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Abstract. Frozen sediments from three cores bored in the
permafrost surrounding the El’gygytgyn Impact Crater Lake
have been studied for pollen, non-pollen palynomorphs, plant
macrofossils and rhizopods. The palynological study of these
cores contributes to a higher resolution of time intervals pre-
sented in a poor temporal resolution in the lacustrine sed-
iments; namely the Allerød and succeeding periods. More-
over, the permafrost records better reflect local environmen-
tal changes, allowing a more reliable reconstruction of the
local paleoenvironments. The new data confirm that shrub
tundra with dwarf birch, shrub alder and willow dominated
the lake surroundings during the Allerød warming. Younger
Dryas pollen assemblages reflect abrupt changes to grass-
sedge-herb dominated environments reflecting significantly
drier and cooler climate. Low shrub tundra with dwarf birch
and willow dominate the lake vicinity at the onset of the
Holocene. The find of larch seeds indicate its local presence
around 11 000 cal yr BP and, thus a northward shift of tree-
line by about 100 km during the early Holocene thermal opti-
mum. Forest tundra with larch and shrub alder stands grew in
the area during the early Holocene. After ca. 3500 cal yr BP
similar-to-modern plant communities became common in the
lake vicinity.

1 Introduction

El’gygytgyn Impact Crater is located in central Chukotka,
approximately 100 km north of the Arctic Circle (Fig. 1). The
crater was formed 3.6 Myr ago (Gurov and Gurova, 1979;
Layer, 2000). As inferred from geomorphologic research, the
study area was never glaciated after the time of the impact
ca. 3.6 Myr ago (e.g. Brigham-Grette et al., 2007 and ref-
erences therein), and thus, the lake is probably the longest
archive for Arctic terrestrial environmental and climate his-
tory. El’gygytgyn Late Quaternary lacustrine palynological
records were first reported by Shilo et al. (2001), followed by
more continuous and detailed records published by Lozhkin
et al. (2007) and Matrosova (2009). The studied sediments
comprise the oldest continuous Quaternary pollen record in
the Arctic, which provides history of vegetation and climate
changes since ca. 350 kyr.

Generally, sediments from large and deep lakes are valu-
able paleoenvironmental archives which contain pollen data
reflecting vegetation and climate history of surrounding ar-
eas. However, such pollen records reflect predominately re-
gional environmental changes because of the large input of
long distance wind-transported pollen into the spectra. The
Lake El’gygytgyn sediments, where the pollen from a sev-
eral thousand square-kilometer source area is trapped, also
provide a reliable record of extra-regional vegetation and cli-
mate changes (Lozhkin et al., 2007; Matrosova, 2009). The
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Fig. 1. Location map of the study sites and mentioned cores and
sections. OC – Olga Creek terrace section from Enmyvaam River
valley (Glushkova and Smirnov, 2007; Shilo et al., 2008; Glushkova
et al., 2009).

importance of such continuous long-term regional records is
obvious. Nevertheless, short-term palynological records re-
flecting local paleoenvironmental dynamics are also highly
desired. These records document predominate changes in lo-
cal vegetation and may be compared with extra-regional vari-
ations in order to better understand the role of local and
regional vegetation in the paleobotanical records, resulting
in more reliable environmental reconstructions. Moreover,
these records often have better temporal resolution for some
abrupt changes such as Younger Dryas, providing unique
possibilities for high-resolution environmental studies.

Palynological studies of surface samples from the study
area complement reliable reconstructions. A total of 56 sur-
face sediment samples from Lake El’gygytgyn and 26 sur-
face soil samples from the crater slopes have been recently
studied (Matrosova et al., 2004; Matrosova, 2006, 2009;
Glushkova et al., 2009). These studies demonstrate that
pollen of trees and shrubs may reach up to 82 % of the recent
lacustrine spectra although the only willow and dwarf birch
stands grow in the crater in protected locations. Although
soil pollen spectra reliably reflect the local vegetation, pollen
of long-distance-transported taxa dominate even there (Ma-
trosova, 2006; Glushkova et al., 2009). It is characteristic that
pollen contents ofPinus pumilaandAlnus fruticosa, species
not growing in the crater vicinity, may reach up to 15 and
37 % of the spectra consequently. Thus, by interpretations of
fossil pollen assemblages it has to be taken into considera-
tion that a significant part of the pollen may have originated
from some dozens and even hundreds of kilometers away.

This paper presents palaeoenvironmental and palaeocli-
matic changes during the Lateglacial and Holocene inferred
from permafrost pollen, plant macrofossil, and rhizopod

records from the permafrost surrounding of the El’gygytgyn
Crater Lake. The Lateglacial/Holocene transition is consid-
ered as a unique period of intensive glaciation and deglacia-
tion events accompanied by remarkable changes in global
temperature, atmospheric circulation, air humidity, precipi-
tation and vegetation (Johnsen et al., 1995; Stuiver et al.,
1995; Blunier and Brook, 2001). Our studies of three per-
mafrost cores add to a better understanding of paleoenvi-
ronmental changes during these time intervals which are not
well represented in a high temporal resolution in the lacus-
trine archive. A comparison of the palynological data from
the new permafrost cores and previously studied exposures
and lake cores were used to make a local chronostratigraphy
scheme because of the partly insufficient geochronological
datasets. Such comparison resulted in a more reliable recon-
struction of vegetation and climate changes, especially dur-
ing the transitional intervals from cold to warm periods.

2 Geographical setting

The El’gygytgyn Impact Crater is 18 km in diameter and
holds a ca. 170 m deep lake that has a bowl-shaped mor-
phology ca. 12 km in diameter (Fig. 1). The crater is su-
perimposed on the Anadyr lowland and was formed in an
Upper Cretaceous volcanic plateau (Belyi, 1998). The crater
rim comprises peaks between 600 and 930 m a.s.l. (above sea
level), and the lake level is situated at 492 m a.s.l. Unconsol-
idated Quaternary permafrost deposits cover the crater bot-
tom surrounding the lake. They show a distinctly asymmetri-
cal distribution with a broad fringe of loose sediment that is
500 to 600 m wide to the north and west, and only 10 to 20 m
elsewhere around the lake (Fig. 1).

