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Abstract
Arctic cyclones, as a prevalent feature in the coupled dynamics of the Arctic climate system, have
large impacts on the atmospheric transport of heat and moisture and deformation and drifting of
sea ice. Previous studies based on historical and future simulations with climate models suggest
that Arctic cyclogenesis is affected by the Arctic amplification of global warming, for instance, a
growing land-sea thermal contrast. We thus hypothesize that biogeophysical feedbacks (BF) over
the land, here mainly referring to the albedo-induced warming in spring and evaporative cooling
in summer, may have the potential to significantly change cyclone activity in the Arctic. Based on a
regional Earth system model (RCA-GUESS) which couples a dynamic vegetation model and a
regional atmospheric model and an algorithm of cyclone detection and tracking, this study assesses
for the first time the impacts of BF on the characteristics of Arctic cyclones under three IPCC
Representative Concentration Pathways scenarios (i.e. RCP2.6, RCP4.5 and RCP8.5). Our analysis
focuses on the spring- and summer time periods, since previous studies showed BF are the most
pronounced in these seasons. We find that BF induced by changes in surface heat fluxes lead to
changes in land-sea thermal contrast and atmospheric stability. This, in turn, noticeably changes
the atmospheric baroclinicity and, thus, leads to a change of cyclone activity in the Arctic, in
particular to the increase of cyclone frequency over the Arctic Ocean in spring. This study
highlights the importance of accounting for BF in the prediction of Arctic cyclones and the role of
circulation in the Arctic regional Earth system.

1. Introduction

Arctic cyclones play an important role in the meri-
dional transport of atmospheric heat, moisture and
momentum from mid-latitudes into the Arctic,
thereby changing wind, temperature, precipitation,
sea ice distribution and sea waves activity in the Arc-
tic (Zhang et al 2004, Simmonds et al 2008, Khon et al
2014, Akperov et al 2015, Alexeev et al 2017). Rapid
warming of the Arctic over the last three decades

together with an unprecedented decline of the Arc-
tic sea ice have had large impacts on the atmospheric
circulation and cyclone activities (Vihma 2014). The
influence of a changing climate on cyclone activity
characteristics in the Arctic is complicated as cyclo-
genesis is dependent on many physical and thermo-
dynamical processes (e.g. Mokhov et al 1992a, 1992b,
Inoue et al 2012, Akperov andMokhov 2013, Akperov
et al 2018). Therefore, understanding how storminess
may change in response to future climate change in
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the Arctic region is important to properly manage the
risks associated with these events in a changing cli-
mate system.

The region where cyclones originate in the Arc-
tic depends on the season. Wintertime cyclones often
originate over the ocean (Simmonds et al 2008,
Sorteberg and Walsh 2008) and summertime cyc-
lones largely originate over continental areas (Craw-
ford and Serreze 2017). Northern Eurasia is one of the
major centers contributing to cyclogenesis. Summer-
time cyclones often develop in response to a contrast
of near-surface heating between the Eurasian contin-
ent and the Arctic Ocean (Wernli and Schwierz 2006).
The cyclone poleward propagation also gives rise to
a distinct summertime Arctic Ocean Cyclone Max-
imum (Serreze and Barrett 2008).

To understand responses of cyclone activities to
future climate change, global climatemodels (GCMs)
are widely used for investigation. Based on sim-
ulations of the coupled ocean-atmosphere Bergen
Climate Model (V2.0) under two greenhouse gas
emissions scenarios, Orsolini and Sorteberg (2009)
predicted an increase in the number and intensity of
cyclones in the Arctic in warm seasons by the end of
this century. This increase occurred in conjunction
with an increase in 850 hPa zonal winds and meridi-
onal temperature gradients at the northern high lat-
itudes, due to slower warming in the Arctic Ocean
than the surrounding land areas. Nishii et al (2015)
also found a similar increase in the summertime Arc-
tic cyclones across the Coupled Model Intercompar-
ison Project (CMIP) phase 3 and phase 5 ensembles.
They found that the magnitude of the response of
Arctic cyclones to climate change was significantly
correlated with the magnitude of change in zonal
winds and surface air temperature gradients along
the Eurasian coastline. The role of surface temper-
ature distribution in the representation of cyclone
activity and their changes in future climate has been
also noted in Akperov et al (2019). However, none
of the above-mentioned work accounts for dynamic
vegetation in the land surface scheme of GCMs and
resultant vegetation-induced feedback to the climate
system. The climate–vegetation interaction has been
acclaimed to be important in the future Arctic climate
change by previous studies (e.g. Swann et al 2010,
Bonfils et al 2012, Jeong et al 2014, Zhang et al 2014a).
Earth system models that incorporate such feedbacks
are needed to assess their effects. Here we employ
a regional Earth system model, RCA-GUESS, which
has previously been applied to investigate the effects
of vegetation-atmosphere feedbacks onArctic climate
and atmospheric circulation (Zhang et al 2018, 2020).

