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Abstract

In climate modeling, the stratospheric ozone layer is typically only considered in a highly simplified form due to
computational constraints. For climate projections, it would be of advantage to include the mutual interactions
between stratospheric ozone, temperature, and atmospheric dynamics to accurately represent radiative forcing. The
overarching goal of our research is to replace the ozone layer in climate models with a machine-learned neural
representation of the stratospheric ozone chemistry that allows for a particularly fast, but accurate and stable
simulation. We created a benchmark data set from pairs of input and output variables that we stored from simulations
of the ATLAS Chemistry and Transport Model. We analyzed several variants of multilayer perceptrons suitable for
physical problems to learn a neural representation of a function that predicts 24-h ozone tendencies based on input
variables. We performed a comprehensive hyperparameter optimization of the multilayer perceptron using Bayesian
search and Hyperband early stopping. We validated our model by replacing the full chemistry module of ATLAS and
comparing computation time, accuracy, and stability. We found that our model had a computation time that was a
factor of 700 faster than the full chemistry module. The accuracy of our model compares favorably to the full
chemistry module within a 2-year simulation run, also outperforms a previous polynomial approach for fast ozone
chemistry, and reproduces seasonality well in both hemispheres. In conclusion, the neural representation of
stratospheric ozone chemistry in simulation resulted in an ozone layer that showed a high accuracy, significant
speed-up, and stability in a long-term simulation.

Impact Statement

Climate models are among the most sophisticated mathematical models of our time. In order to enable
projections far into the future, climate models have so far tolerated necessary simplifications. This is also the
case with the representation of the stratospheric ozone layer, which would otherwise require a very high
computation time. However, by using machine learning, we have developed a much faster model of the
ozone layer that is still accurate and can respond interactively to a changing environment. This model allows
for an interactive representation of the ozone layer in climate models that is much closer to reality. This
should make climate models more reliable and accurate, which is vital for policymakers and important for
our planet.
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1. Introduction

Climate models (or Earth SystemModels) are among the most sophisticated mathematical models of our
time. These models describe the behavior of the climate system and the mutual interactions between its
components: atmosphere, hydrosphere, cryosphere, biosphere, and pedosphere, via numerical represen-
tations of the basic physical equations.

In general, the model resolution and the representation of Earth system processes are limited among
others by the computation time per model run. In order to represent a multitude of relevant climate
processes, various simplifications of these processes are used (simplified equations, parameterizations,
numerical precision). Climate simulations need to run much faster than real-time in order to project far
into the future (on the order of decades) in a time frame of days to weeks in this context. Each climate
process considered adds to the total computation time. Therefore, it must be evaluated whether a higher
complexity and longer computation time actually lead to an improved representation of the Earth’s climate
system.

Consequently, only processes with a significant impact on the climate are considered. A key parameter
for climate simulations is the change in averaged global surface temperature caused by a change in the
energy budget. Some climate processes directly influence radiative forcing. But often the interdependence
of the processes is more complex. Some processes may be influenced by climate change itself and in turn
indirectly influence radiative forcing as part of a mutual feedback.

For climate projections, it would be of advantage to include the mutual interactions between
stratospheric ozone, temperature, and atmospheric dynamics in order to improve the radiative forcing
in themodel. The amount of ozone in the stratosphere is controlled by chemical production and loss cycles
as well as by the transport of air masses. Photolysis of ozone and molecular oxygen absorbs harmful
ultraviolet solar radiation (UV-B) which consequently heats the stratosphere and thus impacts the
atmospheric energy flux. In turn, the changes in stratospheric temperature and circulation, induced by
climate change, will impact the stratospheric ozone distribution. Therefore stratospheric ozone plays an
important role in the overall climate forcing (e.g., Iglesias-Suarez et al., 2018).

The existing understanding of the chemical processes in the stratospheric ozone layer allows the
mathematical formulation of the processes as a differential equation system. This can be used to calculate
the temporal tendency of chemical compounds such as ozone and apply them in chemical models.
However, this numerical approach requires too much computational time to be of use for many climate
simulation scenarios.

With the greater availability of data, more performant computational resources (e.g., GPU), and recent
methodological advances in machine learning, the number of applications that can achieve breakthrough
results using machine learning is also growing. For many disciplines, this means a shift in thinking, but
also new inventions and approaches that are now becoming feasible. For our field of research in
atmospheric physics and climate science, AI surrogate models are such a new approach, allowing an
interactive representation of stratospheric ozone chemistry in climate simulations. Compared to modules
for full stratospheric chemistry, AI surrogate models require orders of magnitude less computational time
than Chemistry and Transport Models and provide a more realistic representation of atmospheric
dynamics compared to prescribed ozone fields.

The feedback loop in Figure 1 illustrates why AI surrogate models (right) of the ozone layer act as an
important segment in addressing climate change. Observations (in situ or remote) of the current state of
the Earth system (left) can be used to initialize elaborate process models (top) to mathematically
reproduce certain processes, like stratospheric ozone chemistry. These models are used to analyze and
enhance our understanding of the Earth system processes. The Lagrangian Chemistry and Transport
Model (CTM) ATLAS (Wohltmann and Rex, 2009; Wohltmann et al., 2010, 2017a) is such a process
model. It calculates transport as well as mixing of air parcels and uses a full chemistry module for the
stratosphere, including 47 active species and more than 180 reactions. In this research, we used ATLAS
for two purposes: (1)We performed simulation runs in ATLAS using the full chemistrymodule to create
a data set of input and output variables to train and test the AI surrogate model. (2) For validation
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purpose, we replaced the full chemistry module of ATLAS by the novel AI surrogate model and
performed a long-term simulation run.

Climate models (bottom) would benefit from a detailed and interactive representation of each climate
process, but are limited to simplified representations of many climate processes. Far-reaching actions by
decision-makers are based on the projections of climate simulations that are based on these simplifications
instead of the computationally demanding detailed representation.

Our goal is to improve the accuracy and reliability of climate simulations by advancing the way
stratospheric ozone is currently represented in climate models through the use of state-of-the-art machine-
learning methods. This research, in addition to investigating the feasibility of a neural representation of
stratospheric chemistry, specifically examines the viable speed-up, accuracy, and stability of this
approach in long-term simulations.

In Section 1.1, we review related research on fast stratospheric ozone chemistry models in recent
decades. This is followed by a brief introduction of the novel model Neural-SWIFT (Section 1.2). The
problem statement from a machine learning perspective follows in Section 2. Section 3 explains the
process of creating our data set from model runs. The methodology section (Section 4) follows, in which
we explain our machine learning pipeline to obtain a neural representation of the stratospheric ozone
chemistry. In our results section (Section 5), we investigate the speed-up, accuracy, and stability of our
approach. Finally, we discuss our conclusion in Section 6.

1.1. Related research on fast stratospheric ozone models

For climate models, the most common approach is to apply a noninteractive representation of strato-
spheric ozone with prescribed ozone fields (Hersbach et al., 2020; Eyring et al., 2013; Revell et al., 2022),
although a growing number of model simulations use interactive ozone chemistry schemes, either
simplified schemes like Linoz (McLinden et al., 2000; Hsu and Prather, 2009) coupled to a General
Circulation Model (GCM) or Chemistry Climate Models (CCMs) likeWACCM (Gettelman et al., 2019).

Figure 1.Avision for a potential feedback loop: AI surrogatemodels could allow decision-makers to base
their actions on more reliable forecasts of Earth’s climate.
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Prescribed ozone fields are often monthly averaged three- or two-dimensional ozone look-up tables
that are easy to apply but are not aligned with the internal dynamics and atmospheric conditions of the
model (Rex et al., 2014; Nowack et al., 2018). Further, prescribed ozone fields can neither react to
climatological changes of the stratosphere nor its chemical composition.

A number of interactive but fast stratospheric ozone chemistrymodels have been developed in the past,
such as the Cariolle model (Cariolle and Deque, 1985; Cariolle and Teyssedre, 2007), CHEM2D-Ozone
Photochemistry Parameterization (CHEM2D-OPP) (McCormack et al., 2006), the COPCAT-model
(Monge-Sanz et al., 2011, 2022), Linoz or the Nowack-model (Nowack et al., 2018). All these models
use data of existing process models for stratospheric ozone by employing linear to polynomial machine
learning methods.

