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ABSTRACT
Sediment reworking by benthic infauna, namely bioturbation, is of pivotal importance
in expansive soft-sediment environments such as the Wadden Sea. Bioturbating fauna
facilitate ecosystem functions such as bentho-pelagic coupling and sediment nutrient
remineralization capacities. Yet, these benthic fauna are expected to be profoundly
affected by current observed rising sea temperatures. In order to predict future
changes in ecosystem functioning in soft-sediment environments like the Wadden Sea,
knowledge on the underlying processes such as sediment reworking, is crucial. Here,
we tested how temperature affects bioturbation and its associated ecosystem processes,
such as benthic nutrient fluxes and sediment oxygen consumption, using luminophore
tracers and sediment incubation cores. We used a controlled mesocosm experiment
set-up with key Wadden Sea benthos species: the burrowing polychaetes Arenicola
marina and Hediste diversicolor, the bivalve Cerastoderma edule, and the tube-building
polychaete Lanice conchilega. The highest bioturbation rates were observed from
A. marina, reaching up to 375 cm2yr−1; followed by H. diversicolor, with 124 cm2yr−1

being the peak bioturbation rate for the ragworm. Additionally, the sediment reworking
activity of A. marina facilitated nearly double the amount of silicate efflux compared to
any other species. Arenicola marina and H. diversicolor accordingly facilitated stronger
nutrient effluxes under a warmer temperature than L. conchilega and C. edule. The
oxygen uptake of A. marina and H. diversicolor within the sediment incubation cores
was correspondingly enhanced with a higher temperature. Thus, increases in sea
temperatures may initially be beneficial to ecosystem functioning in the Wadden Sea
as faunal bioturbation is definitely expedited, leading to a tighter coupling between
the sediment and overlying water column. The enhanced bioturbation activity, oxygen
consumption, and facilitated nutrient effluxes from these invertebrates themselves, will
aid in the ongoing high levels of primary productivity and organic matter production.
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INTRODUCTION
Bioturbation is a transport process which has gained traction in recent decades due
to its profound effect on ecosystem functioning within soft-sediment habitats around
the world (Gogina et al., 2020; Farrell et al., 2023; Kristensen et al., 2012; Lardies et al.,
2001; Lohrer, Thrush & Gibbs, 2004; Meysman, Middelburg & Heip, 2006; Nicholaus et al.,
2019; Reise et al., 2010; Wrede et al., 2017). As a prime example for the importance of
bioturbation, the expansive mudflats of the Wadden Sea act as a large biological filter,
with ecosystem functions such as primary productivity, bentho-pelagic coupling, and
remineralization being facilitated by bioturbation (Reise et al., 2010). Animal behaviours
causing bioturbation are sediment reworking, burrowing, feeding and defecating activities
(Kristensen et al., 2012). Benthic fauna further facilitate the transport of water across the
sediment-water interface, carrying out a transport process delineated from bioturbation:
bioirrigation. Both bioturbation and bioirrigation can have a profound influence on
ecosystem processes (Braeckman et al., 2010; Gogina et al., 2020;Wrede et al., 2019a;Wrede
et al., 2017), for example, bioturbation can either destabilize or stabilize sediments (Graf &
Rosenberg, 1997; Grant & Daborn, 1994), thus affecting sediment shear strength (Meadows,
Tait & Hussain, 1990), erosion rates (Harris et al., 2015), sediment resuspension (Davis,
1993) and sedimentmovement (Reise, 2002). Moreover, bioturbation affects themovement
of microphytobenthos, nutrients, and organic matter into the water column (Fernandes,
Sobral & Costa, 2006; Reise, 2002; Underwood & Paterson, 1993). Bioturbators can either
enhance the burial and preservation of organic carbon in deeper sediment layers, thereby
increasing the quality and amount of food available (Braeckman et al., 2011; Zhang et al.,
2019), or elevate mineralization rates to decrease organic carbon content in sediment.

The introduction of oxygenated water by means of bioirrigation strongly enhances the
delivery of oxygen into anoxic sediment layers (Forster et al., 1999). Thus, bioirrigation
facilitates aerobic reactions in deeper parts of the sediment, and enhances the surface
area upon which aerobic reactions can occur (Lohrer, Thrush & Gibbs, 2004; Wrede et al.,
2018). The bioirrigative flushing by benthos also creates strong concentration gradients
between burrow walls and porewater (Wenzhöfer & Glud, 2004), transporting compounds
such as silicate (SiO4−

4 ), ammonium (NH+4 ), nitrate (NO
−

3 ), and nitrite (NO−2 ), into
the overlying water column. Aerobic sediment metabolism that is simulated by the
process of bioturbation itself can even be larger than the oxygen consumption from the
bioturbating animals alone (Glud, 2008). Accordingly, bioturbators can be considered as
vital contributors to the ecosystem functioning of shallow shelf sea systems like theWadden
Sea (Griffiths et al., 2017; Meysman, Middelburg & Heip, 2006).

Over the past 50 years, water temperatures in the westernWadden Sea have increased by
2◦C (Beukema & Dekker, 2020). Temperatures in August range between 16.3 and 21.9 ◦C
(Martens & Van Beusekom, 2008; Van Aken, 2008), and the mean August temperature for
the Sylt-Rømø Bight is 18 ◦C (Amorim et al., 2023). Temperature change is known to have
wide-ranging impacts on benthic fauna, including limiting growth (Wood et al., 2010),
changing sediment nutrient uptake (Nedwell & Walker, 1995; Osinga et al., 1996; Wood
et al., 2010), as well as feeding, bioirrigation, and bioturbation capacities (Berkenbusch
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& Rowden, 1999; Hollertz & Duchêne, 2001; Meadows & Ruagh, 1981; Mugnai et al., 2003;
Ouellette et al., 2004; Roskosch et al., 2012;White, Klahr & Robbins, 1987). Thus, it is crucial
to assess how the behaviour of benthic species may be affected by temperature change
in order to understand future ecosystem functionality of coastal environments like the
mudflats of the Wadden Sea.

Here, we chose four intertidal key species with differing bioturbation and bioirrigation
behaviours to test the effect of temperature on bioturbation and associated ecosystem
functions: the polychaetes Hediste diversicolor (Müller, 1776), Arenicola marina (Linnaeus,
1758) and Lanice conchilega (Pallas, 1766) as well as the bivalve Cerastoderma edule
(Linnaeus, 1758). The biodiffusors H. diversicolor and C. edule conduct constant random
particle movements over short distances (Kristensen et al., 2012), whereas the polychaetes
A. marina and L. conchilega can be classed as conveyors as they transport sediment particles
from depth, to the sediment surface (or vice versa) (Kristensen et al., 2012).

As a surficial biodiffusor, C. edule conducts strong bioturbation movements due to its
ploughing movements and shaking behaviour (Flach, 1996), in the top few centimeters
of the sediment. Meanwhile, H. diversicolor creates and irrigates mucus lined Y- shaped
burrows up to 15 cm deep (Christensen, Vedel & Kristensen, 2000; Kristensen, 1983), thus
converting surface particles into structured matrices (Hedman et al., 2011; Mermillod-
Blondin et al., 2004).