Meanwhile, multiple evidence has shown that the
pan-Arctic tundra is getting greener due to the fast
response in the growth of woody species to recent cli-
matic warming (Tape et al 2006, Bhatt et al 2013).
Vegetation changes, such as shrubification and the
latitudinal and altitudinal shifts of tree-line, may

change the fractional coverage of different vegeta-
tion types, leading to a positive surface temperat-
ure feedback associated with lowered surface albedo
and a negative feedback associatedwith higher evapo-
transpiration (Pearson et al 2013, Zhang et al 2013,
2014b, 2018). It has been reported that vegetation
changes can have a distinct remote influence on large-
scale atmospheric circulation patterns in addition to
their direct and regional effects (e.g. Matthes et al
2011). In turn, a large-scale atmospheric circulation
associated with the vegetation feedback effect may
contribute to the amplification of surface warming,
for instance, in summer when warming reduces the
meridional temperature gradient over the high latit-
udes (Jeong et al 2014). Previous studies (e.g. Screen
et al 2018, Day et al 2018a, Day and Hodges 2018b)
have pointed out that the contrasting surface heating
between land and ocean and Arctic amplification can
potentially alter cyclone activities. Here, we hypothes-
ize that future Arctic vegetation changes may modify
surface heat fluxes, leading to remarkable changes
in atmospheric heating and atmospheric circulation,
thereby changing the seasonal characteristics of Arc-
tic cyclones. Jeong et al (2014) used the Community
Atmospheric Model version 3 which incorporated a
dynamic global vegetation model (Community Land
Model—) to conduct a series of climate simulations.
They noted changes in the atmospheric circulation of
the Arctic triggered by greening in the growing sea-
son (May–September) under enhanced greenhouse
gas conditions. However, they did not quantify how
characteristics of cyclone activities were altered due
to changes in the atmospheric circulation. Moreover,
their results were based on an equilibrium simulation
of vegetation dynamics in a doubling CO2 concen-
tration scenario. The equilibrium simulation is not
capable to reflect realistic conditions of the transi-
ent response of Arctic ecosystems to ongoing rapid
and sustained warming and consequent biogeophys-
ical feedbacks (BF) to the climate system.

In this study, we take a quantitative and transi-
ent modelling approach (figure S1 (available online
at stacks.iop.org/ERL/16/064076/mmedia)) to focus
on responses of spring- and summer-time Arctic cyc-
lone characteristics to BF, as Zhang et al (2018) have
demonstrated that the most pronounced BF to Arctic
climate are found in spring and summer. To quantify
these responses, we compare results of two simula-
tions with a regional Earth system model with and
without interactive vegetation respectively under the
three representative concentration pathway scenarios
(RCP2.6, 4.5 and 8.5, the number referring to radiat-
ive forcing in Wm−2). We employ the regional Earth
system model RCA-GUESS (Smith et al 2011, Zhang
et al 2014a). Themodel’s efficiency in describing Arc-
tic cyclone characteristics has already been evaluated
by Akperov et al (2018) using the simulations of RCA-
GUESS forced by the ERA-Interim data and the ERA-
Interim data itself. Therefore, in this study, wemainly
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focus on three future climate scenarios, which result
from different extents of CO2-induced warming and
assess how characteristics (i.e. frequency, mean depth
and mean size) of Arctic cyclones change in response
to BF.