The study area belongs to the continuous permafrost zone
with a mean annual ground temperature of−10◦C at 12.5 m
depth (Schwamborn et al., 2008a). In 2003, the active layer
was about 40 cm deep in peaty silts and reached 50 to
80 cm in sand, pebbles, and gravels. The region is charac-
terized by extremely harsh climate with average annual air
temperature ca.−10◦C, mean July temperatures of 4 to
8◦C and mean January temperatures of−32 to −36◦C.
The precipitation consists of 70 mm summer rainfall (June–
September) and ca. 110 mm water equivalent of snowfall
(Nolan and Brigham-Grette, 2007). Climate variables are
strongly dependent on oceanic influence expressed in de-
creasing summer temperatures (Kozhevnikov, 1993). Ac-
cording to Kozhevnikov (1993), long-distance atmospheric
convection, bringing air masses from the south and north,
dominates at the lake area. These air masses bring tree and
shrub pollen grains playing an important role in the recent
pollen assemblages from long distances. This situation may
also have occurred in the past.

The study area belongs to the subzone of southern shrub
and typical tundra (Galanin et al., 1997). The modern treeline
for larch (Larix cajanderi) and stone pine (Pinus pumila) is
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positioned roughly 100 km to the south and west of the lake
(Galanin et al., 1997 and references therein). Although the
northern boundary of shrub alder is reportedly much to the
north of the lake, the only shrub alder stands grow approxi-
mately 10 km from the lake, in the Enmyvaam River valley
(P. Minyuk, personal communication, 2010). The local vege-
tation has been well studied during the last decades (e.g. Be-
likovich, 1988, 1989, 1994; Kozhevnikov, 1993; Belikovich
and Galanin, 1994 and references therein).

According to Belikovich (1994), ca. 40 % of the area
(low parts of smooth crater slopes and low lake ter-
races) are covered byhummock tundrawith Eriophorum
vaginatum, E. callitrix, E. polystachion, Pedicularis pen-
nellii, P. albolabiata, Carex rotundata, C. lugens, Salix
fuscescens, S. reticulata, Senecio atropurpureus, Ledum de-
cumbens, Andromeda polifolia, andVaccinium uliginosum.
Ca. 20 % (low-middle parts ofcrater slopes) are covered
by moss-lichens tundra withCassiope tetragona, Rhodo-
dendron parvifolium, Senecio resedifolus, Ermania parry-
oides, Silene stenophylla, Dryas octopetala, Crepis nana, Po-
tentilla elegans, and Androsace ochotensis. Ca. 15 % (up-
per mountain plains) are covered by tundra with rare beds
with Salix phlebophylla, Pedicularis lanata, Artemisia fur-
cata, Potentilla elegans, Eritrichium aretioides, Minuartia
arctica, Potentilla uniflora, Arenaria capillaris, Poa pseu-
doabbreviata, Cardamine bellidifolia, Saxifraga serpyllifo-
lia, Kobresia myosuroides, andCrepis nana. Ca. 10 % are
by nival vegetation withSalix polaris, Cassiope tetragona,
Carex tripartita, Phippsia algida, Koenigia islandica, Sax-
ifraga hyperborea, Eritrichium villosum, Primula tschuk-
tschorum, Hierochloe pauciflora. Another ca. 10 % are cov-
ered by meadow and shrubby tundra withArtemisia arctica,
Aconitum delphinipholium, Arctagrostis arundinacea, Carex
podocarpa, Festuca altaica, Luzula multiflora, Senecio tun-
dricola, Thalictrum alpinum, Veratrum oxysepalum. Rare
steppe-like communities withPotentilla stipularis, Artemisia
kruhseana, Myosotis asiatica, Saxifraga eschscholtzii, Pa-
paver lapponicum, Senecio jacuticus, Woodsia ilvensis, Di-
anthus repenscan be found in rocky habitats. Along the
Enmyvaam River and alongside large creeks, grow low
willow stands withSalix tschuktschorum, S. saxatilis, An-
drosace ochotensis, Empetrum subholarcticum, Pleuropogon
sabinii, Polemonium boreale, Beckwithia chamissonis, Saus-
surea tilesii, Lagotis minor, Pedicularis hirsutaand meadow-
shrub willow communities withSalix alaxensis, S. krylovii,
Deschampsia borealis, Chamerion latifolium, Equisetum
variegatum, Stellaria fischerana, Potentilla hyparctica, Eu-
trema edwardsii, Cardamine blaisdellii, Trollius membranos-
tylus, Polemonium acutiflorum, Parnassia kotzebueiandPoa
paucispicula.

3 Methods

A standard HF technique was used for pollen preparation
(Berglund and Ralska-Jasiewiczowa, 1986). A tablet ofLy-
copodiummarker spores was added to each sample for calcu-
lating total pollen and spore concentrations, following Stock-
marr (1971). Water-free glycerol was used for sample stor-
age and preparation of the microscopic slides. Pollen and
spores were identified at magnifications of 400× with the
aid of published pollen keys and atlases (Kupriyanova et
al., 1972; Kupriyanova and Alyoshina, 1978; Bobrov et al.,
1983; Reille, 1992, 1995, 1998). In addition to pollen and
spores, a number of non-pollen-palynomorphs, such as fungi
spores remains of algae and invertebrate, were also identified
when possible and counted. These non-pollen palynomorphs
are also valuable indicators of past environments (e.g. van
Geel, 2001 and references therein).