L. conchilega is sedentary and lives in a tube transporting particles also from the surface
downwards, whereas A. marina selectively deposit feeds below the sediment surface and
transports sediment via faecal piles at the top end of its burrow (Riisgard & Banta, 1998).
Notwithstanding their more sedentary nature, both A. marina and L. conchilega introduce
large amounts of water through irrigation in the sediment. Arenicola marina actively draws
water from the overlying water column down into its burrow which can extend up to 40 cm
deep into the sediment (Riisgard & Banta, 1998), and L. conchilega irregularly carries out
high levels of water exchange through the motion of emerging and retreating into its tube,
acting like an engine’s piston pump (Forster & Graf, 1995).

To understand how these key species influence ecosystem processes such as benthic
fluxes and bioturbation under different temperature regimes, we tested how a temperature
change from 15 to 20 ◦C could affect these bioturbating organisms. For this purpose, we
measured their sediment reworking rates, as well as consequential nutrient and oxygen
exchanges simultaneously in a mesocosm tank experiment.

MATERIALS & METHODS
Sediment & fauna sampling
Sediment was collected from two sites off the coast of List, on the island of Sylt (North
Sea) in August 2020. The first site was located in Königshafen beyond the small island
of Uthörn (55◦02′19.3′′N 8◦24′28.7′′E), henceforth referred to as the ‘Uthörn site’. The
second site was adjacent to a Lanice reef, also in Königshafen (55◦01′34.1′′N 8◦26′07.6′′E),
henceforth referred to as the ‘Reef site’. Surficial intertidal sediment (< 5 cm depth) was
dug up with a spade, and sieved through a 1000 µm sieve into Plexiglas cores (height =
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32 cm, ø= 10 cm) in order to remove all macrofauna. These defaunated sediment cores
were transferred back to the facilities of the Wadden Sea Station of the Alfred Wegener
Institute, Helmholtz Centre for Polar and Marine Research (AWI), and left for 24 h to
allow the fine fraction of the sediment to settle and be retained. Any overlying water was
thereafter decanted, and the sediment height adjusted in all cores to 17 cm (±1 cm).

The animals were collected 1 day later. Arenicola marina and C. edule were collected
from the Uthörn site, while L. conchilega were collected from a Lanice reef at the Reef
site. Individuals of H. diversicolor were observed at the Uthörn site, yet due to tidal
time restrictions, were collected at a site further down the coast from the Uthörn site
(54◦59′49.5′′N 8◦22′55.5′′E), from within burrows in the top 15 cm of sediment. Arenicola
marina was sampled by digging up sediment (to 15 cm deep) adjacent to faecal piles and
irrigation holes. Intact worms were retrieved and placed into storage aquaria. Cerastoderma
edule were collected by hand from surface sediments (< 5 cm). Specimens of L. conchilega
were collected from a Lanice reef adjacent to the Reef site. Lanice tubes were exposed by
levering a spade, carefully removed from the sediment, and visually checked to exclude
empty tubes. Animals were transferred back to the field station, and aeration stones were
added into all storage aquaria during transport.

All specimens shared similar biomass within each species group. Arenicola marina were
all between 7 and 10 cm. All collected individuals of C. edule were approximately two cm
long (shell width). The L. conchilega specimens could not be measured lengthwise without
removing them from their tubes, so adult animals were chosen on their tube diameter
(at least two mm, according to Carey, 1987). Due to availability of animals, individuals of
H. diversicolor had a wider size range (0.07–0.17 g wet weight).

Experimental set-up and incubation
The experiments were performed in the mesocosm facility of the Wadden Sea Station. Six
open top sediment coreswere submerged into each of the 12mesocosm tanks (72 incubation
cores in total), which had a continuous incoming seawater flow from the Sylt-Rømø Bight
(see Pansch et al., 2016 for a detailed description of the mesocosm facility). The tanks were
continuously bubbled with oxygen pipes, and each core was supplied with an aeration
stone. Aeration was kept below a level that could cause any sediment resuspension. Six of
the mesocosm tanks had temperatures set to 15 ◦C (±0.5 ◦C), while 6 of the tanks had their
temperature set to 20 ◦C (±0.5 ◦C). 15 ◦C was chosen as a first temperature treatment as a
comfortable representation of temperature prior to the summer peak (Amorim et al., 2023),
while 20 ◦C was chosen as a second temperature treatment to reach closer to the higher
end of the temperature range for the area. Additionally, some dominant benthic species
of the German Bight, such as A. marina, are known to exhibit physiological temperature
limits of 21 ◦C (Sommer, Klein & Pörtner, 1997), so in order to ensure normal behaviour
the higher temperature treatment was limited to 20 ◦C.

Salinity, pH, and temperature of the incoming water from the Sylt-Rømø Bight was
measured before adjustment to the temperature of the tanks. Over the course of the
experiment, the average water temperature of the Sylt-Rømø Bight was 19.1 ◦C, and on the
day of sampling the animals, 20.5 ◦C (Table S1).
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Shortly after fauna sampling, species-specific individuals were randomly allocated to
respective sediment cores within each mesocosm tank. Accordingly, each mesocosm tank
yielded four species cores, namely an Arenicola core, Cerastoderma core, Hediste core, and
a Lanice core; as well as two sediment control cores for the Uthörn and Reef sediment
controls. A single A. marina worm was deposited into each Arenicola core, 6 C. edule
individuals were placed into each Cerastoderma core, and 5 L. conchilega tubes containing
worms were ‘planted’ into the sediment cores, using the technique described by Ziegelmeier
(1969). The collected H. diversicolor showed a higher variation in body size, therefore 1
‘large’ individual and 3 ‘small’ individuals were chosen for each Hediste core. All species
densities reflected natural densities for the German and Dutch Wadden Sea (Beukema,
1974; Flach, 1996; Flach, 1992a; Flach, 1992b; Gilbert et al., 2021; Rabaut et al., 2007; Reise,
Simon & Herre, 2001). Twelve hours after animals were placed in the sediment cores, all
cores were checked to ensure that the animals had remained burrowed. This is especially
important for C. edule, where individuals can often become infected with a parasite causing
them to remain on the sediment surface (Thieltges, 2006).

From the point of addition to the mesocosms, the animals were left to acclimate for 36 h,
before cores were lifted from the mesocosm tank and a homogenized suspension (15 ml)
of luminophores was added in an even layer across the sediment surface (4 g pink colour,
60 µm, 4 g green colour, 80–250 µm; Partrac Ltd UK). Cores were left out of the mesocosm
tank until the luminophores settled, no longer than 3 min, before being resubmerged,
starting the experiment.

Animals were incubated in the mesocosm tanks for a total of 10 days. On day 8 and
9, oxygen (O2) and nutrient flux measurements were conducted (see below). These
measurements had to be split across 2 days due to the sheer number of replicates. On
day 10, the cores were removed from their mesocosm tanks in the same order that the
luminophores were added, to take bioturbation measurements (see below). Subsequently,
animals were recovered from the cores and wet mass, dry mass, and ash free dry mass
(AFDM) per core were measured (Table S2). The entirety of each whole individual
specimen was muffled (i.e., the entire muscle and shell mass of C. edule for example), at
500 ◦C for 5 h. Lastly, sediment samples were also taken from the incubation cores to
measure the grain size from the two sites, and frozen.

During the course of the experiment, a single lugworm had escaped from its incubation
core, and buried in the Lanice core within the same tank. In addition, one worm from
another Hediste core had died within the top layer of the sediment. Therefore, these three
replicates were excluded from any analysis (Table S2).