2. Materials andmethods

2.1. Regional Earth systemmodel
The cyclone characteristics were assessed based on
the simulations with RCA-GUESS (Smith et al 2011,
Zhang et al 2014b), which implements a synchron-
ous coupling between the land surface scheme of a
regional dynamically-downscaled atmosphere model
(RCA4) (Samuelsson et al 2011, 2015) with an
individual-based dynamic vegetation and ecosystem
biogeochemistry model, LPJ-GUESS (Smith et al
2011, 2014). RCA4 provides the daily air temperature,
precipitation, and incoming shortwave radiation to
LPJ-GUESS to simulate vegetation competition, suc-
cession, and ecosystem biogeochemistry. LPJ-GUESS
in turn provides RCA4 with the daily leaf area index
and the annual vegetation cover fractions of broad-
leaved trees/shrubs, needle-leaved trees/shrubs and
grasses/herbaceous vegetation to calculate turbulent
fluxes based on adjusted canopy resistance, surface
roughness length and grid-averaged albedo. Six plant
functional types (PFTs) representing boreal and arc-
tic woody and herbaceous ecosystems were defined
and represented in LPJ-GUESS (table S1). Tree PFTs
were taken also to represent coverage byArctic tall and
short shrubs, characteristic of extensive shrub tundra.
RCA-GUESS was set up and applied to the Coordin-
ated Regional Climate Downscaling Experiment Arc-
tic domain according to the specifications (http://
wcrp-cordex.ipsl.jussieu.fr/). The domain (figure S2)
covers 150× 156 rotated longitude-latitude coordin-
ates at a resolution of 0.44◦ (approximately 50 km)
and 40 vertical levels for atmospheric dynamics.
Biogeochemical feedbacks are not accounted for in
this coupling, but vegetation cover, composition and
associated land surface properties were affected by the
perturbed CO2 through ‘CO2 fertilization’ in addi-
tion to direct climate effects.

2.2. Experiments
The lateral boundary conditions used in RCA-GUESS
were based on the CMIP5 simulations with the EC-
Earth GCM (Hazeleger et al 2010, 2012) under three
RCP scenarios (RCP2.6, 4.5 and 8.5). To disentangle
BF, we conducted simulations with and without
interactive vegetation–atmosphere coupling, herein-
after denoted as the feedback run (FB) and non-
feedback run (NoFB). The coupled model ran two
stages of spin-up to give initial states for vegetation
structure and composition, carbon pools and cli-
mate conditions consistent with 1961–1990 forcing.
In the first spin-up stage, the vegetation model was

forced for 300 years with observation-based climato-
logy from the CRU TS3.0 data set (Mitchell & Jones
2005) to obtain realistic vegetation distributions and
C pools. The second spin-up employed the fully-
coupled model based on the initial 30 years of lateral
boundary conditions and the starting vegetation and
carbon states from the first spin-up stage. Detailed
evaluation of RCA-GUESS for the historical (hist)
period (1961–1990) was performed by Zhang et al
2014a). NoFBwas based on the same procedure as FB,
which implemented interactive vegetation dynamics
in the land surface scheme for the entire simulation
period (1961–2100). Land surface properties of NoFB
were fixed by using the state variables averaged from
1961 to 1990 to run the simulation for 1991–2100.
Our analysis was based on a comparison of 30 year
(2070–2099) time slices of relevant outputs from FB,
NoFB and hist period (1970–1999). The difference
‘NoFB minus hist’ shows the changes due to the RCP
scenario under no-feedback conditions, while effects
of BF are quantified by ‘FB minus NoFB’. The details
of how the hist, FB and NoFB runs were designed are
illustrated in figure S1. All the outputs were aggreg-
ated for spring (March, April and May) and summer
(June, July and August) seasons.

2.3. Algorithm for cyclone identification
The algorithm used to identify cyclones is based on a
method by Bardin and Polonsky (2005) and Akperov
et al (2007). This method has been further mod-
ified for the Arctic regions (Akperov et al 2015).
This algorithm has been used in a number of inter-
comparison studies dealing with changes in cyclone
activities in extratropical and high latitudes (e.g. Neu
et al 2013, Ulbrich et al 2013, Simmonds and Rudeva
2014, Akperov et al 2018, 2019).

Based on this approach, cyclone depth, size, and
frequencywere calculated. Cycloneswere identified as
low-pressure regions enclosed by closed isobars on 6-
hourly maps of mean sea level pressure (MSLP). The
size (radius) was defined as the average distance from
the geometric center to the outermost closed isobar.
The depth was defined as the difference between
the pressure in the cyclone geometric center and the
outermost closed isobar. The cyclone frequency was
defined as the number of cyclone events per season.