Linear models: The updated version of the Cariolle model (Cariolle and Deque, 1985; Cariolle and
Teyssedre, 2007) expands the ozone continuity equation into a Taylor series up to first order around three
variables: (1) ozone mixing ratio, (2) temperature, and (3) overhead ozone column. A two-dimensional
photochemical model is employed to derive an adjusted set of coefficients of the Taylor expansion per
latitude and pressure altitude. To take into account the heterogeneous ozone chemistry that occurs during
polar night an additional ozone destruction term was introduced. It has been coupled among others to the
ARPEGE-Climate model (Déqué et al., 1994; Cariolle and Teyssedre, 2007).

The choice of variables of Cariolle’s model was also used by Linoz and CHEM2D-OPP. Linoz
determines the coefficients of the Taylor expansion by using small perturbations around the climato-
logical mean state of the three variables. The first version of Linoz (McLinden et al., 2000) did not
incorporate heterogeneous chemistry and simulations did not show a formation of an ozone hole. This
could be fixed by the updated version (Hsu and Prather, 2009), which accounts for polar ozone
depletion. Unlike the analytical solution of Linoz, CHEM2D-OPP applies a standard backward Euler
method to calculate the net photochemical tendency. Heterogeneous chemistry is not treated by
CHEM2D-OPP so far.

Nowack et al. (2018) followed a different strategy. Instead of estimating the ozone tendencies, the
Nowack model directly projects the three-dimensional ozone distribution (mass mixing ratios per grid
cell) based on the temperature distribution from the previous day. In addition, the input variables (grid
cells) are reduced using principle component analysis and a linear regression based on the Ridge
regression method. Since there is a linear relationship between temperature and ozone, this method
shows good agreement for certain regions and especially for the stated CO2 forcing scenario.

Nonlinear models: The fast ozone model of the SWIFT project follows a strategy that goes beyond those
previously mentioned and tries to account for the nonlinearity of the stratospheric ozone chemistry of the
24-h tendency.

SWIFT is divided into a polar and extrapolar module because, from a chemical perspective, polar
ozone chemistry is fundamentally different from ozone chemistry in mid-latitudes and the tropics. The
reason for this difference lies in the role of heterogeneous reactions on clouds in polar ozone chemistry,
which do not play a role in extrapolar chemistry. As a result, a module for polar ozone chemistry requires
additional and different input variables and needs to account for a memory effect on past conditions in
polar ozone. On the other hand, SWIFT’s extrapolar module is solely based on the current state of the
atmosphere.

The polar module (Rex et al., 2014; Wohltmann et al., 2017b) uses a small coupled differential
equation system to calculate the continuous evolution of polar vortex averaged ozone mixing ratios and
three other key chemical species during winter.

Kreyling et al. (2018) developed the extrapolar module using a polynomial approach. A polyno-
mial of fourth degree was fitted for each month of the year, which determines the 24-h tendency of
ozone volume mixing ratios for each model point. Instead of focusing only on temperature (Nowack
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et al., 2018) or on the three key variables (temperature, ozone, overhead ozone column) (Cariolle and
Teyssedre, 2007), a total of nine basic variables are used. Altitude, latitude, and four ozone-depleting
chemical compounds are introduced as additional input variables. SWIFT allows the simulation of
the global interactions between the ozone layer, radiation, and climate, with a low computational
burden.

1.2. AI surrogate model: Neural-SWIFT

We present a novel approach called Neural-SWIFT, that builds on the research of Kreyling et al. (2018)
to update the extrapolar module of SWIFT. Neural-SWIFT employs an improved choice of input
variables and introduces a novel method called neural representation that uses artificial neural networks
(ANNs).

2. Problem setup

This research builds on the experience with the parameterization of the full chemistry module of ATLAS,
which uses parameters, λ¼ λ1,…,λNf g (parameters of the chemical model), to calculate the temporal
tendency of several chemical compounds in the stratosphere (including ozone). Our aim is to build a
simpler but much faster model that focuses solely on the temporal tendency of stratospheric ozone. To this
purpose, we followed a twofold development strategy for a machine-learned surrogate model: (1) We
determined a choice of input variables X that is based on amuch lower number of parameters compared to
the full chemistrymodule ofATLAS. (2) The novelmodel is based on amuch bigger and discrete time step
of 24 h.We come back to the reasoning of the choice of discrete time step in Section 3.1 and to the method
used to determine the input variables X in Section 4.

At a certain position and time t, the state of an air parcel can be described by the parameters of the
chemical model λ (e.g., chemical volume mixing ratios, temperature, pressure). We assume that a
dependence of this state described by λ and the 24-h tendency of ozone (ΔXOzone

t ) exists and can be
described by a function Φ λð Þ. Furthermore, we assume that this function can also be represented
sufficiently well by a reduced number of input variables X.

To approximateΦ λð Þ, we applymultilayer perceptrons (MLPs) to calculate the 24-h ozone tendency in
individual air parcels (pointwise on the spatial grid of the underlying model) and apply them in terms of
the forward Euler scheme (see Figure 2). At each timestep t, we employ the current vector of parameters of
each individual air parcel (Xt) as an input vector to the MLP. By adding the prediction of the 24-h ozone
tendency (ΔXOzone

t ) to the ozone volume mixing ratio XOzone
t

� �
of an air parcel, we update the ozone field

point-wise every 24 h in model time.

Figure 2. Prediction step that employs Neural-SWIFT’s MLPs. Where t: a 24 h time-step in model time,
Xt: parameters describing the state of one air parcel for this time-step, XOzone

t : ozone volume mixing
ratio of this air parcel and time-step, ΔXOzone

t : 24-h ozone tendency calculated by the MLP for this air
parcel and time-step, XOzone

tþ24h: updated ozone volume mixing ratio of this air parcel for the next time-step
tþ24h.
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N Θ :ℝ12 !ℝ1

N Θ :X!N Θ Xð Þ≈Φ λð Þ
where N Θ : neural network,Θ : neural network parameters,

X : airparcel’sparameters,Φ :model formulation of  ATLAS

λ : parameters of  the full chemistry module of  ATLAS

: (1)

The neural network N Θ is trained by adjusting the neural network parameters Θ (weights and biases
associated with each connection of the fully connected layers) tominimize the difference betweenN Θ Xð Þ
and Φ λð Þ.

J X,Φ,Θð Þ¼ 1
m

Xm
i¼1

N Θ X ið Þ
� �

�Φ λ ið Þ
� �� �2

min
Θ

J

whereJ : cost function,m : number of  input‐output data pairs:

(2)

The training employs a cost functionJ (see equation (2))) that usesm input–output training data pairs

(X ið Þ and Φ λ ið Þ
� �

, i∈ 1,…,mf g) to calculate the mean squared error (MSE) of the differences between

predictions (N Θ X ið Þ� �
) and known outputs (Φ λ ið Þ

� �
). The mini-batch gradient descent algorithms can

then be used to minimizeJ and to improve the emulation ofΦ λð Þwithin the considered data distribution.
In the following sections, we present how we developed and validated Neural-SWIFT (N Θ Xð Þ), and

additionally, we put the resulting model in a benchmark comparing the computation time, accuracy, and
long-term stability with the ATLAS Chemistry and Transport Model and additionally to a former
polynomial approach.

3. Data from simulation

It is hard to obtain the information needed as input and output data pairs for the neural network directly
from measurements. Although desirable, to determine the 24-h tendency of ozone would require probing
the same moving air mass twice within 24 h, which is often not possible. In addition, not all required
variables can readily be measured. For this reason, we use model results here. This approach is justifiable
since the ATLAS model has been extensively validated against measurements (Wohltmann and Rex,
2009; Wohltmann et al., 2010) and shows a good agreement to measurements in general. Due to the
Lagrangian method employed by ATLAS, all air parcels move freely in all three dimensions of the model
atmosphere and are not bound to a fixed grid as in an Eulerian grid. In this way, the parameters can be
stored as a function of the individual air parcels at the selected time step, instead of storing the values at a
fixed grid position.

