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Abstract
The direction and magnitude of tundra vegetation productivity trends inferred from the
normalized difference vegetation index (NDVI) have exhibited spatiotemporal heterogeneity over
recent decades. This study examined the spatial and temporal drivers of Moderate Resolution
Imaging Spectroradiometer Max NDVI (a proxy for peak growing season aboveground biomass)
and time-integrated (TI)-NDVI (a proxy for total growing season productivity) on the Yamal
Peninsula, Siberia, Russia between 2001 and 2018. A suite of remotely-sensed environmental
drivers and machine learning methods were employed to analyze this region with varying
climatological conditions, landscapes, and vegetation communities to provide insight into the
heterogeneity observed across the Arctic. Summer warmth index, the timing of snowmelt, and
physiognomic vegetation unit best explained the spatial distribution of Max and TI-NDVI on the
Yamal Peninsula, with the highest mean Max and TI-NDVI occurring where summer temperatures
were higher, snowmelt occurred earlier, and erect shrub and wetland vegetation communities were
dominant. Max and TI-NDVI temporal trends were positive across the majority of the Peninsula
(57.4% [5.0% significant] and 97.6% [13.9% significant], respectively) between 2001 and 2018.
Max and TI-NDVI trends had variable relationships with environmental drivers and were
primarily influenced by coastal-inland gradients in summer warmth and soil moisture. Both Max
and TI-NDVI were negatively impacted by human modification, highlighting how human
disturbances are becoming an increasingly important driver of Arctic vegetation dynamics. These
findings provide insight into the potential future of Arctic regions experiencing warming, moisture
regime shifts, and human modification, and demonstrate the usefulness of considering multiple
NDVI metrics to disentangle the effects of individual drivers across heterogeneous landscapes.
Further, the spatial heterogeneity in the direction and magnitude of interannual covariation
between Max NDVI, TI-NDVI, and climatic drivers highlights the difficulty in generalizing the
effects of individual drivers on Arctic vegetation productivity across large regions.

1. Introduction

Arctic vegetation plays a critical role in global climate feedbacks (Pearson et al 2013), permafrost dynamics
(Blok et al 2010), and the distribution of herbivore populations connected to the livelihood of Arctic
communities (Forbes and Kumpula 2009). Changes in Arctic vegetation since the 1980s have been
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monitored using the normalized difference vegetation index (NDVI) (Frost et al 2021), a proxy for primary
productivity that remotely quantifies photosynthetically-active green vegetation (Reichle et al 2018). While
NDVI and Arctic aboveground biomass have been found to have a weakly positive linear relationship
(R2 = 0.23) at finer resolutions (<1 km) (Cunliffe et al 2020), there is evidence of a strong positive
non-linear relationship (R2 = 0.94) between Arctic aboveground biomass and NDVI at coarser resolutions
(⩾1 km), allowing in situ vegetation changes to be inferred from NDVI metrics at broader scales (Jia et al
2006, Epstein et al 2012, Raynolds et al 2012). Max NDVI (the greatest intra-annual NDVI value) represents
peak growing season aboveground biomass, whereas time-integrated (TI)-NDVI (the sum of growing season
NDVI values>0.05) represents total growing season productivity (Jia et al 2006, Bhatt et al 2021).

Despite net increases in Max NDVI and TI-NDVI since 1982 (Frost et al 2020), the direction and
magnitude of Arctic vegetation productivity trends exhibit substantial spatiotemporal heterogeneity across
multiple scales (e.g. local to continental, inter-annual to decadal) (Elmendorf et al 2012, Lara et al 2018,
Berner et al 2020, Myers-Smith et al 2020). This spatiotemporal heterogeneity is likely due to complex
vegetation interactions with climatic, geomorphic, biologic, and anthropogenic drivers (Walker et al 2009,
Yu et al 2017, Frost et al 2021). While some of these relationships are well-studied, there are uncertainties in
determining the relative importance of drivers across regions with varying climatological conditions,
landscapes, and vegetation communities (Epstein et al 2004, Walker 2006, Dutrieux et al 2012, Bhatt et al
2021).

This study examined the effects of environmental and anthropogenic drivers on the spatial and temporal
patterns of vegetation productivity on the Yamal Peninsula, Siberia, Russia (hereafter, the Peninsula) using
NDVI metrics derived fromModerate Resolution Imaging Spectroradiometer (MODIS) data. The Peninsula
is located in one of the warmer regions of the Arctic (Raynolds et al 2008), has steep climate and geomorphic
gradients, ice-rich continuous permafrost, diverse Arctic vegetation, extensive indigenous reindeer herding,
and burgeoning natural resource (gas) development (figure 1, Walker et al 2009). These conditions allowed it
to serve as a case study for determining the critical drivers of Arctic vegetation productivity (Macias-Fauria
et al 2012) under projected warming (IPCC 2021), increasing resource extraction (Walker 2010), and
ongoing herbivory. Specifically, this study aimed to determine (1) which drivers exerted the greatest
influence on the spatial distribution of Max and TI-NDVI across the Peninsula between 2001 and 2018, (2)
the direction and magnitude of the Peninsula’s Max and TI-NDVI trends between 2001 and 2018, and (3)
which drivers best predicted variations in these trends.

We hypothesized that climatic drivers and physiognomic vegetation unit would best explain the spatial
distribution of Max and TI-NDVI because of the influence of long-term climate patterns and growth
form-specific physiological requirements on Arctic vegetation distribution (Walker et al 2002, Raynolds et al
2008). Additionally, we expected that Max and TI-NDVI trends would be positive across a majority of the
Peninsula; however, spatial heterogeneity in trend magnitude and direction was expected due to variable
climatological and landscape conditions. Lastly, we hypothesized that geomorphic and anthropogenic drivers
would best explain variations in Max and TI-NDVI trends due to their ability to mediate the effects of
climate on vegetation productivity.

