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Abstract

1. Against the background of the UN decade on ecosystem restoration and the new

EU Biodiversity Strategy for 2030, and in the context of marine spatial planning

and complex maritime user conflicts, reliable information on habitat suitability for

large-scale restoration is an important prerequisite for implementing conservation

management and for supporting successful, sustainable, and ecologically efficient

restoration measures.

2. In this study, habitat suitability was assessed using multicriteria decision analysis

(MCDA) for the restoration of the European oyster, Ostrea edulis, in marine

protected areas (MPAs) of the German Bight in the North Sea: Borkum Reef

Ground (Borkum Riffgrund, BRG) and Sylt Outer Reef – Eastern German Bight

(Sylter Außenriff, SAR).

3. Based on site selection criteria, exclusion and suitability factors for the MCDA

were defined. Results were integrated with the available geodata to produce

habitat suitability maps for oyster restoration in the area of interest.

4. Suitable as well as unsuitable habitats have been successfully identified for

both MPAs: several hundred square kilometres (≥97.2% of BRG) or several

thousand square kilometres (≥74.5% of SAR) were classified as ecologically and

logistically suitable for oyster restoration measures in the respective MPAs. As

oyster restoration is significantly limited by human activities (e.g. bottom trawl

fisheries), the management of fisheries is an important prerequisite for

successful oyster restoration in both MPAs. Results show that designated

fishery management measures will increase the possibilities for oyster

restoration.

5. In BRG, our results correspond to the known historical distribution. In SAR, our

results significantly exceed the historically known distribution. The habitat

suitability analysis will facilitate decision-making regarding ocean use, and will
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reduce restoration costs through targeted management activities in areas of high

suitability and expand species recovery by improving the survival of reintroduced

individuals.

6. The habitat suitability analysis procedure is easily adaptable for application to

other areas, other species, or other habitat restoration projects, or to other

conservation management settings. The software applied is open source and the

suitability calculation is described in detail to inform wider applications.
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1 | INTRODUCTION

The years 2021–2030 have been declared as the UN decade on

Ecosystem Restoration (UNEP/FAO, 2020). From a global

perspective, the political will and the ecological need for the

successful implementation of large-scale restoration are well defined

(e.g. Gann et al., 2019). The ecological restoration of terrestrial and

freshwater ecosystems has advanced substantially over the last few

decades but, worldwide, critically degraded and ecologically relevant

marine habitats are now also moving into focus (Bekkby et al., 2020;

Pogoda et al., 2020b). An example of ecological key habitats of

temperate marine regions are oyster reefs: as ecosystem engineers,

they provide food, shelter, and spawning grounds for many species,

and create habitats considered to be hotspots of biodiversity.

Moreover, they improve water quality through their capacity for

filtration, consolidate loose sediments, and increase benthic–pelagic

coupling (Hancock & zu Ermgassen, 2019; zu Ermgassen et al., 2020).

In Europe, the native oyster Ostrea edulis and the habitat it

provides are considered as threatened and/or declining

(OSPAR, 2008; OSPAR, 2013). Ostrea edulis is a key species, providing

essential ecosystem functions and services, for which several

conservation and restoration frameworks apply (Coen et al., 2007;

Grabowski & Peterson, 2007; Pogoda et al., 2020b). Historically, it

covered large areas of the North Sea and adjacent coastal waters. As

a sublittoral species, it was found at depths of up to 50 m, forming

biogenic reefs in the so-called offshore oyster grounds (Olsen, 1883;

Airoldi & Beck, 2007; Pogoda, 2019). During industrialization and the

transition to motor-driven dredging technologies, the exploitation of

this valuable resource exceeded the natural capacities of recovery. In

the course of the 20th century, massive fishing pressure led to a

Europe-wide collapse of oyster populations and the total loss of these

habitats in many European regions (Berghahn & Ruth, 2005; Lotze

et al., 2005; Thurstan et al., 2013; Gercken & Schmidt, 2014;

Pogoda, 2019).

Today, a number of restoration actions for the native oyster are

underway. At the same time, the European Union calls for large-scale

marine restoration (UNEP/FAO, 2020; EU COM, 2020b; EU

COM, 2022b), with the new EU Biodiversity Strategy for 2030

(EU COM, 2020a) and the corresponding goals to establish a coherent

and representative network of marine protected areas

(EU COM, 2022a). As part of the strategy, the EU commission has

proposed a new EU Nature Restoration law that includes binding

restoration targets for specific habitats, including oyster reefs

(EU COM, 2022b). This is also designed to achieve a good

environmental status according to the Marine Strategy Framework

Directive (MSFD) in European seas and a favourable conservation

status in marine protected areas (MPAs) of the Natura 2000 network

(European Parliament, 1992; European Parliament, 2008).

Germany has already defined so-called environmental targets in

2012 and 2018 as part of the implementation of the MSFD. One of

the environmental targets includes the reintroduction of locally

extinct or endangered species such as O. edulis (BMU, 2012;

BMU, 2018). This comes with an obvious demand to identify

appropriate areas where these restoration efforts can be realized

(Pogoda, 2019; Pogoda et al., 2020a; Pogoda et al., 2020b).

In the German exclusive economic zone (EEZ), Borkum Reef

Ground (Borkum Riffgrund, BRG) and Sylt Outer Reef – Eastern German

Bight (Sylter Außenriff, SAR) are MPAs for which active conservation

measures, including the restoration of biogenic reefs, namely of the

native oyster, have been defined (BfN, 2020a). Pilot oyster reefs have

been set up in BRG and have been constantly monitored, with the aim

of providing the technological and biological background required for

the necessary upscaling and further implementation process of such

active restoration measures (Pineda-Metz et al., this issue). As part of

the site selection process, a comprehensive list of site-selection criteria

was compiled (Pogoda et al., 2020b): among those are abiotic

(e.g. temperature and hydrodynamics) and biotic factors (e.g. food

availability), as well as logistical factors (e.g. contraindicated other uses),

and other aspects that have either positive or negative effects on the

final suitability of habitats for reef restoration (Pogoda et al., 2020b).

