

DEMYSTIFYING CRITICISM OF HYDROGEN PEROXIDE UTILIZATION IN RECIRCULATING AQUACULTURE SYSTEMS

Desislava Bögner^{*}, Mirko Bögner, Frederike Schmachtl, Nicolas Bill, Jörn Halfer, Kai Lorkoswki, Matthew J. Slater

Production systems

- ✓ Pond farms
- ✓ Offshore aquaculture
- ✓ Capture based aquaculture
- ✓ Combination of different species (IMTA)
- ✓ Land-based RAS

Environmental impact

Nutrient input/ eutrophicationFoulingDiseasesSTOCKING DENSITYBio-Salmon
10 kg/m³Off-shore
20 kg/m³Conventional
farm/juveniles
20-50 kg/m³

Estimated \$8-10 billion market investment for water treatment improvement

Water treatment in RAS

Additional improvements:

- Ozone
- UV-light
- Alternative methods e.g. Ultrasound
- Chemical disinfectants

Nitrification-Denitrification filters

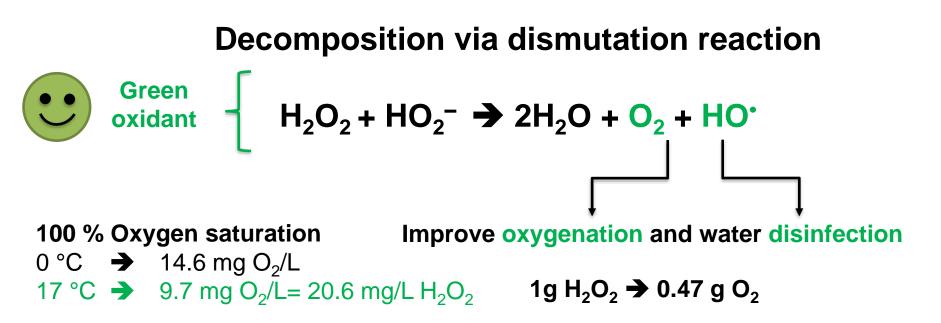
•

Water treatment in RAS

	Methods	Pros and Contras
	Ozone: requires investment in equipment, maintenance, and control units	Highly reactive, non-selective
		Produced in situ, with energy costs
		May be highly toxic at very low concentrations
		Costs between 7-16 €/day (without power supply) depending on generator size
•	UV: requires Investment in equipment and maintenance	Reactive, non-selective
		Produced in situ, with high energy costs
		Requires clear water for effectiveness
		Frequent costs due to lamp replacements
??	Alternative methods e.g. ultrasound requires investment in equipment, control units and maintenance	Not tested at commercial scales
		Produces heat
		Effectiveness depends on target
		High costs for power supply

Chemical disinfectants used in aquaculture

- ✓ Formalin and Glutaraldehyde
 - ✓ Iodophors => Iodine
 - ✓ Sodium or Calcium hypochlorite => Chlorine
 - Sodium or Calcium hydroxide / Hydrochloric acid / Calcium oxide / Hydrochloric or Phosphoric acids => pH changes
 - ✓ Commercial disinfectants e.g. Vikron (with potassium peroxymonosulfate (21.41%) and sodium chloride (1.5%))
 - Cationic surfactant disinfectants e.g. Quartenary ammonium compounds (benzalkonium and benzethonium chlorides)
 - ✓ Alcohols (isopropyl alcohol or ethanol at concentrations of 60 to 90%)
- ✓ Phenol derivatives