To map spatial patterns of cyclone depth, size and
frequency, we used a grid with circular cells of a 2.5◦

latitude radius. To select the robust cyclone systems
in the Arctic, cyclones with a size less than 100 km
and a depth less than 1 hPa were excluded. All cyc-
lones over regions with surface elevations higher than
1000 m were also excluded from the analysis due to
larger uncertainty in the MSLP fields resulted from
the extrapolation to the sea level. The significance
of differences in cyclone characteristics between ‘FB
minus NoFB’ and ‘NoFB minus hist’ was determined
by the Student’s t-test (P < 0.05). More details of
this algorithm and its application for detection of the
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Figure 1. The land and sea temperature difference, the feedback run minus the no-feedback run, (t2m, ◦C) in (a) spring
(MAM—March, April and May) and (b) summer (JJA—June, July and August) for RCP2.6, RCP4.5 and RCP8.5 scenarios. The
temporal variations are based on a moving average of 10 years’ data. The dash lines are the linear fits for temporal variations. The
slopes of the linear fits in (a) are 0.106 ◦C decade−1, 0.132 ◦C decade−1, 0.193 ◦C decade−1 for RCP2.6, RCP4.5 and RCP8.5
scenarios respectively. The slopes of the linear fits in (b) are 0.002 ◦C decade−1,−0.006 ◦C decade−1,−0.025 ◦C decade−1 for
RCP2.6, RCP4.5 and RCP8.5 scenarios respectively.

variability and changes in the cyclone activity over the
Arctic are provided in previous studies (Akperov et al
2015, Zahn et al 2018).

2.4. Measure of baroclinic instability
Baroclinic instability, as the major mechanism for
extratropical cyclone genesis, is often used to interpret
formation, intensification and persistence of Arctic
cyclones in the atmosphere (e.g. Akperov et al 2020,
Yanase and Niino 2006). Eady growth rate (EGR) is a
frequently used measure of the baroclinic instability
(Lindzen and Farrell 1980, Hoskins and Valdes 1990).
EGR is defined using the vertical wind shear and the
Brunt–Väisälä frequency:

EGR= 0.31f

∣∣∣∣∂V∂z
∣∣∣∣N−1 (1)

where f is the Coriolis parameter, N is the Brunt–
Väisälä frequency and ∂V/∂z the vertical wind
shear. Because of the thermal wind balance, the
vertical wind shear is connected to the meridi-
onal temperature gradient (∂θ/∂y). Furthermore, the
Brunt–Väisälä frequency (static stability) depends on
the vertical gradient of the potential temperature
(∂θ/∂z)

N=

(
g

θ

dθ

dz

)1/2

. (2)

where g is the gravity acceleration and θ is the poten-
tial temperature. We used 6-hourly data for wind,
temperature, and geopotential height for two levels
in the lower atmosphere (500 and 850 hPa) to calcu-
late EGR and explain Arctic cyclone response to cli-
matic warming and BF. These vertical levels have been
chosen to cover the lower half of the tropospheric
column but above the planetary boundary layer, the
top of which is typically around the 850 hPa level in
spring and summer.

3. Results

3.1. Impacts of biogeophysical feedbacks on the
land and sea temperature difference
Impacts of BF on temporal variations of the land-
sea temperature difference for RCP2.6, RCP4.5
and RCP8.5 scenarios show contrasting patterns
in spring and summer (figure 1). In all the RCP
scenarios, BF-induced changes in land-sea tem-
perature difference in spring show a rising trend,
leading to a higher temperature difference between
land and sea by 1 ◦C–1.9 ◦C from 2006 to 2099
(figure 1(a)). The slopes of linear fits of the trends in
RCP2.6, RCP4.5 and RCP8.5 are 0.106 ◦C decade−1,
0.132 ◦C decade−1, 0.193 ◦C decade−1 respectively.
On the contrary, declining trends in land-sea tem-
perature difference are found in summer. The slopes
of linear fits of the trends in RCP2.6, RCP4.5 and
RCP8.5 are 0.002 ◦C decade−1,−0.006 ◦C decade−1,
−0.025 ◦C decade−1 respectively (figure 1(b)).