For example, fisheries with mobile bottom-contacting gears

(e.g. bottom otter trawls, beam trawls, etc.), currently targeting other

demersal species (e.g. plaice, sole or brown shrimp), are a major

obstacle to the reintroduction of European oysters and the restoration

of biogenic reefs, as the oysters are not able to withstand the physical

impacts of bottom trawling (Beck et al., 2011; zu Ermgassen

et al., 2012; Cook et al., 2013; Gillies et al., 2018). Bottom trawling is a

widespread fishing practice in European MPAs (Dureuil et al., 2018),

2 POGODA ET AL.
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but designated European Common Fisheries Policy (CFP) measures will

exclude bottom-contacting fishing gear from BRG and SAR (EU COM,

2023). Also, other user conflicts impact site selection: underwater cable

laying and removal, or sand and gravel extraction put the logistical and

ecological success of restoration at risk and must be considered when

selecting sites (Pogoda et al., 2020b).

Against this background, the identification and designation of

appropriate areas for such (larger) restoration measures within the

MPAs are crucial next steps. Habitat suitability analysis is therefore an

ideal tool if relevant (geo)data are available to inform the performance

models (Questad et al., 2014; Puckett et al., 2018; zu Ermgassen

et al., 2020; Pogoda et al., 2020b).

The aim of this study was to perform a habitat suitability analysis

by applying multicriteria decision analysis (MCDA) for the

identification of suitable habitat areas for the reintroduction of

O. edulis within the BRG and SAR MPAs in the North Sea (Figure 1).

MCDA relies on an analytical hierarchy process (AHP) for

rational decision-making by including expert opinions and suitability

data in the derivation of a quantitative decision formula

(e.g. Saaty, 1977). Especially in recent years, the method has been

widely applied in different scientific and practical fields with a spatial

focus, such as the spatial planning of on- and offshore wind farms

(Höfer et al., 2016; Sánchez-Lozano, García-Cascales & Lamata, 2016;

Gkeka-Serpetsidaki & Tsoutsos, 2021; Kim et al., 2021), the

calculation of risk maps for natural hazards (Pourghasemi, Pradhan &

Gokceoglu, 2012; Ghosh & Kar, 2018; Saha et al., 2019), as well as

water and soil management in agricultural applications (Romeijn

et al., 2016; Saranya & Saravanan, 2020; Zandi et al., 2020; Dar, Rai &

Bhat, 2021). The chosen approach provides suitability maps and is

expected to be applicable beyond the marine geographic setting of

this study.

2 | MATERIALS AND METHODS

2.1 | Site selection criteria and data acquisition

Relevant site selection criteria were adopted from the literature

(e.g. Kamermans et al., 2018; Pogoda et al., 2020b; Hughes

et al., 2023) and are displayed in Table 1. The listed criteria include

ecologically relevant criteria, reflecting the ecological tolerance of the

target species O. edulis, as well as specific logistically relevant criteria,

affecting restoration implementation and long-term success. Several

criteria were considered as exclusion factors (EFs; Table 1),

e.g. salinity below or above the tolerance limits or areas with marine

underwater cables (Pogoda et al., 2020b). All other criteria were

considered as suitability factors (SFs; Table 1) and were applied in the

AHP as described below.

Available geodata were searched comprehensively for the

selected criteria (Table 1). Data were retrieved from different sources,

F IGURE 1 German Bight, with the marine protected areas (MPAs) Borkum Reef Ground (BRG) and Sylt Outer Reef – Eastern German Bight
(SAR), including the bird sanctuary, and Doggerbank (DGB), in the German Exclusive Economic Zone (EEZ) of the North Sea.

POGODA ET AL. 3
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TABLE 1 List of factors considered as site selection criteria relevant for native oyster reef restoration in the MPAs Borkum Reef Ground
(BRG) and Sylt Outer Reef – Eastern German Bight (SAR). Factors were either defined and considered as exclusion factors (EF 1–7; A) for the
analytical hierarchy process (AHP) or as suitability factors (SF 8–20) for the AHP. SF 8–18 (B) were considered in the AHP. SF 19–20 (C) were not
considered in the AHP (limited data availability). For EF 4 only munition dumping areas were considered in the AHP. Three perception levels
(level 1, ecologically suitable oyster restoration areas; level 2, logistically and ecologically suitable oyster restoration areas (without fishery); and
level 3, logistically and ecologically suitable oyster restoration areas – right columns) include different combinations of factors.

A EFs Background Reference(s) (data source) Level 1 Level 2 Level 3

1

eco

Temperature

<1.5 �C in winter

>30 �C in summer

Winter minimum: 1.5 �C
Summer maximum: 30 �C
Optimal range: 7–25 �C
Ostrea edulis starts feeding at >7–9 �C
Spawning is induced at >15–16 �C.

(Korringa, 1952; Walne, 1979; Buxton,

Newell & Field, 1981; Laing, 2005;

Ashton & Brown, 2009; Kamermans

et al., 2018; BSH, 2021; Colsoul

et al., 2021)

2

eco

Salinity

<20 PSU

>36 PSU

O. edulis survives down to 20 PSU (at

temperatures of <20 �C).
Optimal range: >30 PSU

(Hutchinson & Hawkins, 1992; Laing,

Walker & Areal, 2005; HZG, 2013;

Colsoul et al., 2021)

3

eco

Oxygen

< 3.5 mg L�1

O. edulis may be relatively tolerant of

low oxygen concentrations

Hypoxia thresholds for short-term

survival are 3.5 mg L�1

(Laing, Walker & Areal, 2005; Vaquer-

Sunyer & Duarte, 2008; Smaal

et al., 2017; BSH, 2021)

4

log

Military area and

munition dumping

Potential impact of dangerous goods

for operations and for ecological

health of the habitat

(Brenner, Bostelmann &

Kloepper, 2017; BSH, 2017; North.io

GmbH, 2020; BSH, 2020b)

5

log

Offshore cables and

pipelines

Destruction and potential negative

impact during installation,

construction, and removal works

(BSH, 2017; BSH, 2020b; Pogoda

et al., 2020b; EMODnet, 2021)

6

log

Wind farms Destruction and potential negative

impact during installation,

construction and removal works

(BSH, 2017; BSH, 2020b; Pogoda

et al., 2020b; EMODnet, 2021)

7

log

Wrecks Underwater obstacles are defined as

dangerous areas and must be avoided

or passed at a safe distance

(Krone & Schröder, 2011; BSH, 2020a;

Pogoda et al., 2020b)

B
SFs considered in
AHP Background Reference(s) (data source)