Hydrogen peroxide (H₂O₂) application

FDA approved dosages for 35% H₂O₂ treatment: **250-500mg/L**

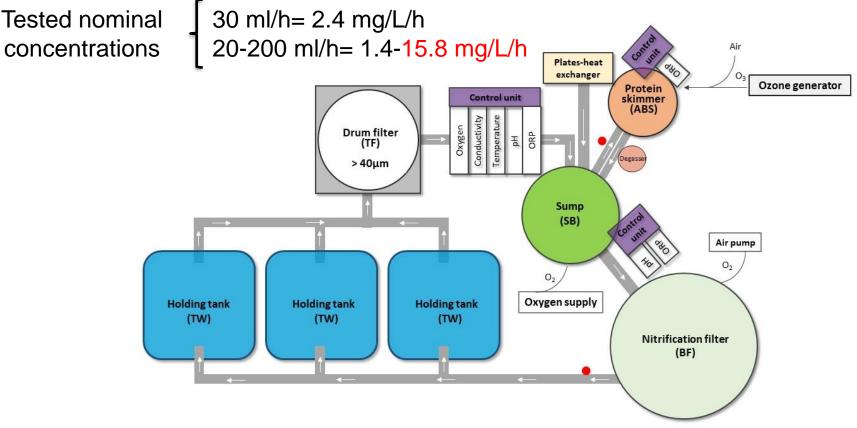
SMR(Min. O_2 requirement): 75 mg / kg Fish / h \rightarrow 160 mg H_2O_2 AMR(Max. O_2 requirement): 250 mg / kg Fish / h \rightarrow 532 mg H_2O_2 RAS 60kg (Real O_2 requirement): 333 mg / kg Fish / h \rightarrow 709 mg H_2O_2


Hydrogen peroxide (H₂O₂) application

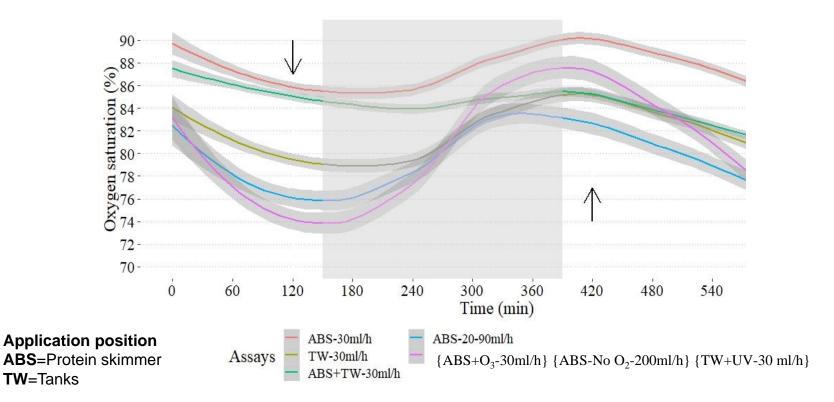
Species	Application	Response	Reference
Salmonids	70-100 mg/L for 2 h	Affects the gills	Schmidt et al., 2006
Atlantic Salmon	1500 mg/L 4 times a day for 20 min	↑Glucose/Lactate/Cortisol with circadian stress responses	Vera and Migaud, 2016
Scophthalmus maximus	240/480 mg/L for 30min		Avendaño-Herrera et al., 2006
Dicentrarchus Iabrax	50 mg/L for 1h	↑Stress response: Disorders in Na ⁺ , Mg ²⁺ and Ca ²⁺ ions in blood	Roque et al., 2010
RAS rearing Oncorhynchus mykiss	10-20 mg/L for 30 min-3h	High intensity RAS: NO ₂ -N and TAN were unaffected. Low intensity RAS: \uparrow NO ₂ -N (1mg/L) after 2 days, safe level: \rightarrow 5mg/L	Pedersen and Pedersen, 2012
Biofloc rearing Litopenaeus vannamei	29-348 µl/L for 2h	↑oxygenation - ↑toxicity (melanoses) -↑NH ₄ -N and NO ₂ -N safe level: \rightarrow 14.3µl/L	Furtado et al., 2014

Fish stock: 21.6 kg/m³ Initial mean weight: ~500 g Final weight: 710 g Temperature: 17-18°C pH=7.8-8.2 Salinity: 32 ‰ Smart Digital S-DDA pump (Grundfos) Dosage capacity: 2.5 ml/h- 7.5L/h

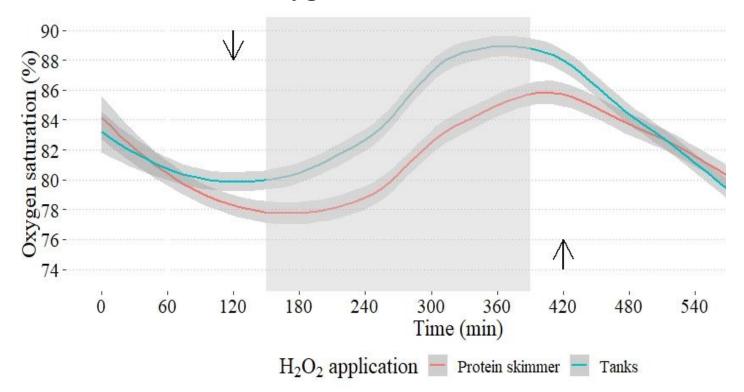
Aim of the project


Determine <u>where</u> in RAS H_2O_2 should be applied to achieve the <u>best oxygenation</u> <u>and disinfection</u>

Dicentrarchus labrax


Different system performance depending on the position of the dosage pumps (red dots) and system configuration

Oxygenation



Oxygenation

Application in the protein skimmer offered the best position for reaction with organic load but had the highest impact on the biofilter.

