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A B S T R A C T   

Life on tidal coasts presents physiological major challenges for sessile species. Fluctuations in oxygen and 
temperature can affect bioenergetics and modulate metabolism and redox balance, but their combined effects are 
not well understood. We investigated the effects of intermittent hypoxia (12h/12h) in combination with different 
temperature regimes (normal (15 ◦C), elevated (30 ◦C) and fluctuating (15 ◦C water/30 ◦C air)) on the Pacific 
oyster Crassostrea (Magallana) gigas. Fluctuating temperature led to energetic costly metabolic rearrangements 
and accumulation of proteins in oyster tissues. Elevated temperature led to high (60%) mortality and oxidative 
damage in survivors. Normal temperature had no major negative effects but caused metabolic shifts. Our study 
shows high plasticity of oyster metabolism in response to oxygen and temperature fluctuations and indicates that 
metabolic adjustments to oxygen deficiency are strongly modulated by the ambient temperature. Co-exposure to 
constant elevated temperature and intermittent hypoxia demonstrates the limits of this adaptive metabolic 
plasticity.   

1. Introduction 

Living in coastal regions presents major physiological challenges for 
sessile benthic species, which must contend with fluctuating environ-
mental conditions that can disrupt their metabolic and redox homeo-
stasis (Willmer et al., 2005; Abele et al., 2012; Haider et al., 2020). One 
significant source of variability is the natural tidal cycle, which exposes 
intertidal organisms to intermittent submersion and emersion coin-
ciding with the changes in oxygen and food availability, temperature 
and desiccation stress (Vernberg and Vernberg, 1972). Lacking the 
ability for escape, intertidal sessile organisms like bivalves, limpets and 
barnacles evolved protective behaviors that involve shell closures to 
isolate the body from the stressful environment. While shell closure is 
effective in preventing desiccation, it also limits oxygen supply, leading 
to hypoxia within the shell (Vernberg and Vernberg, 1972; Platvoet and 
Pinkster, 1995; Willmer et al., 2005). Consequently, intertidal animals 

have developed strategies to counteract oxygen deprivation, such as 
metabolic rate suppression, which can reduce aerobic rates by up to 99% 
(Hochachka et al., 1993; Hochachka and Lutz, 2001; Storey and Storey, 
2004; Abele et al., 2012; Janas et al., 2017; Haider et al., 2020; Steffen 
et al., 2021). Upon re-submersion, the organism experiences reoxyge-
nation, which can induce a burst in reactive oxygen species (ROS) pro-
duction due to the rapid reintroduction of oxygen (Kalogeris et al., 
2014). While intertidal organisms express high levels of antioxidants, 
compensating for this ROS burst remains challenging (Hermes-Lima 
et al., 1998; Sokolova et al., 2011; Abele et al., 2012; Bayne, 2017b). 

Temperature is an important stressor that varies on the seasonal, 
daily and tidal scales in the intertidal zone and can directly affect the 
physiology and metabolism of ectothermic organisms (Vernberg and 
Vernberg, 1972; Sommer, 2005; Lushchak, 2011). During summer low 
tides, body temperature of sessile intertidal organisms rapidly increases 
due to contact with the warm air and substrate and insolation (Sokolova 
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et al., 2000; Ricklefs and Vanselow, 2012; Bayne, 2017d; Sokolova, 
2019; Janetzki et al., 2021). As a result, organisms in the intertidal zone 
experience diurnal temperature fluctuations that occasionally exceed 
their critical temperatures and can affect energy metabolism, ROS 
generation and ultimately, fitness (Newell and Bayne, 1973; Sommer 
et al., 1997; Lushchak, 2011; Strand et al., 2011; Ricklefs and Vanselow, 
2012; Bayne, 2017d). Under fluctuating temperature conditions, phys-
iological plasticity plays an important role in an organism’s adaptation 
as described in the “beneficial acclimation hypothesis” (Leroi et al., 
1994; Kingsolver and Huey, 1998; Wilson and Franklin, 2002; Seebacher 
et al., 2015). However, physiological plasticity is limited when stronger 
or unpredictable fluctuating environments do not provide clear signals 
for directional adaptation (Kingsolver and Huey, 1998; Kawecki, 2000; 
Wilson and Franklin, 2002). Earlier studies on the effects of stable vs. 
fluctuating temperature regimes on adaptive physiological responses 
and thermal tolerance of different ectotherms species yielded contro-
versial results (Ashmore and Janzen, 2003; Dong and Dong, 2006; 
Pernet et al., 2007; Byrne et al., 2009; van Dooremalen et al., 2011; 
Paaijmans et al., 2013; Seebacher et al., 2015; Kingsolver et al., 2020; 
Slein et al., 2023). This variability in physiological and metabolic re-
sponses to temperature might reflect evolutionary adaptations of 
different species to certain thermal regimes, but may also be modulated 
by other abiotic factors like oxygen availability. While the individual 
effects of hypoxia (oxygen deficiency) and temperature have been well 
studied in intertidal organisms, their combined effects remains poorly 
understood and require further investigation (Pörtner, 2005; Collins 
et al., 2023). 

The aim of this study was to investigate the combined impacts of 
intermittent hypoxia and elevated or fluctuating temperature on the 
metabolism and redox balance of the Pacific oyster, Crassostrea (Mag-
allana) gigas (Thunberg, 1793), an invasive species commonly found in 
European intertidal waters. The oyster was introduced worldwide for 
aquaculture purposes but frequently escaped, establishing dense inter-
tidal reefs (Reise et al., 2005; Ruesink et al., 2005; Reid and Valdés, 
2011). Invasive populations of C. gigas in the German Wadden Sea 
inhabit major parts of the intertidal zone, where they emerge twice daily 
for several hours during a semi-diurnal tide (Reise et al., 2017). As a 
robust and stress-tolerant organism (Zhang et al., 2012), C. gigas is a 
suitable model to investigate the interaction between hypoxia and 
temperature stress. Here, we hypothesized that intermittent hypoxia 
will disrupt the redox balance and metabolic profiles of the oysters, with 
this disruption being intensified by elevated temperature. To test our 
hypotheses, we exposed Pacific oysters to ten cycles of intermittent 
hypoxia, with 12 h of hypoxia (air exposure) followed by 12 h of re-
covery (submersion) per cycle. This regime was chosen to simulate the 
maximum emersion experienced by oysters in the upper intertidal 
habitats (Bundesamt für Schiffahrt und Hydrographie, 2023). Extended 
(12 h) recovery period was chosen to detect the persistent effects of 
periodic emersion. Additionally, we subjected the oysters to elevated 
temperatures (30 ◦C) considered critical for C. gigas (Le Gall and Rail-
lard, 1988; Bougrier et al., 1995) and plausible for summer low tide 
conditions of the German Wadden Sea (Ricklefs and Vanselow, 2012). 
The temperature was either kept constant at 15 ◦C or 30 ◦C throughout 
the emersion-immersion cycle or fluctuated between the emersion 
(30 ◦C) and immersion (15 ◦C) conditions as would be expected during 
summer tides. Our results provide insights into the role of metabolic 
plasticity in responses to intermittent hypoxia and thermal stress in 
oysters and shows mitigating effects of fluctuating temperatures on the 
hypoxia-induced metabolic and redox disturbances in this 
stress-tolerant intertidal species. 