8

log

Fishing intensity

(mobile bottom-

contacting gears)

Potential negative impact of mobile bottom-

contacting fisheries habitat restoration and

the ecological status of the habitat

(Pogoda et al., 2020b; Global

Fishing Watch, 2021)

9

log

Shipping (vessel

density)

Potential impact of anchoring, noise, and

pollutants for ecological health of the

habitat. Potential impact of ship traffic for

restoration operations

(Falco et al., 2019; Pogoda

et al., 2020b)

10

eco

Depth, 0–50 m O. edulis is common at 0–30 m and is reported

to live in depths up to 80 m. Information on

preferred depth is not available

(Hutchinson & Hawkins, 1992;

Laing, Walker & Areal, 2005;

Hayward & Ryland, 2017;

BSH, 2020a)

11

eco

Slope Remnant fossil oyster bed indicates

preferences of O. edulis for certain sea bed

gradients

(BSH, 2020a; Sander et al., 2021)

12

eco

Roughness Remnant fossil oyster bed indicates

preferences of O. edulis for certain sea bed

roughness

(BSH, 2020a; Sander et al., 2021)

13

eco

Shear stress

< 0.6 N m�2

The development of flat oyster beds is not

likely at a shear stress of >0.6 N m�2

(HZG, 2014; Kamermans

et al., 2018)

14

eco

Chlorophyll

concentration

Chl a to be considered for months with

temperatures of >7 �C, because of filtration

activity of O. edulis. Optimal concentration

2–3 μg L�1

(Rogan & Cross, 1996; Laing,

Walker & Areal, 2005; Ashton

& Brown, 2009; BSH, 2021)

15

eco

Substrate quality:

sediment types

O. edulis is intolerant to high turbidity

environments: silt and fine sand

(Kamermans et al., 2018;

Bennema, Engelhard &

4 POGODA ET AL.
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such as national monitoring programmes (e.g. BSH, 2020a; EMODnet,

2021), and in different formats and resolutions (Table 1). The data

comprise constraint and threshold (exclusion) and decision or

suitability variables of both categorical and metric scales.

Corresponding geodata were acquired as vector data, tabular event

tables, and raster data. Raster resolutions range from 50 m for

bathymetry data to approximately 3,200 m for shear stress data. The

vector data provided are documented for a spatial scale range from

1:10,000 (sediment types derived from backscatter data) to 1:200,000

(sediment types derived from sample data).

For the identification of exclusion zones for oyster restoration,

corresponding delineation data of the respective EFs were acquired

(Table 1). Both line and point data were buffered with a distance of

25 m, leading to a 50-m-wide raster cell representation of offshore

cables, pipelines, and wrecks. Together with the data on offshore

wind farms and munition dumping grounds, a set of Boolean raster

data sets was integrated as constraint variables in the suitability

mapping procedure.

Areas that exceed critical environmental thresholds were

identified with raster data: whereas data on salinity were available as

gridded points of approximately 3,200-m spacing, data on water

temperature and dissolved oxygen were provided as tabular data with

coordinates (Table 1). The data were classified according to winter

and summer months, integrated in R (R Core Team, 2019),

transformed to point vector data, and then interpolated to raster data

via geostatistical methods.

Identified SFs served as decision variables (Table 1) and were

included in the AHP procedure: fishing activity was quantified by data

from Global Fishing Watch (Merten et al., 2016). Tracking data were

processed together with satellite imagery data via machine learning

procedures to model the fishing pressure on a spatial resolution of

1 km as hours of fishing within a raster cell of 0.01�. Data sets for

2019 and 2020 were filtered for gear types flagged as bottom trawling

and averaged (Figure S2). For shipping density, modelled data on

vessel densities were acquired from the Environmental Monitoring

and Observation Network – Lot Human Activities at a resolution of

1,000 � 1,000 m (Falco et al., 2019). The map illustrates the total ship

presence time on a 1-km grid per year. Here, the average of 2019

and 2020 observations was considered. Bathymetry data were

acquired at a resolution of 50 � 50 m. From this, slope and

roughness were derived according to Burrough and McDonnell

(1998) and Wilson et al. (2007), respectively, and then included in

the AHP procedure as SFs. A modelled data set for sea bed shear

stress was acquired in N/m2 at a resolution of approximately

3,200 m (HZG, 2014) to represent current effects on the sea floor

and benthic communities. Data on chlorophyll ɑ content in the upper

TABLE 1 (Continued)

B

SFs considered in

AHP Background Reference(s) (data source)

Lindeboom, 2020; Colsoul

et al., 2020; Pogoda

et al., 2020b)

16

eco

Substrate quality: grain

size > fine sand

Settled O. edulis are found from medium sand

to hard substrates

Mud content (as the relative fraction with

grain sizes of <63 μm or mud%) is

correlated with grain size, historical flat

oyster beds in the North Sea were located

in areas with mud% of approx. 1%–50%

(Kamermans et al., 2018;

Bennema et al., 2020; Colsoul

et al., 2020; Pogoda

et al., 2020b)

17

eco

Benthic communities O. edulis may favour areas of the soft bottom

community Goniadella–Spisula
(Schönrock, 2016; Pogoda

et al., 2020b)

18

eco

Biotopes O. edulis may favour areas of species-rich

coarse sand, gravel, and shell gravel (CGS)

biotopes

(BfN, 2017; Kamermans

et al., 2018; Colsoul

et al., 2020; Pogoda

et al., 2020b)

C

SFs not considered in
AHP (no data available

for target areas) Background Reference(s)

19

eco

Turbidity low O. edulis is not tolerant to high turbidity environments:

e.g. silt or fine sand

(Korringa, 1952;

Yonge, 1960;

Hutchinson &

Hawkins, 1992)

20

eco

Current velocity range

0.05–0.45 m s�1

Minimum current velocities of 0.05–0.1 m s�1 are

necessary to avoid sedimentation and sediment

accumulation. High (daily tidal) current velocities

(0.45 m s�1) result in low growth rates of O. edulis

(Ashton &

Brown, 2009;

Pogoda, Buck &

Hagen, 2011)

Abbreviations: Eco, ecologically relevant factors; log, logistically relevant factors.