2. Methods

2.1. Study area
The Peninsula is located within the Arctic tundra of northwestern Siberia, Russia and is approximately
600 km long (south–north, including Belyy Island in the north) and up to 250 km wide (Walker et al 2009).
Between 2001 and 2018, the mean annual temperature ranged from−13 ◦C to−8 ◦C (Wan et al 2015), and
mean annual precipitation ranged from 240 to 367 mm (Abatzoglou et al 2018). The Peninsula has
predominantly flat topography (figure 1), with a majority of slopes< 7◦, and elevations reaching 86 m above
sea level (Leibman et al 2014, Rizzoli et al 2017). The landscape is underlain by ice-rich continuous
permafrost and dominated by river networks, sandy ridges, and lowland valleys with abundant thermokarst
lakes, drained thermokarst lake basins, and polygonal peatlands (Walker et al 2009, Verdonen et al 2020).
Cryogenic landslides controlled by active layer depth and soil water content are the primary disturbance
process on the Peninsula (Leibman 1995, Macias-Fauria et al 2012, Leibman et al 2014). Vegetation
transitions from erect low shrub tundra in the south to sedge, prostrate dwarf-shrub, and moss tundra in the
north (supplementary figure 1, Walker et al 2009). Shrubs are present throughout the Peninsula, but increase
in abundance from north to south (Epstein et al 2021).

2.2. Data sources and pre-processing
This study employed Max and TI-NDVI derived from the MODIS Vegetation Indices product and a suite of
climatic, geomorphic, biologic, and anthropogenic drivers (table 1). A lack of quantitative data and exclusion
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Figure 1. The Yamal Peninsula with elevation (m above sea level) and locations of population centers, infrastructure, and gas
fields (Forbes 1999, Gazprom 2021). The inset map shows the location of the Yamal Peninsula.

areas limited the potential for a meaningful assessment of reindeer effects as a biologic driver (Walker et al
2009).

Pre-processing was completed using Google Earth Engine (GEE), ArcGIS (Redlands, CA), and R version
4.0.0 (R Core Team 2020). Pre-processing entailed evaluating pixel quality, masking surface water, deriving
the parameter of interest for the 2001–2018 study period, and resampling to a 1 km spatial resolution to
ensure that the datasets were comparable. Low-quality pixels affected by cloud cover, aerosols, and viewing
angle are removed from the operational data products used in this study (FAO/IIASA/ISRIC/ISS-CAS/JRC
2012, Didan 2015, Wan et al 2015, Hall et al 2016, Rizzoli et al 2017, Abatzoglou et al 2018, Walker and
Raynolds 2018, Kennedy et al 2019). Marginal-quality pixels were used to supplement the spatial coverage of
snow-free period onset, summer warmth index (SWI), Max NDVI, and TI-NDVI datasets when high-quality
data were unavailable. Permanent surface water bodies were masked using the GlobCover Global Land Cover
Map (ESA and UC Louvain 2010). A 1 km resolution was used for the analyses because it was the native
resolution of the majority of the datasets considered (7 of the 12), which minimized the number of datasets
that needed to be resampled (table 1).

2.3. Max and TI-NDVI calculation
The MODIS Vegetation Indices product (MOD13Q1.006) provides NDVI calculated using the equation
(NIR− R)/(NIR+ R), where NIR equals the reflectance of near-infrared radiation and R equals the
reflectance of visible red radiation (Didan 2015). This MODIS product was used because it is comprised of
NDVI values derived from 16 day maximum value composite images (hereafter, composites), which allowed
for better temporal data quality screening than other available products. The annual Max NDVI for each
pixel was determined by selecting the maximum NDVI value from composites covering 26 June–13
September (period of peak vegetation productivity on the Peninsula). Barren, snow-covered, and ephemeral
water-covered land surfaces were excluded by masking pixels with Max NDVI values below 0.1 (Raynolds
et al 2006). Annual TI-NDVI for each pixel was calculated by summing NDVI values above 0.05 from
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Table 1. Datasets included in the analyses. ∗Dependent variables.

Data type Year(s)
included

Dataset(s) Definition Native
resolution

Source

Continuous

N/A Distance from the Coast Kilometers from the
coast; considered a
proxy for sea ice
influence on
temperature and
precipitation

1 km Circumpolar Arctic
Vegetation Map
(Walker and Raynolds
2018)

N/A Elevation N/A 90 m TanDEM-X 90 m
Digital Elevation
Model (Rizzoli et al
2017)

2001–
2018

Human modification Cumulative measure
of the area impacted
by natural resource
extraction,
infrastructure, and
settlements

1 km Conservation Science
Partners (Kennedy
et al 2019)

2001–
2018

Max NDVI∗ Annual peak NDVI
value

250 m Terra MODIS
Vegetation Indices
(MOD13Q1.006)
(Didan 2015)

2001–
2018

Precipitation and soil moisture Mean snow-free
season
(April–September)
precipitation and soil
moisture

2.5 arc
minutes

TerraClimate:
Monthly Climate and
Climatic Water
Balance for Global
Terrestrial Surfaces,
University of Idaho
(Abatzoglou et al
2018)

2001–
2018

Snow-free period onset First day of the year
with 0% snow cover

500 m Terra MODIS Snow
Cover
(MOD10A1.006)
(Hall et al 2016,
Armstrong et al 2022)

2001–
2018

Summer warmth index Sum of
April–September
monthly mean
temperatures>0 ◦C

1 km Terra MODIS Land
Surface Temperature
and Emissivity
(MOD11A1.006)
(Wan et al 2015)

2001–
2018

TI-NDVI∗ Annual sum of NDVI
values>0.05

250 m Terra MODIS
Vegetation Indices
(MOD13Q1.006)
(Didan 2015)

Categorical

N/A Landscape age Time since last
glaciation

1 km Circumpolar Arctic
Vegetation Map
(Walker and Raynolds
2018)