2. Material and methods 

2.1. Oyster collection and experimental exposures 

Oyster were collected from a mixed intertidal oyster-mussel reef in 

the intertidal zone of Königshafen (Oddewatt, List, Sylt, Germany) in 
June 2020. Oysters were cleaned of epibionts and placed in habituation 
tanks at 15 ◦C and salinity 28 (practical salinity units) (Pro-REEF Sea 
Salt; Tropic Marin). These conditions were similar to the habitat water 
conditions at the time of collection. Starting on day two, salinity was 
increased to 33 at a rate of ~1 unit per day. After one week, oysters were 
transferred into a recirculated maintenance system (700l) with biolog-
ical filtration, aeration and protein skimmer and kept at 15 ◦C and 
salinity 33 for 4–9 weeks until experimental exposures. Oysters were 
continuously fed with a commercial algal mixture (Nanochloropsis sp., 
Chlorella sp. Phaeodactylum sp., Cylindrotheca sp. and Nitzschia sp., pro-
vided by Aquacopa or Sustainable Aquatics), supplemented with 
30–50% (v:v) of freshly cultured Rhodomonas sp. using automatic 
feeding systems (Reefdoser EVO 4, Aqua Medic). The final concentration 
of algae in the maintenance tanks was kept at approximately 200 μg/l 
(chlorophyll a equivalents). 

For each experimental treatment group, 19–20 randomly selected 
oysters (average length 51 mm) were placed into three 5 l tanks (6–7 
oysters per tank, salinity 33). Water in the tanks was constantly aerated, 
and the tanks were kept under the dim light conditions throughout the 
exposures. For each experimental group, the oysters were exposed to ten 
cycles of emersion-immersion (12 h: 12 h) under different temperature 
regimes including either normal (15 ◦C in water and air), elevated (30 ◦C 
in water and air) or fluctuating (15 ◦C in water and 30 ◦C in air) tem-
perature. During emersion, the oysters were placed for 12 h in dry 
plastic containers lined with plastic spacers to allow drainage. Air 
temperature was controlled by placing the containers into a water bath 
(15 ◦C) or temperature-controlled incubator (30 ◦C). Humidity was not 
controlled during emersion but was kept high (>80%) by closing the 
plastic container with a lid. Oysters maintained at 15 ◦C under normoxia 
and constant immersion were used as controls. During exposures, oys-
ters were fed every other day with the algal mix (0.3–0.4 ml/tank; 
Premium Reef Blend, Sustainable Aquatics). Ammonium and nitrite 
concentrations were monitored and water exchanged if the threshold of 
10 mg/l for either compound was exceeded. 

Tissue samples were collected from all experimental oysters at the 
end of the last (10th) immersion cycle. This time point corresponded to 
12 h of recovery after hypoxia ensuring that all oysters were sampled 
under the normoxic conditions. Normoxic controls were collected after 
3, 5 and 10 days of exposure. Pilot analyses showed that there was no 
significant difference in the studied endpoints in the normoxic controls 
over time (p > 0.05; data not shown). Therefore, all control samples 
were treated as a single experimental group. Gill and digestive gland 
were dissected on ice, immediately frozen in liquid nitrogen and stored 
at − 80 ◦C until further analyses. 

2.2. Determination of energy reserves and electron transport system (ETS) 
activity 

Gill or digestive gland tissues (15.6 ± 3.1 mg per sample) were 
placed into 2 ml tubes containing zirconium beads (Ø 1 mm and 2 mm, 
~420 mg and ~230 mg, respectively) and ice-cold homogenization 
buffer (0.1 M Tris-HCl, pH 8.5, 1.5 g/l polyvinylpyrrolidone, 153 μM 
MgSO4 and 0.2% Triton X-100 (w/v) in the tissue to buffer ratio of 1:25 
(w/v). Tissues were homogenized using FastPrep-24 homogenizer (MP 
Biomedicals) with five 60 s cycles at 6.5 m/s and 5 min cooling on ice 
between the cycles. The homogenate was centrifuged for 10 min at 4 ◦C 
and 3000×g. A 75 μl aliquot of the supernatant was collected and stored 
at − 80 ◦C for ETS measurement. The remaining homogenate was lysed 
using four freeze-thaw cycles (5 min each) alternating between liquid 
nitrogen and water bath (50–55 ◦C). The samples were centrifuged for 
10 min at 4 ◦C and 3000×g and stored at − 80 ◦C for carbohydrate and 
protein analyses. 

ETS was measured in an assay buffer containing 91 mM Tris-HCl, pH 
8.5, 0.21% Triton X-100 (w/v), 0.34 mM NADH and 51 μM NADPH as 
described elsewhere (King and Packard, 1975; De Coen and Janssen, 
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1997). To account for the background activity of non-mitochondrial 
oxidoreductases, blanks were set with addition of mitochondrial ETS 
inhibitors (1 M KCN and 0.4 mM rotenone) instead of NADH and 
NADPH. The reaction was started with 2.7 mM P-iodonitrotetrazolium 
(INT) and monitored at 490 nm (SpectraMax iD3, Molecular Devices). 
Using the extinction coefficient of the produced INT formazan ϵ =
15900 M− 1 cm− 1, the ETS activity was calculated as the 
background-corrected oxygen consumption rate assuming the molar 
ratio 2:1 of formazan to oxygen. 

Tissue levels of carbohydrates were measured using phenol-sulfuric 
acid colorimetric method at 492 nm with glucose as a standard 
(Masuko et al., 2005). Proteins were measured using the Bradford assay 
at 595 nm (Bradford, 1976) using bovine serum albumin as a standard. 

2.3. Oxidative stress markers 

Gills or digestive gland tissues (45.5 ± 8.0 mg per sample) were 
homogenized in phosphate-buffered saline (PBS, 50 mM, pH 7.4) using 
1:10 (w/v) tissue to buffer ratio. The homogenate was split into two 
aliquots and the proteins were precipitated by adding two volumes of 
50% trichloroacetic acid (TCA). After 10–15 min of incubation on ice, 
the samples were centrifuged for 10 min at 4 ◦C and 5000×g. The 
resulting supernatants were combined. Pellets and supernatant were 
stored at − 80 ◦C. 

Lipid peroxidation products were determined in the supernatant as 
the concentration of the thiobarbituric acid-reactive substances (TBARS) 
(Ohkawa et al., 1979). Thiobarbituric acid (21 mM in 0.1 M HCl) was 
added 1:1 (v/v) to the supernatant and incubated at 90–100 ◦C for 20 
min. Samples were then cooled on ice and absorbance measured at 532 
nm. TBARS level was calculated using ϵ = 156000 M− 1 cm− 1. 

Protein carbonyl content was measured in the precipitated protein 
pellets using 2,4-dinitrophenylhydrazine (DNPH, 10 mM in 2 M HCl) as 
described before (Levine et al., 1990). The second pellet from each 
sample was treated with HCl and used as a negative control. The DNPH- 
or HCl-treated samples were centrifuged for 10 min at 4 ◦C and 
10000×g, washed twice with 1 ml 5% TCA and centrifuged for 10 min at 
4 ◦C and 10000×g. The pellets were dissolved in 1.5 ml of 8 M urea, 
centrifuged for 10 min at 4 ◦C and 10000×g and absorbance measured in 
the supernatant at 370 nm. The sample absorbance was corrected for the 
absorbance of the negative controls, and the protein carbonyls concen-
tration calculated using ϵ = 22000 M− 1 cm− 1. 