POGODA ET AL. 5
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water column were acquired as tabular data with coordinates

covering the entire North Sea area (BSH, 2021), and were then

transformed to point vector data, interpolated using geostatistical

methods, and clipped to the areas of interest. Median grain sizes

were derived from Bockelmann et al. (2018), and grain size

parameters and distributions in North Sea surface sediments were

integrated via geostatistical techniques. Historical data on former

flat oyster beds indicate the importance of muddy sand sediments

(Bennema, Engelhard & Lindeboom, 2020). In this study, grain size

data with mud content as a trend variable were acquired

(Bockelmann et al., 2018), including the correlation between median

grain sizes and mud content. The data were accessed with a spatial

resolution of 0.06�. Data on sediment types were available in

different spatial resolutions. For BRG and parts of SAR, high-

resolution vector data on sediment types were produced and

provided by Propp et al. (2016), based on side-scan sonar mosaics,

according to a hierarchical sediment classification system at a

resolution of 1:10,000 (Richter et al., 2019; Holler et al., 2019a;

Holler et al., 2019b; Holler et al., 2020; Richter et al., 2020). For data

gaps, a sediment-type polygon map created by Laurer, Naumann &

Zeiler (2013) was applied (documented scale: 1:200,000). Data on

benthic communities were available at a resolution of 100 � 100 m

for BRG (Pesch et al., 2016; Pogoda et al., 2020b) and of

1,000 � 1,000 m raster for SAR (Schönrock, 2016), which had been

identified from benthic infauna sample data by fuzzy clustering and

spatially predicted by random forests: two communities for BRG

(Goniadella–Spisula and Tellina fabula) and four communities for SAR

(Goniadella–Spisula, Nucula nitidosa, Phoronis, and T. fabula). For the

predicted occurrence of the biotope type ‘species-rich coarse sands,

gravel, and shell gravel’ (CGS), polygon data at a 230 � 230 m

resolution was derived from both infauna and sediment sample data

and full coverage data on bathymetry, slope, grain size ranges, and

sediment types, using a machine learning approach (Schuchardt

et al., 2017).

2.2 | Data processing and standardization

All data processing and standardization steps were performed using

the statistical open-source software R and Python programming

language. Important packages for (spatial) data processing included sp,

raster, rgdal, rgeos, pandas and geopandas.

For the AHP calculations, all geodata were transformed into an

identical raster of 50 � 50 m resolution for the UTM32 N coordinate

system (ETRS89) and then converted into a suitability score system,

scored between 1 (optimal for oyster restoration) and 6 (unsuitable

for oyster restoration). Whereas for all raster data sets (including

tabular ASCII data) resampling procedures were applied, the polygon

vector data were transformed to a raster data set by polygon-to-

raster transformation. Here, the category was assigned to the

respective cell exhibiting the highest area coverage.

Except for the fisheries data, all metrically scaled variables were

reclassified into the six suitability classes using equally sized intervals

followed by an assignment of categorial suitability scores (1–6):

1, 1.00–1.49; 2, 1.50–2.49; 3, 2.50–3.49; 4, 3.50–4.49; 5, 4.50–5.49;

6, 5.50–6.00. For fishing activity (here, bottom trawling), a manual

classification was applied because of the great impact of this variable

on the decision process (see below). Based on fishing hours per year

and a 0.01� grid cell, six classes were defined: 1, 0 h/a; 2, <1 h/a;

3, 1–2 h/a; 4, 2–3 h/a; 5, 3–4 h/a; 6, >4 h/a).

Both sediment classifications comprise a multitude of different

sediment types, which were assigned to suitability scores for the AHP

calculations by expert judgement. Solid sea floor was judged to be a

score of 1, being preferred over loose sediments. Accordingly, higher

scores were assigned to sediment types with decreasing grain size.

Raster data on benthic communities were grouped into two suitability

scores for Goniadella–Spisula (suitability score = 1) and all other

communities (suitability score = 6). For the CGS biotopes a score of

1 was assigned if the biotope was present, otherwise a score of 6 was

assigned to the respective raster cell. Data ranges, units, and

distributions of suitability factors considered in the AHP are provided

in Pogoda et al. (2022).

2.3 | Analytical hierarchy process

The AHP was performed in R with the R package ahpsurvey. It is a

general technique that allows decision-making based on multiple

criteria (Saaty, 1977). Within the algorithm, the subjective importance

of each factor is estimated against every other factor separately and

stepwise, resulting in pairwise factor comparisons (e.g. sediment types

vs fisheries pressure). To quantify pairwise importance, an arbitrary

scale spanning nine points was introduced (Saaty, 1987). Numerals >1

express relative significance, whereas fractions express relative

insignificance, in a given comparison (Figure 2): 1/9, one-ninth relative

insignificance of factor A compared with factor B; 1, equal importance

between factors A and B; and 3, a three times stronger relative

importance of factor A compared with factor B (Eastman, 1999).

Resulting factor comparisons are integrated into a n � n matrix, with

n being the number of factors (Figure 2). As reverse relative factor

weights are reciprocal and the major diagonal is filled with ones, a

total number of 1/2 n(n �1) pairwise weights need to be compiled. In

this study, Saaty's original approach of solving n factorial weights

(using the matrix's principal eigenvector) was adapted to an

arithmetical approach: Matrix values were first normed by the column

sum and then were averaged row-wise producing the final set of

weights (Eastman, 1999). In order to compare spatially distributed

factors of different scales, it is essential to standardize the factors into

a (convenient) numeric scale, from 1 (optimal) to 6 (unsuitable). The

suitability of a certain location x can be expressed as a summation of

n linear combinations of the standardized factor values X(x) and the

obtained weights wi as in equation 1 (Eastman, 1999). By the product,

m excluding attributes can constrain the summation to a suitability of

S(x) = 0, when the constraining data set C(x)j is set to 0.

S xð Þ¼
Xn

i¼1

wiX xð Þi�
Ym

j¼1

C xð Þj , C xð Þj � f0,1g

6 POGODA ET AL.
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For the assessment of weights between all factors, a spreadsheet

survey form was prepared for respective experts actively engaged in

oyster restoration projects. The six qualified biologists (with expertise

in marine biology, zoology, and ecology, as well as in marine spatial

planning and conservation management) provided their ranking for

the 11 continuous marine features in a set of 55 pairwise comparison

weightings (Figure 2). The median average of the six individual sets of

AHP weights resulting from AHP matrices was considered to reduce

the influence of single diverging expert judgements with the

arithmetic mean.