N/A Physiognomic vegetation unit N/A 1 km Circumpolar Arctic
Vegetation Map
(Walker and Raynolds
2018)

N/A Soil texture N/A 1 km Circumpolar Arctic
Vegetation Map
(Walker and Raynolds
2018)

N/A Substrate chemistry N/A 1 km Circumpolar Arctic
Vegetation Map
(Walker and Raynolds
2018)
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composites covering the entire snow-free season (April–September) (Bhatt et al 2021). Each time-period
composite included in the Max and TI-NDVI calculations had variable spatial coverage due to the exclusion
of low-quality pixels affected by water, clouds, heavy aerosols, and cloud shadows (Didan 2015). Therefore,
the number of pixels masked varied for each composite but did not exceed 4.5% for Max NDVI or 12.5% for
TI-NDVI. At the pixel scale, this resulted in variable intra-annual coverage and a bias toward artificially low
Max and TI-NDVI values. This bias was removed by only calculating annual Max and TI-NDVI for a pixel
when data from all time-period composites considered were available. Max and TI-NDVI calculations were
completed using GEE.

2.4. Spatial correlations amongMax NDVI, TI-NDVI, and continuous drivers
Pairwise Spearman’s correlation was used to determine the direction and significance of the spatial
relationships among Max NDVI, TI-NDVI, and the continuous drivers (table 1). The 2001–2018 means of
Max NDVI, TI-NDVI, and climatic drivers were included as inputs, and all other included variables (coast
distance, elevation, and human modification) were constant over the 2001–2018 study period. Although
humanmodification is dynamic, the dataset used here provides a cumulative measure of humanmodification
based on the spatial extent of settlements, agriculture, transportation, mining, energy production, and
electrical infrastructure in 2016 (Kennedy et al 2019). The Bonferroni correction was applied to account for
multiple comparisons. Spearman’s correlations were also run on stratified random samples using 2/3 and 1/2
of the input dataset to determine if the results were impacted by spatial autocorrelation. Spearman’s
correlation was implemented using the psych package in R (R Core Team 2020, Revelle 2020).

2.5. Spatial correlations amongMax NDVI, TI-NDVI, and categorical drivers
Chi-square (χ2) tests of independence were employed to determine if there were significant spatial
associations among 2001–2018 mean Max-NDVI, TI-NDVI and categorical drivers (table 1). Mean Max and
TI-NDVI were divided into high, mid-, and low categories using the Jenk’s natural breaks classification
method (implemented using the BAMMtools package in R) (Rabosky et al 2014, R Core Team 2020).
Chi-square tests of Independence were also run on stratified random samples using 2/3 and 1/2 of the input
datasets to determine if the results were impacted by spatial autocorrelation. The χ2 test statistics and
residuals were compared to determine the direction and significance of the spatial associations.

2.6. Trend detection
Mann-Kendall trend tests were implemented to detect the presence of pixel-scale monotonic trends in Max
NDVI, TI-NDVI, and climatic drivers between 2001 and 2018. Pixels with fewer than 15 years of data due to
the masking of low-quality pixels (described further in section 2.3) were excluded from the analyses (3.9% of
the Max NDVI dataset and 4.7% of the TI-NDVI dataset). The Durbin–Watson test found that<5% of
pixels exhibited significant lag-1 serial autocorrelation (Kulkarni and von Storch 1995). Modified
Mann–Kendall trend tests were run to verify that pixels with significant serial autocorrelation did not affect
trend significance. Sen’s slope estimation was used to determine the direction and magnitude of Max NDVI,
TI-NDVI, and climatic driver trends. Trend detection analyses were completed using the car (Fox and
Weisberg 2019), Kendall (McLeod 2011), modifiedmk (Patakamuri and O’Brien 2020), and trend packages
(Pohlert 2020) in R. GEE was used to calculate 2001–2009 and 2010–2018 mean NDVI values for each
time-period composite included in the analysis to illustrate shifts in Max NDVI and TI-NDVI between the
first and second halves of the study period.

2.7. Drivers of Max and TI-NDVI trends
Random forest regression (RFR) models were used to determine the best predictors of Max and TI-NDVI
trends (Sen’s slopes) across the Peninsula. All drivers were included as explanatory variables in the models,
and the Sen’s slopes of climatic drivers were used (table 1). A pairwise Spearman’s correlation was used to
confirm that multicollinearity (r > 0.75 or<−0.75) was not present among the continuous input drivers
(Berner et al 2020). RFR models were trained using bootstrapped data and tuned to determine the number
of randomized drivers considered at each tree node (mtry= 5) that resulted in the lowest mean square error
(MSE) (Oliveira et al 2012). The mean decrease in accuracy (% IncMSE) metric was used to determine
variable importance (Liaw and Wiener 2002). Additional RFR models were run for areas where significant
Max and TI-NDVI trends were observed to determine if the best predictors of trends across the Peninsula
were also driving change in these areas. RFR modeling was completed using the caret (Kuhn 2020),
randomForest (Liaw and Wiener 2002), and doParallel packages (Microsoft and Weston 2020) in R.
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The relationships between Max/TI-NDVI trends and the six most important drivers identified by the
RFR models were evaluated using partial dependence plots. Pixel-scale Spearman’s correlations were run
between linearly-detrended Max/TI-NDVI and the three most important climatic driver time series
(precipitation, soil moisture, and SWI) to assess their interannual covariation irrespective of trends, and
therefore what drove variability in Max and TI-NDVI year to year. Linear detrending was completed by
modeling a linear function and then subtracting the function from the observed data. These analyses were
completed using the pdp (Greenwell 2017), pracma (Borchers 2019), and psych packages (Revelle 2020) in R.