Simulations are performed with the global Lagrangian Chemistry and Transport Model (CTM)
ATLAS (Wohltmann and Rex, 2009; Wohltmann et al., 2010, 2017a). The chemistry module
comprises 47 active species and more than 180 reactions. Absorption cross sections and rate
coefficients are taken from recent Jet Propulsion Laboratory (JPL) recommendations (Burkholder
et al., 2015).

Model runs are driven by meteorological data from the European Centre of Medium-Range Weather
Forecasts (ECMWF) ERA Interim reanalysis (2o × 2o horizontal grid, 6 h temporal resolution, 60 model
levels) (Dee et al., 2011). The model uses a hybrid vertical coordinate that is identical to a pure potential
temperature coordinate for a pressure lower than 100 hPa. Diabatic heating rates from ERA Interim are
used to calculate vertical motion. The vertical range of the model domain is 350–1,500 K and the
horizontal resolution of the model is 200 km (mean distance between air parcels).
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We made an effort to cover a wide range of atmospheric conditions like periodic stratospheric
circulations patterns (including different phases of the quasi-biennial oscillation) by considering two
simulation periods (2.5 years each): (1) The first run starts on October 1, 1998 and ends on March
29, 2001. (2) The second starts on October 1, 2004 and ends on March 30, 2007. Model data of the first
month are not used to allow for a spin-up of the mixing in the model.

The chemical species are initialized on 1November of the respective starting year. O3, H2O,HCl, N2O,
HNO3, and CO are initialized from measurements of the Microwave Limb Sounder (MLS) satellite
instrument (Livesey et al., 2020). ClONO2 is initialized from a climatology of the ACE-FTS satellite
instrument as a function of pressure and equivalent latitude (Koo et al., 2017).

BrONO2 is assumed to contain all Bry, which is taken from a Bry–CH4 relationship from ER-2 aircraft
and Triple balloon data (Grooß et al., 2002). All Bry values are scaled with a constant factor to give
maximum values of 19.9 ppt for the year of measurement (2000) (Dorf et al., 2008). CH4 and NOx are
initialized as described inWohltmann et al. (2017a). The setup for the parameters of the polar stratospheric
cloud model (e.g., number densities, supersaturation, nucleation rate) is the same as described in
Wohltmann et al. (2017a).

3.1. Timestep

The choice of a discrete-time step greatly affects the computation time when applying Neural-SWIFT in a
climate model. ATLAS uses the stiff solver NDF (Shampine and Reichelt, 1997) for solving a system of
differential equations with a variable time step ( << 24 h) determined by the solver algorithm. The choice
of amuch larger time step in Neural-SWIFTcompared to ATLAS is possible because of the long chemical
lifetime of ozone in the lower and middle stratosphere as well as the average meridional and vertical
transport timescales in this region. For example, the chemical lifetime of the oxygen family (Ox) in the
equatorial region in January at 30 km altitude is about 14–30 days (Kreyling et al., 2018).

We stored the state of the air parcels every 24 h, which allowed us to derive the 24-h tendency of ozone
as our regression output.

3.2. Regime filters

Our data set focuses on the region of the lower to middle stratosphere because this is the region with the
largest contribution to the total ozone column. Geographically, the data set covers the entire Earth, but is
limited to air parcels that pass through our following regime filters.

• Polar: We exclude all air parcels inside the polar vortices according to a modified potential vorticity
threshold of ± 36mPV (with potential temperature Θ0 ¼ 475K) (Lait, 1994; Kreyling et al., 2018).

• Lower boundary: The lower boundary of the ATLAS model run is set to 350 K of the hybrid
coordinate (approximately potential temperature). Additionally, we define a threshold for a max-
imum water vapor content (volume mixing ratio < 8× 10�6) to exclude tropospheric air parcels
mixed into the lower tropical stratosphere.

• Upper boundary: We define a dynamic upper boundary of the SWIFT domain according to the
chemical lifetime of ozone (14-day contour) (Kreyling et al., 2018), which depends on the seasonally
varying solar radiation flux.

3.3. Splitting data

The data set, consisting of approximately 200 million samples, was randomly split into 50% training data
and 50% testing data.

Furthermore, the dataset has been divided into 12 seasonal data sets (see Section 4.5). Each seasonal
data set comprises the data for one calendar month, alongwith the data from the preceding and succeeding
month. For instance, the data set for January includes samples from both December and February.
Consequently, the individual monthly models are trained on data from a 3-month time window.

Environmental Data Science e41-7

https://doi.org/10.1017/eds.2023.35 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.35


4. Method: neural representation of the stratospheric ozone chemistry

ANNs arewell known for their ability to act as universal approximators (Hornik et al., 1989). In this sense,
they are able to represent any measurable function to any desired degree of accuracy. The multilayer
perceptron (MLP) method is a class of feed-forward ANNs that uses fully connected layers. Exploring
MLP allowed us to develop models that learn a continuous function from input and output data pairs
without being explicitly programmed. The goal of this research was to train an MLP to develop a neural
representation of the latent function Φ λð Þ (see equation (1)).

We decided to place the machine-learning development in a framework that is supported by a large
machine-learning community. The development of Neural-SWIFT used Falcon’s (2019) PyTorch wrap-
per for high-performance AI research and additionally, has been combined with Biewald’s (2020)
machine-learning platform for experiment tracking and visualizations to develop insights for this paper.

The strategy used for developing Neural-SWIFT followed a process that we depict in the following
machine learning pipeline (see Figure 3). The steps of this pipeline are explained in the following
paragraphs.

4.1. Select multilayer perceptron architecture

First, we investigated variations in the architecture of multilayer perceptrons to find a variant that
optimally represents high-dimensional physical functions such as Φ λð Þ (see equation (1)). The basic
structure of a multilayer perceptron consists of a series of layers composed of nodes (also known as
perceptrons or neurons), each of which is connected to the nodes of the previous layer (so-called fully
connected layers). In general, each node consists of two functions: an input function, and also a nonlinear
activation function. Figure 4 illustrates the two different architectures of layers in a multilayer perceptron
that we compare in this section. Each variant of the architecture has been tested with two different
activation functions (see Table 1).

The first architecture consisted of a multilayer perceptron that used a linear input function followed by
a nonlinear activation function andwas tested by two variants. The first variant (Baseline (ReLU)) applied
the Rectified Linear Unit (ReLU) activation function (see Table 1), whereas the second variant applied the
periodic activation function Siren (Sitzmann et al., 2020).

Siren is known for approximations of continuous functions to near perfection (Romero et al., 2022). It
uses an activation function of the form: σ yð Þ¼ sin ω� yð Þ, whereω is an adjustable parameter that needs to
be optimized (see Section 4.4). The choice of ω theoretically allows the sine functions to span multiple
periods over [-1,1] and thereby the model to adapt to frequencies in the data.

The second architecture was an implementation of the Quadratic Residual Network QRes (Bu and
Karpatne, 2021) that is known to show a fast convergence and a high parameter efficiency, implying that
only a small number of neurons is required to represent the context. The first variant of this architecture

Neural- SWIFT Model

Select Multilayer Perceptron Architecture

Selection of Input Variables

Hyperparameter Optimization

Extensive Training of Final Model

Figure 3. Schematic of Neural-SWIFT’s machine learning pipeline.
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QRes used a quadratic input function of the form:W2x ∘W1xþW1xþb, where ∘ denotes the Hadamard
product (see Figure 4). We used the bounded activation function tanh, because QRes is known to show
large activation outputs with a large number of layers. The second variant of this architecture tested a
modification of QRes that we called QResSiren. It applied the quadratic residual input function followed
by the periodic activation function of Siren.

The boxplot shown in Figure 5 depicts the benchmark results of the multilayer perceptron variants.We
compared the residuals with respect to the testing data for all four variants and nine different network sizes
each (number of layers 3,5,7f g, number of neurons per layer: {256, 512,768}). The models that used the
architecture employing the periodic activation function of Siren showed the smallest residuals with
respect to the testing data for all tested network sizes. Therefore, we chose this architecture for the next
steps of the machine learning pipeline.

4.2. Candidates for input variables

Before performing a sensitivity analysis to find a selection of input variables that minimizes the residuals
of the testing data, we assembled a list of possible input variable candidates based on our physical and
chemical process understanding of the underlying problem.