2.4 | Automatization and implementation

To achieve applicability of the procedure for future suitability

calculations in corresponding projects at national or international

scales, all operations were set up in R language with additional tools

built in Python and published as a commented notebook on GitHub:

https://github.com/markorothe/oyster_restauration_mcda.

3 | RESULTS

Comparing the corresponding raster values of the environmental

parameters of salinity, water temperature, in respective winter and

summer months, and dissolved oxygen in summer months with the

identified thresholds (Table 1), no areas within the investigated MPAs

exceeded these thresholds. Hence, EFs only demonstrated relevance

for logistical criteria (Table 1). By applying the R script (Figure S1),

weights for each of the decision variables (SFs) were derived from the

AHP. The survey answers diverged for some criteria, but fishing

density, shear stress, and chlorophyll a were identified as being most

F IGURE 2 (a) Extract of a pairwise
comparison questionnaire: 1/9 = relative
insignificance; 1 = equal importance;
3 = a three times stronger relative
importance. Please note: salinity was
considered a suitability factor (SF) earlier
in the analysis, and hence was included
for comparison against other SFs, but was
later defined as an exclusion factor

(EF) and not included in the weighting.
(b) Example of a cross table resulting from
one pairwise comparison of suitability
criteria.

POGODA ET AL. 7

 10990755, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aqc.3928 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [30/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/markorothe/oyster_restauration_mcda


relevant, whereas roughness and slope were weighted as least

relevant (Table 2).

Considering EFs as well as weighted SFs, sets of suitability maps

were calculated and produced for both of the MPAs investigated,

BRG and SAR, providing three different perception levels by

differentiating ecologically relevant factors against logistically relevant

factors (Table 1). Level 1 includes ecologically relevant features only,

indicating all ecologically suitable oyster restoration areas and

explicitly not considering other marine uses (Figures 3a and 4a,

Table 3). Level 2 includes ecologically relevant features plus all

existing user groups with respective occupied or inadequate areas,

indicating technically and ecologically suitable oyster restoration

areas, but excluding bottom trawling activity (Figures 3b and 4b;

Table 3). Level 3 includes all identified factors: ecologically relevant

features and all existing marine uses, including bottom trawl fisheries,

TABLE 2 Resulting weights of the 11 suitability factors (SFs) after
applying the R script in the analytical hierarchy process (AHP).

SF Weights

Fishing intensity (mobile bottom contacting gears) 0.3319

Shear stress 0.1618

Chlorophyll a 0.1225

Benthic communities 0.0672

Median grain size 0.0671

Sediment type 0.0630

Depth 0.0483

Shipping (vessel density) 0.0478

Coarse sand, gravel, and shell gravel (CGS) biotopes 0.0416

Slope 0.0193

Roughness 0.0188

F IGURE 3 (a–c) Suitability maps of the Borkum Reef Ground marine protected area (MPA), indicating: (a) level-1 areas, suitable for the

restoration of Ostrea edulis, considering only ecologically relevant factors; (b) level-2 areas, suitable for the restoration of O. edulis, by considering
all factors (ecologically relevant factors and existing marine uses, e.g. offshore cables, with respective occupied or inadequate areas), but not
considering bottom trawl fisheries; and (c) level-3 areas, suitable for the restoration of O. edulis, by considering all factors (ecologically relevant
and existing marine user groups with respective occupied or inadequate areas, e.g. offshore cables), including bottom trawl fisheries (Table 1).
Suitability maps indicate suitability in green (optimal, very good, and good), yellow (moderate), orange (poor), and red (unsuitable), based on
suitability scores: 1, 1.00–1.49; 2, 1.50–2.49; 3, 2.50–3.49; 4, 3.50–4.49; 5, 4.50–5.49; 6, 5.50–6.00 (also see Table 3). Exclusion zones are
offshore cables (black lines) and wrecks (black dots).

8 POGODA ET AL.
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with respective occupied or inadequate areas, indicating logistically

and ecologically suitable oyster restoration areas (Figures 3c and 4c).

Suitable areas for the restoration of European oyster reefs were

identified for both of the MPAs investigated and for all applied

perception levels. Colour codes indicate particularly suitable areas in

green and less suitable areas in orange–red in dynamic web suitability

maps (Figures 3 and 4). For this study, suitability scores are defined

as: 1, optimal; 2, very good; 3, good; 4, moderate; 5, poor;

6, unsuitable. Suitability scores 1–3 are considered suitable for oyster

restoration and scores 4–6 are considered as not suitable for oyster

restoration. The highest value of suitability score was 1.096787,

located at 54.78181�N, 6.89241�E in SAR.

At level 1, the complete area of BRG is suitable for oyster

restoration, achieving scores of 1–2 (optimal and very good

suitability). Central and southern parts showed optimal and very good

suitability, resulting in a total of 624.94 km2 (100% of MPA) of

ecologically suitable area (Figure 3a; Table 3). In SAR, the complete

area is suitable for oyster restoration, achieving scores of 1–3

(optimal, very good, and good suitability). The central, north-western,

north-eastern, and southern parts show optimal and very good

suitability for oyster restoration, achieving scores of 1–2. In some

western parts, as well as in some central areas, scores of 3 are

achieved, resulting in a total of 5,599.71 km2 (100% of MPA) of

ecologically suitable area (Figure 4a; Table 3).

At level 2, exclusion zones with buffer zones around wrecks and

offshore cables (Figures 3b and 4b: black lines and spots) are

considered not suitable for oyster restoration. The remaining BRG

area is suitable for oyster restoration, achieving scores of 1–3. Central

and southern parts show optimal and very good suitability, resulting in

a total of 614.90 km2 (98.4% of MPA) of ecologically and logistically

suitable area (Figure 3b; Table 3). In SAR, offshore wind farms exist as

additional exclusion zones. The central, north-western, north-eastern,

F IGURE 4 (a–c) Suitability maps of the Sylt Outer Reef marine protected area (MPA), indicating: (a) level-1 areas, suitable for the restoration
of O. edulis, considering only ecologically relevant factors; (b) level-2 areas, suitable for the restoration of O. edulis, by considering all factors
(ecologically relevant factors and existing marine user groups, e.g. offshore windfarms, offshore cables, wrecks, with respective occupied or
inadequate areas), but not considering bottom trawl fisheries; and (c) level-3 areas, suitable for the restoration of O. edulis, by considering all
factors (ecologically relevant and existing marine user groups with respective occupied or inadequate areas, e.g. offshore cables), including bottom
trawl fisheries (Table 1). Suitability maps indicate suitability in green (optimal, very good, and good), yellow (moderate), orange (poor), and red
(unsuitable), based on suitability scores: 1, 1.00–1.49; 2, 1.50–2.49; 3, 2.50–3.49; 4, 3.50–4.49; 5, 4.50–5.49; 6, 5.50–6.00 (also see Table 3).
Exclusion zones are offshore windfarms (shaded areas), offshore cables (black lines), and wrecks (black dots).
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and southern parts show optimal and very good suitability for oyster

restoration, achieving scores of 1–2. In some western parts, as well as

in some spots in the centre, scores of 3 are achieved, resulting in a

total of 5,421.97 km2 (96.8% of MPA) of ecologically and logistically

suitable area (Figure 4b; Table 3).