Measured H₂O₂ concentrations

Assay 1 (ABS) TW→Max: 0.5 mg/L SB→Max: 2 mg/L ABS→Max: 5 mg/L BF →Max: 0.8mg/L

Assay 2 (TW)

TW \rightarrow Max: 3.5 mg/L SB \rightarrow Max: 1.5 mg/L ABS \rightarrow Max: 1.5 mg/L BF \rightarrow Max: 0.5 mg/L

Assay 3 (ABS-TW)

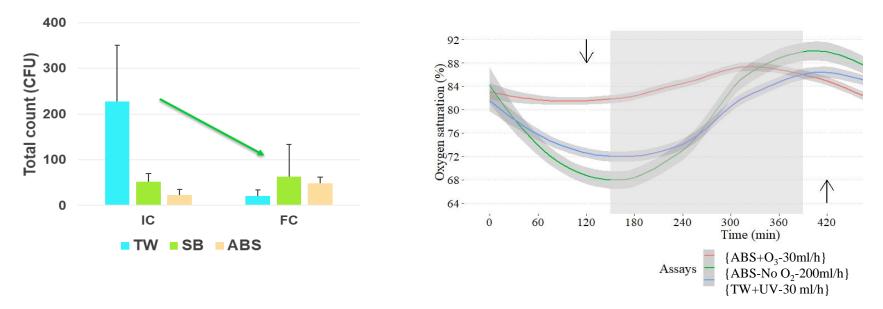
TW→Max: 2.3 mg/L SB→Max: 1.5 mg/L ABS→Max: 4 mg/L BF→Max: 1 mg/L Assays 4 and 5 (with increasing doses and with or without combination with other disinfection methods)

mg/L/h	1.4mg/L/h	2.4mg/L/h	2.4mg/L/h	7mg/L/h	15.8mg/L/h
Appl.	ABS	ТW	ABS	ABS	ABS
TW	0.4	3.8	0.5	2	4.4
SB	2	1.2	1.8	4	6.8-10
ABS	3.7	1.3	4.4	17	10-25
BF	0.4	1.3	0.8	3	3-5

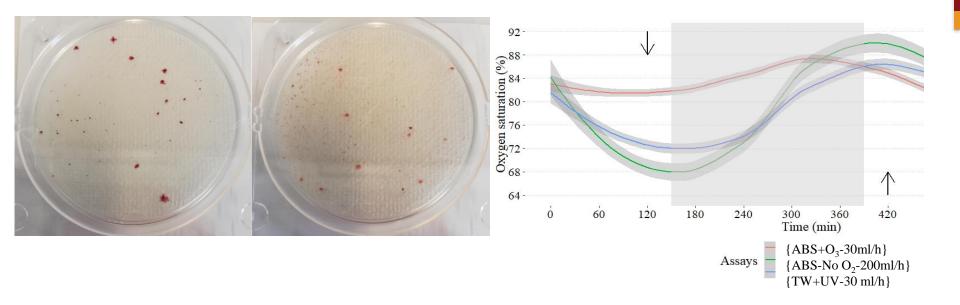
Equilibration in 1h

Depletion to initial conditions after stopping dosage in ~1-1.5h

Hydrogen peroxide based oxygenation with 15.8 mg/L/h


Strong reduction of the bacterial load within each compartment with high variability at initial conditions due to application pattern (4h on/ 16 off, no additional disinfection in between)

2.4 mg/L/h H_2O_2 in the protein skimmer combined with ozone


With Ozone: Strong reduction of bacterial load in the tanks but a**pplication required adjustment** of the control parameters (ozonization was subdued by redox values achieved with H_2O_2).

2.4 mg/L/h H_2O_2 to the tanks combined with UV

With UV: had better oxygenation of the tanks but lower disinfection effect and **possible change on bacterial composition**.