Figure 4. Comparison of two architectures of MLPs that employ different input functions in each node of
the hidden layers (1::L): (Architecture 1) linear input function and below (Architecture 2) quadratic
residual input function. While the “General” scheme (top) represents a complete MLP, the bottom two
show the scheme of a single hidden layer. Where xin: input vector of activations of the previous layer,W:
weight matrix, b: bias vector, σ: activation function, xout: output vector of activations of this layer, and
N Θ Xð Þ: neural network output.

Table 1. Comparing four different architectures of multilayer perceptrons

Variant Input function y Activation function σ

baseline Wxþb max y,0ð Þ
Sirena Wxþb sin ωyð Þ
QResb W 2x∘W 1xþW 1xþb tanh yð Þ
QResSirenc W 2x∘W 1xþW 1xþb sin ωyð Þ
Note.W ,W1 , andW2 are weight matrices; b is the bias vector; x represents activation outputs from the previous layer; o denotes the Hadamard product.
aSitzmann et al. (2020) using ωL1 ¼ 6 for the first layer and ω¼ 4 for the remaining layers.
bBu and Karpatne (2021).
cA combination of QRes (input layer) and Siren (output layer).
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For each input variable candidate, we also indicate how that variable can be implemented in a climate
model and if the time that the variable references to are defined as, for example, an instantaneous value at
the time step of the model (“t—24h”) or an 24 h average.

The first subset of input variables is related to the chemical composition of an air parcel and was
selected following the approach that is detailed in Kreyling et al. (2018). This choice uses the covariance
between chemical species to find suitable combinations of species yielding five chemical families:

■ Chlorine family (Cly) in Volume Mixing Ratio (VMR)
Time reference: t�24h

■ Bromine family (Bry) in Volume Mixing Ratio (VMR)
Time reference: t�24h

■ Nitrogen family (NOy) in Volume Mixing Ratio (VMR)
Time reference: t�24h

■ Hydrogen family (NOy) in Volume Mixing Ratio (VMR)
Time reference: t�24h

■ Oxygen family (HOy) in Volume Mixing Ratio (VMR)
Time reference: t�24h

These chemical variables are known for their long lifetime andwere well suited to workwith the chosen time-
step (see Section 3.1).To create the training data of Neural-SWIFT, these variables were calculated from the
parameters of the full chemistrymodel. Four of these chemical families (Cly, Bry, NOy, HOy) are the catalysts
in the catalytic ozone depletion cycles. For the implementation in aGCMand also for the validation ofNeural-
SWIFT in ATLAS, these four variables can be determined using climatologies or lookup tables.

The following input variable candidates were considered for the sensitivity analysis:

■ Overhead Ozone Column (overhead) in Dobson Unit (DU)
Availability: Needs to be calculated by integrating over the respective ozone profile in the
climate model.

Time reference: t�24h
■ Temperature (temp.) in Kelvin

Availability: directly available from the climate model
Time reference: t�24h (climate model) or average over 24-h period (ATLAS)

■ Pressure altitude (p_alt.) in meters
Availability: Needs to be calculated from pressure directly available from the climate model.
Time reference: t�24h (climate model) or average over 24-h period (ATLAS)

Figure 5. Four multilayer perceptron architectures: residuals from the cost function (horizontal) using
the full-year testing data (normalized values) are compared. For each variant, nine network sizes were
tested (number of layers {3, 5,7}, number of neurons per layer: {256,512,768}) to minimize the effect of
network size on each variant.
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■ Geographic latitude (latitude) in degrees North
Availability: directly available from the climate model
Time reference: t�24h (climate model) or average over 24-h period (ATLAS)

■ Lowest Solar Zenith Angle (SZA) in degrees during the 24-h time period
Availability: Solar zenith angle needs to be calculated by a function inside the climate model
from latitude and day of year.
Time reference: highest elevation of the sun during day using either the latitude from t�24h
(climate model) or the 24-h average latitude (ATLAS)

■ Photolysis frequencies (PFs) in s�1

Solar irradiance is causally related to ozone chemistry in certain wavelength ranges. ATLAS
calculates photolysis reaction rates from the product of the photolysis frequencies and species
concentrations. These are used to update the respective species concentrations. From the
43 photolysis reactions included in ATLAS, we chose six candidates for input variables based
on our physical and chemical process understanding of the underlying problem:

ðO2 PFÞ :O2þhv!Oð3PÞþOð3PÞ
ðO3 PFÞ :O3þhv!O2þOð3PÞ

ðClOy PFÞ :ClONO2þhv!ClOþNO2

ðClOx PFÞ :Cl2O2þhv!ClþClOO

ðNOx PFÞ :NO2þhv!NOþOð3PÞ
ðNOy PFÞ :HNO3þhv!OHþNO2:

ATLAS uses a four-dimensional lookup table for the photolysis frequencies, that is a function of:
(1) overhead ozone, (2) temperature, (3) pressure, and (4) solar zenith angle.

Availability: Needs to be calculated from the ATLAS photolysis lookup table, which needs to be
implemented into the climate model. In turn, the photolysis table needs pressure, temperature,
overhead ozone, and solar zenith angle from the climate model as inputs. Time reference:
(temperature, pressure): t�24h (climate model) or average over 24-h period (ATLAS), (over-
head ozone): t�24h, (SZA): highest elevation of the sun during day

■ Sunlight-hours (daylight) in hours
Availability: Requires latitude and day of year variables available directly from the climate model.
Time reference: day of year, average over 24-h period for latitude
Themagnitude of the 24-h ozone tendency also depends on the amount of time each air parcel was
exposed to sunlight, and was treated in our data set via the variable sunlight hours: Sunlight hours
are calculated from the period of time that the solar zenith angle during a day is smaller than 90° (as a
function of day of year and latitude). Simplified equations to calculate sunlight-hours are based on
Travis Wiens (2022) and do not consider refraction and, twilight, size of the sun, among others.

4.3. Selection of input variables

The final selection of input variables is based on a sensitivity analysis. The goal of the sensitivity analysis
was to improve the quality of the emulation of the stratospheric ozone chemistry compared to the former
polynomial approach of SWIFT (i.e., in terms of differences to the testing data set of output values).
Different choices of input variables of different number and combination were used to train MLPs. The
training was stopped early and after the same number of learning steps (20,000) to reduce the compu-
tational effort of the sensitivity analysis.

Due to the very large number of possible combinations of up to 16 candidate input variables, we
decided not to test all possible combinations, but instead specified a three-step strategy in advance. While
the five input variables that represent the chemical families remain unchanged in the experiments, the
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choice of additional input variables is varied. Figure 6 shows a subset (39 out of a total of 107) of all
experiments performed depicting the different choices for the input variables (left) and comparing the
residuals with the normalized test data (right) (see equation (2)).

The first set of experiments dealt with the choice of variables of Kreyling et al. (2018) (latitude,
altitude, temperature, and overhead ozone column) and also with the variables daylight and solar zenith
angle. One of these experiments employs exactly the same choice as the former polynomial approach of
SWIFT (orange color).

We chose not to use geographic (e.g., latitude, longitude) or seasonal variables (e.g., day of the year)
since these are not directly causally correlated to the output variable (change of ozone) and there are better
choices that have a more direct physical or chemical relationship to the change of ozone.

The second set of experiments used all six photolysis frequencies and again dealt with variables of step
1. By adding photolysis frequencies to the choice of input variables the residuals could be significantly
reduced compared to the choice of variables of the former polynomial approach of SWIFT (Kreyling et al.,
2018) (orange color).

With the last set of experiments of the sensitivity analysis, wewanted to evaluatewhether all photolysis
frequencies are required or if a lower number of variables can be selected.We performed experiments that

Figure 6. Results of the sensitivity analysis. Different sets of input variables (left) were used to train each an
MLP. The residualswith respect to the normalized testing data of thewhole year are shown (see cost function
in equation (2)). The architecture and training setup was the same for all models and used training data of
all twelvemonths (numberof layers: 6, numberof neurons per layer: 733,ωL1: 6,ω: 4). (orange) set used by
Kreyling et al. (2018), (green) Neural-SWIFT’s choice of input variables, and (blue) other sets.
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used altitude, overhead ozone column, temperature, and daylight, and additionally all seven possible
combinations of the pairs of photolysis frequencies: (1) O2_PF and O3_PF, (2) ClOy PF and ClOx_PF,
and (3) NOx_PF and NOy_PF. The best result (green color) was selected as the final choice of input
variables for Neural-SWIFT.