At level 3, fishing activity (bottom trawling) is included and

resulted in no areas with scores of 1 in both MPAs. In BRG, some

areas were identified as not suitable for oyster restoration, such as in

the north east and in the south west, achieving moderate scores of

4. The centre, northern, and southern parts show very good and good

suitability, achieving scores of 2–3, resulting in 607.53 km2 (97.2% of

MPA) of ecologically and logistically suitable area (Figure 3c; Table 3).

In SAR, eastern areas with bottom trawl fisheries (beam trawling),

mainly targeting the brown shrimp Crangon crangon, show moderate

(4) and poor scores (5). North-eastern, some north-western, and some

central areas show very good and good suitability for oyster

restoration, achieving scores of 2–3. The remaining southern and

north-north-western parts show moderate or poor suitability,

achieving scores of 4–5, resulting in 4,170.25 km2 (74.5% of MPA) of

ecologically and logistically suitable area (Figure 4c; Table 3).

4 | DISCUSSION

Habitat suitability index (HSI) models are increasingly used to guide

ecological restoration (Puckett et al., 2018). This study demonstrates

the application of a straightforward method of habitat suitability

analysis for marine restoration to facilitate site selection and to create

a knowledge base for site managers and decision makers. Suitable

areas for European oyster habitat have been identified in the selected

MPAs using MCDA and AHP. By calculating suitability scores,

geographic information system (GIS)-based suitability maps were

developed (Figures 3 and 4): the presented scenarios reveal several

hundreds of square kilometres (BRG) and up to several thousands

square kilometres (SAR) of suitable habitats for the reintroduction of

O. edulis and the restoration of biogenic reef habitat within the two

investigated MPAs in the North Sea.

Three different scenarios have been calculated and explored in

this study: level 1, considering ecological suitability exclusively

(Figures 3a and 4a); level 2, considering the ecological as well as the

logistical suitability, factoring in potentially contraindicated uses or

occupied areas but excluding bottom trawl fishing activities

(Figures 3b and 4b); and level 3, considering all factors, including

bottom trawl fishing (Figures 3c, 4c).

Level 1 is a theoretical exercise: fully neglecting existing usages

indicates the natural capacity of the BRG and SAR MPAs and the

German Bight ecosystem to host and sustain biogenic reef habitat

with all the goods and services that these could theoretically provide

(e.g. Coen et al., 2007; Grabowski & Peterson, 2007; Smaal

et al., 2019). Moreover, it indicates their potential role in achieving the

goals of the EU Biodiversity Strategy for 2030, the Marine Strategy

Framework Directive, and the Habitats Directive by contributing to a

TABLE 3 Areal proportions of suitability scores in square kilometres (km2) and in percentage of total MPA area, identified for level 1 (only
ecologically relevant features), level 2 (ecologically relevant features plus all existing user groups, except fishery), level 3 (all factors, including
fishery).

BRG
Level 1 Level 2 Level 3

Suitability score Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage [%]

1 49.74 8.0 23.66 3.8 0.00 0.0

2 575.20 92.0 586.77 93.9 304.94 48.8

3 0.00 0.0 4.48 0.7 302.59 48.4

4 0.00 0.0 0.00 0.0 7.37 1.2

5 0.00 0.0 0.00 0.0 0.00 0.0

6 0.00 0.0 0.00 0.0 0.00 0.0

Suitable restoration area 624.94 100.0 614.90 98.4 607.53 97.2

SAR
Level 1 Level 2 Level 3

Suitability score Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%)

1 33.87 0.6 15.46 0.3 0.00 0.0

2 4,612.53 82.4 4,252.19 75.9 620.77 11.1

3 953.32 17.0 1,154.33 20.6 3,549.48 63.4

4 0.00 0.0 0.00 0.0 1,200.79 21.4

5 0.00 0.0 0.00 0.0 50.93 0.9

6 0.00 0.0 0.00 0.0 0.00 0.0

Suitable restoration area 5,599.71 100.0 5,421.97 96.8 4,170.25 74.5

Note: in the calculation of raster data, areal values can slightly differ from geographical values. Suitability scores: 1 = 1.00–1.49; 2 = 1.50–2.49; 3 = 2.50–
3.49; 4 = 3.50–4.49; 5 = 4.50–5.49; 6 = 5.50–6.00.
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favourable conservation status and to a good environmental status

(European Parliament, 1992; European Parliament, 2008).

With level 1, no human activities and the related demand for areas

are taken into account in the MPAs, resulting in 100% of the area

suitable for oyster restoration, both in BRG and SAR (Figures 3a and

4a; Table 3). Against this background, an integration of conservation

measures with existing human activities should be discussed and

explored to achieve optimized ecological performance under present

and future spatial limitations, to ensure that conservation targets can

be reached. Marine co-use (or multi-use) can be implemented as a tool

to enhance conservation options and scale, e.g. by integrating

restoration measures into priority areas for shipping. The restoration

of oyster reef habitat is currently realized through the deployment of a

flat stone layer (reef base), to counteract sediment dynamics in

offshore environments, and through the deployment of young oysters

thereon (Pineda-Metz et al., this issue). The elevation from the sea

floor does not exceed 1 m and therefore, in areas with water depths of

>20 m, does not present any hindrance for shipping in terms of traffic

and manoeuvring (La Peyre et al., 2014; Gillies et al., 2015; Sawusdee

et al., 2015; Pineda-Metz et al., this issue). Also, anchoring in

emergency situations does not hinder large-scale restoration. We

suggest further investigation of the potential implementation of

restoration measures in such shipping areas, taking into account other

protected features, e.g. resting and wintering seabirds.