Total antioxidant capacity (TAOC) was measured in the homoge-
nates of the gill or digestive gland tissues. Tissues (29.8 ± 6.0 mg) were 
homogenized 1:15 (w/v) in 50 mM PBS, pH 7.8, containing 0.1 mM 
phenylmethylsulfonyl fluoride (Re et al., 1999). Samples were centri-
fuged for 10 min at 4 ◦C and 5000×g and the supernatant stored at 
− 80 ◦C. For TAOC measurements, samples were mixed with freshly 
prepared ABTS.+ working solution in PBS (the final concentrations: 104 
μM 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 
37 μM K2S2O8) and incubated for 6 min on a shaker at room temper-
ature in the dark. The absorbance was measured at 734 nm and TAOC 
was calibrated with 6-hydroxy-2,5,7,8-tetramethylchroman-2-carbox-
ylic acid (Trolox) as a standard and expressed in μmole 
Trolox-equivalents per g wet mass. 

2.4. Metabolite profiles 

Metabolite content was measured in the gill as described elsewhere 
(Haider et al., 2020). Metabolites were extracted from 25.7 ± 4.1 mg of 
tissue in 1 ml 80 % ethanol with 1 μg/ml 2-(N-morpholino)ethane-
sulfonic acid (MES) as an internal standard using FastPrep-24 homoge-
nizer (MP Biomedicals). The homogenate was centrifuged for 10 min at 
4 ◦C and 13000×g to remove the debris. The supernatants were 
freeze-dried under vacuum (Alpha 1–4 LSCplus and RVC 2–25 CDplus, 
Martin Christ Gefriertrocknungsanlagen GmbH) and stored at − 80 ◦C. 
The samples were then dissolved in ROTISOLV® LC-MS-grade water 

(Carl Roth), filtered (0.2 μm, Omnifix®-F, Braun, Germany) and ana-
lysed with the high-performance liquid chromatograph-mass spec-
trometer LCMS-8050 (Shimadzu). The sample separation was conducted 
as described earlier (Haider et al., 2020). The metabolites were identi-
fied and quantified with the built-in LC-MS/MS package for primary 
metabolites (Vers. 2, Shimadzu, P/N 225–24,862-92) and the LabSolu-
tions software package (Shimadzu) (Selim et al., 2018). Each compound 
was calibrated using the respective standard substances (Merck) and 
loading-corrected relative to the internal standard (MES) peak. The 
peaks of citrate and isocitrate could not be distinguished, and the 
respective concentrations are combined and reported as (iso)citrate. 

2.5. Statistics 

Effects of different exposure regimes on the measured biomarkers 
were tested using one-way ANOVA. Any outliers with values outside the 
1.5x interquartile range were excluded from further analyses. Data were 
tested for normal distribution (Shapiro-Wilk test) and homogeneity of 
variances (Levene test). Data showing lack of homogeneity of variances 
or not normal distribution were analysed using Welch-ANOVA or 
Kruskal-Wallis test, respectively. Bonferroni, Games-Howell or Dunn- 
Bonferroni were used as post-hoc tests for ANOVA, Welch-ANOVA or 
Kruskal-Wallis analysis, respectively. Data was analysed using IBM SPSS 
Statistics 27. 

Metabolite data was processed using MetaboAnalyst 5.0 (Pang et al., 
2021). Pathway analyses was conducted using auto scaling, Drosophila 
melanogaster as a reference library, global test as the enrichment method 
and relative-betweeness centrality for topology analysis. (iso)citrate was 
treated as citrate. Exposure groups were compared to the normoxic 
control with pathways considered as significantly affected if the 
pathway impact was >0 and the false discovery rate (FDR) was <0.05. 
Partial least squares-discriminant analysis (PLS-DA) was conducted to 
reduce the dimensionality of the data set using autoscaling. Metabolites 
that contributed most to the separation along 1st and 2nd component 
were identified based on the loadings (cut-off ±0.2) and were used for 
further analyses. 

3. Results 

3.1. Mortality 

No mortality was observed in the control oysters or those exposed to 
intermittent hypoxia (emersion-immersion cycles) at 15 ◦C (N = 20). In 
the group exposed to intermittent hypoxia combined with the fluctu-
ating temperature, one oyster died at exposure day 8 (mortality rate of 
5%, N = 19), whereas intermittent hypoxia combined with the 
constantly elevated temperature (30 ◦C) led to the mortality rate of 60% 
which was distributed over the whole course of the exposure (N = 20; 
1.7 casualties per day). 

3.2. Cellular bioenergetic parameters 

The oyster gills showed lower ETS activity than the digestive gland 
(Fig. 1A). The experimental treatment showed significant effects on the 
ETS activity in oyster tissues (Table 1). This, oysters exposed to inter-
mittent hypoxia combined with fluctuating temperature exhibited a 
notable decrease in ETS activity, with reductions of 37% and 52% in the 
gill and digestive gland, respectively, compared to the normoxic control 
(Fig. 1A). No change of ETS activity was observed in other hypoxia- 
exposed groups relative to the normoxic controls (p > 0.05). 

The gills of oysters had generally lower glycogen content compared 
to the digestive gland (Fig. 1B). Glycogen content in the gills did not 
change in response to the intermittent hypoxia regardless of the tem-
perature regime (Table 1). However, in the digestive gland, glycogen 
depletion was observed in oysters exposed to intermittent hypoxia 
combined with fluctuating temperature relative to the controls and 
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hypoxia-exposed oysters kept at 15 ◦C (Fig. 1B). 
The digestive gland had higher levels of proteins compared to the gill 

in all exposures (Fig. 1C). Intermittent hypoxia, irrespective of the 
temperature, showed no significant effect on the protein content of the 
digestive gland in oysters (p > 0.05, Table 1). However, in the gills, 
intermittent hypoxia combined with 30 ◦C caused protein depletion, and 
combined with fluctuating temperature - protein accumulation (Table 1, 
Fig. 1C). 

3.3. Oxidative stress markers 

Lipid peroxidation (LPO) levels were higher in the oyster gills 
compared to the digestive gland in all experimental groups (Fig. 2A). 
Moderate elevation of LPO levels was observed in the gills of the oysters 
exposed to hypoxia at 30 ◦C, but this increase was only significant when 
compared to the hypoxic group kept at fluctuating temperature 
(Fig. 2A). In the digestive gland, LPO levels were lower in oysters 
exposed to intermittent hypoxia at 15 ◦C compared to the normoxic 
controls (Table 1, Fig. 2A). 

Protein carbonyl content was generally lower in the gills than in the 
digestive gland of oysters (Fig. 2B). The experimental treatment showed 
no evidence of effect on protein carbonyl levels in the gills and the 
digestive gland (Table 1). 

Oysters exposed to intermittent hypoxia at 30 ◦C exhibited an in-
crease in methionine sulfoxide concentration in the gills compared to 
those of the normoxic controls (Table 4, Fig. 2C). Hypoxia at constant or 
fluctuating temperature did not cause significant changes in methionine 
sulfoxide levels in oyster gills (Fig. 2C). 

The total antioxidant capacity (TAOC) was lower in the gill 
compared to the digestive gland (Fig. 4D). There was no evidence for the 
effect of the experimental treatment on the TAOC in the gill or the 
digestive gland (Table 1). 