4.4. Hyperparameter optimization

We optimized six hyperparameters that heavily impacted the learning progress of the resulting model,
such as the number of layers and the number of neurons per layer. To accomplish this, we conducted a
step-wise optimization, which we have found to be highly effective. This approach involves sequentially
optimizing subsets of hyperparameters while keeping others fixed, thereby reducing the search space and
making the optimization process more computationally efficient.

While searching for all hyperparameters of a neural network simultaneously is a valid approach, it has
its limitations in high-dimensional spaces, often referred to as the “curse of dimensionality.” For instance,
conducting a grid search over a six-dimensional hyperparameter space would necessitate an excessively
large number of trials to identify suitable hyperparameters. Consequently, this increases the computa-
tional resources required for training a large number of neural networks.

We divided the hyperparameters into three groups, each consisting of two corresponding parameters
that were highly interdependent. This approach facilitated fast progress in the search for all six
hyperparameters and was iterated upon.

We implemented a Bayesian search for hyperparameters. This probabilistic approach maps hyper-
parameters to the probability of a metric score. This way the subsequent choice of hyperparameters had a
higher probability to improve the metric score. Compared to grid search, the Bayesian search also helped
to reduce the number of models needed to be trained to find a good choice of hyperparameters.

The hyperparameter optimization has been conducted using data from all months. Subsequently, these
optimized parameters were utilized to train models on seasonal data. Sections 3.3 and 4.5 provide an
explanation for the decision to have one model per month.

AppendixC contains figures that illustrate the results of the hyperparameter search. Table 2 outlines the
final configuration.

In the first of three experiments, we focused on the number of layers and neurons per layer. These
parameters showed a strong impact on the functional capacity of the model and thereby the capability of
reproducing strongly nonlinear functions.

Our second experiment searched both the learning rate and mini-batch size at the same time. These
hyperparameters showed a strong interdependence. To optimize the learning rate and batch size, we used
the Hyperband early stopping technique (Li et al., 2018) that allows us to manage which models are
promising and should be continued in training, whereas other training runs are stopped. This is of
importance, because the learning rate affects the speed of convergence. Stopping after a fixed number of
steps would not allow to optimize the learning rate, since a slower convergence could still lead to the
lowest metric value.

Finally, a search for the Siren specific parameter ω had been conducted by using one parameter for the
first layer and another for the perceptrons of the remaining layers. Romero et al. (2022) observed in their
experiments that some functions required ω≥ 1,000 but most of their experiments led to values < 70.
With respect to our data set, the values also had to be selected in an even smaller range < 10 in order to be
able to map the frequencies well that are inherit in the data.

4.5. One model per calendar month

Neural-SWIFT adopted a one-model-per-calendar-month approach using 12 seasonal data sets (see
Section 3.3).

Over the course of a year, the transport represented by the trajectories differs, potentially influencing
the ozone tendency within distinct 24-h periods. Consequently, the relationship between input and output
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parameters exhibitsmore variabilitywhen analyzed over an entire year compared towhen it is divided into
monthly datasets.

We empirically validated Kreyling et al.’s findings that the monthly models exhibit lower errors when
tested against the testing data. One plausible explanation for the observed discrepancy is the seasonal
variations in atmospheric flow patterns.

In addition, utilizing a similar design to Polynomial-SWIFT (Kreyling et al., 2018) during the
development of Neural-SWIFT enabled a direct comparison of the monthly models between the two
methods.

4.6. Extensive training of final model

The configuration comprising the multilayer perceptron architecture, chosen input variables, and hyper-
parameters (see Table 2) was employed for training until convergence of the cost function could be
achieved. Convergence refers to the point at which the training process reaches a stable state, where
further iterations do not result in significant improvements in the cost function (see equation (2)). It
indicates that the model has learned the underlying patterns and relationships within the data to a
satisfactory extent.

The resulting 12 MLPs, one for each month of the year (see Section 3), were used for the simulation
runs presented in Section 5.

5. Results

5.1. Neural representation: Neural-SWIFT

The output of themachine learning pipeline is theNeural-SWIFTmodel, which consists of 12models (see
Section 3.3), one per calendarmonth. Themodel uses theMLP architecture shown in Table 2 and employs
the choice of input and output variables depicted in Table 3, which according to Figure 6 was the best
selection tested.

5.2. Validation in simulation

The validation strategy is a sensitive and important matter in the context of the intended application in
climate science. So far, we evaluated each step of the machine learning pipeline (Figure 3) using the cost
function (see equation (2)) with respect to the testing data set. From here on, we apply the model in
simulation in the ATLAS CTM by replacing the full chemistry module, to compare the results of the full

Table 2. Results hyperparameter search

Hyperparameter Result

Experiment 1: Capacitya

Layers 6
Neurons per layer 733

Experiment 2: Learning setupb

Learning rate 1.29e-05
Mini-batch 222

Experiment 3: Siren specifica (see Table 1)
ωL1 6
ω 4

aBayesian search with maximum learning steps of 10,000.
bBayesian search and Hyperband early stopping Li et al. (2018).
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chemistry module with the Neural-SWIFT module. The goal was to achieve a significant speed-up
compared to this reference model while achieving comparable accuracy.

Figure 7 depicts a schematic of the application of Neural-SWIFT in ATLAS. For each air parcel (top-
left) the 24-h ozone tendency (bottom-right) is calculated point-wise by applying the MLPs of Neural-
SWIFT (right).

As mentioned in Section 4, not all input variables (e.g., Cly, Bry, NOy, HOy) are readily available from
the model. Some variables need to be calculated, others can be derived from the photolysis table or
climatologies of the chemical families. The climatologies are a function of equivalent latitude and altitude.
Therefore, equivalent latitude must be calculated to be able to use the climatologies. The calculation of
equivalent latitude requires potential vorticity (PV) as a variable. Therefore, if PV is not provided by the
climate model, it is necessary for the use of Neural-SWIFT to calculate it in the climate model.
Furthermore, the PV is needed for the regime filter for the polar regions to apply the polar SWIFT model
and extrapolar Neural-SWIFT model in the correct model domains.

In contrast to the proposed implementation in climate models, we do not use climatologies in ATLAS,
but daily lookup tables from the data set were used when Neural-SWIFT replaced the full chemistry
module in ATLAS. This way, the Neural-SWIFT simulation was more comparable to the simulation with
the full chemistry module.

In the training process, the input and output variables from the training datawere normalized to obtain a
distribution with zero mean and unit variance. This step must also be applied in the implementation.
Therefore, the mean μXtrain and standard deviation σXtrain of the complete training data set of all months are
used for normalization. Consequently, after calculating the MLP, the regression output N Θ X0ð Þ must be
denormalized by the mean μytrain and the standard deviation σytrain .

5.3. Speed-up

Neural-SWIFTshows a computation time faster by orders of magnitude (factor of ≈ 700 faster) compared
to the full chemistry module (see Table 4). To enable projections far into the future, the computation time

Table 3. Selected input and output variables

Variables Unit Abbreviation

Input Chemical families (volume mixing ratios) — Chem. Fam.
Chlorine family — Cly
Bromine family — Bry
Nitrogen family — NOy

Hydrogen family — HOy

Oxygen family — Ox

Photolysis frequencies s�1 PFs

O2þhv!O 3Pð ÞþO 3Pð Þ s�1 PF-I

O3þhv!O2þO 3Pð Þ s�1 PF-II
ClONO2þhv!ClOþNO2 s�1 PF-III
Cl2O2þhv!ClþClOO s�1 PF-IV
Sunlight-hours Hour (h) Daylight
Overhead ozone Dobson unit (DU) Overhead
Temperature Kelvin (K) Temp.
Pressure altitude Meter (m) p_alt.