Nutrient flux measurements
On day 8 and 9, gas-tight lids were added onto the cores (Fig. 1) and held in place by
elastic bands. The lids were installed with a rubber gasket, and a small magnetic propeller
on the underside. Two thin capillaries extended down into the core to enable the insertion
of a fiber-optical oxygen optode, and to take water samples from the core (Fig. 1). The
capillaries had Luer Lock connectors to draw water samples by syringes while the cores
were submerged in the mesocosms. Along a time gradient ranging approximately 7 h, three
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samples tomeasure the oxygen concentration and nutrient turnover were taken per core. At
each time point within each core, O2 and nutrient samples were collected. First, the water
in each core was stirred with a magnetic attachment on a drill. The stirring was conducted
at a threshold not strong enough to resuspend any sediment, but still strong enough to
thoroughly mix the water column. The overlying water column in the incubations was
not continuously stirred during flux sampling. Therefore, a small degree of stratification
cannot be excluded. However, the overlying water column of 1L was comparably small,
and previous studies investigating hypoxia effects on bioturbation (Beam et al., 2022),
utilising similar aquaria, have demonstrated that the water column oxygen level only
became stratified after 24 h. Therefore, potential stratification within our incubation
cores would have been insignificant. Next, the concentration of oxygen (O2; µmol/L)
was measured by inserting a fiber-optical oxygen optode though the capillaries (Firesting
Fiber-Optical Oxygen Meter: PyroScience) into the core supernatant. The oxygen meter
was calibrated using a two-point calibration, applied with air-saturated water (100%)
and oxygen-free water (0%) that was prepared by addition of sodium sulfite (Na2SO3)
(Neumann et al., 2021). To measure nutrients, samples were taken by a syringe (20 ml,
B.Braun), filtered through a 0.45 µm cellulose filter (0.45 µm surfactant-free cellulose
acetate membrane, Minisart Syringe Filter: Sartorius), stored in sterile containers (15 ml;
Sarstedt) and refrigerated.

In between nutrient and oxygen measurements, the capillaries were closed with Luer
Lock stoppers. Throughout the experiment, the tanks’ transparent lids allowed the natural
light cycle to penetrate the incubation cores. Yet during the nutrient flux and oxygen
incubation, the mesocosm tanks were covered in black sheeting to block out light, thus
minimising photosynthetic activity. Due to time restrictions, there was no adjustment
period of the incubation cores to the newly darkened mesocosm tanks prior to taking
the nutrient samples. The O2 concentration was analysed during measurements, and
measurements were stopped when the O2 concentration was less than 80% saturation. This
ensured that the oxygen penetration depth in the sediment was not changed, which would
have subsequently altered benthic fluxes, or drastically changed animals’ bioturbation
behaviour. Further, as the measurement of fluxes itself could have introduced disruptions
in the animals’ bioturbation behaviour caused by vibrations during the sampling and the
darkening of the cores, the measurement was conducted only over the course of 1 day for
each incubation core. Therefore, after the last time point was measured in each mesocosm
tank, the core lids were promptly removed to allow water and oxygen exchange between
the cores and overlying tank water once more.

Concentrations of different nutrients, total inorganic nitrogen (TIN), nitrate, (NO−3 ),
nitrite (NO−2 ), ammonium, (NH+4 ), silicate (SiO

4−
4 ), and phosphate (PO3−

4 ), were sampled
from the core water and measured with a continuous segmented flow autoanalyzer (SEAL
Analytical HR3). Themeasured concentrations of nutrients in the overlying core water were
corrected for the small amount of tank water introduced while sampling. A comparison
of net fluxes revealed the introduction of water from the tank did not make a significant
difference.
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Figure 1 Experimental sediment cores used for the measurement of fluxes in the course of this study.
The cores were open during the incubation (left) and only temporarily closed during flux measurements
(right). The gas-tight lid was equipped with a magnetically driven stirrer and two capillaries for oxygen
measurements and water sampling.

Full-size DOI: 10.7717/peerj.17047/fig-1

The net fluxes (J) of the nutrients and oxygenwere then calculated using linear regression
of concentrations over time (R), the volume of the supernatant of the cores (V), and the
surface area of the cores (A) according to (1). Absolute fluxes from species cores can be
viewed in Fig. S1 in the supplementary materials.

J =
RV
A
. (1)

Oxygen and nutrient fluxes of the species cores were corrected by subtracting the
average flux of the corresponding sediment control cores with respect to sampled site
and temperature. This accounts for potential photosynthetic activity of any algae growing
within the cores over the experimental time period. Further, by subtracting the control
cores, macrofaunal fluxes are further isolated due to microbial and meiofaunal activity.
Those fluxes attributed to microbial and meiofaunal activity will never be fully removed
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from the incubation cores, as there is often positive feedback between both macrofaunal
activity, meiofaunal activity andmicrobial fluxes (Mermillod-Blondin et al., 2004). Through
subtracting the control cores, we attempt to come close to the true macrofaunal-induced
nutrient fluxes. The fluxes were then normalized by the AFDM of the specimens (unit:
µmol/g−1 h−1 m−2). This correction for AFDM removes differences in fluxes that could
arise from variation between biologically active macrofaunal biomass (e.g., the shells of
C. edule add biologically inactive mass). As natural densities of the chosen macrofauna
vary across the Wadden Sea, this correction makes nutrient fluxes from our in-situ core
densities more applicable across regions. Normalized TIN, PO3−

4 and SiO4−
4 nutrient fluxes

were then additionally plotted against the oxygen flux, as here it is a direct measure of the
animal activity; by plotting nutrient fluxes against the oxygen flux, we gained an overview
of the elemental transport within the incubation cores. Suspended and recently sedimented
particles represent major food sources for bioturbating macrobenthic organisms, and the
initial elemental ratios of the ingested particles can subsequently determine the elemental
ratios of excretions. Thus, data was combined from Amann (2013), Böckel (2015), Burson
et al. (2016), Oehler et al. (2015a), and Oehler, Schlüter & Schückel (2015b) to establish the
local elemental stoichiometry of particulate matter as a reference for the measured fluxes.
It is further assumed that the oxidation of 1 mole of carbon consumes 1.5 moles of oxygen.
Table S3 summarizes the hypothetical C:N:P:Si:O2 ratio of benthic fluxes if compounds
were completely remineralized and recycled back in the water column. This ratio was then
superimposed onto the fluxes to indicate graphically whether the bioturbating species
caused strong deviations from the natural stoichiometry within the incubation cores.

Bioturbation measurements
Bioturbationwasmeasured by sediment profile imaging (SPI, Fig. 2) as previously described
in Farrell et al. (2023) and Wrede et al. (2017). To take photos of the cores, cores were
removed from the mesocosm tanks and placed in a black room. A blacklight (Phillips,
TL-D 18W BLB 1SL) was used to illuminate the core sediment columns and luminophores.
Photos were taken from a set distance of each side (180◦) of the core (Camera: Canon EOS
500D, 15 mm, f 8, exposure 5.0 s, ISO 400). Afterwards, photos were also taken from the
sides and from above under daylight.

Previous studies analysing bioturbation had utilised sediment slicing to recover
luminophores (Maire et al., 2008), howeverWrede, Holstein & Brey (2019b) experimentally
demonstrated that differences in bioturbationmeasurements between these notedmethods
are insignificant for mobile fauna. Further, the possible distortion that may arise from the
utilization of 2-dimensional images of rounded cylindrical objects is negligible (Wrede,
Holstein & Brey, 2019b). Sediment profile imaging is preferable for looking at overall
patterns of sediment reworking (Wrede, Holstein & Brey, 2019b), which is suitable here
across the range of species used.