3. Results

3.1. Continuous spatial drivers of Max and TI-NDVI
Correlations between time-averaged parameters over the 2001–2018 study period were evaluated to
determine the strength of their spatial relationships. There was a significant (p-value< 0.05), strong, and
positive spatial correlation between mean Max and TI-NDVI (r = 0.93, figure 2 and supplemental figure 2).
Mean Max NDVI exhibited the strongest significant spatial correlations with mean SWI (r = 0.40), mean
precipitation (r = 0.39), and mean snow-free period onset date (r =−0.40), as well as weaker but significant
correlations with the other continuous drivers (except for elevation). Mean Max NDVI was positively
correlated with human modification (r = 0.27) and weakly correlated with mean soil moisture (r = 0.02)
and coast distance (r =−0.02). Therefore, areas with higher Max NDVI coincided with higher SWI, higher
precipitation, earlier snowmelt, and higher human modification, whereas Max NDVI exhibited little to no
spatial relationship with soil moisture, coast distance, or elevation. Mean TI-NDVI exhibited similar spatial
relationships with the continuous drivers; however, mean TI-NDVI was not significantly correlated with
mean soil moisture, and was better correlated with mean SWI, mean precipitation, mean snow-free period
onset date, human modification, coast distance, and elevation than mean Max NDVI (figure 2). Results were
similar for analyses run on stratified random samples using 2/3 and 1/2 of the input dataset.

Notable spatial correlations among the continuous drivers were present. Mean precipitation was
positively correlated with mean SWI (r = 0.89), and both mean precipitation and mean SWI were negatively
correlated with mean snow-free period onset date (r =−0.86 and−0.85, respectively; figure 2 and
supplemental figure 3). Human modification was positively correlated with mean SWI (r = 0.32) and mean
precipitation (r = 0.47), and negatively correlated with mean snow-free period onset date (r =−0.44);
therefore, on average, human settlement more frequently coincided with higher SWI, higher precipitation,
earlier snowmelt. Additionally, coast distance was positively correlated with elevation (r = 0.63) and mean
SWI (r = 0.40), and negatively correlated with mean soil moisture (r =−0.72), indicating that mean
elevation and SWI increased with distance from the coast while soil moisture decreased.

3.2. Categorical spatial drivers of Max and TI-NDVI
Vegetation unit had the strongest spatial association with mean Max NDVI categories (χ2 = 10 674),
followed by substrate chemistry (χ2 = 5672), soil texture (χ2 = 2337), and landscape age (χ2 = 128).
Similarly, vegetation unit had the strongest spatial association with mean TI-NDVI categories (χ2 = 25 903),
followed by soil texture (χ2 = 3747), substrate chemistry (χ2 = 2966), and landscape age (χ2 = 1748). High
mean Max and TI-NDVI were associated with erect shrub and wetland vegetation (a combination of sedges,
mosses, and erect shrubs) (Raynolds et al 2006), whereas low mean Max and TI-NDVI were associated with
graminoid and prostrate shrub vegetation. High mean Max and TI-NDVI were associated with
circumneutral substrates, whereas low mean Max and TI-NDVI were associated with acidic and saline
substrates. Last, high mean Max and TI-NDVI were associated with fine-textured soils, whereas low mean
Max and TI-NDVI were associated with coarse-textured soils. Mean Max and TI-NDVI exhibited slightly
different relationships with landscape age. High mean Max NDVI was associated with older landscapes
(∼70 000 years old), and low mean Max NDVI was associated with younger (∼25 000 years old) and recently
disturbed landscapes (∼1000 years old). Mid-mean TI-NDVI was associated with older landscapes (result
not shown), whereas high and low mean TI-NDVI were associated with younger landscapes. Low mean
TI-NDVI was also associated with recently disturbed landscapes. Results were similar for analyses run on
stratified random samples using 2/3 and 1/2 of the input datasets (table 2).

3.3. Max and TI-NDVI trends
Max and TI-NDVI increased across a majority of the Peninsula between 2001 and 2018 (figure 3). Max
NDVI trends were positive across 57.4% of the Peninsula (5.0% significant positive trends [p-value< 0.05])
and negative across 17.8% (0.6% significant negative trends). Additionally, 25.4% of the Peninsula exhibited
no Max NDVI trend (p-value> 0.05 and Sen’s slope= 0.000). Max NDVI Sen’s slope ranged from−0.022 to
0.045 yr−1, with the mode between 0.000 and 0.001 yr−1. TI-NDVI trends were positive across 97.6% of the
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Figure 2. Spearman’s correlation coefficients (r) for correlations between Max NDVI, TI-NDVI, and continuous drivers. The
2001–2018 means of Max NDVI, TI-NDVI, precipitation (Precip), snow-free period onset date (SnowFree), soil moisture, and
summer warmth index (SWI) were used. Human modification (HumanMod), elevation, and coast distance (CoastDist) values
included were constant over the study period. Max and TI-NDVI correlations are highlighted by the thicker black boxes.
∗Insignificant at the 95% confidence level.

Table 2. Chi-square test of independence results. All tests were significant at the 95% confidence level. Bolded residual values with the
largest absolute values had the greatest influence on the spatial associations. Positive residuals indicate a positive relationship and
negative residuals indicate a negative relationship. The mid-mean Max and TI-NDVI categories are excluded because the most
influential relationships were associated with high and low mean Max and TI-NDVI categories.

Drivers

Chi-square test of independence residuals

Mean Max NDVI Mean TI-NDVI

High Low High Low

Vegetation unit

Erect shrub 41.0 −43.8 72.3 −66.1
Graminoid −30.3 33.5 −66.8 48.2
Prostrate shrub −43.5 49.5 −57.4 65.1
Wetland 9.5 −15.9 22.5 −8.6

Substrate chemistry
Acidic −22.4 15.8 −2.4 17.7
Circumneutral 50.7 −36.5 6.1 −41.3
Saline −0.9 5.3 −4.7 10.9

Soil texture

Clay loam 7.2 −10.1 7.7 −6.3
Loam −2.3 5.1 −11.2 5.2
Sand −4.4 8.0 −9.7 12.4
Sandy loam −28.1 16.5 −30.7 20.6
Silt loam 18.8 −14.8 32.0 −18.5

Landscape age
Older 3.9 −5.6 −2.4 −28.5
Younger −1.7 2.1 1.1 12.2
Recently disturbed −0.9 7.3 −0.4 8.9

Note: Bold indicates the most influence on the spatial associations.