Output 24-h ozone tendencya — Δ24hOx

aThe point-wise (per air-parcel) 24-h difference in the volume mixing ratio of the Oxygen family: Δ24hO
t
x ¼Ot

x�Ot�24h
x .
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Figure 7. Schematic of the implementation of Neural-SWIFT in atlas or climate models.
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per model day in a climate model is a crucial aspect. Our speed-up meets this fundamental requirement of
climate models to perform much faster than real-time.

5.4. Accuracy after 18 month of simulation

An example of the ozone layer resulting from the application of Neural-SWIFT after 18 months of
simulation is shown in Figure 8a.

The stratospheric ozone columns of Neural-SWIFT show good agreement to the reference run with
relative differences within ± 10% (bottom-right). During the application of Neural-SWIFT, the regions of
the polar vortex have been calculated using Polar SWIFT (Wohltmann et al., 2017b).

Figure 8b shows the zonal mean of the volume mixing ratios as a function of pressure altitude and
equivalent latitude after 18 months of simulation. Further results showing all 24 months of the simulation
can be found in Figures A1–A4 in Appendix A. In general, the figures show a good long-term stability of
the results for all pressure altitudes and equivalent latitudes. Regions with higher absolute differences
occur where high volume mixing ratios are present and the relative error is small. Furthermore, regions
with high relative errors only occur where the volume mixing ratios are very low and the absolute
differences are not significant.

5.5. Spatial variability

Wewere particularly interested in assessing Neural-SWIFT’s capability to replicate the spatial variability
at a level similar to the full chemistry module, and over an extended simulation period (two years), given
its intended application in climate models.

To evaluate the spatial pattern of variability, we examined the variations in stratospheric ozone
columns across different geographic locations throughout a 2-year simulation. We quantified this
variability by calculating the standard deviation of the time series at various locations, as depicted in
Figure 9.

Please note that Figure 9 only displays data within the latitude range of 60° south to 60° north, as the
extrapolar Neural-SWIFT model does not simulate ozone in the polar regions (see Section 1.1).

To compare Neural-SWIFT (top) with the full chemistry module (center), we analyzed the
differences between them (bottom). Overall, the results are in good agreement with the full chemistry
module. However, differences exhibited an increase toward higher latitudes, reaching a maximum
absolute difference of 9:47 DU. Among all the displayed bins, 75% show absolute differences lower
than 1:67 DU. The Mean Absolute Error (MAE) is 1:51 DU and Root Mean Square Error (RMSE) is
2:37 DU.

5.6. Error estimation in time series

We also aimed to assess an overall global metric, represented as a single number per day, to measure
the quantitative differences over time between the full chemistry module and each of the two
methods, polynomial SWIFT (gray) and Neural-SWIFT (black). We conducted a bin-wise compari-
son of the following variables: (1) the stratospheric ozone column (a function of latitude and

Table 4. Computation time

Simulation duration Neural-SWIFT Polynomial SWIFTa Full chemistryb

1 model-day 3.4 s 10 s 40 min
1 model-year 21 min 61 min > 10 days
100 model-years < 1:5 days ≈ 4 days > 1,000 days

Note.All model runs were coupled to the chemistry and transport model ATLAS and ran on the same server with 48 CPUs, 1.0–3.9 GHz, and 755 GB
physical memory. Calculation time refers to chemistry calculation only and does not include time required for transport and mixing in ATLAS.
aThe computation time of Polynomial SWIFTalso includes the time that was required to detect and handle outliers. For this, Kreyling et al. also used the
polynomial approach (domain polynomial) combined with Newton’s method to find a solution in the trained data distribution.
bThe Matlab version of ATLAS has been used for comparison.
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longitude), (2) the zonal mean of the ozone volume mixing ratio, and (3) the zonal mean of the 24-h
ozone tendency (both a function of pressure altitude and equivalent latitude). For (1), we utilized 1°
latitude–longitude bins, while for (2–3), we employed bins based on 1,000 m pressure altitude and 5°
equivalent latitude.

Figure 8. Monthly means (April 2000) of the (a) stratospheric ozone column and (b) zonal mean
stratospheric ozone volume mixing ratios are shown after 18-month simulation. The binning used 1°
latitude-longitude bins for (a) and zonal means in bins of 1000 m pressure altitude and 5° equivalent
latitude for (b). Only the bins in which Neural-SWIFT was applied are shown.
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Figure 9. The figure depicts the spatial pattern of the standard deviation of the time series covering the
2-year simulation period at various locations, measured in du. The binning used 1° latitude–longitude
bins. (Top) Our method Neural-SWIFT, (middle) full chemistry module, and (bottom)
Neural‐SWIFT½ �� Full chemistry½ �.
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The area covered by the spherical coordinates varies with latitude and also with equivalent latitude.We
use the following equation (3) to derive the surface area covered by a bin δA that is needed to calculate the
weighted mean of the bin-wise absolute differences:

δA ϕð Þ¼R2
Eδ ϕ δλ× cos ϕð Þ

Atotal ¼
XnBins
i¼1

δAi ϕið Þ

where Atotal : surface area of allbins,RE : radius of  the Earth,

ϕ,λ : latitude or approximation of  equivalent latitudeð Þand longitude,
δϕ,δλ : respective spacing used for binning,nBins : total number of  bins:

(3)

We use this to calculate the weighted mean of the absolute bin-wise differences (μweightedt ) for each
time-step t.

μweightedt BN
t ,BΦ

t

� �¼
PnBins
i¼1

jBN
t,i �BΦ

t,ij ∗ δAðϕiÞ
� �

Atotal

where BN
t,i : bin i of  binned results of  Neural�SWIFT at time t,

BΦ
t,i : bin i of  binned results of  the full chemistry module of  ATLAS at time t,

δAðϕiÞ : surface area of  that bin,Atotal : surface area of all bins,nBins : total number of  bins:

(4)

In Figure 10, both Neural-SWIFTand the polynomial approach are evaluated by comparing the results
of each of the 2-year simulations with the full chemistry module on a day-by-day basis. The three-time
series of the average of theweighted differences in Figure 10a–c show that Neural-SWIFT performs better
for the months from July to November than the polynomial approach.

Looking at the stratospheric ozone column (Figure 10a), both models provide similar performance in
all other months. For the ozone volume mixing ratios and the 24-h ozone tendencies (Figure 10b,c),
however, Neural-SWIFT consistently shows a better performance. The error metrics for all three-time
series are illustrated in Table 5.

5.7. Time tendency of the differences

Figure 11 shows the global absolute mean error of the 24-h ozone tendency relative to the simulated ozone
(OxFull chemistry) and the global standard deviation of the relative error STDQ.

Qi, �Q, and STDQ are defined by the following equations:

Qi ¼
dOxiNeuralSWIFT�dOxiFull chemistry

OxiFull chemistry

�Q¼ 1
N

XN
i¼1

∣Qi∣

STDQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

jQij��Qð Þ2
vuut

where i : individualbin,dOx : 24‐hour ozone tendency,

Ox : ozone volume mixing ratio, N : number of  bins

: (5)
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Figure 10.Comparison to polynomial SWIFT. The figure depicts the daily evolution of the mean absolute
differences between the full chemistry module and two methods, polynomial SWIFT (gray) and Neural-
SWIFT (black). Three variables are presented: (a) stratospheric ozone column, (b) ozone volume mixing
ratio, and (c) 24-h ozone tendency. The differences were calculated by initially binning the data (compare
Figure 8), using 1° latitude–longitude bins for (a) and 1,000 m of pressure altitude and 5° of equivalent
latitude bins for (b) and (c). Subsequently, the daily mean of the absolute differences was calculated,
incorporating bin weighting based on surface area (see equation (4)). It is important to note that themean
score does not consider bins within the polar vortex (polar SWIFT module).
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The equations are based on bin-wise differences according to Kreyling et al. (2018). Bins with values
ofOxFull chemistry below 100 ppb were removed to avoid spurious large errors when the absolute values are
low. This affects less than 10% of the data.

The daily mean �Q of the relative error Qi remained close to zero throughout the simulation. Over the
entire simulation period, the MAE is found to be 0:31 %

day, and the RMSE is 0:33 %
day. The fall season

showed the largest relative error (max �Q of 0:68 %
day and max STDQ of 7:31 %

day). After this perturbation,
however, the ozone tendencies were again estimated very accurately (see Figure 11).