Images were analysed in ImageJ to ascertain bioturbation rates. All images taken
were cut to the same size with the image analysis software Image J (1.52a) (https:
//imagej.nih.gov/ij/index.html). A specific uniform colour (Fig. 2B, RGB: 253, 003, 155;
Gimp (2.10.20) (https://www.gimp.org/)) was used to manually colour the water column
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Figure 2 Bioturbation signatures of key species (A. marina, C. edule, H. diversicolor, L. conchilega).
Image analysis process to calculate bioturbation rate of different species; (A) Initial photo of core (B) defi-
nition of sediment surface (C) selection of luminophores (D) isolation of luminophores for vertical profil-
ing.

Full-size DOI: 10.7717/peerj.17047/fig-2

in images. ImageJ recognized this coloured water column through a custom-made plugin
(available upon request), which furthermore removed the coloured water column and
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smoothed the sediment surface. A co-ordinate system was created, with the sediment-water
interface as an ‘ x axis’, and the vertical sediment column the ‘ y axis’, using the custom-made
plug-in. The highlighted luminophores within the images were then distinguished with
the threshold function of ImageJ (Hue: 1–130, Saturation 1–250, Brightness: 60–255). The
image was converted to black and white, with black pixels representing the luminophores
(Fig. 2D). Each black pixel was counted within a pixel row, and transformed into a profile
of luminophore distribution and depth. This image analysis method was used as formerly
described in other studies, such as Farrell et al. (2023) and Wang et al. (2022). Through a
non-linear regression analysis using the 1D diffusion model proposed by Crank (1975),
the bioturbation rate (Db) was calculated (performed using Graph Pad Prism 5, GraphPad
Software Inc.). Thismodel can be applied for conservative tracers such as the luminophores,
where no sedimentation occurs, and has been previously used in many bioturbation studies
(for example; Farrell et al., 2023; Fernandes, Meysman & Sobral, 2006; Fernandes, Sobral &
Costa, 2006; Maire et al., 2008; Wrede et al., 2017). Crank (1975) gave the solution as

C (x,t )=
N

√
πDbt

exp
(
−x2

4Dbt

)
(2)

where C(x,t ) is the normalized tracer concentration relative to the initial input, x depth,
N is the initial luminophore input, t is time, and Db the biodiffusion coefficient, which is
a measure for the bioturbation rate (Crank, 1975; Maire et al., 2008). This model assumes
that luminophores are spread in an even layer at the sediment water interface.

The initial luminophore concentration N was estimated from the thickness (0.94) of the
first layer of luminophore pixels from the luminophore profile data across all incubation
cores.

Using this model, Db was estimated by a non-linear regression fitted to the vertical
profile of the luminophores, using the sum of least squares.

For our study we used the classical biodiffusion model from Crank (1975). This
model emphasizes larger luminophore concentrations at the sediment surface (Fernandes,
Meysman & Sobral, 2006), thus best fits the concentration data closer to the surface (<5
cm). Fortunately, the investigated species all predominantly carry out surficial sediment
modification, so Crank’s model is used to cover the wide range of functional groups that
the target organisms encompass. Any more direct, non-linear particle transport that occurs
(e.g., a luminophore particle dropping from the surface to the bottom of a burrow, or
a Lanice worm transporting surface particles directly deeper into the sediment for tube
building), is captured by the non-locality index (NLI).

The NLI calculates non-local transport, using the log-transformed luminophore tracer
concentrations. This gives weight to lower concentrations; it uses the bioturbation rate
of the actual tracer concentration (Db), and the calculated bioturbation rate from those
same tracer concentrations after a log transformation (Dlog

b ) (Fernandes, Meysman &
Sobral, 2006). The measurement gives additional information regarding the variable
sediment reworking that the bioturbators conduct, as the NLI gives more weight to lower
particle concentrations by incorporating uninterrupted faster downward particle transport
(Fernandes, Meysman & Sobral, 2006), as opposed to solely random short diffusive particle
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movement. The NLI is as follows:

NLI =

∣∣∣Dlog
b −Db

∣∣∣√
Dlog
b ×Db

. (3)

If NLI = 0, the bioturbation rate of log-transformed tracer concentrations and the
standard tracer concentrations are equal, demonstrating no non-local (non-diffusive)
transport. Contrarily, a NLI >0 indicates varying levels of non-local transport of particles.

The mean weighted luminophore burial depth was calculated by multiplying the
luminophore burial depth (cm) by the luminophore concentration at each depth.

The maximum luminophore burial depth was measured from the core images as the
distance (cm) between the sediment surface and the deepest luminophore.

The bioturbation rates, maximum luminophore burial depths, and mean weighted
luminophore burial depths of species cores were then corrected using the sediment control
cores to eliminate the effect of two different sediment sites.

Grain size
Sediment was dried in a drying oven (60 ◦C, 48 h), and then weighed. Samples were then
sieved for 30 min in a Vibration-Sieve Machine (Fritsch Analysette, amplitude one mm),
using a set of standard sieves (mesh sizes: two mm, one mm, 500 µm, 125 µm, 63 µm,
and the pan). The weight of each fraction representing a particular grain size was then
measured. The median grain size of the sediment from the Reef site was 408.2 µm, and
389.1 µm from the Uthörn site.

Q10 calculation
The temperature co-efficient (Q10) for every 10 ◦C increase in temperature was calculated
for the bioturbation rate and oxygen consumption of each species, using the following
formula

Q10=

(
R2

R1

) 10
(T2−T1)

(4)

Where R1 and R2 are either the bioturbation rates or O2 consumption measured at
temperature 1 (T1:20 ◦C) and temperature 2 (T2:15 ◦C). The Q10 coefficients calculated for
the species provide an estimate for the rate of change of a biological system, in this instance,
sediment reworking of the bioturbating species as a result of an increase in temperature by
10 ◦C (Table 1), or the O2 consumption (Table 2) (Mundim et al., 2020). Generally, a Q10

value of 2 signifies a doubling in the measured process (Newell & Northcroft, 1967). Often
the Q10 coefficient can alter in applicability to different biological processes, as they are not
influenced by temperature alone (Salvato et al., 2001; Mundim et al., 2020). In this study
however, it is a useful indication of how temperature dependent bioturbation and oxygen
consumption processes differ between the cores of different bioturbating species. As such,
we used the overall mean bioturbation and oxygen consumption rates across each group
of species for each temperature, and calculated the Q10 from these averaged values (Tables
S4 & S5).
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Table 1 Q10 coefficients for bioturbation rates of species’ incubations.

Q10

Arenicola marina 10.58
Hediste diversicolor 3.97
Cerastoderma edule 2.52
Lanice conchilega 0.84

Table 2 Q10 coefficients for oxygen consumption of species’ incubations.

Q10

Arenicola marina 5.2
Hediste diversicolor 8.3
Cerastoderma edule 2.3
Lanice conchilega 2.5

Flux extrapolation to species’ populations in the Sylt-Rømø Bight
As our experimental animals included juveniles, for an additional extrapolation of
benthic fluxes evoked by the characteristic population of adult specimens of our chosen
experimental species in the Wadden Sea, we calculated the average normalized fluxes
based upon the average biomass of a population of each experimental species. These values
were taken from the same location in the Sylt-Rømø Bight (Table S6; Baird, Asmus &
Asmus, 2004), and also estimated the propagation of uncertainty. Baird, Asmus & Asmus
(2004) calculate the biomass (g C m−2) of each experimental species populations’ using
published literature from previous studies. AFDM values were calculated from Baird’s
biomass estimates by using the conversion factor from Brey (2001) and can be viewed in
Table S6. Here we made the assumption that the four species of this study are dominant
within their Wadden Sea community on Sylt, and additively conjoined the 4 species to be
a model ‘community’.