Impact on the reared species

<u>Cortisol</u> Control: 59.8±49.5 Treatment: 62.2±43.5

<u>Glucose</u> Control: 131.0±34.9 Treatment: 155.1±45.3

- Stress in *D. labrax* is genetically driven and dependent on size/age. Individuals may have consistent high (439.2 ± 31.1 µg/dI) or low (247 ± 85.1 µg/dI) cortisol levels. Natural daily Glucose levels may vary between 100-170 mg/dI ^(a,b,c)
- Levels of both markers did not differ between control and treatment; both tended to increase with increasing H₂O₂ doses and showed high variability more related to feeding stress response than to H₂O₂ dosage. The number of fish showing conspicuously low cortisol levels increased.

Benefit analysis

RAS by common operation

Costs for:

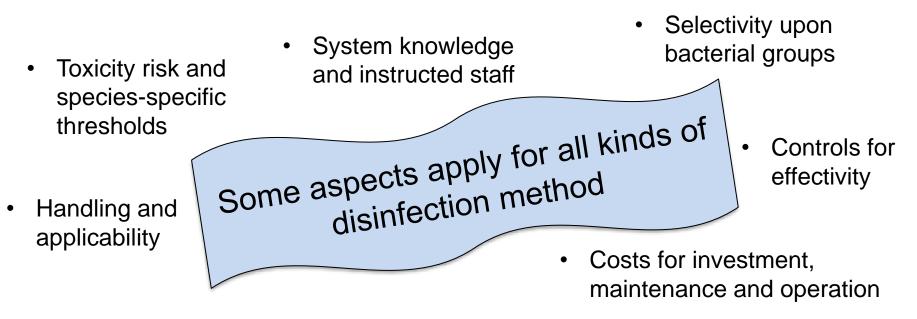
- Oxygenation: 0.20-0.61 €/day
- BF Oxygenation:0.78 €/day
- Disinfection via O₃ Generator:
- 7.67 €/day (small)
- > 13.15 €/day (medium)
- > 15.07 €/day (large)
- > 8.65-9.06 €/day (small)
- > 14.13-14.54 €/day (medium)
- > 16.05-16.46 €/day (large)

Without costs for power supply consumption, control units for O₃, and biosecurity related issues

RAS by H₂O₂ operation

Costs for:

- Oxygenation:
- > 0.50 €/day (30 ml/h)
- > 3.36 €/day (200 ml/h)
- BF Oxygenation:0.78 €/day
- Disinfection via O₃:0 €/day
- > 1.28 €/day (30 ml/h)
- 4.14 €/day (200 ml/h)


Without costs for dosage units, their power consumption, maintenance and H₂O₂ storage

Take home message

H₂O₂ advantages and disadvantages

- Savings in terms of oxygenation possible even at low concentrations
- Disinfection without environmental impact
- Fast removal from the system, cleaning effect and reduction of turbidity
- Transportation (applies to most chemical methods) and storage/decay if incorrect storage (solved by close dosage systems)

Benefit analysis

- 1. Budget in terms of H_2O_2 production:
- 1L (50%)=1Euro
- 1L (35%)=0.7Euro + dosage costs
- 2. Budget in terms of Oxygen
- In the BF: air compressor pump 120L air/h with 130W power consumption (0.78 Euro/day by 0.25 Euro/kWh)
- Oxygenation in tanks: pure oxygen=by 1-2 L/min
- In this study: 1-2 L/min were used for 65 Kg fish kept over the critical oxygen level \rightarrow 1440-2880L/day=1.44-2.88 m³ oxygen/day
- 12 bottles of 200 bar oxygen=157 Euro + 60 Euro shipment each 2 weeks \rightarrow 2400 bar =1540.8 m³ oxygen = 217 Euro
- 1.44 m³ oxygen/day = 0.20 Euro/day
- 2.88 m³ oxygen/day = 0.40 Euro/day

Benefit analysis

Ozone generator: **Price: 20000 Euro (5g Ozone/h)** 40000 Euro (60g/h) 47000Euro (100g/h for 25-50 Kg feeds/day) Maintenance: 800 Euro/year Lifetime: 10 years Additional power consumption 5 g Ozone/h are required for 1.25-2.5 Kg feeds/day ↓ 62.5-125 kg Fish with 2% BW feeding

Investment: 5.48 Euro /day Maintenance: 2.19 Euro /day Power consumption No other disinfection method is used in our system but under real conditions by higher stocking density

- Formaldehyde
- Hypochlorite
- UV (if clear water)

Thank you! Vielen Dank!