Peninsula (13.9% significant positive trends) and negative across 1.9% (<0.1% significant negative trends).
Only 0.4% of the Peninsula exhibited no TI-NDVI trend. TI-NDVI Sen’s slope ranged from−0.130 to
0.238 yr−1, with the mode between 0.020 and 0.030 yr−1. Overall, 71.5% of the Peninsula exhibited
simultaneous increases in Max and TI-NDVI, 1.4% exhibited simultaneous decreases, and 27.1% exhibited
divergent trends (figure 4). The direction and magnitude of climatic driver trends were variable
(supplemental figure 4).
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Figure 3. Trends in (a) Max NDVI and (b) TI-NDVI inferred fromMann–Kendall trend tests and Sen’s slope estimation. Pixels
were classified based on trend significance at the 95% confidence level and Sen’s slope direction. Pixels classified as no trend had
insignificant trends and Sen’s slopes= 0.000. Permanent water bodies and pixels with< 15 years of data (due to low quality data
or conditions preventing vegetation growth) were masked.

3.4. Drivers of Max and TI-NDVI trends
The Max NDVI RFR model for the entire Peninsula explained 65% of Max NDVI Sen’s slope variance, and
the model for areas with significant Max NDVI trends explained 76%. The most important drivers of Max
NDVI trends across the Peninsula were coast distance, human modification, soil moisture Sen’s slope,
precipitation Sen’s slope, elevation, and SWI Sen’s slope (supplemental figure 5). These were also the most
important drivers of significant Max NDVI trends; however, precipitation and SWI trends were better
predictors in these areas (supplemental figure 6). Driver relationships with Max NDVI trends were similar
across the entire Peninsula and areas that exhibited significant change (supplemental figure 7). Due to the
limited spatial extent of significant trends, the results discussion focuses on findings for the entire Peninsula.

On average, positive Max NDVI trends were strongest further inland, at higher elevations, and where
SWI trends exceeded approximately 0.5 ◦C months yr−1 (figure 5). However, some strong, positive Max
NDVI trends occurred along the southeastern coastline at elevations between−15 m and−13 m (below sea
level) (<1.0% of pixels). Additionally, only 1.7% of the Peninsula experienced increases in SWI greater than
0.5 ◦Cmonths yr−1 (equivalent to a cumulative SWI increase of greater than 9 ◦Cmonths). Prior to reaching
this threshold, Max NDVI and SWI trends exhibited a slightly negative relationship. The covariation between
detrended Max NDVI and SWI time series was variable, with 53.9% of pixels exhibiting a negative correlation
(4.9% significant, p-value< 0.05) and 46.1% exhibiting a positive correlation (3.5% significant) (figure 6).

Positive Max NDVI trends were also strongest where human modification was limited and where soil
moisture and precipitation trends were negative (figure 5). Most pixels had less than 3% of their area
modified by human activities; however, pixels with 30% or more modified area exhibited negative Max
NDVI trends. Detrended Max NDVI and soil moisture time series were negatively correlated across 68.5% of
the Peninsula (4.5% significant) and positively correlated across 31.5% (1.5% significant) (figure 7).
Similarly, detrended Max NDVI and precipitation time series were negatively correlated across 62.8% of the
Peninsula (4.3% significant) and positively correlated across 37.2% (1.6% significant) (supplemental figure
8). These correlations, although spatially variable, indicate that above-average Max NDVI co-occurred with
below-average soil moisture and precipitation across a majority of the Peninsula.

The TI-NDVI RFR model for the entire Peninsula explained 70% of TI-NDVI Sen’s slope variance, and
the model for areas with significant TI-NDVI trends explained 73%. Max and TI-NDVI Sen’s slopes (across
the Peninsula and where trends were significant) were best predicted by the same six variables; however, the
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Figure 4. Phenology curves for pixels where (a) Max and TI-NDVI increased and (b) where Max NDVI decreased while TI-NDVI
increased. Mean 2001–2009 and 2010–2018 NDVI values were calculated for each 16-day growing season composite image to
assess how Max and TI-NDVI shifted between the first and second halves of the study period. Max NDVI is represented by the
peak mean NDVI value at the top of each curve, and TI-NDVI is represented by the area under the curve. The line at mean
NDVI= 0.05 indicates the minimum threshold for NDVI values included in TI-NDVI calculation.

importance of these variables varied (supplemental figures 5 and 6). The most important drivers of TI-NDVI
trends across the Peninsula were coast distance, elevation, precipitation Sen’s slope, human modification,
SWI Sen’s slope, and soil moisture Sen’s slope. Human modification and SWI Sen’s slope were more
important where TI-NDVI trends were significant (supplemental figure 6). Driver relationships with
TI-NDVI trends were similar across the entire Peninsula and areas that exhibited significant change, with the
exception of soil moisture trends and elevation (supplemental figure 9). Similarly to Max NDVI trends, the
results discussion focuses on findings for the entire Peninsula.