Statistical analyses
For the variables describing sediment reworking, specifically Db, Lummean, Lummax, and
NLI, 2-way ANOVAs (α= 0.05, Table 3) were performed using ‘temperature’ and ‘species’
as fixed factors. The levels within the factor ‘temperature’ were 15 or 20 ◦C. The factor
‘species’ included 4 levels: A. marina, C. edule, H. diversicolor, or L. conchilega. Prior to
the analysis, data was checked for normal distributions using a Shapiro–Wilk test. A
Levene’s test was used to test for equal variances. The sediment reworking data did not
meet the assumptions of normality or homogenous variances, therefore was subject to an
aligned-rank transformation prior to the ANOVA using the R package ‘ARTool’ (version
0.11.1, Wobbrock et al., 2011), a robust non-parametric approach. For post-hoc analysis,
Tukey’s multiple comparison test was used in analysis of levels within the single factors
(species and temperature; Tables S7 & S8) (Kay & Wobbrock, 2020; Wobbrock et al., 2011).
We explored the highest order significant interactions using the contrast test with the Holm
p-value correction using the R package ‘phia’ (Table S9) (De Rosario-Martinez, 2015).
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Table 3 Analysis of Variance of aligned-rank transformed data for main effects of bioturbation pa-
rameters. Significant values (p <0.05) are in bold.

Factors & interaction for each variable df df res. F p

Bioturbation rate
Temperature 1 37 27.937 <0.0001
Species 3 37 42.125 <0.0001
Temperature× Species 3 37 10.253 <0.0001
Non locality index
Temperature 1 37 2.95474 0.093984
Species 3 37 14.34220 <0.0001
Temperature× Species 3 37 0.83085 0.485450
Mean weighted luminophore depth
Temperature 1 37 13.9402 <0.0001
Species 3 37 33.3231 <0.0001
Temperature× Species 3 37 8.2363 <0.0001
Maximum luminophore burial depth
Temperature 1 37 1.0726 0.30707
Species 3 37 13.4304 <0.0001
Temperature× Species 3 37 1.4969 0.23136

To model the variables of the normalized O2, TIN, SiO4−
4 , and PO3−

4 fluxes, generalized
linear models (GLM) with an identity link function were used. This was due to the data
not following a normal distribution, even after transformation attempts. Fixed factors
were ‘temperature’ and the ‘species’, and the interaction between both. The model that
best fit each dependent variable was chosen by backwards step-selection, and comparing
Akaike’s Information Criterion (AIC) (Table S10, Field, Miles & Field, 2012). In order to
assess whether the variables (temperature, species, and their interaction) were significantly
predicting the different nutrient fluxes, a Wald-chi squared test was applied to the models
that had been chosen by AIC (Table S11). The R package ‘car’ (version 3.1.1) was used to
fit the models to the data (Fox & Weisberg, 2019).

To test significant differences of extrapolated fluxes for an adult population of the chosen
species, t -tests were performed based on calculated averages (X 1) (Table S12), uncertainty
(s21; including propagation of uncertainty), and sample size (N ) by

t =
X 1−X 2√

s21
N1
+

s22
N2

. (5)

Lastly, to test whether there were significant differences in biomass between temperature
treatments within species groups, AFDM data from incubation cores was checked for
normality (Shapiro–Wilk test) and equal variances (Levene’s test), andWelch’s t-tests were
calculated (Table S13). All statistical analysis was performed in R version 4.2.0, R Core
Team (2022).
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Figure 3 Bioturbation rate (cm2 yr−1) of (A) A. marina andH. diversicolor (B) C. edule and L. conchi-
lega. Boxes represent lower and upper quartiles, lines indicate the median, and whiskers show minima
and maxima.

Full-size DOI: 10.7717/peerj.17047/fig-3

RESULTS
All organisms promptly began to bury within sediment cores when added to the mesocosm
tanks. Throughout the experiment, the sediment colour slowly changed on the outside of
cores from dark black-brown to a lighter browner colour, likely with oxidation of sediment
around the outside of cores from photosynthetic activity. Characteristic bioturbation
signatures of each species are illustrated in column A of Fig. 2. No significant differences
between AFDM of animals were found within the different species groups (Table S13).

Bioturbation parameters
Within the analysis of bioturbation rates, the bioturbation activity of the four tested
species was differently affected by temperature (Table 3). Arenicola marina bioturbated
significantly higher than all species, and this effect was amplified under 20 ◦C for the
lugworm (each p <0.05; Fig. 3). The magnitude of the temperature effect also differed
between the species. Thus, the difference between median bioturbation rates between the
15 and 20 ◦C temperature treatments for A. marina was 170.43 cm2 yr−1; demonstrating
markedly more variation than 30.1 cm2 yr−1 for H. diversicolor, 3.24 cm2 yr−1 for C. edule,
and only 2.56 cm2 yr−1 for L. conchilega (Fig. 3). This is reflected in the Q10 coefficients,
where L. conchilega was the only species to have a Q10 coefficient <2 (Table 1).

Alongside the differential temperature effects, the investigated species also carried
out varying levels of bioturbation (note the different scale of axes on Fig. 3). Arenicola
marina conducted the most bioturbation, significantly more than the other species (each
p <0.005, Fig. 3), whereas both A. marina and H. diversicolor conducted significantly more
bioturbation than C. edule and L. conchilega (each p <0.0001, Fig. 3). As such, there was
no significant difference between the bioturbation rates of C. edule and L. conchilega (p =
0.7757).
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Figure 4 Non-locality index of A. marina, H. diversicolor, C. edule, and L. conchilega. Boxes represent
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For the non-local particle transport, estimated by the non-locality index (NLI), no
significant interaction was detected between species and temperature (Table 3). There was
a trend for a higher NLI in the 15 ◦C treatments (Fig. 4), however temperature was not
found to be significant (Table 3). Nevertheless, species identity significantly affected the
NLI (Table 3). Cerastoderma edule displayed the highest NLI, significantly higher than both
A. marina and H. diversicolor (each p <0.05). On the other hand, A. marina exhibited the
lowest NLI, significantly lower than C. edule and L. conchilega (each p <0.05). Similar to
the bioturbation rate, there was no significant difference between the NLI of C. edule and
L. conchilega (p >0.7136).

A significant interaction was detected between temperature and species in the analysis
of the mean luminophore burial depth, as the mean luminophore burial depth was
differentially enhanced by the bioturbators under the two temperature regimes (Table 3).
Arenicola marina buried luminophores deeper on average than C. edule and L conchilega,
and this deeper burial was significantly furthered in the 20 ◦C treatment (each p <0.05; Fig.
5). Contrastingly, for L. conchilega, the mean luminophore burial depth was shallower in
20 ◦C treatment (Fig. 5). The mean luminophore burial depths between A. marina and H.
diversicolor, and C. edule and L. conchilega, did not differ significantly between each other
(p = 0.9705; p = 0.5612, respectively).