As seen in Figure 11, the differences to the full chemistry do not exhibit significant growth over time.
This emphasizes that these error scores should not be interpreted as a systematic error that would lead to a
substantial increase in error as the simulation progresses.

The result that Neural-SWIFTachieves a high accuracy (small differences over time) and therefore allows
for a stable simulation can also be confirmed by Figure 12, which shows the zonal mean values (equivalent
latitude) of stratospheric ozone columns over time.Only the equivalent latitude range between 60° S and60°N
is shown, since the extrapolarNeural SWIFTmodel does not simulate ozone in the polar regions. The results of
the simulation demonstrate a good agreement with the reference model (ATLAS) for various seasons in both
hemispheres. Approximately 75% of the bins show differences of only ± 5DU (white color). Over the 2-year
simulation period, theMAE is found to be3:65DU, and theRMSE is4:70DU.These errormetrics indicate an
improvement of > 11% over Polynomial SWIFT (see Figure B1 in Appendix B).

5.8. Implementation into climate models

Neural SWIFT operates point-wise on the grid points of the climate model, is inherently mesh-free, and
can thereby handle different grid resolutions. The choice of input variables was also made in such a way
that it is possible to calculate them for the grid points.

Table 5. Error metrics of Figure 10

Neural-SWIFT Polynomial SWIFT

Stratospheric ozone column MAE 13.69 DU 14.06 DU
RMSE 13.73 DU 14.09 DU

24h ozone tendencies MAE 7.80 ppb 8.80 ppb
RMSE 8.11 ppb 9.13 ppb

Ozone MAE 122.84 ppb 139.78 ppb
RMSE 124.30 ppb 141.05 ppb

Figure 11. The time evolution employing error-Q (black line) and the std dev (gray) was calculated as
defined in equation (5). The binning used 1,000 m pressure altitude and 5° equivalent latitude). A
weighting of the bins according to their surface area (equation (4)) was performed. Bins of the polar
vortex (polar SWIFT module) are not included in the mean score.
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Some input parameters of our model (e.g., Cly, Bry, NOy, HOy) are generally not available in climate
models like ICON (Rieger et al., 2015; Schröter et al., 2018). To produce the training data of Neural-
SWIFT for any grid point, these variables were calculated from the chemical species of the full chemistry

Figure 12. (First row) Shown are zonal mean values (Binning: 3° equivalent latitude) of stratospheric
ozone columns in Dobson Units (DU) over time of the results of a 2-year simulation using the novel
artificial neural networks of Neural-SWIFT. The areas which also covered the polar vortex were removed
and are shown in gray. The results are evaluated by difference plots (comparing to a simulation run that
used the full chemistry module of ATLAS):
(second row) Neural‐SWIFT½ �� Full chemistry½ � and (third row) Neural‐SWIFT½ �� Full chemistry½ �

Full chemistry½ � .
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model. For the application in a climate model, monthly climatologies of the volume mixing ratios of the
chemical families interpolated to the model time of the climate model have to be used (see Section 5).

The variables of the photolysis frequencies can be taken from a photolysis table when implemented in a
climate model (see Section 4).

Some variables such as the solar zenith angle, the overhead ozone column, or the sunlight hours may
not be readily available by the climate model, but can be calculated in the model.

To coupleNeural-SWIFT to climatemodels, it was required to translate the neural networkmodel from the
programming language of the development framework (PyTorch Lightning Falcon, 2019 (Python)) to the
programming language of the application framework. The multilayer perceptron of Neural-SWIFT can be
expressed by the adjustable neural network parameters (weights and biases) Θ. After training the model, we
stored the raw weight matrices and bias vectors of each layer and translated the Python code to a vectorized
version in other programming languages. Neural-SWIFT is already translated from Python to Matlab
(process model ATLAS) and also Fortran, which enables the application in climate models like ICON.

6. Conclusions

In climate modeling, the stratospheric ozone layer is typically only considered in a highly simplified form
due to computational constraints. For climate projections, it would be of advantage to include the mutual
interactions between stratospheric ozone, temperature, and atmospheric dynamics to accurately represent
radiative forcing.

The overarching goal of our research is to replace the ozone chemistry in climate models with a
machine-learned neural representation of the stratospheric ozone chemistry that allows for a fast, but
accurate and stable simulation.

We explored whether a neural representation of the stratospheric ozone chemistry is well suited to
represent the model formulation of the ATLAS Chemistry and Transport Model. We used a training data
set derived from a simulation run of ATLAS that used the full chemistry scheme to explore correlations
between the possible input variables of the neural network and the target variable (24-h tendency of
ozone) and to develop and train the neural networkmodel of ozone chemistry (called Neural-SWIFT).We
analyzed different variants of multilayer perceptrons convenient for physical problems to learn a neural
representation of the regression task. We performed a comprehensive hyperparameter optimization of the
multilayer perceptron using Bayesian search and Hyperband early stopping. We validated our model by
implementing it in the Chemistry and Transport Model (CTM) ATLAS and comparing computation time,
accuracy, and stability with the full chemistry module.

We performed a benchmark by comparing the differences between Neural-SWIFTand the polynomial
approach of SWIFTwith the full chemistry module. The neural representations showed good agreement
with the full stratospheric chemistry model during a 2-year long simulation. Chemical production and
loss, as well as seasonality in both hemispheres, was well represented by Neural-SWIFT. The time
evolution of the errors showed that a stable long-term simulation of a complex process like atmospheric
ozone chemistry is feasible. Our model had a computation time that was a factor of 700 faster than the full
chemistry module. Neural-SWIFT’s accuracy during a 2-year simulation run outperforms SWIFT’s
previous polynomial approach in terms of all appliedmetrics, this despite the former polynomial approach
of SWIFT also applied a method to detect and handle outliers.

Future advances in climate science related to robustness, accuracy, and computation time of simula-
tions can benefit significantly from interdisciplinary research incorporating data science and machine
learning methodology. We see great potential in the developing research on digital twins for climate
system processes, such as Neural-SWIFT, that can serve as AI surrogate models in climate simulations. It
is expected that numerical models will more often blend conventional algorithms with deep learning
solutions (Bauer et al., 2021a, 2021b; Irrgang et al., 2021) and just as Neural-SWIFT already does, also
benefit from the advantages offered by modern high-performance computers that support parallel
processing, including support for parallel processing using GPUs.
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A challenge arises from the limited generalizability of modeled processes beyond the scope of the
included environmental conditions. Data-driven models, despite their ability to learn patterns directly
from data, struggle to extrapolate beyond the range of observed conditions due to limitations in the
training data. The next step toward a robust application of Neural-SWIFT is to knowwhenNeural-SWIFT
is forced to extrapolate. Different techniques are possible tomeasure extrapolation. One technique that has
been used by the previous polynomial approach of SWIFT is to focus on the training data distribution. In
regions of the hyper-dimensional space, where less dense or no data points exist an extrapolation of the
model is likely. Another method that we want to focus on in the future is the employment of the model
uncertainty to detect an application that is out-of-distribution with respect to the training data. A
promising strategy called “Deep Ensembles” (Lakshminarayanan et al., 2017) employs several multilayer
perceptrons as an ensemble. This strategy can be implemented using exactly the methodology of Neural-
SWIFT and can be used to detect extrapolation. One possibility to ensure that Neural-SWIFT always
interpolates in a future version is by employing the full chemistry model whenever we encounter a grid
point outside the training distribution. The obtained results can then be used and stored for additional
training, gradually expanding the trained range over time. This approach can be implemented as an active
learning technique, utilizing the model’s uncertainty to determine which regions require retraining.

In this way, climate simulations can benefit from an interactive, fast, and highly accurate representation
of stratospheric ozone chemistry that is always aware of its uncertainty and thus its reliability.
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A. Appendix A: Simulation results of Neural-SWIFT

A.1. Monthly zonal means
Two 24-month long (January 1999–December 2001) simulation runs were performed in the ATLAS CTM using either the AI
surrogate model Neural-SWIFT (first column) or the full chemistry module (second column).

