, while a model that does not account
for this competition, such as the BH model, can be more broadly
applicable when data on local resource values are available. We
also found evidence of niche partitioning between larvae and juve-
nile krill, with opposing environmental conditions and climate
indexes favoring one developmental stage or the other. However,
our current model does not account for spatial dynamics, seasonal
migrations, and spatial variability of environmental conditions. Ac-
counting for these factors could provide a more detailed and accu-
rate view of the complex interactions between the environment and
krill populations, providing a deeper understanding of how climate
change and anthropogenic factors affect krill populations and
helping to develop effective conservation and management strate-
gies for this critical keystone species.

MATERIALS AND METHODS
Data
Data on krill populations have been collected by the PAL-LTER for
27 years (Ross, Steinberg). PAL-LTER stations are located at a dis-
tance of 100 km from south to north and about 20 km from west to

east, and the selected area is about 400 km by 200 km in size. Only
standard stations (−80, −60, ..., 240, 260) were included in our anal-
ysis. We used data from the northern and central parts of the grid
because the krill population in these areas was monitored through-
out the entire period and had coherent spatial population dynamics
(9). Before determining the mean krill abundance, we cleaned the
data and removed 13 outliers (of 1339 samples) with extremely high
densities of more than 5000 ind/1000 m3. After removing outliers,
themedian abundancewas 7 ind/1000m3, and themean abundance
was 65 ind/1000 m3. The row data are available at https://pallter.
marine.rutgers.edu/data/.

Most samples of krill abundance were complemented by body
length distributions, which allowed us to estimate the percentage
of juveniles (≤35 mm) and adults in these samples and to calculate
the abundance of each cohort. PAL-LTER data are presented in in-
dividuals per cubic meter. To obtain the average abundance of ju-
veniles and adults in the water column, we multiplied their density
by the sampling depth. To find the average juvenile and adult abun-
dance, we first averaged the spatial data in increments of 0.5° for
longitude and 0.25° for latitude to reduce the weight of stations
where multiple samples were taken in the same year. We then
found a simple average of adult and juvenile abundance across
the entire grid. These data are shown in Fig. 1B.

Unfortunately, PAL-LTER data do not include larval abundance,
and we supplemented our dataset with larval abundance in January
to February calculated by Loeb and Santora (10) based on data from
AMLR stations (24). Averaged data on krill abundance, krill loss
anomalies, and environmental factors are presented in the Supple-
mentary Materials.
Chlorophyll and temperature
Chlorophyll and temperature were monitored a few times a month,
including winter, at two onshore stations B and E (Fig. 1A). We pre-
ferred data from these stations to satellite data because satellite data
have only been available since 1997, are less accurate in winter
months, and correlate with the monthly averaged data from stations
B and E in summer months. Two datasets are available for temper-
ature, with different missing intervals. We combined these sets and
first computed the average temperature for each day and then the
monthly average temperature. The chlorophyll data are available
at https://pallter.marine.rutgers.edu/data/.
Ice extent
Ice extent was estimated on the basis of National Snow and Ice Data
Center satellite observations, as PAL-LTER data in winter months
show maximum ice cover without any interannual difference, but,
in summer months, both datasets correlate well with each other.
The data were downloaded from https://nsidc.org/data/nsidc-
0051/versions/1 using the seaice package for MATLAB (53). We in-
cluded data from the region of 75° to 60° west longitude and 60° to
80° south latitude enclosing the Palmer grid. For each month, we
plotted the boundaries of the individual ice-covered regions and
then found the total area as the sum of areas of the ice-
covered regions.
Climate indices
Climate indices provide an overall description of the region climate
(Box 1). Climate index anomalies are rapidly oscillating functions,
changing sign several times a year, so we used moving averages for
the last 9 months, as they revealed the highest correlation with
annual anomalies in abundance loss. The indices were obtained
from the following sources. SAM index from https://legacy.bas.ac.
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uk/met/gjma/sam.html, AAO index from www.cpc.ncep.noaa.gov/
products/precip/CWlink/daily_ao_index/aao/aao.shtml, SOI from
www.cpc.ncep.noaa.gov/data/indices/soi, and Nino 3.4 from
https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-
nino-12-3-34-4-oni-and-tni.