At least 250 pollen grains were counted in each sample.
The relative frequencies of pollen taxa were calculated from
the sum of the terrestrial pollen taxa. Spore percentages are
based on the sum of pollen and spores. The relative abun-
dances of reworked taxa (mineralized pollen and spores of
Tertiary and early Quaternary age) are based on the sum of
pollen and redeposited taxa, the percentages of non-pollen
palynomorphs are based on the sum of the pollen and non-
pollen palynomorphs, and the percentages of algae are based
on the sum of pollen and algae. TGView software (Grimm,
2004) was used for the calculation of percentages and for
drawing the diagrams (Figs. 3–5). The diagrams were zoned
by a qualitative inspection of significant changes in pollen
associations, pollen concentrations and occurrence of par-
ticularly indicative taxa. CorelDraw software was used for
preparation of the final pollen diagrams.

At a depth of 146.5–151 cm in core P2, we detected a num-
ber of well-preserved plant remains, picked using a stere-
omicroscope and identified by comparison with a modern
reference material from the Herbarium Senckenbergianum
(IQW). Additionally, a Carex identification key (Egorova,
1999) was used.

The core sediments were also studied for testate amoebae
tests. The samples were sieved through a 0.5 mm mesh and
testate amoebae tests were concentrated with a centrifuge. A
drop of suspension was placed on the slide, and then glycerol
was added. Normally, 5 slides were examined at x200–400
magnification with a light microscope.

A total of 33 AMS14C ages were obtained from the stud-
ied deposits (Table 1). Plant macrofossils (i.e. grass remains)
were picked from the cores P1 and P2 and the uppermost seg-
ment of 5011-3 for AMS radiocarbon dating. Because of the
lack of plant remains in the lower part of core 5011-3, only
bulk organic was dated. AMS datings were done at the Leib-
niz Laboratory for Radiometric Dating and Stable Isotope
Research (Christian Albrechts University, Kiel, Germany)
and the Poznan Radiocarbon Laboratory (Adam Mickiewicz

www.clim-past.net/8/1287/2012/ Clim. Past, 8, 1287–1300, 2012



1290 A. A. Andreev et al.: Vegetation history of central Chukotka

 
3

0
 

F
ig

u
re 2

  
7

9
3

 

 
7

9
4

 
 

7
9

5
 

 
7

9
6

 

 
7

9
7

 

 
7

9
8

 

 
7

9
9

 

Fig. 2.Lithological, geochronological, grain size and TOC data from P1, P2, and 5011-3 cores.

University, Poznan, Poland). Calibrated ages (cal yr BP) were
calculated using “CALIB 6.1.0” (Reimer et al., 2009).

4 Results

4.1 P1 core

The first permafrost core (P1) was extracted from a piedmont
terrace about 1.7 km southeast of the lake (67◦22′26′′ N,
172◦13′10′′ E, Fig. 1) during field work in summer 2003 (for
details see Schwamborn et al., 2006). The study site is lo-
cated on a slope exposed to the southwest with the angle
of 5◦. The vegetation cover at core site was relatively dense
(ca. 80 %).

The 5 m slope debris core consists mostly of a silty-to-
sandy diamicton interpreted as a result from proluvial, collu-
vial and solifluctional deposition (Schwamborn et al., 2006).
Prominent peaty layers interrupt the section between 330 and
220 cm core depth, which is also reflected in maximum val-
ues of total organic carbon (TOC on Fig. 2). Non-identified
plant remains from several layers have been dated and show a
correct depth-to-age relationship (Table 1, Fig. 2). The oldest
date from 463 cm depth shows that the oldest core sediments
are around 13 000 cal yr BP old or slightly older.

Generally the P1 sequence is very rich in pollen and pa-
lynomorphs (Fig. 3). The studied pollen spectra can be sub-
divided into 5 pollen zones (PZ). PZ-I (ca. 495–430 cm) is
dominated by Cyperaceae, Poaceae, andBetulasect.Nanae
andSalix pollen. PZ-II (ca. 430–380 cm) shows the signif-
icant increase of Cyperaceae pollen content, whileBetula
sect.Nanaecontent is decreased. PZ-III (ca. 380–330 cm) is

notable for an increase inBetulasect.Nanaeand appearance
of small amounts ofAlnus fruticosa. Pollen concentration is
also increased in the upper part of the zone. The amounts of
tree and shrub pollen (predominantlyAlnus fruticosa) have a
maximum in PZ-IV (ca. 330–265 cm). The pollen concentra-
tion is the highest in PZ-V (ca. 265–50 cm), which is notable
for high amounts ofBetulasect.Nanae, Alnus fruticosaand
Cyperaceae pollen. Single pollen grains ofPinus, Larix, and
Piceaare also characteristic for this zone. PZ-V can be sub-
divided into 2 subzones, the upper one (50–0 cm) showing
the higher contents ofSalixpollen.

P1 has also been studied for rhizopods (Table 2). The only
sphagnobiotic/hygrophilicHeleopera petricola v. amethys-
tea, pointing to a very wet environment, has been found
at 463–473 cm depth. Mostly soil-eurybiotic (e.g.Centropy-
xis aerophila, C. constricta, C. sylvatica) and hydrophilic
(Difflugia and Lagenodifflugia) species dominated the sed-
iments between 334 and 223 cm. However, sphagnobiotic
taxa (Arcella, Heleopera, Nebela, Centropyxis aculeata) are
also common. The role of soil-eurybiotic species gradually
increases in the upper part.

4.2 P2 core

The core was retrieved 12.5 km away from P1 across the lake
to the north (67◦32′50′′ N, 172◦07′31′′ E), Fig. 1). The site
is placed on a gently inclined (< 3◦) surface about 100 m
from the north lake shoreline (for details see Schwamborn
et al., 2008b). The surface is characterized by a boggy en-
vironment composed of a loamy substrate covered by grass
tundra. Similar to core P1 deposits, core P2 is composed of
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Fig. 3.Percentage pollen diagram of core P1. Dots are< 2 % pollen contents.

a silty-to-sandy diamicton deposition (Schwamborn et al.,
2008b). The lower part of the core (510–250 cm) is inter-
preted as weathering debris of the local volcanic basement.
The upper 250 cm consists of proluvial slope washout de-
posits. The lithological transition between the units is also
very distinguishable by an increase of TOC contents (Fig. 2).