These temporal variations of land-temperature
difference can be attributed to the changes in spatial
patterns of near-surface air temperature (figure S2)
and surface energy fluxes (figures S3 and S4) dur-
ing spring and summer. The noticeable changes in
near-surface air temperature due to BF in spring and
summer are well observed across tundra areas of
Siberia, northern Canada, Alaska and Scandinavian
Mountains (figure S2). In general, BF-induced warm-
ing (e.g. most of them occurring in spring) or cool-
ing effects (e.g. most of them occurring in sum-
mer) get reinforced in warmer RCPs, although the
fraction of the BG-induced warming relative to the
anthropogenic warming (i.e. (FB—NoFB)/(NoFB—
hist)× 100) becomes smaller. Meanwhile, BF have
increased upward (i.e. negative values) latent heat flux
for both spring and summer in three RCPs (figure S3),
these increased latent heat fluxes are mostly found in
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the areas where the vegetation changes from herb-
aceous species to woody species (figures S5(a)–(c)).
In spring, the sensible heat flux is downward (e.g. pos-
itive values) in tundra areas and upward (i.e. negat-
ive values) in forest areas (figures S4(b), (f) and (j)).
BF have reduced both upward and downward sens-
ible heat flux (figures S4(a), (e) and (i)). In sum-
mer, the sensible heat flux is upward, and BF have
decreased upward sensible heat flux or even turned
them downward in the warmer RCPs (figures S4(k)
and (l)). However, increased upward sensible fluxes
due to BF are also found in tundra areas in Siberia
for all RCPs (figures S4(c), (g) and (k)). Overall, the
abovementioned changes in near-surface temperat-
ures, and surface energy fluxes are associated with the
major changes of the normalized physiognomy index
(higher values indicate more woody species) and the
normalized phenology index changes in three RCPs.
For instance, the relative fraction of woody species
increased in the taiga-tundra transition zones in the
warmer scenarios, indicating that taller shrubs may
encroach into the herbaceous tundra (figures S5(a)–
(c)). Some deciduous forests (Larix) will be displaced
by evergreen coniferous forests (e.g. Pinus) in Siberia
(figures S5(d)–(f)).

3.2. Impacts of biogeophysical feedbacks on the
atmospheric circulation in the Arctic
Figure 2 shows differences of MSLP between FB and
NoFB runs for spring and summer during the last
three decades for the different RCP scenarios. BF
results in statistically significant circulation changes
over the land in spring and over the Arctic Ocean
in summer (figure 2). These changes become more
evident in the RCP8.5 for both seasons. In spring,
MSLP shows the largest reduction over the whole
Arctic in the RCP8.5 scenario relative to the other
two RCP scenarios (figure 2( e)). In summer, MSLP
shows a significant increase over the Central Arctic,
though this increase emerges already in the RCP4.5
scenario (figure 2(d)). Therefore, in summer the cir-
culation over the Arctic Ocean becomes more anti-
cyclonic/less cyclonic with the opposite occurring
in spring in the ‘FB’ run. The circulation changes
for the different atmospheric levels (850, 500 and
300 hPa) for the different RCP scenarios are shown
in supplementary figures S6–S8. In spring, there is
an increase of the geopotential height over the con-
tinents that become more prominent in the higher
level. Under the RCP4.5 scenario, additionally, there
is a decrease of the geopotential height over the Arc-
tic Ocean. This decrease of the geopotential height
over the ocean, coincident with an increase over the
continents (dipole structure), is also observed in the
RCP8.5 scenario. In summer, the same dipole struc-
ture is apparent in the RCP2.6 scenario. This dipole
structure is also present under the RCP4.5 scenario,
however, its position has changed. In contrast, under
the RCP8.5 scenario, the geopotential height changes

become positive over the whole Arctic Ocean. It
should be noted that the geopotential height changes
are partly insignificant, except in summer and under
RCP8.5 in both seasons. Thus, we note that most pro-
nounced and significant changes in the atmospheric
circulation occur under the RCP8.5 scenario. There-
fore, in the following section, we examine the factors
that influence the baroclinic instability as triggers for
cyclone genesis and growth with the focus on the
RCP8.5 scenario results.

3.3. Changes in baroclinic instability
The primary factor for the generation and evolution
of cyclones in northern high latitudes is the baroclini-
city of the atmosphere. As outlined in section 2.4, a
simple parameter measuring the baroclinic instabil-
ity is the EGR, which depends on both the vertical
static stability and the horizontal temperature gradi-
ents (through the thermal wind balance) in the atmo-
sphere. Therefore, here we investigate the response of
baroclinic instability to BF with focus on the RCP8.5
scenario. Spatial changes ‘FB minus NoFB’ for the
other two RCP2.6 and RCP4.5 scenarios are presen-
ted in supplementary figures (figures S9 and S10).

In spring, the RCP8.5 warming scenario under no
feedback conditions (‘NoFB minus hist’) leads to sig-
nificant changes in EGR (figure 3(a)). EGR mostly
increases over Alaska, Beaufort and Barents-Kara
Seas, and decreases over the Eurasian continent, Nor-
wegian Sea and over the Arctic Ocean. The static
stability (Brunt–Vaisala frequency), which is a com-
ponent of the EGR, decreases over most areas of the
Arctic (figure 3(c)). Wind shear changes are in line
with EGR changes (figure 3(e)). The BF (‘FB minus
NoFB’) in spring increases EGR over parts of the
Arctic Ocean (figure 3(b)). This is related with con-
current wind shear increase over the Norwegian and
Laptev Seas, the Canadian Arctic and parts of the
Eurasian continent (figure 3(f)). Further, the BF lead
to a significant decrease of the static stability in the
Arctic (figure 3(d)), i.e. the feedback triggers a fur-
ther destabilization initiated by the warming scen-
ario (figure 3(c)). These changes become more evid-
ent in the RCP8.5 scenario compared to the other
two RCP4.5 and RCP2.6 scenarios (figures S9 and
S10). However, the signal is not always statistically
significant.