There was no significant interaction between temperature and species found for
maximum luminophore burial depth, yet the factor species was significant (Table 3).
Cerastoderma edule conducted shallower digging compared to all the other species (each
p <0.05), with C. edules’ deepest luminophore burial measured at only 1.76 cm (Fig.
5). Although L. conchilega had some of the lowest bioturbation rates, there was no
significant difference found between the maximum luminophore burial depths of A.
marina, H. diversicolor, and L. conchilega (each p >0.05, Fig. 5). Arenicola marina buried
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Figure 5 Mean weighted andmaximum luminophore burial depth of cores containing A. marina, H.
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the luminophores the deepest, with a trend for deeper burial at 20 ◦C. The deepest
luminophore burial depth recorded across all species was achieved by H. diversicolor, at
17.24 cm (Fig. 5).

Benthic fluxes
All bioturbators significantly increased sedimentary oxygen uptake, and this effect was
furthered under 20 ◦C, as the oxygen uptake was significantly affected by the interaction
between species and temperature treatment (Wald-Chi: α <0.05, Fig. 6A). Species thus
increased oxygen uptake differently. Arenicola marina and H. diversicolor caused the
strongest consumption of oxygen, with high O2 uptake; up to 149 µmol m−2 hr−1 g−1

AFDM and 303 µmol m−2 hr−1 g−1 AFDM, respectively, under the 20 ◦C treatment. The
oxygen consumption in cores of these two species was contrastingly higher than those in
cores with C. edule and L. conchilega. The latter two species caused similar oxygen uptake
rates across temperature treatments (Fig. 6A).

The analysis of nutrient fluxes revealed varying species and temperature effects, but the
effects did not always interact (Table S10). A significant interaction between the factors
species and temperature was detected for the TIN and SiO4−

4 (Wald-Chi: α <0.05,) fluxes;
therefore, A. marina, C. edule, H. diversicolor and L. conchilega all significantly enhanced
the efflux of SiO4−

4 and TIN, and this effect was increased under 20 ◦C (Wald-Chi: α
<0.05, Fig. 6). In fact, under 20 ◦C, A. marina nearly doubled the amount of SiO4−

4 efflux
compared to any other species (Fig. 6C).

Only the species identity was significant in enhancing the PO3−
4 fluxes (Wald-Chi: α

<0.05, Fig. 6D), with all species increasing the efflux of PO3−
4 , regardless of temperature.

There was, however, slightly more PO3−
4 efflux within H. diversicolor incubation cores

under 20 ◦C (Fig. 6D).
The TIN fluxes of all species virtually all fell below the hypothetical TIN:O2 ratio

(Fig. 7A). The TIN fluxes from A. marina and H. diversicolor were generally within the
confidence band of the TIN:O2 flux ratio, while the fluxes from C. edule and L. conchilega
were significantly below this trend. Similarly, the normalized PO3−

4 fluxes approximately
scaled with the normalized oxygen ratio; and although the measured PO3−

4 fluxes aligned
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Full-size DOI: 10.7717/peerj.17047/fig-6

well with oxygen flux for C. edule and L. conchilega, almost all PO3−
4 fluxes from A. marina

andH. diversicolor substantially exceeded the hypothetical P:O2 trend (Fig. 7B). In contrast,
silicate fluxes from C. edule and L. conchilega fell below the SiO4−

4 :O2 trend, and silicate
fluxes from A. marina and H. diversicolor agreed with the hypothetical ratio (Fig. 7C). The
resulting ratios of N:P fluxes also deviated from the hypothetical regional ratio, ranging
from up to 12 from C. edule to <1 in L. conchilega cores (Fig. 7D), yet all were below the
hypothetical N:P ratio of 33.6 ± 1.1 for the area (Fig. 7D, Table S3).

In applying our normalized fluxes to the AFDM biomass values of the experimental
species’ population in the Sylt-Romo Bight from Baird, Asmus & Asmus (2004), we found
significantly increased fluxes in the 20 ◦C treatment (Fig. 8) for O2 (p = 0.004), SiO4−

4 (p
= 0.023), and TIN (p = 0.054). Nutrient fluxes were increased approximately twofold for
O2 and TIN, and even more than threefold for SiO4−

4 (Fig. 8).

DISCUSSION
Benthic animals under warmer temperatures
The observed bioturbation activity rates in our study largely reflected species’ burrowing
behaviours. The strongest sediment reworking was seen from A. marina, as its intense
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downward drawing of sediment during deposit feeding, and subsequent defecation on the
sediment surface creates entire new sediment layers (Cadee, 1976). The strong bioturbation
rates from A. marinawere enhanced by temperature, also reflected in the Q10 value (10.58).
This Q10 is biologically unrealistic, yet A. marina is known to enter anaerobic metabolism
from 17–20 ◦C (Sommer, Klein & Pörtner, 1997), so the mesocosm temperature of 20 ◦C
was likely close to a critical limit of 21 ◦C for A. marina (Sommer, Klein & Pörtner, 1997).
Thus, the high Q10 value for its bioturbation rate (10.58) is likely a result of A. marina
approaching its pejus temperature (Pörtner & Farrell, 2008; Sommer, Klein & Pörtner, 1997;
Sommer & Pörtner, 1999), a point at which anaerobic products also begin to be suboptimally
metabolized. The continual submersion in this experiment within 20 ◦C water may have
brought the A. marina close to this threshold, so it is probable that they were bioturbating
at their peak activity limits. Accordingly, sustained temperatures in the mesocosms beyond
20 ◦C could have impeded efficient bioturbation.

In line with high bioturbation rates, A. marina also displayed the strongest ability to
facilitate nutrient exchanges between the sediment-water interface. The efflux of SiO4−

4
and TIN were especially pronounced, particularly under 20 ◦C. Silicate efflux is known to
be exceptionally enhanced by temperature rise alone, as silicate solubility and dissolution
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Figure 8 Estimated additively combined oxygen and nutrient fluxes of a characteristic Wadden Sea
community made up of our experimental species (A. marina, H. diversicolor, C. edule, and L. conchi-
lega). This is based upon normalized fluxes (this study) and representative benthic fauna data (AFDM)
from Baird, Asmus & Asmus (2004) at 15 ◦C (black) and 20 ◦C (grey). Error bars represent 1 standard de-
viation including propagation of uncertainty.

Full-size DOI: 10.7717/peerj.17047/fig-8

rates are increased (Sigmon & Cahoon, 1997). The stark increase in silicate efflux by A.
marina is in accordance with its observed bioturbation rates, as an increase in its irrigation
current and deposition of fecal matter are concomitant with bioturbation (Retraubun,
Dawson & Evans, 1996). Hence, as more water is ventilated throughout the sediment, and
as larger surface areas of sediment are reworked and come into contact with the overlying
water, effluxes are heightened. In addition, increased faecal deposition under 20 ◦C from
A. marina would have contributed towards considerable ammonium efflux compared
to other species (Henriksen, Rasmussen & Jensen, 1983). These large nutrient effluxes and
bioturbation rates facilitate ecosystem functions and cement the role of A. marina as an
ecosystem engineer, especially as the large release of ammonium is crucial for primary
production (Laverock et al., 2011), and silicate important for benthic diatoms (Sigmon &
Cahoon, 1997). Against this backdrop as a crucial ecosystem component, the fact that A.
marina could have been working close to its physiological limits means that temperatures
above 20 ◦C could hinder bioturbation and detrimentally affect primary productivity in
the Wadden Sea.