Population dynamics models
Three large classes of population models have been proposed to
capture krill population dynamics. In decreasing order of complex-
ity, these are integrodifferential, differential, and iterative models.
Integrodifferential models most accurately describe the population
evolution and body size distribution of individuals (8, 54). However,
a spatial generalization of these models is challenging because indi-
viduals of the same age at different locations may obtain different
weights or other attributes determined by their local history, which
greatly complicates modeling of diffusion fluxes. To avoid this
problem, differential and iterative models operate with a fixed set
of weight or age classes (e.g., larvae, juveniles, and adults). Since
the individual traits in each class are fixed, the spatial generalization
is usually modeled as diffusive and advective fluxes occurring inde-
pendently within each class.

Differential models describe a continuous change in abundance
in each class in terms of reproduction, mortality, and transitions
from younger to older groups at a certain rate. This rate should
be chosen such that during the stage developmental time (e.g., 1
year), most individuals would transition to the next stage. This tran-
sition process is exponential, which makes these models sensitive to
the transition rate. If the rate is too low, then some of the individuals
may be delayed in the larval stage, and if the rate is too high, then
some of the larvae may reach the adult stage andmake an additional
contribution to reproduction in the summer of their hatch. Since a
single adult krill can produce thousands of larvae, the wrong choice
of transition rate can lead to artifacts in reproduction.

Unlike differential models, iterative models assume that at the
next iteration, all individuals will either die or move to the next
stage, usually associated with their age (6, 22). This approach is
simple to implement and does not require transition rate specifica-
tions, but it has some other drawbacks. Iterative models compute
abundance only at a certain point in time, and all transitions
must be strictly synchronized (e.g., occurring in summer). This
makes it difficult to explicitly model processes whose intensity
varies continuously throughout the year, for example, the presence
of predators in summer and their absence in winter or seasonal
changes in fishing intensity.

The life history labyrinth model
Krill population model with time-constant parameters
Here, we propose a hybrid approach for modeling age structured
populations that combines the advantages and avoids the disadvan-
tages of the other model classes. We describe the population dy-
namics with differential equations but assume that a transition
from one stage to another is only allowed during the time interval
τ when the transition window is open (Fig. 2A). The advantage of
our approach over conventional differential models is that we can
always arrange the transition windows to block passages from
stage n − 1 to stage n + 1 without completely passing through
stage n, for example, from larvae to adults, bypassing the juvenile
stage. As a result, we can build a model with a weak dependence
on the transition rate r, if it is large enough that most individuals

move to the next stage in the transition time τ. Since the transition
process is exponential, the proportion of individuals that fail to
move is ρ = e−rτ. Setting r = 30 year−1, τ = 0.2 year in our model
(see Table 1), we obtain ρ = 0.002.

The function activating transition windows is defined as

f ðt; t0Þ ¼ exp �
sin½π ðt � t0Þ�
sinðπτ=2Þ

� �2m

ln2

 !

where t, t0, and τ are expressed in years. This is a smooth dome-
shaped function with period 1, approaching 1 at time points t0 + i
(i is integer) when the transition is open during time interval τ and
approaching 0 when the transition is closed. With increasing expo-
nent m, the shape of the function changes from a Gaussian to a
rectangular pulse (we used, m = 5). The normalizing factor ln2 in
the exponent is chosen from the condition

Ð 1
0f ðtÞdt !m!1

τ. In the
model, we used three activating functions (Fig. 2C): activation of
egg production in summer, fsum(t) = fact(t,0), transition of larvae
into the juvenile stage in spring, fspr(t) = fact(t,9/12), and transition
of 1.5-year-old juveniles into the adult stage, fwnt(t) = fact(t,1/2).