Level 2 provides an all-in scenario (except bottom trawling):

including all user groups in the current marine spatial plan and related

logistical restrictions, but at the same time not taking into account

fishing activity with bottom-contacting gear, results in 98.3% and

96.8% of the MPA considered suitable for oyster restoration in BRG

and SAR, respectively (Figures 3b and 4b; Table 3). Here, only

exclusion zones such as wrecks, offshore cables, and wind farms (only

in SAR) contribute to the reduced area suitable for oyster restoration.

This scenario considered recent developments regarding the

management of fishing activities in the two MPAs in the context of

the European Common Fisheries Policy (CFP): a delegated regulation

under the CFP is currently being reviewed and conservation measures

regulating bottom-contacting fisheries are likely to come into force in

2022 (Pogoda et al., 2020b, EU COM, 2023; Pusch/Bundesamt für

Naturschutz (BfN) pers. comm./joint recommendation). These

measures foresee the year-round exclusion of all bottom-contacting

gears in BRG and in large areas of SAR (Figures 5 and 6). The main

objective is the protection of the habitat types ‘sandbanks’ and

‘reefs’ (according to the EU Habitat Directive) from negative impacts

of fisheries with mobile bottom-contacting gears. The presented

results confirm that both MPAs are highly suitable for the designated

restoration measures, be it within MPA management (BfN, 2020a),

within implementation of EU restoration goals (EU COM, 2022b), or

through area-based measures for the compensation of interventions

in nature (BfN & BMU, 2021).

In SAR, the proposed fisheries management measures will result

in a closed area of 3,399 km2 for all mobile bottom-contacting fishing

gears (e.g. bottom otter trawls, beam trawls, dredges, etc.). This area

corresponds to 61% of the MPA with optimal suitability for oyster

restoration. In the eastern part of the SAR covering an area of

857 km2, all bottom-contacting fishing gears will be excluded, with

the exception of beam trawls targeting brown shrimp (Figure 6). Beam

trawls targeting shrimp are equipped with rubber disks on the ground

rope and are less invasive than beam trawls targeting flat fish

(e.g. plaice and sole) that use tickler chains to flush out fish buried in

the sea floor. Nevertheless, even beam trawls targeting shrimps will

have some detrimental effects on oysters and restored biogenic

habitat, and therefore these areas are not suitable for oyster

restoration. For the northern part of the Amrumbank, located in the

eastern part of the SAR MPA, a complete exclusion of all fishing

activities is foreseen. This no-take area of 48 km2 will have, after

being successfully implemented, a high potential for the restoration of

oysters and of biogenic reef habitat (Figure 6).

Level 3 provides the current all-in scenario: to date, no fishery

exclusion measures are in place. Mobile bottom-contacting fishing

activities were identified as the most relevant factor counteracting

habitat suitability for restoration (Table 2). Depending on the fishing

intensity, areas with fishing activity achieved good, moderate, or poor

scores. Hence, by considering all existing marine uses, related

logistical restrictions, and accepting fishing activity as the main

limiting driver, 97.2% of the total area of BRG (low fishing activity)

and 74.5% of the total area of SAR (intense trawling activity, where

boulders on the sea floor do not prevent bottom-contacting gear) are

classified suitable for oyster restoration (Figures 3c and 4c; Table 3).

Considering the fragile features of biogenic structures, bottom-

contacting fisheries will have severe destructive effects and cannot be

combined with habitat restoration in multi-use approaches.

Limited historical records (Gercken & Schmidt, 2014;

Pogoda, 2019, Thurstan et al., unpubl.) indicate the widespread

distribution of oyster habitats in the German Bight with the

respective relevance for ecosystem functions and services of these

ecosystem engineers (Coen et al., 2007; Grabowski & Peterson, 2007;

Beck et al., 2011; Pogoda, 2019; Pogoda et al., 2020b). These records

appear to be consistent with the habitat suitability predicted here for

BRG. The habitat suitability predicted for the SAR MPA exceeds the

known historical distribution (Figure 1). As a sound historical baseline

is lacking, it remains an open question of whether oysters were

historically present in SAR or whether other factors limited the

natural distribution at that time (Pogoda, 2019). Current conditions in

the MPA have a high suitability for oyster restoration.

The presented results also support the EU 2030 Biodiversity

Strategy target to achieve a legal protection of at least 30% and a

strict protection of 10% of European seas: to address the 10% target,

only limited and well-controlled activities that do not interfere with

natural processes or contribute to their improvement will be allowed.

In addition, strictly protected areas may also be areas in which

active management sustains or enhances natural processes

(EU COM, 2022a). Suitable oyster habitats in MPAs could contribute

to this, as management activities should be limited to restoration

and/or habitat and species conservation actions (EU COM, 2020b). In

the context of the MSFD, some countries, e.g. Germany, have

reported the reintroduction of locally extinct or endangered species

POGODA ET AL. 11
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such as O. edulis as so-called environmental targets to the EU

Commission (BMU, 2012; BMU, 2018). Legal obligations or proposals

to compensate human activities and establish restoration measures

(BfN, 2020a; BfN, 2020b; BfN & BMU, 2021; EU COM, 2022b) were

defined to address the poor environmental status of the German

Bight (BMU, 2012; BMU, 2018). Considering the constantly

increasing pressures on biodiversity through human activity and

climate change, on one hand, and the vast historical extent of oyster

reefs in the southern North Sea, on the other, with their important

role for the ecosystem, oyster restoration is an effective and

important conservation measure in both MPAs.

Against the background of conservation management and

restoration practice, new restoration sites for biogenic reefs should be

at least 4 ha in size (Westby, Geselbracht & Pogoda, 2019; Fitzsimons

et al., 2020; Preston et al., 2020). Considering the role of reefs as

hotspots of biodiversity (Boudreaux, Stiner & Walters, 2006;

Shervette & Gelwick, 2008; Smyth & Roberts, 2010; Humphries

et al., 2011), the restoration of biogenic reef habitat will increase

habitat quality and quantity for other endangered species, e.g. sharks

and rays, or for those relevant for ecosystem functions, e.g. intact

trophic relations (Barrios-O'Neill, Bertolini & Collins, 2017; Zidowitz

et al., 2017).

