Deformation forecasts from the SIDFEx database

V. Ludwig, H. Goessling and the SIDFEx team^{*}

IICWG-DA workshop Oslo Mar 23, 2023

*Helge Goessling, Ed Blockley, Axel Schweiger, Valentin Ludwig, Ed Blanchard-Wrigglesworth, Thomas Krumpen, Marcel Nicolaus, Ignatius Rigor, Bob Grumbine, Frank Kauker, Simon Reifenberg, Wendy Ermold, François Massonnet, Quentin Dalaiden, Pam Posey, Joe Metzger, Michael Phelps, Rick Allard, Laurent Bertino, Malte Müller, Maxime Beauchamp, Amy Solomon, Janet Intrieri, Frédéric Dupont, Yukie Hata, Jean-François Lemieux, Nick Szapiro, Mario Hoppmann, Steffen Tietsche, Jennifer Hutchings, Thomas Rackow, Till Rasmussen, Cyril Palerme, Suman Singha, Antonia Jost

Best of SIDFEx applications, with a focus on deformation forecasts

V. Ludwig, H. Goessling and the SIDFEx team^{*}

IICWG-DA workshop Oslo Mar 23, 2023

*Helge Goessling, Ed Blockley, Axel Schweiger, Valentin Ludwig, Ed Blanchard-Wrigglesworth, Thomas Krumpen, Marcel Nicolaus, Ignatius Rigor, Bob Grumbine, Frank Kauker, Simon Reifenberg, Wendy Ermold, François Massonnet, Quentin Dalaiden, Pam Posey, Joe Metzger, Michael Phelps, Rick Allard, Laurent Bertino, Malte Müller, Maxime Beauchamp, Amy Solomon, Janet Intrieri, Frédéric Dupont, Yukie Hata, Jean-François Lemieux, Nick Szapiro, Mario Hoppmann, Steffen Tietsche, Jennifer Hutchings, Thomas Rackow, Till Rasmussen, Cyril Palerme, Suman Singha, Antonia Jost

Where to start MOSAiC?

Where to start MOSAiC?

10

12

8

6 Month

Where to start MOSAiC?

Month

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Bundesministerium für Bildung und Forschung

INVI

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

"SIDFEx is a community effort to collect and analyse Arctic **C**ECMWF sea-ice drift forecasts at lead times from days to a year. Forecasts are made with various methods for drifting sea-ice buoys and the trans-Arctic MOSAiC drift campaign." **Meteorologisk** institutt **Met Office** NERSC Environment and Climate Change Canada

UCLouvain

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

CECMWF Meteorologisk institutt **Met Office** NERSC Environment and Climate Change Canada

"SIDFEx is a community effort to collect and analyse Arctic sea-ice drift forecasts at lead times from days to a year. Forecasts are made with various methods for drifting sea-ice buoys and the trans-Arctic MOSAiC drift campaign."

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR UND MEERESFORSCHUNG

the trans-Arctic MOSAiC drift campaign." Meteorologisk institutt

"SIDFEx is a community effort to collect and analyse Arctic sea-ice drift forecasts at lead times from days to a year. Forecasts are made with various methods for drifting sea-ice buoys and

Bundesministerium für Bildung und Forschung

UCLouvain

CECMWF

Met Office

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLA

SSE HERAUSFORDERUNGEN

CECMWF the trans-Arctic MOSAiC drift campaign." Meteorologisk institutt **Met Office** Environment and

NERSC

Climate Change Canada

ALFRED-WEGENER HELMHOLTZ-ZENTRUI

Bundesministerium für Bildung und Forschung

"SIDFEx is a community effort to collect and analyse Arctic sea-ice drift forecasts at lead times from days to a year. Forecasts are made with various methods for drifting sea-ice buoys and

CECMWF **Meteorologisk** institutt **Met Office** Environment and Climate Change Canada "SIDFEx is a community effort to collect and analyse Arctic sea-ice drift forecasts at lead times from days to a year. Forecasts are made with various methods for drifting sea-ice buoys and the trans-Arctic MOSAiC drift campaign." (stolen from Helge's slide)

- Sea Ice Drift Forecast Experiment
- 23 forecast systems, operated by groups in Europe, US and Canada
- Use cases:
 - MOSAiC starting position
 - Ordering of SAR images
 "Because of SIDFEx, our hitting rate was about 80 85%. Without SIDFEx my expectation was below 50%." (S. Singha)
 - Operational support