Non-identified plant remains found in the P2 deposits have
also been dated and show a rather reliable depth–age re-
lationship (Table 1, Fig. 2). Three radiocarbon dates from
the sediments between 205 and 226 cm depth demonstrates
that these sediments might have accumulated about 14 000–
12 400 cal yr BP. Taking into consideration the comparison
with other dated pollen records from the area (Lozhkin et
al., 2007; Matrosova, 2009; Glushkova et al., 2009), the
youngest date seems to be the most reliable.

P2 core sediments are rich in pollen and palynomorphs
except for the lowermost 170 cm. The studied pollen spec-
tra can be subdivided into 6 PZ (Fig. 4). Sediments
from PZ-I (ca. 510–350 cm) contain only single pollen
grains of Pinaceae,Betula sect. Nanae, Alnus fruticosa,
and Cyperaceae. Pollen concentration is slightly higher
in the lowermost sample which contains few pollen of
Betula sect. Nanae, Alnus fruticosa, Pinus s/g Haploxy-
lon and Cyperaceae. Pollen concentration is higher (up to
2650 grains/g) in PZ-II (ca. 350–330 cm), which is also
notable for high content ofLycopodiumand Botrychium
spores. The lowermost PZ-I and PZ-II were not used for

paleoenvironmental reconstructions because of very low
pollen concentration in many samples, which may lead to
over-representing some taxa due to possible contamination
or selective preservation of palynomorphs (e.g. abnormal
presence of spores may indirectly point to it). Pollen con-
centration is much higher (up to 5800 grains/g) in PZ-III
(ca. 330–265 cm), which is characterized by high pollen con-
tents of Betula sect. Nanae, Alnus fruticosa, Cyperaceae,
and Poaceae. Rather high amounts ofPinuss/gHaploxylon
and Pinaceae are also notable in this zone. The pollen con-
centration increases significantly (up to 35 700 grains/g) in
PZ-IV (ca. 265–180 cm).Betulasect.NanaeandAlnus fru-
ticosa pollen contents decreased dramatically at the begin-
ning of the zone and gradually increased in the upper part.
The zone can be subdivided in two subzones based on the
shrub pollen contents. Pollen concentration is highest (up to
83 600 grains/g) in PZ-V (ca. 180–40 cm), which is domi-
nated by pollen ofBetulasect.Nanae, Alnus fruticosa, Salix,
Cyperaceae, and Poaceae. Additionally, on the 146.5–151 cm
depth seeds and short spurs ofLarix dahuricaas well as nu-
merous utricle and nutlets ofCarex rostratawere found. The
uppermost PZ-VI (ca. 40–0 cm) is characterized by decreas-
ing Betulasect.NanaeandAlnus fruticosapollen contents,
while Cyperaceae,Pinus s/g Haploxylon and Salix pollen
contents increased.

The P2 core has been also studied for rhizopods, but no
tests were found there.
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Table 1. Radiocarbon and calibrated ages enclose the two-sigma range of highest probability. The ages have been calibrated using
CALIB Rev 6.1.0. (Reimer et al., 2009). The obviously inversed ages wererejected datesand marked with∗.

Depth (cm), Dated 14C ages Calibrated age Lab. Reference
core material (yr BP) intervals (cal number

yr BP)

20, P1 plant remains 3000± 30 3078–3268 KIA25979 Schwamborn et al. (2006)
43, P1 plant remains 3095± 45 3209–3403 KIA25980 Schwamborn et al. (2006)
114, P1 plant remains 3670± 30 3906–4087 KIA23976 Schwamborn et al. (2006)
150, P1 plant remains 3665± 35 3890–4090 KIA25981 Schwamborn et al. (2006)
207, P1 plant remains 8145± 45∗ KIA28241 Schwamborn et al. (2006)
233, P1 plant remains 5585± 40 4493–6447 KIA23977 Schwamborn et al. (2006)
265, P1 plant remains 8760± 45 9558–9914 KIA23978 Schwamborn et al. (2006)
292, P1 plant remains 8830± 55 9695–10 159 KIA23979 Schwamborn et al. (2006)
314, P1 plant remains 8885± 40 9887–10 182 KIA24865 Schwamborn et al. (2006)
325, P1 plant remains 8920± 110 9660–10 249 KIA28242 Schwamborn et al. (2006)
463, P1 plant remains 11 160± 70 12 801–13 243 KIA23980 Schwamborn et al. (2006)
46, P2 grass remains 1675± 25 1526–1626 KIA24866 Schwamborn et al. (2008b)
52, P2 grass remains 3365± 35 3553–3692 KIA27258 Schwamborn et al. (2008b)
95, P2 grass remains 4400± 110 4812–5320 KIA27259 Schwamborn et al. (2008b)
119, P2 grass remains 5350± 45 5998–6218 KIA27260 Schwamborn et al. (2008b)
132 P2 grass remains 6345± 35 7171–7330 KIA24867 Schwamborn et al. (2008b)
146–151, P2 Larix seeds 9640± 60 10 775–11 193 Poz-42874 this study
170–184, P2 bulk organic 1890± 100∗ Poz-42875 this study
205, P2 grass remains 10 450± 60 12 116–12 560 KIA24868 Schwamborn et al. (2008b)
210, P2 grass remains 11 180± 147 12 706–13 320 KIA28243 Schwamborn et al. (2008b)
226, P2 grass remains 11 790± 242 13 113–14 220 KIA28244 Schwamborn et al. (2008b)
0–40, 5011-3 plant remains modern Poz-33404 this study
40–50, 5011-3 plant remains modern Poz-33406 this study
50–60, 5011-3 plant remains modern Poz-33407 this study
60–70, 5011-3 plant remains modern Poz-33408 this study
70–100, 5011-3 plant remains modern Poz-33409 this study
100–110, 5011-3 plant remains modern Poz-33410 this study
173–183, 5011-3 bulk organic 27 690± 200∗ Poz-35975 this study
208–230, 5011-3 bulk organic 20 860± 170∗ Poz-35977 this study
315–325, 5011-3 bulk organic 18 800± 120∗ Poz-35978 this study
395–400, 5011-3 bulk organic 24 070± 320∗ Poz-35979 this study
845–852, 5011-3 bulk organic 24 590± 220∗ Poz-35980 this study
899–910, 5011-3 bulk organic 28 440± 320∗ Poz-35981 this study