3.4. Metabolite profiles in the gill tissue 

PLS-DA analysis revealed that two first principal components 
accounted for 24.7% and 17.2% of the variance in the data, respectively 
(Fig. 3). All hypoxia-exposed groups were clearly separated from the 
control group in the scatter plot of the two principal components 
(Fig. 3). Samples from oysters exposed to intermittent hypoxia at fluc-
tuating temperatures were strongly separated from the controls (along 
the 1st component axis) as well as from two other hypoxia-exposed 
groups (along the 2nd component axis) (Fig. 3). Samples from oysters 
exposed to intermittent hypoxia at constant temperatures (15 ◦C or 
30 ◦C) showed overlapping positions, suggesting similarity in their 
metabolite profiles. 

Based on the loadings of the PLS-DA analysis, 21 metabolites were 
identified as contributing to the separation of the model (loadings >0.2 
or < − 0.2; Table 2). Alanine, citrulline, tryptophan, tyrosine, glutamate, 
isoleucine, leucine, phenylalanine, succinate, and valine were associ-
ated with the 1st component (the fluctuating temperature axis), while 
aconitate, aspartate, glutamine, lysine, AMP, asparagine, (iso)citrate, 
malate, methionine sulfoxide, and threonine were associated with the 
2nd component (hypoxia and constant temperature axis). Taurine 
contributed to the separation along both components. 

Pathway enrichment analysis revealed alterations in 13, 10, and 5 
out of 20 analysed metabolic pathways (with pathway impact >0) in the 
gills of oysters exposed to intermittent hypoxia under fluctuating 

(caption on next column) 

Fig. 1. Bioenergetic markers: electron transport system (ETS, A), carbohydrate 
content in glycogen equivalents (B) and protein content (C) are shown for 
digestive gland (yellow, upper case letters) and gills (red, lower case letters) 
and scaled to tissue fresh mass; columns that do not share the same letter are 
significantly different (p < 0.05); box plots show median, interquartile range 
(IQR) as well as maximum and minimum; outliers (>1.5x IQR) are indicated 
by circles. 
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temperature conditions, at 15 ◦C, and at 30 ◦C, respectively (Table 3, 
Supplementary Table). Metabolic pathways such as alanine, aspartate, 
and glutamate metabolism, arginine biosynthesis, tryptophan meta-
bolism, and tyrosine metabolism were affected in all exposure groups 
(Table 3, Fig. 4 A, B, C). Glycine, serine, and threonine metabolism were 
altered by intermittent hypoxia at 15 ◦C, while the TCA cycle changed in 
response to intermittent hypoxia exposure at 30 ◦C. In the gills of oysters 
exposed to intermittent hypoxia under the fluctuating temperature 
regime, alterations in phenylalanine, tyrosine, and tryptophan biosyn-
thesis, arginine and proline metabolism, and butanoate metabolism 
were detected (Fig. 4 C). 

3.5. TCA and urea cycle metabolites 

The combined exposure of oysters to intermittent hypoxia and heat 
at 30 ◦C resulted in an upregulation of aconitate and (iso)citrate, and a 
decrease in succinate levels in the gills (Table 4). Additionally, carnitine 
concentrations were elevated in the gills of oysters exposed to inter-
mittent hypoxia at 30 ◦C (Table 4). However, there were no significant 
changes in the concentrations of TCA intermediates and carnitine in 
other experimental treatment groups compared to the control, except for 
a decrease in succinate levels observed in all experimental treatments 
(Table 4). Citrulline content in the gills significantly increased (by 12.8- 
fold) under the fluctuating temperature regime compared to control 
(Table 4). 

3.6. Levels of free amino acids 

All exposures led to a significant decrease in tryptophan and tyrosine 
(Table 4). Moreover, exposure of oysters to hypoxia at 15 ◦C resulted in a 
significant increase in the concentrations of taurine, glutamine, glycine, 
asparagine, and lysine content in the gill tissues (Table 4). Combined 
exposure to intermittent hypoxia and 30 ◦C led to an increase in the 
content of aspartate and asparagine, but a depletion of alanine and 
proline, in the oyster gills (Table 4). Furthermore, intermittent hypoxia 
at fluctuating temperature resulted in a significant decrease in the gill 
content of taurine, alanine, phenylalanine and proline (Table 4). 

Table 1 
Analysis of the effects of the experimental treatments on the bioenergetic and 
oxidative stress markers in the gills and the digestive gland tissues of C. gigas. 
The treatment effects were tested by ANOVA (a), Kruskal-Wallis test (k) or 
Welch ANOVA (w). Significant effects are highlighted in bold.  

Trait Gill DG 

ETS activity F(3,39) = 5.700 p ¼
0.002a 

F(3,35) = 50.384 p < 
0.001a 

Glycogen F(3,17.2) = 2.757 p =
0.074a 

χ2 = 15.619 p ¼ 0.001k 

Proteins F(3,38) = 18.082 p < 
0.001a 

F(3,39) = 0.486 p =
0.694a 

Lipid peroxidation 
products 

F(3,13.5) = 6.819 p ¼
0.005a 

F(3,10.5) = 3.687 p ¼
0.048w 

Protein carbonyls F(3,10.4) = 1.746 p =
0.218a 

Chi2 = 2.695 p = 0.441k 

Total antioxidant 
capacity 

F(2,25) = 0.337 p =
0.717a 

F(2,6.6) = 0.729 p =
0.518w  

Fig. 2. Oxidative stress markers: lipid peroxidation in thiobarbituric acid-reactive substances equivalents (A), protein carbonyls (B), methionine sulfoxide (C) and 
total antioxidant capacity in trolox equivalents (D) are shown for digestive gland (yellow, upper case letters) and gills (red, lower case letters) and scaled to tissue 
fresh mass; columns that do not share the same letter are significantly different (p < 0.05); box plots show median, interquartile range (IQR) as well as maximum and 
minimum; outliers (>1.5x IQR) are indicated by circles. 
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4. Discussion 

4.1. Temperature regime modulates bioenergetic effects of intermittent 
hypoxia 

Oysters can tolerate short hypoxic events without adverse effects on 
their energy metabolism (Ivanina and Sokolova, 2016; Bayne, 2017b; 
Haider et al., 2020). Hypoxic survival in oysters and other 
hypoxia-tolerant facultative anaerobes is commonly associated with 
metabolic rate suppression (Hochachka, 1986, 1988), which is 
enhanced in hypometabolic states caused by low temperatures (Gorr, 
2017). In our present study, exposure of C. gigas to intermittent hypoxia 
at a low temperature (15 ◦C) had little impact on tissue bioenergetic 
parameters. Specifically, there was no change in the electron transport 
system (ETS) activity, which serves as an index of cellular energy de-
mand, and glycogen was preserved in both gill and digestive gland 

tissues. In addition, the level of AMP in the gill tissue remained stable, 
indicating that the energy status of the cell was not severely compro-
mised (Hardie, 2003). A similar pattern was observed in oysters exposed 
to intermittent hypoxia at a constant elevated temperature (30 ◦C), 
where ETS activity, glycogen reserves, and AMP levels remained stable. 