On average, positive TI-NDVI trends were strongest at higher elevations, where SWI trends exceeded
approximately 0.1 ◦C months yr−1, and where soil moisture trends were slightly positive around
0.5 mm yr−1 (figure 8). The positive relationship between TI-NDVI and SWI trends became stronger after
SWI Sen’s slopes reached 0.5 ◦C months yr−1. Detrended TI-NDVI and SWI time series were positively
correlated across 99.9% of the Peninsula (78.1% significant), indicating that annual TI-NDVI and SWI
positively covaried across nearly the entire Peninsula (figure 9). Positive TI-NDVI trends were consistently
stronger where soil moisture Sen’s slopes were less negative and approaching 0 mm yr−1. Detrended
TI-NDVI and soil moisture time series were negatively correlated across 67.1% of the Peninsula (6.8%
significant) and positively correlated across 32.8% (0.7% significant) (figure 10). Therefore, although
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Figure 5. Partial dependence plots for the six most important drivers of Max NDVI Sen’s slope across the Peninsula (significant
and insignificant trends): distance from the coast, human modification, mean growing season soil moisture Sen’s slope, mean
growing season precipitation Sen’s slope, elevation, and summer warmth index (SWI) Sen’s slope. Partial dependence plots
display the average predicted relationships between Max NDVI trends and individual drivers across their range of values while
still considering the average effects of the other drivers (Goldstein et al 2015). Dashed lines indicate outlier driver variable values.

Figure 6.Map of Spearman’s correlation coefficients (r) for pixel-wise correlations between linearly detrended Max NDVI and
SWI time series (2001–2018). The inset histogram displays the frequency of r values across the Yamal Peninsula.
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Figure 7.Map of Spearman’s correlation coefficients (r) for pixel-wise correlations between linearly detrended Max NDVI and
mean growing season soil moisture time series (2001–2018). The inset histogram displays the frequency of r values across the
Yamal Peninsula.

TI-NDVI and soil moisture trends exhibited a positive relationship, they did not positively covary
interannually across a majority of the Peninsula.

Positive TI-NDVI trends were also strongest closer to the coast, where precipitation trends were negative,
and where human modification was limited (figure 8). TI-NDVI trends fluctuated with distance from the
coast but were strongest between 0 and 75 km inland. The relationship between TI-NDVI and precipitation
trends was unimodal, with the strongest TI-NDVI trends occurring where precipitation decreased by
approximately 0.5 mm yr−1. Detrended TI-NDVI and precipitation time series were positively correlated
across 76.6% of the Peninsula (1.5% significant) and negatively correlated across 26.3% (<0.1% significant);
therefore, TI-NDVI and precipitation positively covaried interannually across a majority of the Peninsula,
despite the trends exhibiting a negative relationship where precipitation trends were greater than
−0.5 mm yr−1 (supplemental figure 10). As with Max NDVI trends, positive TI-NDVI trends were weakest
where 30% or more of the area had been modified by humans.

4. Discussion

4.1. Spatial drivers of Max NDVI and TI-NDVI
Climatic drivers and physiognomic vegetation unit best explained the spatial distribution of Max NDVI and
TI-NDVI on the Peninsula. On average, areas with higher Max and TI-NDVI coincided with warmer
summer temperatures, higher precipitation, earlier snow melt, and vegetation units dominated by erect
shrubs and wetland vegetation. Although soil moisture has been found to influence Arctic vegetation
distribution (Walker et al 2001, Raynolds et al 2008, van der Kolk et al 2016) and has a more direct effect on
water availability than precipitation, it did not exhibit a spatial correlation with Max or TI-NDVI. This
implies that the positive spatial correlations among Max/TI-NDVI and precipitation may have been driven
by the strong spatial relationships that precipitation has with SWI and snow-free period onset date, rather
than spatial patterns of water availability.
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Figure 8. Partial dependence plots for the six most important drivers of TI-NDVI Sen’s slope across the Peninsula (significant and
insignificant trends): distance from the coast, elevation, mean growing season precipitation Sen’s slope, human modification,
summer warmth index (SWI) Sen’s slope, and mean growing season soil moisture Sen’s slope. Partial dependence plots display the
average predicted relationships between TI-NDVI trends and individual drivers across their range of values while still considering
the average effects of the other drivers (Goldstein et al 2015). Dashed lines indicate outlier driver variable values.

Figure 9.Map of Spearman’s correlation coefficients (r) for pixel-wise correlations between linearly detrended TI-NDVI and SWI
time series (2001–2018). The inset histogram displays the frequency of r values across the Yamal Peninsula.
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Figure 10.Map of Spearman’s correlation coefficients (r) for pixel-wise correlations between linearly detrended TI-NDVI and
mean growing season soil moisture time series (2001–2018). The inset histogram displays the frequency of r values across the
Yamal Peninsula.

In addition to influencing water availability (Gamon et al 2013), the timing of snowmelt determines
when the growing season can begin (Bieniek et al 2015). Vegetation distribution may have been more limited
by summer warmth and growing season onset than water availability because of the continuous permafrost
underlying the Peninsula and the mostly shallow active layer depths (Leibman et al 2015) that restrict
drainage and generally facilitate high soil moisture conditions (Bieniek et al 2015). Additionally, our results
are consistent with findings that more productive Arctic vegetation with higher aboveground biomass is
found where growth is not limited by low temperatures or shorter growing seasons (Jia et al 2006, Raynolds
et al 2006, Epstein et al 2021).

The positive spatial correlations between Max/TI-NDVI and human modification were likely the result of
warmer, coastal areas with earlier snowmelt also coinciding with more human activity. However, re-vegetated
off-road vehicle tracks on the Peninsula near concentrated areas of infrastructure have been found to have
higher aboveground biomass than surrounding undisturbed areas approximately 20 years after revegetation
(Forbes et al 2009). Ground verification and/or comparison with finer resolution imagery would be needed
to confirm if this occurred in other re-vegetated areas that were previously impacted by human
activities.