4.3 5011-3 core

The core was drilled on the western margin of the crater
(67◦29′04′′ N, 171◦56′40′′ E) approximately 300 m west
from the lake shore (Fig. 1). This 141.5 m long core was re-
covered during a drilling campaign in winter 2008 within
the framework of the international ICDP funded project
“El’gygytgyn Drilling Project” (Melles et al., 2011). The
main objective of the coring was to extend the permafrost
record back in time in order to better understand the inter-
action between catchment processes and lake sedimentation.
The sediment core drilled in an alluvial fan consists of sedi-
ment layers of sandy gravel to gravelly sand, which is inter-
preted to represent alternating subaerial and subaquatic parts
of the fan. Occasionally intercalations of sandy beds occur,
e.g. at 7, 9, 14.5, 18–19.5, 24, and 26 m. The modern setting

of the coring site is placed in an alluvial-proluvial sediment
fan, and from aerial imagery it is obvious that the fan has
a subaquatic prolongation into the lake. In total, 12 sam-
ples from the core were AMS14C dated (Table 1). Although
the non-identifiable plant remains (possibly grass roots) were
picked throughout the upper meter of the core and expected
to provide reliable age control for studied sediments, the
ages appeared to be modern, reflecting the presence of mod-
ern plant roots in the active layer. The bulk AMS14C dates
from some selected horizons (Table 1) did not provide reli-
able ages either. These ages are not in a chronological or-
der, reflecting the reworked character of TOC in the samples.
The ages are obviously too old, taking into consideration the
comparison with other dated pollen records from the area
(e.g. Matrosova, 2009; Glushkova et al., 2009; P1 and P2
records). Therefore, age estimations for the 5011-3 core are
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based on a comparison with the dated pollen sequences from
the area.

Generally, the upper 9 m of 5011-3 sediments are rich
in pollen and palynomorphs, but only single pollen grains
were found below this depth, except in sediments between
19.8 and 19.3 m (Fig. 5). The studied pollen spectra can be
subdivided into 7 PZ. PZ-I (ca. 1980–1930 cm) is dominated
by Betula sect.Nanae, Alnus fruticosa, Salix, Cyperaceae,
Poaceae, and Ericales pollen. The presence ofLarix pollen
and high contents ofSphagnumand Lycopodiumspores is
also characteristic for the zone, where pollen concentration
is rather low (up to 3500 grains/g). No pollen has been found
between ca. 1930 and 1400 cm and only few pollen grains
of Betula sect.Nanae, Alnus fruticosa, Salix, Cyperaceae,
Poaceae and single spores ofSphagnumand Lycopodium
have been found in PZ-II (ca. 1400–900 cm). PZ-III (ca. 900–
330 cm) is notable for much higher pollen concentration (up
to 101 330 grains/gr). The spectra are dominated byBetula
sect. Nanae, Alnus fruticosa, Salix, Cyperaceae, Poaceae,
Ericales and spores ofSphagnum. Contents ofSphagnum
as well as pollen concentration reduced significantly in the
upper PZ-IV (ca. 330–250 cm). PZ-V (ca. 250–180 cm) is
notable for the significant increase of Poaceae pollen con-
tent, while contents ofBetulasect.Nanae, Alnus fruticosa,
Salix, Ericales andSphagnumare dramatically decreased.
The pollen concentration is the highest in the zone (up to
829 400 grains/g). The contents ofBetulaandAlnuspollen
increased again in PZ-VI (ca. 180–100 cm), which is also
notable for high content ofArtemisia. The pollen concen-
tration significantly (up to 15 000 grains/g) reduced in this
zone. The uppermost PZ-VII (100–0 cm) is dominated by
Betula sect.Nanae, Alnus fruticosa, Cyperaceae, Poaceae,
and Ericales, where pollen concentration is very high (up to
770 000 grains/g). Single pollen of long-distance transported
PinusandPiceaare also characteristic for this zone.

The 5011-3 core was also studied for rhizopods, but no
tests were found.

5 Discussion: paleoenvironmental reconstructions

5.1 MIS 7(?) environment

The oldest pollen spectra are presented in the lower part
(1980 to 1930 cm) of the studied section of the core 5011-
3 (PZ-I, Fig. 5). The pollen assemblages are dominated
by Alnus fruticosa, Betulasect.Nanaeand Poaceae. How-
ever, pollen ofLarix, Salix, Cyperaceae, Ericales, Caryophyl-
laceae and spores ofSphagnum, LycopodiumandHuperzia
are also important components of the revealed spectra. They
are not dated but the comparison with lacustrine pollen
records shows that spectra of our PZ-I are similar to those
from the zone E14 of the TL-dated lacustrine core LZ1024
(Matrosova, 2009) and to those from the zone EG2 of
the core PG1357 (Lozhkin et al., 2007). Based on the

comparison of our record with the lacustrine records, we may
suggest a MIS 7 (marine isotope stage 7) age for our PZ-I
zone. However, an older age for the revealed interglacial in-
terval cannot be completely excluded.