In summer, the RCP8.5 warming (‘NoFB minus
hist’) effect on EGR (figure 4(a)) is similar strong
as in spring. EGR increases over the Arctic Ocean
as well as over the American continent (Alaska and
Canadian Arctic). However, there are also negative
significant changes seen over the Eurasian continent,
Central Arctic and over the Barents-Kara Seas. In con-
trast to spring, the static stability increases everywhere
in the Arctic in summer, with the smallest changes
over the Barents-Kara seas (figure 4(c)). The wind
shear increase follows as in spring, the pattern of the
EGR change (figure 4(e)).
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Figure 2. The effects of biogeophysical feedbacks on spring (a), (c), (e) and summer (b), (d), (f) mean sea level pressure (MSLP,
hPa) averaged from 2070 to 2099 in the RCP2.6, RCP4.5 and RCP8.5 scenarios. Black dots indicate statistically significant
differences (p < 0.05).

The BF in summer (‘FB minus NoFB’) lead
to an increase of EGR over Siberia and a strong
decrease over the Canadian archipelago (figure 4(b)).
The static stability is due to the feedbacks further

increased over large areas of the Arctic Ocean, but
is decreased over Siberia (figure 4(d)). The wind
shear changes (figure 4(f)) again follow the regional
changes in EGR.
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Figure 3. Changes of spring (March–May) Eady Growth rate, Brunt–Vaisala frequency and wind shear (1/day) between
1970–1999 and 2070–2099 periods in NoFB simulations (a), (c), (e), and between FB and NoFB simulations for 2070–2099
period (b), (d), (f) under RCP8.5 scenario. Black isolines show average EGR values for 1970–1999 (hist runs, (a), (c), (e)) and for
2070–2099 period (NoFB runs, (b), (d), (f)). Black dots indicate statistically significant differences (p < 0.05).

The results show that BF noticeably modify
the baroclinicity of the atmosphere in the warmer
climate. Consequently, we may expect significant
changes in cyclone characteristics in the Arctic in
spring and summer due to BF.

3.4. Impacts of biogeophysical feedbacks on
cyclone characteristics
Comparing the NoFB to hist runs, the cyclone fre-
quency in the Arctic (>65◦ N) as a whole increases
in both seasons with the greatest and significant
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Figure 4. Same as in figure 3, but for summer (June–August).

changes in summer over the Arctic Ocean in the
RCP8.5 scenario (table 1). In spring, the cyclonemean
depth and size decrease in the Arctic including the
Arctic Ocean. In summer, cyclone depth and size
increase in the Arctic. Cyclone depth increase reaches

its maximum over the Arctic Ocean in RCP8.5. Com-
paring the FB to NoFB runs, the cyclone frequency
in the Arctic increases in spring and decreases in
summer (table 2). Cyclone frequency increases six-
fold in the Arctic in the RCP8.5 scenario relative to
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Table 1. Changes (%/30 years) in cyclone frequency, depth and size for ‘NoFB minus hist’ by the end of the 21st century (2070–2099) for
spring and summer from RCA-GUESS simulations under different RCP scenarios. Red (blue) values show increase (decrease). Bold and
italics values indicate a statistical significance at p < 0.05. Values in thin light style indicate their statistically insignificance.

Frequency (%) Mean depth (%) Mean size (%)

Arctic
(>65◦ N) Scenarios Spring Summer Spring Summer Spring Summer

NoFB—hist RCP2.6
RCP4.5
RCP8.5

3.8

3.9
3.5

1.7

2.0
7.9

−5.5
–5.5
−2.8

3.1
7.6
9.0

−2.5
–1.9
1.1

0.9

2.2
2.2

Arctic Ocean
(>75◦ N) Scenarios Spring Summer Spring Summer Spring Summer

NoFB—hist RCP2.6
RCP4.5
RCP8.5

2.5

–0.2
5.2

7.6

14.8
23.8

−7.9
–4.4
−3.3

5.0

13.9
17.7

−4.4
–2.6
–0.6

0.2

1.9
1.6

Table 2. Changes (%/30 years) in cyclone frequency, depth and size for ‘FB minus NoFB’ by the end of the 21st century (2070–2099) for
spring and summer from RCA-GUESS simulations under different RCP scenarios. Red (blue) values show increase (decrease). Bold
values indicate a statistical significance at p < 0.05. Values in thin light style indicate their statistically insignificance.