The lack of negative shifts in tissue energy status at 15 ◦C may be 
attributed to the combination of cold-induced hypometabolism and the 
metabolic rate suppression during hypoxic periods, which are typical for 
intertidal bivalves like oysters (Storey and Storey, 1990; Storey and 
Churchill, 1995; Samain, 2011; Bayne, 2017d). However, at a constant 
elevated temperature (30 ◦C), higher energy expenditure is expected 
during both hypoxic and recovery phases, which could potentially lead 
to energy deficiency, particularly since feeding is restricted to the re-
covery periods. This deficiency may be supplied by the breakdown of 
glycogen, which serves as the primary energy fuel for anaerobic meta-
bolism during emersion (de Zwaan and Wijsman, 1976; Bayne, 2017c). 
Despite the energetically challenging conditions of heat combined with 
intermittent hypoxia, the lack of glycogen loss indicates a low rate of 
glycogen breakdown during emersion in hypoxia-adapted organisms 
like oysters (Gäde et al., 1975; Ivanina et al., 2016; Bayne, 2017b; Janas 
et al., 2017) and/or a rapid glycogen resynthesis during the recovery 

Fig. 3. PLS-DA scores plot: results for the first two components based on LC-MS 
data of the gill samples. Hypoxia exposure combined with fluctuating temper-
ature (H1530) is separated along the second component from hypoxia exposure 
with constant normal (H15) or elevated (H30) temperature. Normoxic control 
(N15) and the hypoxia exposures are separated along the first component. 

Fig. 4. Pathway enrichment: analyses based on based on LC-MS data of gill samples. Hypoxia exposure at constant normal (15 ◦C, A), elevated (30 ◦C, B) or 
fluctuating (15/30 ◦C, C) temperature are compared to normoxic control at 15 ◦C. Y axis: log10 (p), X axis: pathway impact. Horizontal red dashed line indicates the 
false discovery rate (FDR) defined as the threshold p value (0.05) after adjustment for multiple comparisons. Symbol size corresponds to the pathway impact, colour 
shading (yellow to red) reflects the relative significance (with red showing the highest significance). 

Table 2 
PLS-DA loadings of selected metabolites (cutoff ±0.2). Loadings exceeding the 
cutoff are presented bold.   

C1 C2 

Aconitate 0.0387 0.2986 
Alanine 0.2649 0.0957 
Aspartate 0.0937 0.3305 
Citrulline ¡0.2613 − 0.0460 
Glutamine − 0.0914 0.2415 
Lysine − 0.0948 0.2394 
Taurine 0.2161 0.2550 
Tryptophan 0.3039 − 0.0667 
Tyrosine 0.2987 0.01500 
AMP 0.1770 0.2011 
Asparagine − 0.0356 0.3414 
(Iso)citrate 0.0843 0.3362 
Glutamate 0.2670 0.1765 
Isoleucine 0.3248 0.0041 
Leucine 0.3179 0.0048 
Malate − 0.0098 0.2232 
Methionine sulfoxide 0.0373 0.2807 
Phenylalanine 0.3196 0.0577 
Succinate 0.2466 − 0.1634 
Threonine 0.0483 0.2757 
Valine 0.3260 − 0.0197  
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phase (Ouillon et al., 2022). It is worth noting that due to the high 
mortality (~60%) in co-exposures to constant elevated temperature and 
hypoxia, the less tolerant individuals (and those that presumably show 
the largest disruptions of metabolic and energetic bias) were likely those 
that died first leading to the survivor bias to the more stress-tolerant 
individuals in our data set. Overall, our findings suggest that oysters 
are capable of maintaining their energy homeostasis when exposed to 
intermittent hypoxia at a constant temperature of 15 ◦C, and a certain 
fraction of the population is also capable of doing so when co-exposed to 
intermittent hypoxia at a constant temperature of 30 ◦C. 

In contrast to the unchanged energy status during exposure to 
intermittent hypoxia at constant temperatures, we detected negative 
energetic shifts in oysters co-exposed to hypoxia and fluctuating tem-
perature. Aerobic capacity (ETS) and glycogen levels decreased signifi-
cantly in this group. Glycogen depletion in the digestive gland is 
especially meaningful, as it is a key storage site for this carbohydrate (de 
Zwaan and Wijsman, 1976; Bayne, 2017c). These findings indicate 
higher energy demand during hypoxic episodes in the oysters exposed to 
the combination of hypoxia and fluctuating temperature relative to 
other hypoxia-exposed groups. The glycogen used up during hypoxia 
does not appear to be resynthesized during recovery (possibly due to the 
low temperature in the normoxic phase) leading to a mismatch between 
the glycogen utilization and synthesis and a decline in the overall 
glycogen content of the digestive gland. Further, the AMP decrease in 
the gills might signal misbalance of the cellular energy status (Hardie, 
2003). Alternatively, this decrease may be a result of enhanced synthesis 
rates of nucleic acids, since AMP is a precursor of RNA (Jauker et al., 
2015). Upregulated RNA synthesis would align with the observed pro-
tein accumulation in the gills of this exposure group (Bolster et al., 2002; 
Horman et al., 2002; Chan et al., 2004; Rider, 2016). Taken together, 
these findings show high energy costs of survival in the fluctuating en-
vironments for the oysters, and indicate that upregulation of protein 
synthesis might contribute to this costs as shown in other organisms in 
extreme fluctuating environments (Blewett et al., 2022). 

4.2. Effects on oxidative stress and protein levels 

The impact of intermittent hypoxia on the protein content of oysters 
tissues varied depending on the tissue and temperature conditions. 
Protein content of the digestive gland remaining unchanged across all 
treatments, indicating a balance between protein synthesis and degra-
dation. However, the gill protein content varied in different hypoxia- 
temperature treatments. Exposure to intermittent hypoxia combined 
with a constant elevated temperature (30 ◦C) resulted in gill protein loss 
accompanied by elevated levels of methionine sulfoxide (MetO), an 
oxidized form of the amino acid methionine. Both markers indicate 
proteome damage. Methionine is particularly susceptible to oxidation by 
reactive oxygen and nitrogen species (Maisonneuve et al., 2009; Lee and 
Gladyshev, 2011), and thus might be more sensitive marker of oxidative 
damage than protein carbonyl levels that did not change in any of our 
experimental treatments. The protein loss and oxidative damage 
observed in the gill tissue under the combined hypoxia and heat stress 
may have negative consequences for the function of this vital organ and, 
ultimately, the survival and performance of the organism (Friedman 
et al., 1991, 2005; Goulletquer et al., 1998; Bouchet et al., 2007; Samain, 
2011). It is worth noting that the observed effects of hypoxia-heat 
combination may underestimate the physiological stress experienced 
by oysters under these conditions, as the high mortality observed in this 
treatment likely resulted in a survivor bias, with only the most resilient 
individuals being included in the analyses (Ioannidis, 2005). 

Unexpectedly, the increase in protein accumulation in the gill of 
oysters exposed to intermittent hypoxia and fluctuating temperatures 
indicate that protein synthesis outstrips the degradation. The mecha-
nisms behind this increase are not fully understood. Dehydration and 
water loss as a reason for protein accumulation (McCarthy et al., 2013) 
can be excluded since we did not see a corresponding increase in the 
concentrations of other biomolecules. Instead, it is more likely that the 
elevated protein content in the gills is due to the de novo synthesis of 
protective proteins, such as heat shock proteins (HSPs). HSPs accumu-
late in response to various stressors, including elevated temperatures 
and hypoxia, and can account for up to 10% of the total protein mass 
(Finka and Goloubinoff, 2013; Karademir and Sari-Kaplan, 2018). In 
oysters, a strong upregulation of HSPs has been reported after exposure 
to hypoxia or temperature stress, suggesting that HSP accumulation may 
explain the elevated protein content in the gills (David et al., 2005; 
Ivanina et al., 2009; Kawabe and Yokoyama, 2012). Interestingly, no 
protein accumulation was observed in the digestive gland, which may 
reflect its higher hypoxia tolerance and delayed stress response 
compared to the gills (Oehler et al., 2000; David et al., 2005; Willmer 
et al., 2005; Kawabe and Yokoyama, 2012). 