Reproduction is defined by a modified Deriso-Schnute general-
ized recruitment function (55, 56).

RðAÞ ¼ Lmax A 1 �
Lmaxβγ
Gmax

A
� �1

γ

where Lmax is the initial slope of the recruitment curve (number of
eggs hatched per unit of time per adult in the absence of competi-
tion),Gmax is the maximum number of eggs hatched (habitat capac-
ity), and the parameter γ controls the smooth transition from the
BH model at γ = −1 to the RK model at γ → −0 (Fig. 2B). The nor-
malizing constant βγ depends only on the controlling parameter, βγ
= γ/(γ + 1)(1+1/γ). This dependence is equivalent to the canonical
form proposed by Schnute (55) but makes it easier to compare
RK and BH models, since, here, the maximal habitat capacity,
Gmax, is an independent parameter, while the maximum of the ca-
nonical form R(A) is nonlinearly linked to the initial slope of the
function.

The simulation results for parameter values attained from a
least-squares fit of this model to the data are shown in Fig. 3, by
the green lines. We denote these time-independent parameters as
“standard parameters” and this model as a time-constant model (al-
though the transition rates are functions of time) to distinguish it
from a model in which the parameter values change annually.
In the annually varying model
We additionally introduced annual anomalies δY determining devi-
ations of mortality for the cohort that spent most of its lifetime in
year Y. Larval and juvenile mortality in year Y was determined by
the anomalies of their abundance losses δL,Y and δJ,Y, as m0L;Y ¼
mL exp δL;Y and m0J;Y ¼ mL exp δJ;Y , where mL and mJ are the
larval and juvenile mortality rates of the time constant model. To
align the mortality changes to the lifespan of these cohorts (see
Fig. 2A), we applied δL,Y in the interval from 1 November of year
Y − 1 to 31 October of year Y and δJ,Y from 1 August year Y − 1
to 31 July year Y. We also considered models with anomalies of
adult losses, but, in most cases, the values obtained by fitting
those anomalies did not deviate significantly from zero, so we do
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not include these results. The source code for the simulation is pub-
licly available at (57).

Fitting the model
The population dynamics of the time-constant models are deter-
mined by the initial abundances and five standard parameters: mor-
tality in each cohort and the initial slope and maximum value of the
reproduction curve. We fitted the parameters of the time-constant
models by minimizing the weighted SD between the logarithms of
data and modeled abundance of adults, juveniles, and larvae on 1
January (see Table 1 for fitted parameters).

Namely, we minimized the loss function with regularization of
fitted parameters

Cost ¼
1
n

Xn

Y¼1
½αLðlogL0Y � logLYÞ

2
þ ðlogJ0Y � logJYÞ

2

þ αAðlogA0Y � logAYÞ
2
� þ λ

X

k
θk � θk0

θk0

� �2

Here, n = 27 is the number of observations,Y is the observation year,
and k runs over all fixed parameters θk to be optimized. Symbols
with a strike denote data values and without it the model results.
The first term in the cost function is the mean square deviation of
the logarithms of abundances in the model results (as of 1 January)
and observations. We used weight αA = 2 for adults and αL = 2/3 for
larvae to equalize the cohort abundance scales. The second term
gives an additional penalty for deviations of model parameters θk
from their prior values θk0 (table S1), which, in the unperturbed
model, were chosen on the basis of literature data, see, e.g., the
choice of similar parameters in (8). The regularization constant λ
= 0.01, was chosen so that the weighted relative squared deviation
of the model parameters from their prior values was approximately
5% of the value of the entire cost function. With this choice, the
fitted parameters were only weakly dependent on the prior values.