The first two columns depict the monthly zonal means of the stratospheric ozone volume mixing ratio (parts per million) with
Neural-SWIFT in the first column and the full chemistry scheme in the second column. The differences between both runs are
depicted in the third column followed by the relative differences in the fourth column.

The binning used zonal means over 1000 m pressure altitude (vertical) and 5° equivalent latitude (horizontal). Bins that
contained airmasses fromoutside the regime ofNeural-SWIFTor thatwould represent amixture of air parcels from the polar SWIFT
module and Neural-SWIFT are not shown.
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Figure A1. Monthly zonal mean stratospheric ozone volume mixing ratios (parts per million) from
January to June 1999 are shown.
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Figure A2.Monthly zonal mean stratospheric ozone volumemixing ratios (parts per million) from July to
December 1999 are shown.
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Figure A3. Monthly zonal mean stratospheric ozone volume mixing ratios (parts per million) from
January to June 2000 are shown.
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Figure A4.Monthly zonal mean stratospheric ozone volumemixing ratios (parts per million) from July to
December 2000 are shown.
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B. Appendix B: Simulation results of the previous polynomial approach of SWIFT

Figure B1. (First row) Shown are zonal mean values (Binning: 3° equivalent latitude) of stratospheric
ozone columns in Dobson Units (DU) over time of the results of a 2-year simulation using the previous
polynomial approach of SWIFT. The areas which also covered the polar vortex were removed and are
shown in gray. The results are evaluated by difference plots (comparing to a simulation run that used the
full chemistry module of ATLAS):
(second row) Polynomial  SWIFT½ �� Full chemistry½ � and (third row) Polynomial  SWIFT½ �� Full  chemistry½ �

Full chemistry½ � :
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C. Appendix C: Hyperparameter optimization

C.1. Hyperparameter optimization: Capacity

C.2. Hyperparameter optimization: Learning setup

Figure C1. Search for the number of layers and number of neurons per layer. The color scale shows the
result of the cost function with respect to the normalized testing data.

Figure C2. Learning rate and mini-batch size.
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C.3. Hyperparameter optimization: Siren specific

D. Appendix D: Acronyms and glossary

D.1. Acronyms

ANNs: artificial neural networks
ATLAS: Alfred Wegener InsTitute LAgrangian Chemistry/Transport System
CCMs: Chemistry Climate Models
CHEM2D-OPP: CHEM2D-Ozone Photochemistry Parameterization
CTM: Chemistry and Transport Model
DU: Dobson Units

Figure C3. Siren specific (see Table 1): omega first and other layers.
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ECMWF: European Centre of Medium-Range Weather Forecasts
GCM: General Circulation Model
GPU: graphics processing unit
Linoz: linearized ozone
MAE: mean absolute error
MLP: multilayer perceptron
MSE: mean squared error
NDF: numerical differentiation formulas
ppb: parts per billion
PV: potential vorticity
ReLU: rectified linear unit
RMSE: root mean square error
SWIFT: Semi-empirical Weighted Iterative Fit Technique
VMR: volume mixing ratio
WACCM: Whole Atmosphere Community Climate Model

D.2. Glossary

Air parcel: An air parcel is a small imaginary volume of air consisting of ever the same
molecules used to describe basic concepts of atmospheric physics and to
define atmospheric variables like temperature or mixing ratios as scalar fields
of location and time. The air parcel needs to be large enough to contain a
sufficient number of molecules for the concepts of thermodynamics to apply
(to be able to define thermodynamic quantities like pressure), but small
enough to be able to define these variables as continuous scalar fields of
location and time.

Baseline (ReLU): A reference model used to compare different architectures of multilayer
perceptrons applying the ReLU activation function.

Bayesian search: Unlike random or grid search, Bayesian search stores past evaluation results
and, with the help of a probabilistic model, uses them to select a new set of
hyperparameters that have a high probability of reducing the model
inaccuracy.

Bromine family: Bry =Brþ2×Br2þBrClþBrOþHBrþHOBrþBrONO2:

Chemical families: A chemical family describes a collection of short-lived chemical species that
quickly transform into each other by fast reactions, but where the sum of the
species has a much longer chemical lifetime.

Chemistry and
Transport Model:

A chemistry and transport model is a global numerical atmospheric model
used to model the chemistry, transport, and mixing of species in the
atmosphere. In contrast to a CCM (chemistry climate model) or GCM (general
circulation model), it does not contain a dynamical core. Instead,
meteorological fields like wind, temperature, and pressure are taken from an
external source.

Chlorine family: Cly =Clþ2×Cl2þClOþOClOþ2×Cl2O2þHClþHOClþClONO2þClNO2þBrCl:

Equivalent latitude: Similar to the geographic latitude the equivalent latitude can be employed as a
coordinate that is often used in atmospheric science. The equivalent latitude of
a PV contour is defined as the latitude that a circle centered on the pole and
enclosing the same area as the given PV contour would have.
eq:latitude = sin�1 1�A PVmax,Θð Þ

2 × pi ×R2
E
, where A PVmax,Θð Þ: area up to amax potential vorticity

on an isentropic surface with potential temperature Θ, RE = 6,371,000m: Earth
radius.
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Hydrogen family: HOy =H2O:

Hyperband: Hyperband early stopping (Li et al., 2018) helps to identify a promising set of
hyperparameters. This method continues to train only the best-performing
runs and stops runs that are not promising with respect to reducing the model
accuracy and reducing GPU hours.

Latent function: Describes the hidden and in many applications not beforehand known
function. In our case, the underlying function is not unknown, since it is based
on the computationally expensive solution of a complex system of differential
equations over 24 h.

Nitrogen family: NOy =NOþNO2þNO3þ2×N2O5þHNO3þHO2NO2þNþClONO2þClNO2þBrONO2:

Oxygen family: Family of “odd oxygen” Ox =O3þOþO1D:

Polar vortex: Refers to a long-lived and rotating low-pressure area of large extent that occurs
mainly at the north or south pole in the stratosphere in a given winter. It is
surrounded by a band of strong, counterclockwise air currents, the vortex,
which reduces the exchange of air with other air masses and thus allows very
cold temperatures during the polar night.

Prescribed ozone fields: A noninteractive representation of ozone concentrations often implemented
via daily or monthly averaged three- or two-dimensional look-up tables.

Pressure altitude: Weuse the log-pressure height in the following form: z pð Þ= �H × log p
p0

� �
, where

H, scale height in m; p, pressure; p0 = 1,000hPa: Reference pressure.

Cite this article: Mohn H, Kreyling D, Wohltmann I, Lehmann R, Maass P and Rex M (2023). Neural representation of the
stratospheric ozone chemistry. Environmental Data Science, 2: e41. doi:10.1017/eds.2023.35

Environmental Data Science e41-37

https://doi.org/10.1017/eds.2023.35 Published online by Cambridge University Press

https://doi.org/10.1017/eds.2023.35
https://doi.org/10.1017/eds.2023.35

	Neural representation of the stratospheric ozone chemistry
	Impact Statement
	Introduction
	Related research on fast stratospheric ozone models
	AI surrogate model: Neural-SWIFT

	Problem setup
	Data from simulation
	Timestep
	Regime filters
	Splitting data

	Method: neural representation of the stratospheric ozone chemistry
	Select multilayer perceptron architecture
	Candidates for input variables
	Selection of input variables
	Hyperparameter optimization
	One model per calendar month
	Extensive training of final model

	Results
	Neural representation: Neural-SWIFT
	Validation in simulation
	Speed-up
	Accuracy after 18 month of simulation
	Spatial variability
	Error estimation in time series
	Time tendency of the differences
	Implementation into climate models

	Conclusions
	Acknowledgments
	Author contribution
	Competing interest
	Data availability statement
	Ethics statement
	Funding statement
	Appendix A: Simulation results of Neural-SWIFT
	Monthly zonal means

	Appendix B: Simulation results of the previous polynomial approach of SWIFT
	Appendix C: Hyperparameter optimization
	Hyperparameter optimization: Capacity
	Hyperparameter optimization: Learning setup
	Hyperparameter optimization: Siren specific

	Appendix D: Acronyms and glossary
	Acronyms
	Glossary