Frequency (%) Mean depth (%) Mean size (%)

Arctic
(>65◦ N) Scenarios Spring Summer Spring Summer Spring Summer

FB—NoFB RCP2.6
RCP4.5
RCP8.5

0.3

2.1
1.9

1.4

–1.1
−3.1

−2.1

–2.2
−3.4

−0.1

–1.1
−2.6

0.7

–0.1
−1.3

0.8

0.1
–0.2

Arctic Ocean
(>75◦ N) Scenarios Spring Summer Spring Summer Spring Summer

FB—NoFB RCP2.6
RCP4.5
RCP8.5

0.9

8.4
9.8

8.0

–3.7
−2.2

3.4

–0.8
−1.7

−0.3

–1.8
−3.5

2.6

−0.1
−1.9

0.2

–0.4
−2.1

RCP2.6 in spring. In summer, a decrease in cyclone
frequency is observed inRCP8.5. Cyclonemean depth
decreases in FB in both seasons. While cyclone mean
size decreases in RCP8.5, it increases under RCP2.6,
for both spring and summer. Averaged over the Arc-
ticOcean (>75◦N), BF increase the cyclone frequency
with the greatest change in the RCP8.5 scenario in
spring. In spring, cyclone frequency differences vary
from +1% (RCP2.6) to +10% (RCP8.5). Impacts of
BF on temporal variations of the cyclone characterist-
ics for the ArcticOcean (>75◦N) andArctic (>65◦ N)
for different RCP scenarios in spring and summer
are shown in supplementary figure S11. Impact of
BF on cyclone characteristics are evident, and the
impact varies depending on RCP scenario. The Arctic
wide changes (tables 1 and 2) are aggregated from the
regionally different changes in cyclone characterist-
ics, and thus may not be representative for individual
subregions. Therefore, it is important to highlight the
regional pattern of cyclone changes.

The spatial differences in the cyclone characterist-
ics for ‘NoFBminus hist’ and ‘FBminus NoFB’ under
RCP8.5 scenario for spring and summer are shown
in figures 5 and 6. The figures show that the regional

changes due to BF can be of a similar order as those
due to thewarming scenario, but the regional patterns
are different. Under no feedbacks, the RCP8.5 leads
in spring to a cyclone frequency increase over large
areas in the Arctic. A decrease of cyclones is found
over Barents-Kara Seas, in some parts of Canadian
archipelago andwestern Siberia (figure 5(a)). Cyclone
mean depth and size increase over the Beaufort and
Chukchi Seas and eastern Siberia (figures 5(c) and
(e)). BF lead to increase in the cyclone frequency over
large parts of the Arctic Ocean and over Alaska and
Yakutia, which become stronger in the RCP8.5 scen-
ario (figure 5(b)), compared to RCP4.5 and RCP2.6
(figures S13(a) and S14(a)). A small decrease of cyc-
lone frequency is seen over the Kara Sea and Cana-
dian archipelago in all three RCP scenarios and addi-
tionally over the Norwegian Sea and eastern Yakutia
(figure 5(b)). For cyclonemean depth and size, the BF
can also lead to changes of comparable magnitude as
the warming scenario, but with a counteracting effect
in a few regions (figure 5). This is most prominent
in the Beaufort and Chukchi Seas, where the RCP8.5
lead to an increased cyclone depth and size, but the
BF work against it.

9



Environ. Res. Lett. 16 (2021) 064076 M Akperov et al

Figure 5. Changes of spring cyclone frequency (per season), depth (hPa) and size (km) between 1970–1999 and 2070–2099
periods in NoFB simulations (a), (c), (e), and between FB and NoFB simulations for 2070–2099 period (b), (d), (f) under
RCP 8.5. Black isolines show average cyclone frequency values for 1970–1999 (hist runs, (a), (c), (e)) and for 2070–2099 period
(NoFB runs, (b), (d), (f)). Black dots indicate statistically significant differences (p < 0.05).

In summer, the cyclones increase over large
parts of the Arctic Ocean in NoFB compared to
hist runs under the RCP8.5 scenario (figure 6(a)),
with stronger increase compared to spring. A

decrease of cyclone frequency is observed over
the continents. Similar patterns are seen for cyc-
lone mean depth and size changes (figures 6(c)
and (e)).
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Figure 6. Same as in figure 5, but for summer (June–August).