According to the pollen spectra, shrub alder, dwarf birch,
and willows grew in the lake catchment. Relatively high con-
tent of larch pollen in the spectra (up to 4.5 %) requires
the movement of northern boundary of larch forest at least
100 km to the north. Our conclusion is also supported by
the lacustrine pollen records (Lozhkin et al., 2007; Ma-
trosova, 2009). However, the cores drilled in the center of
the El’gygytgyn Lake do not contain larch pollen at all and
show low presence ofSalix, Ericales, Caryophyllaceae pollen
andSphagnum, LycopodiumandHuperziaspores. This dif-
ference most likely reflects the larger presence of the local
components in the 5011-3 core, pointing to the importance
of studying of the terrestrial (non-lacustrine) sediments in
addition to the lacustrine ones. Taking into consideration all
El’gygytgyn pollen records, we assume that open larch forest
with shrub alder, dwarf birch and willows dominated the lo-
cal vegetation during the revealed warm interval. However,
grass-sedge dominated communities with other herbs and
SphagnumandLycopodiumgrowing in mesic habitats were
also common in lake vicinity.

5.2 Lateglacial

Lateglacial sediments are revealed in both radiocarbon dated
slope cores (P1 and P2) and in the long permafrost 5011-
3 core. Unfortunately, we do not have a good age con-
trol for the lowermost part of the core P1. Taking into
consideration the P1 bottom age of 11 160± 7014C yr BP
(12 283–13 424 cal yr BP), the most reliable P2 age of
10 450± 6014C yr BP (12 124–12 654 cal yr BP), and pollen-
based correlation with lacustrine pollen records (zone E4 of
LZ1024 in Matrosova, 2009) we may assume that our PZ-I
of P1 (Fig. 3), PZ-III of P2 (Fig. 4) and PZ-III and PZ-IV
of 5011-3 (Fig. 5) accumulated during the Allerød, before
13 cal kyr.

Sediments attributed to the Allerød are dominated by
pollen of Betulasect.Nanae, Alnus fruticosa, Salix, Cyper-
aceae, Poaceae, Ericales and spores ofSphagnum. The rela-
tively high pollen concentration is also characteristic for the
sediments. However, a number of samples show very low
pollen concentrations or do not contain pollen at all. Most
likely, this reflects a very high accumulation rate during the
sedimentation. This conclusion is in a good agreement with
thicknesses of Allerød-attributed deposits of about 2.5 m in
the P2 core, and at least 6.5 m in the 5011-3 core. Warmer and
wetter climate conditions in the Allerød may have intensified
erosion and, therefore, produced higher influx of terrestrial
material. The absence or very low thickness of the underly-
ing Late Pleistocene sediments might also be connected with
these erosion processes.
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Fig. 4.Percentage pollen diagram of core P2. Dots are< 2 % pollen contents.
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The main pollen taxa in the spectra slightly differ from site
to site. For example, 5011-3 sediments contain large amounts
of Salix and Ericales pollen andSphagnumspores; P1 and
P2 sediments contain numerous pollen of Cyperaceae; lacus-
trine pollen records contain larger amounts of long-distance
pollen (includingBetulaandAlnus). However, the PG1351
lacustrine record also contains large amounts ofSphagnum

spores in the late glacial sediments confirming wet habitats
in the lake vicinity (Lozhkin et al., 2007). The sphagnobiotic
rhizopod,Heleopera petricola, found in the Allerød-dated
P1 sediments is in good agreement with numerousSphag-
numspores in the pollen records. Such habitats were proba-
bly common along the creeks as today.
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Our interpretation of the studied sediments is very simi-
lar to those from the PG1351 lacustrine record (Lozhkin et
al., 2007; Matrosova, 2009) and from LZ1024 (Glushkova
et al., 2009; Matrosova, 2009). Glushkova et al. (2009) also
have reported pollen spectra with dominance of shrub pollen
taxa from the undated terrace sediments (sections GS-10 and
GS-12/1 in Fig. 1) attributed to a Late Glacial warm interval.
Similar paleoenvironmental records are also known from ad-
jacent regions (e.g. Brubaker et al., 2005; Lozhkin and An-
derson, 2006; Shilo et al., 2006, 2007; Kokorowski et al.,
2008; Andreev et al., 2009 and references therein). Lozhkin
et al. (2007), based on their PG1351 lacustrine pollen record,
have suggested that birch was regionally present at about
12 800 yr14C BP (15 300 cal yr BP), while alder established
in the area around 10 700 yr14C BP (12 700 cal yr BP).

There are plant macrofossil data from the sediments
of section GS-37 (Fig. 1)14C dated to 12 215± 40 yr BP
(14 027–14 491 cal yr BP). The studied sediments do not con-
tain any shrub remains. Glushkova et al. (2009) interpreted
this as the absolute absence of any shrub stands in the lake
vicinity and very severe climate conditions. Thus, it seems
that Allerød pollen and plant macrofossil data are contra-
dictory. However, the conclusion about herb dominated tun-
dra vegetation around 14 250 cal yr BP is based on the sin-
gle studied sample, which reflects very wet, but not a typical
tundra habitat. Moreover, they interpret the sediments con-
taining numerous pebbles and eggs ofDaphniaas the lake
terrace periodically overflowed by the lake (Glushkova et
al., 2009). It is obvious that shrubs cannot survive in such
flooded habitats. Therefore, the found plant macrofossils re-
flect a very local, flooded habitat, which cannot be extrapo-
lated to the whole lake vicinity.

Thus, according to the pollen spectra, shrub alder, dwarf
birch and willows grew in the lake surrounding during the
Allerød interstadial with relatively warm and wet climate
(Melles et al., 2012). We can reconstruct shrub tundra veg-
etation with dwarf birch, shrub alder and willow around the
lake.