To find the minimal necessary anomalies, we again used the reg-
ularization technique, meaning that we minimized the weighted
sum of the anomaly’s variance and the model-data variance. We
minimized the following cost function

Cost ¼
1
n

Xn

Y¼1
½αLðlogL0Y � logLYÞ

2
þ ðlogJ0Y � logJYÞ

2

þ αAðlogA0Y � logAYÞ
2
� þ λr

X

Y ½δ
2
L;Y þ δ2J;Y �

The last term in the cost function provides a penalty for the high
mean square value of the loss anomalies. The penalty is determined
by the regularization constant λr. Too small value of λr leads to
model overfitting, because the annual anomalies can obtain too
large deviations, which does not allow to generalize the data. Too
large λr leads to small loss anomalies and poor model fit. In both
cases, the resulting anomalies are poorly predicted by environmen-
tal conditions.We performed the fit with regularization constants λr
equal to 0.001, 0.003, 0.01, 0.03, and 0.1. The results are presented
for λr = 0.01, at which the number of significant correlations in
Fig. 5 reached its maximum. In addition to the anomaly values,
we also fitted the initial values in each cohort but did not change
the standard model parameters of the time-constant model.

Determining the loss anomalies is a challenging optimization
problem in a high-dimensional space, as we need to fit 54 values

defining the larval and juvenile anomalies for 27 years. To
address this, we used a MATLAB package for robust optimization
(58) to efficiently search for the minimum of such a function.

To localize the range of parameters confining the global
minimum, we performed 300 primary minimization cycles, shifting
the search area so that the combination of parameters found in the
previous cycle was in themiddle of the search area for the next cycle.
Each minimization cycle involved approximately 30,000 model cal-
culations. Saving computation time, this approach allows the search
window to slide in the direction of the global minimum.

When the position of the search window stabilized, we conduct-
ed additional 300 independent minimization cycles, each compris-
ing around 30,000 model calculations. All combinations of
anomalies found during the 300 minimization cycles provide a
very good model-to-data fit (Fig. 3, blue lines) with less than 2%
change in the mean square deviation of the model from data. The
anomalies providing the best approximation (used for plotting the
blue lines in Fig. 3) are highlighted as red dots in Fig. 4; the anom-
alies, obtained in other minimization cycles (blue dots, Fig. 4), char-
acterize the confidence interval. We interpret an anomaly as
significantly deviating from zero (filled circle), when at least 95%
of its values are on one side of zero. A nonsignificant anomaly
(open circle) means that at least in 5% of the minimization cycles,
we found an anomaly of the opposite sign without noticeably de-
grading the quality of the data fit.

Fused LASSO regression and K-fold cross-validation
Traditional feature selection algorithms aim to remove irrelevant
variables and identify an optimal (e.g., based on Akaike information
criterion values) set of variables predicting the target variable.
However, these approaches may introduce a bias in feature selection
by prioritizing, for example, the influence of chlorophyll values in 1
month and discarding the influence of correlated chlorophyll values
in the following month. Another option is to use aggregated vari-
ables, such as mean annual chlorophyll levels (3) or mean winter ice
coverage (6). However, the choice of aggregation range is somewhat
arbitrary and again does not allow for the timing of the influence of
different factors. Consequently, although these methods facilitate
the development of predictive models, they provide only limited
insight into the dynamics of the influence of environmental
factors during krill life cycle.

To address this problem with a more flexible method, we used
fused LASSO regression (28, 29). This machine learning technique
offers an efficient solution for linear regression when some explan-
atory variables, such as consecutive monthly chlorophyll levels, are
correlated with each other and are assumed to have a similar effect
on the target variable.