There was no evidence for the oxidative damage to the membrane 
lipids or change in total antioxidant capacity induced by the exposures 
to intermittent hypoxia regardless of the temperature (constant 30 ◦C 
not tested due to the lack of samples). Taken together, our data indicate 
that oxidative stress is not a major contributor to the physiological stress 
response of C. gigas under the studied exposure conditions, consistent 
with generally high stress tolerance of this species (Samain, 2011; Zhang 
et al., 2012; Bayne, 2017a). 

4.3. Hypoxia-induced shifts in oyster metabolome: amino acid 
metabolism 

Gluconeogenesis was strongly modulated by intermittent hypoxia in 
oysters as demonstrated by shifts in the Ala, Asp and Glu metabolism. 
Specifically, certain temperature combinations resulted in increased 
levels of key amino acids such as Asn, Asp, and Glu, while Gln and Ala 
showed a decrease. Given that we collected samples after 12 h of nor-
moxic recovery, stimulation of gluconeogenesis might assist in replen-
ishing of glycogen stores used during hypoxia like shown in another 
hypoxia-tolerant bivalve, the soft-shell clam Mya arenaria (Picard 
et al., 2014; Ouillon et al., 2022). However, glycogen resynthesis was 

Table 3 
Summary of the significantly enriched pathways in different experimental 
treatment groups relative to the normoxic controls. “+” indicates significant 
differences for the respective treatment relative to the control (FDR<0.05). “-” 
indicates that the certain pathway was not significantly altered in the respective 
treatment group relative to the control (FDR>0.05). Only pathways with the 
impact >0 were considered.   

Hypoxia 
15 ◦C 

Hypoxia 
30 ◦C 

Hypoxia 15/ 
30 ◦C 

Alanine, aspartate and glutamate 
metabolism 

+ + +

Arginine biosynthesis + + +

Tryptophan metabolism + + +

Tyrosine metabolism + + +

D-Glutamine and D-glutamate 
metabolism 

+ – +

Glutathione metabolism + – +

Glyoxylate and dicarboxylate 
metabolism 

+ – +

Purine metabolism + – +

Taurine and hypotaurine 
metabolism 

+ – +

Phenylalanine metabolism – – +

Phenylalanine, tyrosine and 
tryptophan biosynthesis 

– – +

Arginine and proline metabolism – – +

Butanoate metabolism – – +

Glycine, serine and threonine 
metabolism 

+ – – 

Citrate cycle (TCA cycle) – + – 
Total # of altered pathways 10 5 13  
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insufficient to fully compensate for the breakdown in the digestive gland 
of the oysters exposed to hypoxia-heat combination. Apart from that, 
our findings agree with the earlier studies that report enhanced carbo-
hydrate metabolism during hypoxia in human endothelial cells (Oehler 
et al., 2000), polychaetes (Kamp and Juretschke, 1989) and bivalves 
(Isani et al., 1989; Greenway and Storey, 1999). 

Arginine biosynthesis was modulated in all exposure groups 
demonstrated by shifts of the key amino acids Asp, Gln, Glu and 
citrulline. A modulation of urea cycle is unlikely as urea contributes only 
a small fraction of the total nitrogen excretion in oysters (Bayne, 2017b). 
Therefore, alteration of Arg biosynthesis under hypoxic conditions 
might reflect other functions of the pathway intermediates such as the 
role synthesis of phosphagens (phospho-L-arginine) or signaling func-
tions. Interestingly, we detected a massive increase (12.8 times) of 
citrulline in oysters exposed to hypoxia and fluctuating temperature 
compared to the normoxic controls. In C. gigas, the conversion of Arg to 
citrulline via nitric oxide synthase forms nitric oxide radicals (NO⋅) 
which acts as an important signaling molecule for metabolic regulation, 
immune response, and inflammation in different animals (Jacklet, 1997; 
Scholz and Truman, 2000; Hermes-Lima, 2004; Storey, 2004; Lambert 
et al., 2007; Swamy et al., 2010). Nitric oxide is involved in metabolic 

suppression and cytoprotection during hypoxia in bivalves (Strahl and 
Abele, 2020) and vertebrates (Fu et al., 2013; Heidorn et al., 2018), 
respectively. Thus, the high citrulline accumulation observed in our 
study might reflect elevated NO production (Johansson and Carlberg, 
1995) to support metabolic arrest during the hypoxic phase and provide 
cellular protection during the recovery. The lack of citrulline accumu-
lation in the oysters exposed to hypoxia under constant temperature 
regime indicates that unlike the fluctuating temperature and hypoxia 
combinations that mimic summer tidal conditions, less realistic sce-
narios of intermittent hypoxia at constant temperature might not pro-
vide all the necessary cues to trigger this physiological response in 
oysters. 

Gill tissue levels of essential branched-chain amino acids (leucine, 
isoleucine and valine; BCAAs) and aromatic amino acids (phenylalanine, 
tyrosine, tryptophan; AAAs) decreased in all hypoxia exposures in the 
oysters (Manahan, 1990; Fitzgerald and Szmant, 1997). BCAAs are 
critical for cellular metabolism, growth, and stress signaling, as well as 
stimulating protein synthesis and inhibiting proteolysis, which aids 
protein deposition (De Bandt and Cynober, 2006; Holeček, 2018; 
Nambara et al., 1998). Aromatic amino acids (AAAs) play a crucial role 
in protein synthesis (Han et al., 2019; Li et al., 2021, 2023) and serve as 

Table 4 
Effects of the experimental treatments on the concentrations of metabolites in the gills of C. gigas. Tests: A -ANOVA, KW - Kruskal-Wallis test, W – Welch ANOVA. 
Experimental groups: N - normoxia, H15 - cyclic hypoxia at 15 ◦C, H30 - cyclic hypoxia at 30 ◦C, H15/30 - cyclic hypoxia with immersion at 15 ◦C and emersion at 
30 ◦C. Different letters in “Post hoc” column indicates significant differences between the treatment groups listed in the order: N – H15 – H30 – H15/30. Methionine 
sulfoxide data are also presented in Fig. 2. “n” specifies number of replicates.  