Bioturbation by H. diversicolor was similarly stimulated by the temperature rise,
conducting stronger bioturbation than previously noted under wider temperature
conditions (17 ◦C–26 ◦C; 2–5 cm−2 yr−1) (Duport et al., 2006; Fernandes, Meysman &
Sobral, 2006), albeit using slight variations of the same Db coefficient. Further, sediment
reworking and foraging temperature optimums have been found for H. diversicolor at
21 ◦C (Gillet et al., 2012) and 13–23 ◦C (Lambert et al., 1992), in line with our mesocosm
tank temperatures. Hediste diversicolor is also known to increase sediment reworking
with more chlorophyll content in the water column (Christensen, Vedel & Kristensen,
2000), so enhanced bioturbation rates for the polychaete likely came about from a
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comfortable temperature range in conjunction with high productivity within the Sylt-
Rømø Bight during the summer period. Hediste diversicolor constructs elaborate burrow
networks, increasing the burrow density in upper sediments by lateral branching at five
cm depth (Davey, 1994), and conducts strong irrigation of these burrows (Kristensen,
1983). This irrigation aids in the transport of nutrients out from the sediment, giving rise
to stronger effluxes, as also seen for TIN and SiO4−

4 in Hediste cores. Hediste diversicolor
also caused strongest uptake of oxygen, especially at 20 ◦C. Results here, as well as from
previous studies, demonstrate that temperature enhances the sediment reworking rate
of H. diversicolor. Yet this keystone species is detrimentally affected by the combination
of temperature and acidification (Bhuiyan et al., 2021), thus despite the comfortable
temperature range within this experiment the ragworm may have experienced some level
of oxidative stress, potentially causing higher oxygen demands from the polychaete (Table
2). Findings regarding oxygen consumption in this study emphasize that even though
warmer temperatures have been found as optima for H. diversicolor, this polychaete may
be more susceptible than initially expected to abiotic changes in its environment.

Although the bivalve C. edule is considered a strong bioturbator (Verdelhos, Marques
& Anastácio, 2015), it demonstrated smaller reworking rates compared to the two afore-
mentioned polychaetes. This is probably due to its predominant behaviour—individuals of
C. edule primarily shake their bodies from side to side to bury in the sand, but remain more
or less still once buried, with their siphons exposed out of the sediment (Richardson, Ibarrola
& Ingham, 1993). This was also observed in our experiment. Nevertheless, findings of
bioturbation rates for C. edule here are considerably larger than previously experimentally
measured at 14 ◦C (0.9–1.9 cm2 yr1; Mermillod-Blondin, François-Carcaillet & Rosenberg,
2005; Mermillod-Blondin et al., 2004), and the observed increase in bioturbation under
20 ◦C is in accordance with a previously reported temperature optimum forC. edule activity
at 20–23 ◦C (Verdelhos, Marques & Anastácio, 2015), from a population in Portugal. This is
also in line with known thermal limits for this species from the Wadden Sea, where strong
mortality only occurs beyond 30 ◦C (Compton et al., 2007;Kristensen, 1957). Nutrient fluxes
were generally lower compared to the tested polychaetes. Kauppi et al. (2018) attributed
decreased PO3−

4 effluxes with shallow sediment reworking depth in Cerastoderma glaucum
(Bruguiére, 1789). Through increasing oxygenation of surface sediments, iron is converted
more readily to Fe3+, thus increasing the buffering capacity of surface sediments for the
adsorption of PO3−

4 to Fe3+. However, although this could have contributed to the observed
smaller phosphate effluxes, the agreement of phosphate to oxygen flux ratios of C. edule
with the regional, hypothetical stoichiometry suggests that phosphate fluxes may not have
been substantially attenuated by adsorption to iron oxides.

Although many experiments on L. conchilega have been conducted with temperatures
ranging from 10 to 18 ◦C (e.g., Braeckman et al., 2010; Buhr, 1976; De Smet et al., 2016;
Mestdagh et al., 2020; Ropert & Goulletquer, 2000) and temperature is known to regulate
reproductive life history stages of L. conchilega (Keßler, 1963), a temperature optimum for
L. conchilega sediment reworking activity is currently still unknown.

Nutrient fluxes observed in this study were not particularly high for L. conchilega,
although oxygen uptake rates here and previous results suggest constant bioirrigation of L.
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conchilega (De Smet et al., 2016; Forster & Graf, 1995). Bioirrigators are generally thought
to have stronger influence on nutrient cycling than bioturbators (Braeckman et al., 2010;
Wrede et al., 2019a). Here, oxygen consumption by the macrofauna within our incubations
could have limited the available oxygen for NH+4 oxidation to NO−3 and NO−2 but the
outcome may change when nutrient measurements would be carried out over a longer
time period.

Past investigations have also shown high ammonium fluxes by L. conchilega, as well as
differences in NH+4 effluxes across seasons (Braeckman et al., 2010). Yet considering the
low temperature dependency (Q10 1.74) in oxygen consumption observed in L. conchilega,
as well as the insignificant temperature effect upon sediment reworking, the fluxes seem in
line with the patterns observed in this study for this tube building polychaete.

With respect to elemental transport in our incubation cores,A. marina andH. diversicolor
appeared to foster the recycling of TIN in a ratio to oxygen that lies close to the hypothetical
regional N:O2 ratio, while there was a significant TIN deficit observed from C. edule
and L. conchilega. This could be due to stronger irrigation creating well-maintained
oxygenated pockets in the sediment. These enable oxygen-dependent nitrification of
excreted ammonium that is subsequently denitrified in adjacent anoxic sections of
sediment. This coupled nitrification-denitrification has been demonstrated to account
for extensive N loss (Marchant et al., 2016), and these oscillating redox conditions in the
cores from strong irrigation could have enhanced these coupled processes. In contrast, A.
marina andH. diversicolor may not provide conditions for this level of coupled nitrification-
denitrification; the outflow of respired water from A. marina burrows is oxygen depleted,
perhaps constraining nitrification. Nevertheless, the strong pumping behaviour of A.
marina and H. diversicolor further flushed dissolved phosphate from porewater into the
water column, at rates that exceed the hypothetical regional ratio. These two polychaetes
are thus instrumental in intensifying the bentho-pelagic coupling between the sediment
and water column. On the other hand, as phosphate fluxes evoked by C. edule and L.
conchilega agree well with the regional P:O2 ratio, their excretions likely do not percolate
through the sediment where phosphate could potentially be precipitated with iron oxides.
This apparently lower exchange is supported by the low efflux of silicate, which is released
in the sediment by dissolution of diatom shells. All in all, the resulting benthic fluxes have a
very low N:P flux ratio, which is likely a combination of increased phosphate mobilization
from A. marina and H. diversicolor, and a pronounced nitrogen loss by C. edule and L.
conchilega.

The reworking of sediment by the benthic animals used in this study likely had a strong
positive effect on microbial respiration. While we attempted to correct for this within
our analyses, it is impossible to completely isolate the respiration of the macrofauna
from microbial respiration. Biogenic structures caused by macrofauna can have strong
effects on solute exchange in sediments (Mermillod-Blondin et al., 2004). This is especially
the case when strong bioirrigation activity introduces electron acceptors like oxygen
into the sediment (Chen et al., 2017), thereby enhancing bacterial diversity and numbers
(Chen et al., 2017; Glud, 2008). This has particularly been documented with H. diversicolor
(Mermillod-Blondin et al., 2004), and A. marina (Goñi Urriza et al., 1999). In addition,
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meiofaunal activity can also interfere with macrofaunal influence on bacterial communities
(Lacoste et al., 2018). The current experiment was thus limited in its ability to completely
unravel the different stages of community metabolism and fluxes across the varying trophic
levels present in the incubation cores. Ultimately, the increased contribution of microbes
to measured fluxes may still be attributed to the experimental macrofauna in some part,
as the microbial contribution effect would be absent without the stimulating macrofaunal
activity effect as the cause.