In conventional linear regression, h(X ) =
P

ajxj, we minimize
the cost function, J ¼ 1

2m
P

i½Yi � hðXiÞ�
2, expressing the mean

square deviation between model and data. The fused LASSO regres-
sion additionally minimizes the values of the regression coefficients
and the differences between adjacent regression coefficients. We use
the following cost function [this variant is also referred as joint
LASSO regression (29)]

JðΘÞ ¼
1
2m

X

i½Yi � hðXiÞ�
2
þ λ
X

jjajj

þ τ
X

F

X

iF
ðaiF � aiF � 1Þ

2
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In this cost function, the first term refers to the deviation
between the linear model and the data. The second term regularizes
the regression by penalizing nonzero coefficients, which, as in con-
ventional LASSO regression, allows for sparse linear models with
some coefficients set to zero. The last term, specific to fused
LASSO, adds a penalty for differences between adjacent coefficients
within each group F of environmental factors (temperature, chloro-
phyll, ice cover, and SAM). Index iF enumerates the coefficients cor-
responding to the monthly values of factor F. This penalty increases
as the difference between the coefficients in successive months
increases.

For a small value of λ, the model is as flexible as possible, ap-
proaching ordinary linear regression with most coefficients aj ≠
0. By increasing λ, we increase the penalty and can end up with a
“linear” model that predicts only a constant value a0. Similarly, for
small values of τ, the penalty for the difference aiF − aiF−1 becomes
minimal and we obtain a simple LASSO regression, whereas large
values of τ will lead to a model in which the coefficients aiF within
each group achieve the same values.

Choosing the optimal hyperparameters λ and τ involves finding
a balance between the flexibility of the model and its ability to gen-
eralize the data. To find the point of this balance, we perform regres-
sion on a training subset of data with different combinations of λ
and τ, and find these values λ0 and τ0 that the resulting regression
model produces minimal error on a validation subset that was not
used to fit the model. For large datasets, the traditional approach
allocates 60% of the data to model training, 20% to model valida-
tion, and 20% for testing results. For small datasets, the most effec-
tive method is K-fold cross-validation. In this approach, the data are
divided into K segments or “folds.” For each λ and τ, the regression
is performed K times, using K − 1 folds to fit the model and the
remaining fold to find the validation error. This yields K validation
errors, which are averaged to obtain the cross-validation error. The
parameters λ0 and τ0 are found from the minimum cross-validation
error condition. In situations where the predictors have no effect on
the response variable, the regression model’s prediction for the val-
idation data is usually worse than just the mean of the response. In
these cases, the cross-validation error consistently decreases as λ in-
creases, indicating that the response cannot be accurately predicted
by any linear combination of these environmental factors. To
perform fused LASSO regression we used package fusedLAS-
SO (59).

To get an overview of the importance of different environmental
factors for specific loss anomalies, we performed the hyperpara-
meter optimization and fitted fused LASSO models with different
combinations of drivers, frommodels including one environmental
factor to models with four environmental factors, totaling 15
models for each set of loss anomalies, δk,Y. In LASSO regression,
the magnitude of the coefficient akiF determines the explanatory
power of the corresponding variable. Therefore, we can estimate
the importance of factor F in explaining loss anomalies in cohort
k as the average of the absolute values of akiF across all the 15 models.

Consistent with the results of our correlation analysis, we found
that in the BHmodel, chlorophyll concentrations mainly determine
larval loss anomalies, with other factors playing a minor role (fig.
S1). Conversely, larval loss anomalies in the RK model are mainly
explained by the SAM index, with smaller contributions from other
factors. For juvenile losses, temperature acts as an important factor

in both models, while ice also plays an important role in the RK
model. Chlorophyll and SAM values have less power in explaining
the anomalies of juvenile losses compared to their influence on
larval losses.

Last, of the 15 fused LASSO regressionmodels for each set of loss
anomalies, we selected one model with the lowest cross-validation
error and, if the difference in validation error between the models
was less than 2%, the one that included the minimum number of
environmental factors. This model was used for Fig. 6.

Supplementary Materials
This PDF file includes:
Figs. S1 and S2
Table S1
Legends for data S1 to S4

Other Supplementary Material for this
manuscript includes the following:
Data S1 to S4
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