UCLouvain

The SIDFEx CV

© H. Goessling

The SIDFEx CV

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

SIDFEx is growing up

	•	ecmw	f001_SEAS	5_300234063803	3010_2018-335_001.tx	t
Sub		🔴 🕘 📄 ε	ecmwf001_	SEAS5_30023406	3803010_2018-335_0	02.txt
Pro	Sub Sub Pro ### Grot Tar Ini Ini Ini Ini Ens ### 201 201		ecmwf	001_SEAS5_3002	34063803010_2018-3	35_003.txt
Pro		SubmitY	ear: 201	8		
###		SubmitDayOfYear: 337.619				
Met		ProcessedYear: 2018 ProcessedDayOfVear: 227,625				
Tar		### end of auto header				
Ini		GroupID: ecmwf001				
Ini		MethodID: SEAS5				
Ini		TargetID: 300234063803010				
Ens ### Yea 201 201 201 201		InitYear: 2018				
		Initiaty 81 20505530				
		InitLon: 171.92274475				
		EnsMemNum: 003				
		### end	of head	er		
		Year	Day0fYe	ar Lat	Lon	
201	201	2018	335	81.29505539	1/1.922/44/5	
201 201 201	201	2010	330	81.25680905	171.81935032	
	201	2018	338	81.24005970	171.68853244	
	201	2018	339	81.22800004	171.95044601	
201	201	2018	340	81.22318883	172.27638902	
201 201 201	201	2018	341	81.23860159	172.67078705	
	201	2018	342	81.23/6269/	172./5389429	
201	201	2018	343	81,19701223	172.78364715	
201	201	2018	345	81.17316131	172.71398430	
	201	2018	346	81.16271092	172.63383625	
		2018	347	81.16413685	172.59111605	

© H. Goessling

SIDFEx is growing up

GROSSE HERAUSFORDERUNGEN

PREDICTION

SIDFEx consensus forecast

Bundesministerium

für Bildung

und Forschung

SIDFEx consensus forecast

How close to the North Pole will Polarstern drift?

How close to the North Pole will Polarstern drift?

© H. Goessling

How close to the North Pole will Polarstern drift?

© H. Goessling

Support for research cruises

Support for research cruises

Support for research cruises

Tracking the DN

MEERESFORSCHUN

- Varying buoy constellations
- Tracking outer ring of DN
- Buoy spacing approx. 35 km
- Time: November 2019 June 2020
- Endgame: derive deformation of buoy array

ZENFORSCHUNG FUR

GROSSE HERAUSFORDERUNGEN

300234066089220, 2019-312 through 2020-168

MEERESFORSCHUNG

- Forecasts for one buoy between November 2019 and June 2020
- Distance as function of lead time •
- All systems beat persistence •
- Inter-system spread increases after 3 days
- Skillful forecast for drift of single buoys, so...

300234066089220, 2019-312 through 2020-168

- Forecasts for one buoy between November 2019 and June 2020
- Distance as function of lead time
- All systems beat persistence
- Inter-system spread increases after 3 days
- Skillful forecast for drift of single buoys, so...

...how about all buoys together and relative to each other?

Research questions

300234066089220, 2019-312 through 2020-168

- Forecasts for one buoy between November 2019 and June 2020
- Distance as function of lead time
- All systems beat persistence
- Inter-system spread increases after 3 days
- Choose high-res coupled NWP from UKMO
- ~10km for the atmosphere
 and ~12km for the ocean

Divergence

Pure shear

Normal shear

Divergence

Pure shear

Normal shear

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Divergence Pure shear Normal shear

$$D = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \qquad S = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \qquad N = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}$$

$$T = \sqrt{D^2 + S^2 + N^2}$$

Sanity check

Bundesministerium für Bildung und Forschung

PREDICTION

MEERESFORSCHUNG

- Area roughly 4000km
- Compare forecast and observations at 1d lead time
- Total deformation: Means agree within 10%, variability is captured
- Divergence: correlation lower, distribution too narrow

MEERESFORSCHUNG

- Area roughly 4000km
- Compare forecast and observations at 1d lead time
- Total deformation: Means agree within 10%, variability is captured
- Divergence: correlation lower, distribution too narrow
- Pure and normal shear with higher correlations

- Area roughly 4000km
- Compare forecast and observations at 1d lead time
- Total deformation: Means agree within 10%, variability is captured
- Divergence: correlation lower, distribution too narrow
- Pure and normal shear with higher correlations
- Models designed for larger scales/representation of mean states
- Still, there is skill even at small scales

- Area roughly 4000km
- Compare forecast and observations at 1d lead time
- Total deformation: Means agree within 10%, variability is captured
- Divergence: correlation lower, distribution too narrow
- Pure and normal shear with higher correlations
- Models designed for larger scales/representation of mean states
- Still, there is skill even at small scales

Let's go large!

Going for the large scale

HELMHOLTZ SPITZENFORSCHUNG FÜR GROSSE HERAUSFORDERUNGEN

Going for longer lead times

DN scale, cpINWP-HRv1

Large scale, cpINWP-HRv1

Going for multiple systems

DN scale, all systems

Large scale, all systems

We provide skillful drift forecasts

We provide skillful drift forecasts

We look at sea-ice deformation

Observations

Forecast

It works ok at DN scales

A

l i

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

E.

1000

우

REDICTION

We provide skillful drift forecasts

We look at sea-ice deformation