While the specimens of L. conchilega used in this experiment were within standard
adult size range (Ziegelmeier, 1964), specimens of A. marina, C. edule, and H. diversicolor
were notably smaller than standard adult size (Beukema, 1982; Beukema & De Vlas, 1979).
Deductions from this data, albeit realistic and applicable to the Wadden Sea, likely
underestimate the true contribution of these macrofaunal species to bioturbation and
nutrient cycling. In adult field populations, bioturbation rates and benthic flux values
are likely larger; an extrapolation on the biomass of 142 individuals by Valdemarsen et al.
(2011) showed that a 10-fold increase in the biomass of A. marina could correspond to a
16-fold increase in reworking activity. This is also visible in fluxes within our extrapolation
using adult population biomass data from Baird, Asmus & Asmus (2004), where fluxes
increased at least 2-fold with the 5 ◦C temperature increase. This underlines the pivotal
role these benthic species play within the Wadden Sea.

Consequences of a warmer Wadden Sea
Our results demonstrate that an initial upregulation of bioturbation can lead to enhanced
nutrient cycling, more remineralization as more oxygenated water is introduced into
sediments, and enhanced primary productivity. The extrapolated benthic fluxes of
adult populations of our experimental animals suggest that the benthic nutrient fluxes
would increase approximately twofold by a warming from 15 ◦C to 20 ◦C (Fig. 8). This
extrapolation has combined species effects. Yet due to species’ differential bioturbation
impacts on sediments, as well as whether a system is dominated by either advective or
diffusive transport (Mermillod-Blondin & Rosenberg, 2006), this simplification must
be interpreted with caution. Notwithstanding, it is necessary to be able to scale up
existing measured nutrient fluxes to an ecosystem (Fang et al., 2021). Therefore, ecosystem
functioning in the Wadden Sea may not be directly detrimentally affected by sustained
temperatures around 20 ◦C in summer. In fact, the bentho-pelagic coupling within the
Wadden Sea ecosystem could even be strengthened. However, this acceleration is limited,
and as temperature rises, more susceptible species could be lost as activity limits are
reached (Pörtner & Farrell, 2008). Water temperatures already reach 20 ◦C and higher in
the Wadden Sea, and a trend towards an increasing number of warmer days is evident
(Amorim et al., 2023; Beukema & Dekker, 2020; Van Aken, 2008). The warming effects we
summarize are not a scenario for a distant future as the transition is already taking place.
Alterations in the sediment reworking activities of benthic species as they acclimate to these
changes should be investigated.

Arenicola marina’s ability to adapt to temperatures higher than the critical temperature
of 20 ◦C is poor (Sommer, Klein & Pörtner, 1997). As such, it could be the first species
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where its bioturbation could be detrimentally impacted by the predicted sustained warmer
temperatures. This is especially pertinent as the lugworm holds overarching abundance in
the Wadden Sea. Arenicola marina’ s bioturbation maintains a favourable environment for
itself by maintaining low sulphide concentrations (Volkenborn & Reise, 2006), and keeping
sediment permeable and unclogged by organic matter (Volkenborn et al., 2007). Thereby
the lugworms’ activity prevents mudflat expansion at a cost to sandflats (Volkenborn et
al., 2007). Overall, the presence of A. marina holds important implications for ecosystem
stability. For example, recently, a new invasive green alga, belonging to the Vaucheria
genus (de Candolle 1801), has become established in the northern Wadden Sea (Reise,
Michaelis & Rybalka, 2022b; Reise, Lackschewitz & Wegner, 2022a). Through feeding and
burrowing, the lugworm is able to inhibit the establishment of young rhizoids, however
once established, thick hummocks of Vaucheria effectively exclude A. marina (Reise,
Lackschewitz & Wegner, 2022a). Consequently, bioturbation that keeps the sediments loose
and sandy is largely excluded. A loss of dominant bioturbation activity could expedite the
already noted expansion of these of these Vaucheria mats, potentially radically altering
the Wadden Sea ecosystem. Nevertheless, this is still a relatively new phenomenon, and
the influence of warming waters in the Sylt-Rømø Bight on the spread and establishment
of this newly invasive algae are still largely unknown. As a result, the upshot effect of A.
marina’s dominant bioturbation also comes into question and adds incentive to further
monitor this dynamic ecosystem closely.

An extended temperature increase beyond what was used in this study would bring
both H. diversicolor and C. edule into a comfortable bioturbation activity range, thereby
ecosystem functions that are facilitated by the two speciesmay even be favourably enhanced.
While C. edule was the least active bioturbator and nutrient recycler in our experiment,
fluxes observed from H. diversicolor corroborate its central role within the Wadden Sea
ecosystem. Depending on abundances ofH. diversicolor, the ragworm could compensate for
lost bentho-pelagic links that may come about if bioturbation from A. marina is reduced.

Lastly, stable Lanice reefs are keystone structures in the Wadden Sea, offering settlement
and refuge for a broad range of species’ larvae and small fish species (Qian, 1999; Van
Hoey et al., 2008), as well as affecting current velocities in the benthic boundary layer
(Eckman, Nowell & Jumars, 1981). Lanice conchilega did not demonstrate large temperature
susceptibility in its bioturbation and nutrient cycling. In light of the predicted temperature
rise, this could prove vital for the resilience of the Wadden Sea ecosystem. Yet, as more
vulnerable species could be excluded, L. conchilegamay only be able to partially compensate
for lost bentho-pelagic links, as the facilitated nutrient fluxes were quite low in comparison
to the efficient nutrient recyclers A. marina and H. diversicolor. By some measure, the
capacity of L. conchilega to ventilate the sediment observed here was similar to the capacity
of A. marina with respect to their oxygen consumption. Within the bounds of their reefs,
the tube building and deposit feeding activity of L. conchilega could even counteract
build-up of viscous organic matter in sands and encroaching mudflats. The protection of
Lanice reefs as proposed by Braeckman et al. (2014)would be vital in this context. However,
whether the strong pumping activity of L. conchilega can be sustained over longer periods
of warmer sea temperatures remains to be elucidated.
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CONCLUSIONS
Temperature rises in the Wadden Sea could initially be beneficial for ecosystem services
through an upregulation of bioturbation activity from key benthic fauna. The present
study underpins the role of these bioturbating animals as ecosystem engineers within
their environments, by linking how their bioturbation activity contributes to nutrient
fluxes and subsequent bentho-pelagic coupling within the sediment. Additionally, both A.
marina andH. diversicolor facilitate the recycling of major nutrients into the water column,
which can subsequently fuel renewed primary production. Despite this amplified activity,
bioturbation from both A. marina and H. diversicolor may demonstrate some sensitivity
to sea temperatures rising for sustained periods of time, thereby limiting polychaete
population numbers. This holds further implications for the Wadden Sea mudflats, both
in terms of the food web and also geomorphologically, as changes in the makeup of the
sandflats are observed. As the future of especially A. marina’s bioturbation activity comes
into question, and amongst changes already observed in the Wadden Sea, the role of
other dominant polychaetes like H. diversicolor and L. conchilega will likely become more
important in maintaining vital faunal-mediated ecosystem functions.
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