Although less important than vegetation unit, substrate chemistry, soil texture, and landscape age also
influenced spatial patterns of Max NDVI and TI-NDVI. Max and TI-NDVI were highest on nutrient-rich
circumneutral substrates and fine-textured soils, similar to other studies from the region (Walker et al 2005,
Macias-Fauria et al 2012, Epstein et al 2021). The weak positive association between high TI-NDVI and
younger landscapes was unexpected because older landscapes can have greater nutrient availability and erect
shrub coverage after the development of fine-grained soils and stream networks, vegetation succession, and
peat accumulation (Walker et al 1995). However, the negative spatial association between high TI-NDVI and
younger landscapes was stronger and drove the significance of the spatial relationship between TI-NDVI and
landscape age.
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4.2. Max and TI-NDVI trends
Max NDVI and TI-NDVI increased across a majority of the Peninsula between 2001 and 2018. The
magnitude and direction of the trends were spatially variable, with most pixels exhibiting insignificant
change. Max NDVI has consistently increased across a majority of the Peninsula for the past three decades,
while the nearly uniform increase in TI-NDVI indicates a recent shift from negative to positive TI-NDVI
trends in some areas (Bhatt et al 2021). The co-occurrence of negative Max NDVI and positive TI-NDVI
trends could be explained by the different aspects of productivity and phenology that these variables
represent (figures 3 and 4). Max NDVI better identifies the contribution of the growth form with the greatest
aboveground biomass at the peak of the snow-free season (erect shrubs across a majority of the Peninsula)
compared to TI-NDVI, which better captures the contributions of all growth forms to snow-free season
productivity (Jia et al 2006, Bhatt et al 2021). Therefore, areas with negative Max NDVI and positive
TI-NDVI trends potentially experienced total productivity increases despite decreases in peak erect shrub
biomass due to the expansion of graminoids and/or increased growing season length (van der Kolk et al
2016, Magnússon et al 2021). This shift in community composition has been reported for the central
Peninsula following disturbances from off-road vehicle tracks and heavy reindeer grazing (Forbes et al 2009,
Kumpula et al 2011), but could not be confirmed for other areas without ground verification.

4.3. Drivers of Max NDVI and TI-NDVI trends
The best predictors of Max NDVI and TI-NDVI trends were a combination of geomorphic (coast distance
and elevation), anthropogenic (human modification), and climatic (precipitation trends, soil moisture
trends, and SWI trends) drivers. Coast distance was the best predictor of Max and TI-NDVI trends across the
entire Peninsula and in areas that exhibited significant trends. Positive Max and TI-NDVI trends across the
Peninsula exhibited similar relationships with precipitation trends, elevation, and human modification but
had opposing relationships with coast distance, soil moisture trends, and SWI trends less than
0.5 ◦C months yr−1. These relationships could be due to erect shrubs and other growth forms having
differential responses to some drivers and coordinated responses to others. While these findings elucidate the
relationships between positive Max/TI-NDVI trends and their drivers, they also provide insight into the
potential causes of divergent Max and TI-NDVI trends.

Coast distance captures the effect of coastal-inland gradients in SWI on the Peninsula (figure 2). The
consistently cooler coastal temperatures influenced by sea ice (Bhatt et al 2010) and maritime airflow (Bhatt
et al 2021) potentially facilitated graminoid, forb, moss, and lichen growth (indicated by stronger positive
TI-NDVI trends) and limited shrub growth (indicated by weaker positive Max NDVI trends) (Walker et al
2005). As coastal temperatures increase due to melting sea ice (Bhatt et al 2021), shrub growth may become
less limited near the Peninsula’s coastline. The negative spatial relationship between coast distance and mean
soil moisture may also indicate the influence of nutrient availability on the Peninsula’s vegetation
productivity trends (figure 2). Graminoids are able to take advantage of low nutrients in high soil moisture
conditions that can limit shrub growth (van der Kolk et al 2016), and soil organic nitrogen content may limit
increased shrub growth in response to warming on the Peninsula (Yu et al 2011). Additionally, limited shrub
growth along the coast would facilitate moss and lichen growth by decreasing light competition and burial
under litter (van Wijk et al 2004).

The opposing relationships between Max/TI-NDVI trends, soil moisture trends, and SWI trends indicate
that climate-induced permafrost degradation may have driven moisture regime shifts that favored shrub
growth and positive Max NDVI trends where drying was more pronounced, but graminoid, forb, and moss
growth and positive TI-NDVI trends where drying was less pronounced or wetting occurred (van der Kolk
et al 2016, Jorgenson et al 2022). However, significant positive TI-NDVI trends (13.9% of the Peninsula)
were found to be stronger where soil moisture had decreased. Warming has been found to increase shrub,
graminoid, and forb growth (Walker 2006, Elmendorf et al 2012) and would be expected to have a positive
relationship with Max and TI-NDVI trends without the influence of other limiting factors (Berner et al
2020). Prior to reaching the 0.5 ◦Cmonths yr−1 threshold that resulted in the strongest positive relationships
between Max/TI-NDVI trends and SWI trends, the influence of positive SWI trends on permafrost thaw and
subsequent soil moisture conditions was likely more important than their direct effects on vegetation
growth. Ice wedge degradation and the expansion of thermokarst features (lakes, gullies, and pits) facilitate
wetting that can cause shrub death and the succession of graminoids, forbs, and mosses (Magnússon et al
2021, Jorgenson et al 2022). Conversely, thermokarst that causes lake drainage and the drying of areas
adjacent to depressions could contribute to strong negative soil moisture trends that favored shrub growth
(Loiko et al 2020, Jin et al 2021). Ice wedges, thermokarst features, and drained thermokarst lakes are
abundant on the Peninsula (Leibman et al 2014), and these processes have been reported elsewhere in the
Eurasian (Frost and Epstein 2014, Loiko et al 2020, Magnússon et al 2021) and North American (Jorgenson
et al 2015, Lantz 2017) Arctic. However, further research using in situ or high-resolution remote
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measurements of these processes is needed to confirm their influence on the Peninsula’s Max NDVI and
TI-NDVI trends. The negative relationships between positive Max NDVI trends/significantly positive
TI-NDVI trends and soil moisture trends could be the result of spectral contamination within pixels with
high soil moisture (Myers-Smith et al 2020); however, we would have expected a similar impact on the
Peninsula-wide TI-NDVI trend relationship if this were the case.