Spatial behavior of cyclone characteristics
changes is quite patchy in the FB run in all three
RCP scenarios (figures 6(b), S13 and S14). However,
the overall cyclone frequency decreases in the Arctic
including the Arctic Ocean in the RCP8.5 scenario
(as shown in table 2). Like in spring, the changes in

cyclone frequency, depth and size due to BF can be of
similar order as those by the RCP8.5 warming scen-
ario for specific regions with potential counteracting
effects. The increased cyclone frequency, depth and
size in the western Arctic Ocean due to RCP8.5 is
reduced due to BF. In general, the spatial changes in
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cyclone size due to BF are in line with the changes
of cyclone mean depth, i.e. reduced cyclone depth is
accompanied with reduced cyclone size and increased
depth goes hand in hand with increased size in
summer.

There is a significant correlation between changes
in cyclone characteristics and changes in land-sea
thermal contrast induced by BF (figure S12). Import-
antly, its spatial patterns agree with those of changes
in cyclone characteristics ‘FB minus NoFB’ partic-
ularly in spring (figure 5). This confirms that the
mechanism through which the changes in cyclone
characteristics are triggered by BF are associated with
the changed land-sea thermal contrast. The latter is
related to changes of baroclinic instability (EGR).
The results show that changes in cyclone character-
istics triggered by BF in both seasons are in line with
changes in EGR over some areas but not all. In case
of cyclone frequency, increase of EGR may lead to
increased cyclone frequency, which is seen in parts
over the Arctic Ocean in spring and summer and over
continental regions in summer. As noted in Day and
Hodges (2018b), increase of sea-land thermal con-
trast may lead also to increase of cyclone intensity
(i.e. cyclone depth). Accordingly, over some areas the
cyclone mean depth changes are in line with changes
in EGR (and wind shear) in RCP8.5 (figures 3–6),
such as over the Laptev Sea and north of the Cana-
dian archipelago in spring and over the central Arctic
Ocean and Laptev Sea in summer.

4. Summary and discussions

We have investigated the role of BF in changes of
spring and summer cyclone activity in the Arctic to
the end of the 21st century using a regional Earth sys-
tem model (RCA-GUESS) with interactive dynamic
vegetation under three RCP scenarios (from RCP2.6
to RCP8.5). We find that BF-induced changes in
near-surface warming and surface heat fluxes lead to
changes in land-sea temperature contrast and atmo-
spheric stability. This, in turn, noticeably changes the
atmospheric baroclinicity and, thus, leads to a change
of cyclone activity in the Arctic. Our findings sug-
gest that consideration of the BF in models can be
important for correct simulations of the atmospheric
circulation.

For the Arctic as a whole, our simulations suggest
that the BF increase cyclone frequency in spring and
increase/decrease the frequency in summer under dif-
ferent RCP scenarios. The maximum changes occur
over the Arctic Ocean, with ca. +10% for spring
under RCP8.5 and ca. −4% for summer under
RCP4.5. For cyclone mean size and depth, these
changes are smaller for both seasons. This indicates
that biogeophysical processes play an important role
in shaping the responses to anthropogenic forcing.

It would be interesting to assess BF effects
on sea-ice and ocean conditions in the Arctic in

spring-summer seasons and how this in turn affects
and is affected by, cyclone activity. However, for this
task, it would be necessary to additionally couple
a sea-ice-ocean system within the architecture of a
model like RCA-GUESS. We plan to do this in an
upcoming study.

It should be noted that results obtained from
regional climate models (RCMs) may be influ-
enced by both lateral boundary conditions and RCM
physics/parametrization which differ from model to
model. Aswas noted in previous studies (e.g. Beniston
et al 2007, Christensen and Christensen 2007), the
large-scale forcing via the lateral boundary conditions
from the driving GCMs can dominate simulations in
winter, whereas in summer, when the circulation is
weaker, the role of the RCM physics becomes more
prominent. Akperov et al (2019) using an ensemble
of different RCMs with various lateral boundary con-
ditions and parametrizations showed that most mod-
els show similar behaviors in cyclone activity formost
regions in the 21st century, including RCA-GUESS.
In spite of this, it is important in further analysis of
change in Arctic cyclone activity to include ensemble
simulations with multiple RCMs, allowing internal
and forced signals involved in changing cyclone activ-
ity to be distinguished.
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