Metabolite Test Statistic Average, ng/mg ± standard error Post hoc 

N H15 H30 H15/30 

Aconitate A F(3,38) = 4.8 p = 0.006 26.41 ± 3.1 (n = 15) 32.11 ± 2.6 (n = 9) 47.34 ± 7.7 (n = 8) 28.11 ± 2.8 (n = 10) A-AB-B-A 
Alanine A F(3,37) = 30.9 p < 0.001 138.99 ± 10.5 (n =

15) 
157.11 ± 7.1 (n = 10) 75.55 ± 5.8 (n = 7) 43.78 ± 7.4 (n = 9) A-A-B-B 

AMP A F(3,35) = 5.1 p = 0.005 222.37 ± 9.6 (n = 12) 207.14 ± 14.8 (n =
10) 

214.79 ± 11.9 (n =
8) 

164.78 ± 7.3 (n = 9) AB-ABC-B- 
C 

Arginine A F(3,37) = 0.5 p = 0.652 42.53 ± 3.0 (n = 15) 39.21 ± 3.6 (n = 9) 44.48 ± 4.8 (n = 8) 45.27 ± 1.9 (n = 9) Not tested 
Asparagine KW Chi2 = 17.5 P < 0.001 5.13 ± 0.43 (n = 14) 7.97 ± 0.86 (n = 10) 9.90 ± 1.26 (n = 8) 5.85 ± 0.42 (n = 9) A-B-B-AB 
Aspartate A F(3,38) = 14.1 p < 0.001 505.13 ± 36.7 (n =

15) 
615.24 ± 25.0 (n =
10) 

744.48 ± 55.9 (n =
8) 

387.97 ± 22.5 (n = 9) AC-AB-B-C 

Carnitine KW Chi2 = 19.5 P < 0.001 46.44 ± 3.2 (n = 14) 43.46 ± 2.0 (n = 8) 85.49 ± 4.2 (n = 8) 47.43 ± 2.6 (n = 9) A-A-B-A 
(Iso)citrate A F(3,37) = 6.1 p = 0.002 337.11 ± 48.9 (n =

15) 
504.76 ± 47.3 (n = 9) 546.33 ± 61.2 (n =

7) 
266.73 ± 40.8 (n =
10) 

AC-AB-B-C 

Citrulline KW Chi2 = 28.3 P < 0.001 0.20 ± 0.009 (n = 14) 0.27 ± 0.019 (n = 8) 0.29 ± 0.015 (n = 8) 2.62 ± 0.113 (n = 9) A-A-A-B 
Cystine KW Chi2 = 9.7 P = 0.021 0.30 ± 0.040 (n = 15) 0.41 ± 0.067 (n = 10) 0.28 ± 0.087 (n = 8) 0.15 ± 0.030 (n = 9) AB-A-AB-B 
GABA A F(3,37) = 1.1 p = 0.379 18.45 ± 3.9 (n = 14) 26.54 ± 7.1 (n = 9) 13.45 ± 4.4 (n = 8) 16.30 ± 5.0 (n = 10) Not tested 
Glutamate W F(3,19.5) = 31.1 p <

0.001 
266.95 ± 17.7 (n =
15) 

265.90 ± 9.9 (n = 9) 258.59 ± 15.3 (n =
8) 

151.34 ± 8.5 (n = 10) A-A-A-B 

Glutamine KW Chi2 = 11.1 P = 0.011 16.82 ± 1.5 (n = 15) 31.94 ± 4.5 (n = 10) 20.06 ± 2.2 (n = 8) 26.42 ± 4.4 (n = 10) A-B-AB-AB 
Glycine A F(3,39) = 6.1 p = 0.002 102.32 ± 6.9 (n = 15) 145.87 ± 7.5 (n = 10) 109.93 ± 8.9 (n = 8) 119.37 ± 8.1 (n = 10) A-B-A-AB 
GSH A F(3,38) = 0.5 p = 0.71 59.2 ± 5.3 (n = 15) 66.32 ± 6.7 (n = 10) 68.05 ± 7.8 (n = 8) 65.85 ± 4.8 (n = 9) Not tested 
Histidine A F(3,34) = 1.6 p = 0.219 5.94 ± 0.36 (n = 14) 6.59 ± 0.32 (n = 8) 5.63 ± 0.40 (n = 8) 5.45 ± 0.32 (n = 8) Not tested 
Isoleucine W F(3,20.8) = 15.5 p <

0.001 
10.03 ± 0.04 (n = 15) 7.86 ± 0.52 (n = 10) 7.83 ± 0.54 (n = 8) 4.53 ± 0.44 (n = 10) A-A-A-B 

Lactate A F(3,36) = 1.1 p = 0.358 33.2 ± 2.4 (n = 13) 30.89 ± 2.2 (n = 9) 33.15 ± 3.2 (n = 8) 38.39 ± 3.8 (n = 10) Not tested 
Leucine KW Chi2 = 18 P < 0.001 11.64 ± 0.93 (n = 15) 8.92 ± 0.45 (n = 10) 8.54 ± 0.61 (n = 8) 5.85 ± 0.64 (n = 10) A-AB-AB-B 
Lysine W F(3,17.8) = 4.2 p = 0.021 16.29 ± 1.5 (n = 15) 31.33 ± 4.5 (n = 10) 19.31 ± 2.2 (n = 8) 26.29 ± 4.4 (n = 10) A-B-AB-AB 
Malate A F(3,37) = 5.9 p = 0.002 3980 ± 436 (n = 14) 5726 ± 4716 (n = 10) 6270 ± 412 (n = 8) 3700 ± 666 (n = 9) A-AB-B-A 
Methionine KW Chi2 = 5 P = 0.173 2.14 ± 0.20 (n = 15) 2.01 ± 0.24 (n = 10) 2.47 ± 0.16 (n = 8) 1.84 ± 0.20 (n = 10) Not tested 
Methionine 

Sulfoxide 
A F(3,38) = 7.6 p < 0.001 1.51 ± 0.11 (n = 15) 1.79 ± 0.19 (n = 10) 2.35 ± 0.29 (n = 8) 1.20 ± 0.06 (n = 9) A-AB-B-A 

OH-Proline A F(3,36) = 2.5 p = 0.078 2.82 ± 0.27 (n = 14) 3.91 ± 0.53 (n = 9) 4.03 ± 0.27 (n = 8) 4.27 ± 0.70 (n = 9) Not tested 
Ornithine A F(3,36) = 3.1 p = 0.04 6.62 ± 0.44 (n = 14) 5.25 ± 0.45 (n = 9) 6.78 ± 0.28 (n = 7) 5.62 ± 0.33 (n = 10) Not tested 
Phenylalanine W F(3,21.1) = 17.3 p <

0.001 
11.04 ± 0.81 (n = 15) 9.72 ± 0.51 (n = 10) 8.97 ± 0.46 (n = 8) 5.79 ± 0.43 (n = 10) A-A-A-B 

Proline KW Chi2 = 25.4 P < 0.001 77.75 ± 13.3 (n = 15) 122.75 ± 9.2 (n = 9) 17.32 ± 2.4 (n = 7) 27.03 ± 7.1 (n = 8) A-A-B-B 
Serine A F(3,38) = 6.7 p = 0.001 13.73 ± 0.9 (n = 15) 14.97 ± 0.8 (n = 9) 18.15 ± 1.8 (n = 8) 21.53 ± 2.0 (n = 14) A-A-AB-B 
Succinate W F(3,15.5) = 13.8 p <

0.001 
61.13 ± 11.69 (n =
14) 