Pollen spectra from PZ-II of P1 (Fig. 3), PZ-IVa of the
core P2 (Fig. 4), and PZ-V of 5011-3 (Fig. 5) are dom-
inated mostly by Cyperaceae and Poaceae pollen and re-
flect disappearance of shrubs from the area, pointing to drier
and colder climate which can be attributed to the Younger
Dryas. The most reliable14C dates from core P2 and P1 (Ta-
ble 1) confirm this conclusion. Pollen spectra with a signif-
icant increase in herbs (mostly Poaceae) andSelaginella ru-
pestrishave also been revealed in the lacustrine sediments
(E3 of LZ1024 in Matrosova, 2009), and are interpreted
as reflecting the Younger Dryas event (Glushkova et al.,
2009; Matrosova; 2009; Melles et al., 2012). Thus, grass-
herb tundra dominated the area during the Young Dryas cool-
ing. Younger Dryas-dated pollen records from the adjacent
regions (e.g. Anderson et al., 2002; Kokorowski et al., 2008;
Andreev et al., 2009, 2011 and references therein) reflect
similar environmental changes.

5.3 Holocene

Pollen spectra of the PZ-IVb of P2 (Fig. 4) accumulated be-
fore 9640± 6014C yr BP (11 200–10 780 cal yr BP) show a
gradual increase ofAlnus fruticosaandBetulasect.Nanae
pollen contents reflecting early Holocene climate ameliora-
tion. The early Holocene pollen assemblages are also well
represented in the undated PZ-III of P1 (Fig. 3), where
they are dominated mostly by pollen ofBetulasect.Nanae,
Cyperaceae and Poaceae with fewAlnus fruticosaandSalix.
Four 14C dates (Table 1) confirm that these sediments were
accumulated before 900014C yr BP (10 200 cal yr BP). Sim-
ilar pollen assemblages have been revealed in the lower-
most pollen zone of the so-called Olga Creek section (OC
on Fig. 1, Shilo et al., 2008; Glushkova et al., 2009), situ-
ated ca. 100 m from P1 coring site. These lowermost spectra
are also not14C dated, however two14C dates: 9250± 90
and 9125± 30 yr BP from overlain sediments confirm that
these sediments were accumulated before 930014C yr BP
(10 550 cal yr BP). Similar undated early Holocene pollen as-
semblages are also reported by Glushkova et al. (2009) from
the section GS-12/1 (Fig. 1). Thus, we may assume that the
earliest shrub tundra, with dwarf birches and willows and
probably a few shrub alder, dominated the lake vicinity at
the onset of the Holocene. The early Holocene pollen records
from adjacent regions (e.g. Anderson et al., 2002; Anderson
and Lozhkin, 2002; Kokorowski et al., 2008; Andreev et al.,
2009 and references therein) have revealed similar environ-
mental changes.

The contents ofAlnus fruticosaare significantly higher
in the PZ-V of the core P2 (up to 30 %)14C dated to
ca. 9600 yr BP (11 200–10 780 cal yr BP) and PZ-IV of the
core P1 (up to 50 %)14C dated around 8900–8800 yr BP
(9940–9700 cal yr BP). Most likely, this increase reflects the
further distribution of shrub alder stands in the area during
the early Holocene. Pollen spectra of the PZ-V of P2 (Fig. 4)
radiocarbon dated to about 7200–7300 cal yr BP, PZ-VI of
5011-3 (Fig. 5) and bottom spectra from the terrace sec-
tion GS-8403 (Glushkova et al., 2009) and the section OC in
the Enmyvaam River valley (Glushkova and Smirnov, 2007;
Shilo et al., 2008; Glushkova et al., 2009) also demonstrate
high amounts ofAlnus fruticosapollen in the early Holocene
sediments. Moreover, the lacustrine sediments (Matrosova,
2009; Melles et al., 2012) accumulated above sediments at-
tributed to the Younger Dryas also contain very high amounts
of Alnus(up to 60 %). Large shrub alder trunks and smaller
twig fragments14C dated to 9250± 90 and 9125± 30 yr BP
respectively, as well as numerous undated alder nuts from the
same layers, well confirm that shrub alder grew in the lake
vicinity at least 10 550 cal yr BP (Shilo et al., 2008). Thus, it
is likely that shrub alder stands were well established in the
El’gygytgyn Lake Crater at about 11 200 cal yr BP or even
slightly earlier.

The well-preserved larch seeds (Fig. 6) found in peaty
layer in the core P2 prove the local presence of trees
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 34 

Figure 6 808 

 809 

 810 Fig. 6.Seeds ofLarix found in core P2.

directly at the lake crater as early as 11 200–10 780 cal yr BP.
Larch remains were also found in the sediments accumu-
lated shortly before 930014C yr BP (10 550 cal yr BP) from
the OC section (Fig. 1, Shilo et al., 2008; Glushkova et al.,
2009), thus, also confirming local presence of the larch trees
at the area during the early Holocene. Such forest (tundra-
forest) environments are also good habitats for the shrub
alder stands. The local presence ofLarix indicates a treeline
shift of about 100 km northward (CAVM-Team, 2003) as a
result of the early Holocene climate amelioration. Larch re-
quires a mean temperature of the warmest month of at least
10◦C, thus such climate conditions must have existed at the
lake crater during the early Holocene.

The studied early Holocene pollen assemblages slightly
differ from site to site. For example, the early Holocene
5011-3 spectra (PZ-VI) show high contents ofArtemisia(up
to 25 %), while GS-8403 spectra reported by Glushkova et
al. (2009) contain up to 23 % of Ericales. The difference
may reflect the mosaic character of the local vegetation cover
and/or different age of the revealed pollen assemblages. The
lacustrine record (Matrosova, 2009; Melles et al., 2012) ac-
cumulated above the sediments attributed to the Younger
Dryas shows very high amounts ofAlnus(up to 60 %), which
might have been transported from a distance and, thus, reflect
the regionally dominated vegetation.