Increasing precipitation has been found to benefit graminoid growth over shrub growth in mixed
vegetation communities (van der Kolk et al 2016); however, positive Max and TI-NDVI trends had a negative
relationship with precipitation trends. These similar relationships could have been associated with the effect
of precipitation on the frequency of cryogenic landslides (Leibman et al 2014) and/or an increase in early
growing season rain-on-snow events (Phoenix and Bjerke 2016). Increased precipitation is the primary cause
of cryogenic landslides (Leibman et al 2014) that result in shear surfaces that remain sparsely vegetated for
decades before recolonization by shrubs (Walker et al 2009, Verdonen et al 2020). Additionally, April
rain-on-snow events followed by below-freezing temperatures have been recorded on the Peninsula during
the study period (Bartsch et al 2010) and can result in the death of vegetation due to ice encasement and the
formation of ice crusts (Phoenix and Bjerke 2016).

4.4. Interannual covariation betweenMax NDVI, TI-NDVI, and climatic drivers
The degree of positive or negative interannual covariation between Max/TI-NDVI and climatic drivers
provided insight into the more immediate responses of vegetation to fluctuating conditions that may or may
not be reflected by the average trend relationships (Myers-Smith et al 2020). The positive correlation between
annual TI-NDVI and SWI across 99.9% of the Peninsula indicates that total growing season productivity
consistently fluctuated with SWI between 2001 and 2018. However, the SWI trend was not the most
important driver of the trend in total growing season productivity across the Peninsula or in areas that
exhibited significant change. Additionally, detrended TI-NDVI and precipitation were positively correlated
across 74.0% of the Peninsula, but positive TI-NDVI trends had a negative relationship with precipitation
trends greater than−0.5 mm yr−1. Higher precipitation during any given year could have immediate
beneficial effects on TI-NDVI by limiting water stress (Opala-Owczarek et al 2018), whereas increases in
precipitation over time could cause an increase in landslides (Leibman et al 2014) and/or early growing
season rain-on-snow events (Phoenix and Bjerke 2016) that would weaken positive TI-NDVI trends. Overall,
the correlations among Max/TI-NDVI and SWI, soil moisture, and precipitation detrended time series
revealed concentrated areas of strong positive and negative covariation occurring throughout the Peninsula.
This heterogeneity is reflective of the spatiotemporal variation in the suite of drivers that influence Arctic
vegetation productivity, and highlights the difficulty in generalizing the effects of individual drivers on Arctic
vegetation productivity across large regions.

5. Summary and conclusions

These findings indicate that spatial patterns of Max and TI-NDVI were similarly influenced by SWI, growing
season onset, and vegetation type whereas Max and TI-NDVI trends had variable relationships with drivers
and were primarily influenced by coastal-inland gradients in SWI and soil moisture. Max and TI-NDVI
increased across a majority of the Peninsula between 2001 and 2018, and TI-NDVI trends may have recently
shifted from negative to positive in some areas (Bhatt et al 2021) despite some concurrent decreases in Max
NDVI. The best predictors of change in Max and TI-NDVI trends were the same for the entire Peninsula and
areas of significant change, and a majority of the driver-trend relationships were similar. The significant
TI-NDVI trend-driver relationships that differed (soil moisture trends and elevation) could be reflective of
conditions in the areas where they were concentrated along the northwest and southwest coastlines.
Relationships among Max/TI-NDVI trends and climatic driver trends pointed to the potential influence of
permafrost degradation on Max and TI-NDVI via changes in hydrological conditions. Further, the negative
relationships between Max/TI-NDVI trends and human modification indicate that anthropogenic
disturbances are becoming an increasingly important mediator of vegetation responses to changing climate
and landscape conditions as development of the Peninsula intensifies (Walker et al 2009, 2022).

The coarse resolution (1 km) imagery used in this study captures the dominant landscape features of an
area rather than the sub-pixel heterogeneity that exists on the ground. This aggregation of features can
introduce uncertainty in the relationships between NDVI metrics and environmental drivers (Myers-Smith
et al 2020), but allows for the assessment of the broader scale controls across expansive Arctic landscapes
such as the Peninsula. Remote sensing analyses using coarse resolution imagery can also miss the impact of
fine-scale landscape features related to permafrost degradation (Myers-Smith et al 2020); however, the
comparison of Max and TI-NDVI trend relationships indicated that permafrost processes may be causing
differential vegetation responses and divergent trends. Divergent trends were likely caused by a shift from
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shrub to graminoid dominance which can occur following permafrost thaw, landslides (Magnússon et al
2021), and heavy reindeer grazing (Forbes et al 2009). While this study focused on the spatial and temporal
drivers of Max and TI-NDVI and did not directly assess aboveground biomass, the strong relationship
between aboveground biomass and these NDVI metrics at coarse resolutions (Raynolds et al 2012, Jia et al
2006) allowed for inferences into how broad-scale aboveground biomass changes influenced the observed
Max and TI-NDVI driver relationships. Additional research detailing the interaction between permafrost
degradation and reindeer herbivory is needed to determine their combined effects on the Peninsula’s Max
NDVI and TI-NDVI.

Arctic Max NDVI and TI-NDVI have continued to increase since 2018; however, so has trend variability
as climate and landscape changes result in differential ecosystem impacts (Bhatt et al 2021, Frost et al 2022).
This study provides insight into the potential future of Arctic regions undergoing warming, moisture regime
shifts, and increasing human modification, and demonstrates the usefulness of considering multiple NDVI
metrics to disentangle the effects of individual drivers across heterogeneous landscapes.
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