37.07 ± 1.54 (n = 10) 8.24 ± 1.83 (n = 8) 2.58 ± 0.33 (n = 9) A-B-BC-C 

Taurine A F(3,33) = 57.4 p < 0.001 9059 ± 270 (n = 12) 11796 ± 119 (n = 7) 8339 ± 410 (n = 8) 6143 ± 262 (n = 10) A-B-A-C 
Threonine A F(3,37) = 3.2 p = 0.035 10.38 ± 0.6 (n = 14) 14.61 ± 1.2 (n = 10) 13.76 ± 1.9 (n = 7) 11.09 ± 1.4 (n = 10) Not tested 
Tryptophan W F(3,19.2) = 20 p < 0.001 1.61 ± 0.139 (n = 15) 1.03 ± 0.117 (n = 10) 0.87 ± 0.067 (n = 8) 0.59 ± 0.038 (n = 10) A-B-B-C 
Tyrosine W F(3,21.3) = 9.1 p < 0.001 10.17 ± 0.85 (n = 15) 7.27 ± 0.52 (n = 10) 6.86 ± 0.43 (n = 8) 4.83 ± 0.56 (n = 10) A-B-B-C 
Valine W F(3,18.7) = 13 p < 0.001 10.67 ± 0.74 (n = 15) 8.29 ± 0.40 (n = 10) 7.92 ± 0.12 (n = 6) 5.22 ± 0.52 (n = 10) A-B-B-C  
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precursors for signaling molecules including hormones and neuro-
transmitters (Kutchko and Siltberg-Liberles, 2013). Our data do not 
allow determining whether the observed decline in BCAAs and AAAs are 
due to their impaired uptake from the food, increased incorporation into 
the proteins or elevated catabolism for energy during hypoxia (Willmer 
et al., 2005; Haider et al., 2019). Regardless of the underlying mecha-
nisms, the decrease in the tissue levels of these important amino acids 
might have negative consequences for protein synthesis, and endocrine 
and neural function of oysters (Kutchko and Siltberg-Liberles, 2013; 
Adeva-Andany et al., 2017). 

4.4. Temperature modulates TCA cycle in combined exposures 

PLS-DA analysis showed significant shifts in the TCA cycle metabo-
lite profiles along the 2nd component that could be assigned to tem-
perature effects. Further, pathway enrichment analysis identified the 
TCA cycle as a pathway significantly altered in the oysters co-exposed to 
intermittent hypoxia with constant elevated temperature. Here, three of 
the measured key metabolites of this pathway (aconitate, (iso)citrate 
and malate) increased in the oyster gills. These findings indicate acti-
vation of TCA cycle during temperature stress, possibly to support the 
elevated energy demand or biosynthetic needs of the cells. Furthermore, 
TCA cycle metabolites are important for retrograde signaling between 
the mitochondria and other cell components (Martínez-Reyes and 
Chandel, 2020) and regulation of the immune response (reviewed in 
Choi et al., 2021). Accumulation of the TCA metabolites might therefore 
signal the heat-induced mitochondrial damage (Choi et al., 2021) and 
stimulate immune response and other cellular protective mechanisms as 
already reported for other invertebrates (Wang et al., 2008; Matozzo and 
Marin, 2011; Catalán et al., 2012; Dang et al., 2012; Applebaum et al., 
2014; Bayne, 2017d). Further investigations are needed to determine 
whether TCA-related signaling plays a role in this immune activation. 
Notably, exposure to fluctuating temperature did not lead to accumu-
lation of TCA cycle intermediates in hypoxia-exposed oysters indicating 
milder mitochondrial stress in this environmentally relevant exposure 
scenario. 

The only studied TCA metabolite that consistently responded to 
intermittent hypoxia rather than temperature stress, was succinate, 
which was consistently depleted in all hypoxia-exposed groups 
compared to the normoxic baseline. Succinate is a common anaerobic 
end product that accumulates during hypoxia in marine bivalves 
(Schiedek, 1997a, 1997b; Storey, 2004; Bayne, 2017b; Haider et al., 
2020) and is rapidly depleted during recovery (Ouillon et al., 2021, 
2022). This depletion often demonstrates overshoot with succinate 
levels decreasing below the normoxic baseline (Ouillon et al., 2021, 
2022), similar to the pattern found in our present study. This might 
reflect overactivation of respiration (the so called oxygen debt) 
commonly observed after hypoxia and interpreted as the metabolic costs 
of restoring cellular and systemic homeostasis disrupted by hypoxia 
(Herreid, 1980; Ellington, 1983). This hypothesis is supported by the 
enhanced mitochondrial ability to oxidize succinate during post-hypoxic 
recovery in C. gigas (Adzigbli et al., 2022) and might be an adaptive 
mechanism that allows this hypoxia-tolerant species to use accumulated 
anaerobic end-product (succinate) as a mitochondrial fuel to rapidly 
restore ATP levels. 

4.5. Taurine metabolism is modified by temperature and hypoxia 

Loadings of taurine were above the threshold for the two first PLS-DA 
components, indicating combined effects of hypoxia and temperature on 
this metabolite. Pathway enrichment analysis also identified taurine and 
hypotaurine metabolism as a significantly modulated pathway in hyp-
oxia exposures combined with normal or fluctuating temperature 
involving an increase or decrease in taurine content, respectively. In 
bivalves including oysters, taurine acts as an important compatible 
osmolyte (Yancey, 2005). Furthermore, taurine enhances mitochondrial 

performance and mitigates the mitochondrial ROS production in bi-
valves and other organisms (Hansen et al., 2006; Jong et al., 2012; Bin 
et al., 2017; Sokolov and Sokolova, 2019). In cross-species comparisons 
of bivalves, high taurine levels were associated with higher tolerance to 
hypoxia-reoxygenation stress (Haider et al., 2020). Depletion of taurine 
might therefore partially explain the lower mitochondrial performance 
(shown by suppressed ETS activity levels) in oysters exposed to inter-
mittent hypoxia combined with fluctuating temperature observed in our 
present study. No decrease in ETS activity was found in the other two 
experimental groups that maintained normal or elevated taurine con-
centrations. Overall, our present study and earlier published research 
indicate that C. gigas effectively maintain taurine homeostasis with only 
mild variation under most stress scenarios (Hummel et al., 1996; Kube 
et al., 2007; Haider et al., 2020). This ability might contribute to 
exceptionally high stress tolerance of C. gigas (Zhang et al., 2012; Bayne, 
2017a) and requires further investigation. 

5. Conclusion and outlook 

Our present study demonstrated that intermittent hypoxia combined 
with fluctuating temperature caused metabolic shifts in C. gigas, which 
was accompanied by depletion of energy reserves. Studies show that 
30 ◦C is the upper thermal limit of C. gigas (Le Gall and Raillard, 1988; 
Bougrier et al., 1995), albeit submerged North Sea oysters can survive 
this temperature for at least three days without mortality (Bruhns, un-
published data). However, the combination of this high temperature 
with cyclic hypoxia exceeded the oysters’ stress tolerance leading to 
tissue damage and high mortality. In contrast, exposure to cyclic hyp-
oxia at 15 ◦C caused metabolic shifts in different pathways in the Pacific 
oyster but no negative changes in bioenergetics or oxidative stress. This 
study highlights the importance of investigating combined stressors 
affecting metabolic modulation caused by different combinations of 
stress intensities or modes. In general, we showed that C. gigas is quite 
robust against natural stress conditions but gains this robustness from 
energetically costly adaptations. Further studies are needed to test the 
putative mechanisms of phenotypic plasticity and their role in stress 
adaptation in oysters, like the role of HSPs synthesis in the protein 
accumulation in the gills, the implications of the altered BCAAs and 
AAAs metabolism in endocrine signaling and proteome maintenance, 
and the role of NO as a metabolic regulator during fluctuating temper-
ature and oxygen regimes. 
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