Despite the very good suitability of both MPAs, even the full

restoration potential will not meet the ecological scale of the historical

oyster reef habitat (Gercken & Schmidt, 2014). Increasing economic

activity in the North Sea, and related stressors on the ecosystem,

underline the relevance of restoration measures in both MPAs, despite

the historical distribution being only documented for BRG. As

historical information comes largely from oyster fisheries, and

knowing that large areas of SAR were not accessible for fishing

activities because of stone reefs and boulders, it is possible that oyster

reefs did exist in the area (Pogoda, 2019; Thurstan et al., unpubl.). It is

possible that SAR oyster populations may have been sustained by

larvae originating from the offshore oyster grounds that have been

overfished and extirpated (Gercken & Schmidt, 2014; Colsoul

et al., 2021; Pogoda et al., in prep), and thus eliminating the source of

oyster larvae to SAR reefs may have led to their disappearance. Today,

the entire SAR area is considered ecologically suitable for oyster

F IGURE 5 Designated European Common Fisheries Policy (CFP) measures for Borkum Reef Ground marine protected area (MPA). Year-
round exclusion of all mobile bottom-contacting gears from the entire MPA Borkum Reef Ground to protect the habitat types 1110 ‘Sandbanks’
and 1170 ‘Reefs’ and sea floor areas comprising the biotope type ‘Species-rich gravel, coarse sand and shell-gravel areas’ (Joint Recommendation
regarding Fisheries Management Measures 21 March 2021, EU COM, 2023).

12 POGODA ET AL.
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restoration, and hence the MPA can potentially play an important role

in the restoration of European oyster populations, even under

conditions of climate change with rising seawater temperatures,

because of the tolerance of the species to a wide temperature range

(Huthnance et al., 2016; Colsoul et al., 2021; Pörtner et al., 2021).

Connectivity and recruitment remain key features for the long-term

recovery of oyster populations and should be carefully investigated

and considered when planning restoration efforts.

Successful restoration will only be achieved through multicriteria

approaches, integrating physical and biological processes with permit

schemes and logistical restrictions (Puckett et al., 2018). Some aspects

of the presented method need consideration, as habitat suitability is

based on site-selection factors, which have been defined for

European oyster habitat restoration (Kamermans et al., 2018; Pogoda

et al., 2020b; Hughes et al., 2023), although not all factors have been

verified in the field and for some, the species-specific ecological

thresholds are lacking. Taking bottom shear stress as an example,

hydrodynamics and related mechanical stressors certainly affect filter-

feeding, shell growth, and reef formation (Richardson, 2001; Pogoda,

Buck & Hagen, 2011; Whitman & Reidenbach, 2012; Kamermans

et al., 2018), but the degree to which conditions are favourable or

limiting is not yet fully understood (Kamermans et al., 2018; Pogoda

et al., 2020b). The historical flat oyster beds were sited in areas

characterized by relatively low bed shear stress (Bennema,

Engelhard & Lindeboom, 2020). Other crucial factors, e.g. median

grain size (sediment type) and mud content (relative proportions of

the grain size fraction of <63 μm) are correlated and influence oyster

distribution (Bockelmann et al., 2018; Bennema, Engelhard &

Lindeboom, 2020). Hence, the weighting of the respective criteria

used for AHP is based on the best available knowledge and informed

estimations from experts. Some factors that are not relevant in the

study area (e.g. gravel extraction and dumping), or for which data

were not accessible (e.g. turbidity and current velocity), were not

considered in the weighting. Predation was explicitly not considered

here, as potential predators of O. edulis are highly mobile species,

such as Asterias rubens, Cancer pagurus, and Homarus gammarus

(Whilde, 1985; Mascar�o & Seed, 2001; Ellrich & Pogoda, in prep),

and reef restoration is assumed to attract these predators during the

F IGURE 6 Designated European Common Fisheries Policy (CFP) measures for Sylt Outer Reef – Eastern German Bight marine protected area
(MPA). Measure 1a: year-round exclusion of all mobile bottom-contacting gears in two management zones. Measure 1b: year-round exclusion of
mobile bottom-contacting gears in two management zones, with the exception of brown shrimp fisheries with beam trawls within the Natura
2000 site Sylt Outer Reef (joint recommendation regarding Fisheries Management Measures, 17 March 2021; EU COM, 2023).
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initial stages of reef implementation, independent of the selected

sites (Krone et al., 2013; Pogoda et al., 2020b; Pineda-Metz

et al., this issue). During the development and application of the

presented analysis, we defined suitability scores of 1–6, with scores

1–3 (optimal, very good, good) regarded as suitable for oyster

restoration. These categories provide a dynamic scale or indication

for restoration success. Future ground truthing will elucidate

adaptation potential, especially against the background of existing

knowledge gaps related to O. edulis ecology, e.g. by refining the

applied factors.

In general, habitat suitability models intend to quantify the value

of habitats when considering management alternatives in species-

specific, as well as habitat-specific, conservation and restoration

(Questad et al., 2014; Theuerkauf & Lipcius, 2016). The suitability

analysis approach can be adapted to wider conservation management

objectives and even the facilitation of complex decision-making

procedures across different stakeholders, often representing different

goals and views. Different conservation goals such as biodiversity

enhancement as well as recently developing climate change mitigation

measures can be addressed by integrated habitat suitability analyses.

Current research shows that marine sediments serve as relevant blue

carbon habitats if left undisturbed, for example, within the framework

of MPAs (Roberts et al., 2017; Dunkley & Solandt, 2021). Intact

ecosystems are more resilient to climate change than

anthropogenically weakened ecosystems, and therefore could play a

critical role in mitigating the negative impacts of climate change

(EU COM, 2022b). The exclusion of bottom trawling will enhance

their carbon storage capacity (Duplisea et al., 2001; Luisetti

et al., 2019), whereas oyster reefs increase sedimentation rates and

organic carbon accumulation through the provision of 3D structure

(Fodrie et al., 2017; Lee et al., 2020; Veenstra et al., 2021). Such

suitable potential future ‘climate protection areas’ (CPAs) are in some

areas likely to overlap with suitable areas for oyster restoration, both

identifiable by combined and adapted habitat suitability approaches

(Smale et al., 2018; Dunkley & Solandt, 2021).
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