Rhizopod tests of soil-eurybioticCentropyxisand hy-
drophilic Difflugia taxa (Table 2) are numerous in the P1
early Holocene sediments; however, sphagnobioticArcella,
Heleopera, and Nebelaare also common. The high con-
tents of hydrophilic and sphagnophilic taxa point to wet
oligotrophic and mesotrophic soil environment at the core
site. Later, after ca. 6300 cal yr BP, the role of soil-eurybiotic
species increased, reflecting drier soil environment.

Thus, pollen and macrofossil data show that forest and/or
forest-tundra communities with larches, shrub alder, dwarf
birches, and willows were well distributed at the low eleva-
tions around the lake during the early Holocene, at least be-
tween 11 200 and 9100 cal yr BP. It is most likely that larch
and shrub alder grew in the close vicinity to the lake only
before ca. 8200 cal yr BP. Similar changes in the high Arctic
vegetation cover are also characteristic for coastal areas of
the Laptev and East Siberian Seas (e.g. Andreev et al., 2009,
2011 and references therein). Recovered larch remains docu-
ment that larch grew approximately 100 km from its modern
northern distribution limit. The mean July temperatures were
at least 10–12◦C (Lozhkin and Anderson, 1995), ca. 4–5◦C
higher them modern July temperatures (Shilo et al., 2008).
This is in agreement with the early Holocene pollen-based
paleoclimate reconstruction from the El’gygytgyn lacustrine
record (Lozhkin et al., 2007; Melles et al., 2012) and other
high arctic sites (e.g. Andreev et al., 2009, 2011 and refer-
ences therein).

A number of14C dates (Table 1) from P1 (PZ-Va) and
P2 (PZ-V) cores confirm that permafrost sediments contain-
ing relatively high amounts ofAlnus fruticosapollen were
accumulated until ca. 3500 cal yr BP. Therefore, we may as-
sume that shrub alder might grow around the lake in more
protected habitats or very close to the lake vicinity before
this time. This conclusion is in good agreement with pollen
and plant macrofossil data from adjacent regions, document-
ing the presence of shrubs and trees to the north from mod-
ern distribution areas (e.g. MacDonald et al., 2000; An-
dreev et al., 2009, 2011; Binney et al., 2009 and references
therein). However, the dated woody remains from the Enmy-
vaam River valley (Glushkova and Smirnov, 2007; Lozhkin
et al., 2011) confirm the presence of high shrubs in the area
only until ca. 740014C yr BP (8200 cal yr BP). The studied
deposits also contain the rather high amounts (up to 35 %)
of Alnus fruticosapollen in the sediments accumulated af-
ter 740014C yr BP (Shilo et al., 2008; Lozhkin et al., 2011),
pointing to a possible local presence of shrub alder; however,
the age of the pollen assemblages is unknown.

Generally, late Holocene pollen spectra from the upper-
most sediments (upper spectra of PZ-Vb of the core P1,
Fig. 3; PZ-VI of the core P2, Fig. 4; LZ-1024 record in Ma-
trosova, 2009 and Melles et al., 2012) show a decrease in
contents ofAlnus fruticosa(mean values are up 20 % and
less) and some increases of contents ofSalix, Pinus, Be-
tula, Ericales, and Cyperaceae. These changes can be inter-
preted as disappearance of shrub alder from the lake vicinity.
The main components of pollen assemblages slightly change
from site to site, reflecting local vegetation cover at coring
sites.

The late Holocene pollen assemblages are characterized
by higher amounts ofPinus s/g Haploxylon. The modern
boundary of the stone pine (Pinus pumila) is about 80 km
from the study area (Vas’kovskiy, 1958); thus, it is most
likely that allPinuspollen grains are of long distance origin.
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Its pollen presence is especially remarkable in the uppermost
lake sediments (Lozhkin et al., 2007; Matrosova, 2009) and
the modern spectra (Matrosova, 2006), reflecting the extra-
regional vegetation pollen influx. Taking into consideration
all pollen records from the study area, we may assume that
stone pine did not grow around the lake during the Holocene.

Late Holocene sediments dated between ca. 900 and
450 cal yr BP (Glushkova et al., 2009) contain pollen spec-
tra similar to those revealed in this study. They also show
lower contents ofAlnuspollen in many spectra and high fluc-
tuations inBetula, Ericales,Thalictrum, andSelaginella ru-
pestris, reflecting local environments. Thus, pollen data show
that herb tundra communities started to dominate in the lake
catchment after ca. 3000 cal yr BP.

6 Conclusions

New permafrost records document vegetation and climate
changes in the El’gygytgyn Lake Crater during the Late
Quaternary. The studied records reflect the local vegetation
changes, resulting in a better understanding of the possible
role of local and regional components in the fossil pollen
spectra and in more reliable environmental reconstructions.
It is evident that terrestrial records better reflect the local
environments than the lacustrine ones where long-distance
transported pollen overshadows the local components.

The oldest pollen spectra of the studied sections of the core
5011-3 are possibly of the MIS 7 age. They document that
open larch forest with shrub alder, dwarf birch and willows
dominate vegetation, suggesting the northern movement of
larch forests. Treeless grass-sedge dominated communities
with other herbs andSphagnumandLycopodiumgrowing in
mesic habitats were also common in the lake vicinity.

Lateglacial pollen records show that shrub tundra with
dwarf birch, shrub alder and willow dominated in the lake
surroundings during the relatively warm Allerød intersta-
dial. Rather low pollen concentrations in many samples of
Allerød age reflect very high accumulation rate during the
sedimentation.

Younger Dryas pollen records reflect dramatic changes in
the vegetation cover. Grass-sedge-herb tundra dominated the
area, pointing to significantly drier and colder climate.

Forest-tundra with larches, dwarf birches and willows
dominate the lake vicinity at the onset of the Holocene be-
tween ca. 11 200 and 9100 cal yr BP. Shrub alder stands
might grow at the low elevations around the lake during
the Holocene, between ca. 11 200 and 3500 cal yr BP. Later,
similar-to-modern herb tundra communities dominated the
El’gygytgyn Impact Crater.
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