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Strengthening global-change science by
integrating aeDNA with paleoecoinformatics
Highlights
The pace and scale of ancient environ-
mental DNA (aeDNA) -powered biodiver-
sity research is growing rapidly and the
field is now at the cusp of supporting
past global-scale biodiversity research
at unprecedented taxonomic resolution
and temporal extent.

In parallel, the paleoecoinformatics eco-
system is quickly growing and interdigi-
tating, enabling support of multiproxy
and broad-scale research into past eco-
logical and environmental change.

Because aeDNA-derived species
inferences are dynamic, as are estimated
John W. Williams ,1,* Trisha L. Spanbauer,2 Peter D. Heintzman,3,4,5

Jessica Blois,6 Eric Capo,7 Simon J. Goring,1 Marie-Eve Monchamp,8

Laura Parducci,9,10 Jordan M. Von Eggers11 and Contributing authors12

Ancient environmental DNA (aeDNA) data are close to enabling insights into past
global-scale biodiversity dynamics at unprecedented taxonomic extent and res-
olution. However, achieving this potential requires solutions that bridge bioinfor-
matics and paleoecoinformatics. Essential needs include support for dynamic
taxonomic inferences, dynamic age inferences, and precise stratigraphic
depth. Moreover, aeDNA data are complex and heterogeneous, generated by
dispersed researcher networks, with methods advancing rapidly. Hence, expert
community governance and curation are essential to building high-value data re-
sources. Immediate recommendations include uploading metabarcoding-based
taxonomic inventories into paleoecoinformatic resources, building linkages
among open bioinformatic and paleoecoinformatic data resources, harmonizing
aeDNA processing workflows, and expanding community data governance.
These advances will enable transformative insights into global-scale biodiversity
dynamics during large environmental and anthropogenic changes.
ages, a global data system for
aeDNA must interlink and leverage
existing resources in bioinformatics and
paleoecoinformatics.

Prior experience has shown that
open and community-governed data
resources are essential for high-quality
global paleodata syntheses and for
empowering the next generation of
scientists.
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Achieving aeDNA capacity for global biodiversity research
The fast-growing field of ancient environmental DNA (aeDNA) (see Glossary) from sedimen-
tary archives is transforming the study of past biodiversity dynamics [1–3]. aeDNA data provide
information about the distribution and diversity of species (and whole taxonomic groups) that
were previously invisible in the fossil record [4]. Examples of new insights powered by aeDNA
include the demonstrated persistence of taxa in formerly cryptic refugia [5–7], refined timing of
arrival and extinction events [8–10], better understanding of precursors to extinction [1,11], and
the responses of ecosystems to anthropogenic perturbations and high-frequency environmental
variability [12,13].

However, aeDNA so far has been at the alpha stage of discovery, with primary emphasis on gen-
erating new records from a few localities at a time and advancing laboratory and data processing
methods. Now, as the number of sites grows worldwide (Figure 1), aeDNA research is at the cusp
of supporting analyses of the distribution and diversity of life over broad spatial and temporal
scales across terrestrial, aquatic, and marine habitats (e.g., [1,3,11,14]). The next step is to better
integrate these aeDNA records with each other, other paleoecological and paleoenvironmental
proxies, and contemporary genomic resources (Figure 2). This integration will enable multiproxy,
multiscale, and reproducible analyses into past ecological, evolutionary, and environmental
change (Figure 3).

Prior syntheses of networks of ‘classical’ paleoecological proxies have transformed our under-
standing of global-scale processes. Examples include past rates of vegetation change driven
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by climate and anthropogenic processes [15–17], megafaunal extinction and biodiversity loss
[18,19], and the emergence of novel communities [20,21]. This work has demonstrated that com-
munity curation and expert governance are essential for robust macro-scale paleobiological re-
search, because of the complex processes that produce the fossil record and the resultant risk
of erroneous scientific inference [22]. Thus, cutting-edge macro-scale paleoecological research
now relies on community-curated data resources (CCDRs), supported by a shared
cyberinfrastructure, and governed by experts [23].

Sedimentary aeDNA occupies the intersection between biology and geology. Hence, its data in-
frastructure must also leverage and connect existing elements in bioinformatics and
geoinformatics (Figure 2), while supporting needs unique to aeDNA (Figure 4). Taxonomic infer-
ences based on aeDNA must be regularly updated against the latest genetic reference data-
bases, while precise age inferences and integration with other proxies requires close links of
aeDNA to other paleoecoinformatics data resources and services [24]. aeDNA methods are
developing rapidly, so any system for the archival and macro-scale analysis of aeDNA data
must be dynamic and flexible.

Here, we first describe the scientific opportunities enabled by global-scale aeDNA networks and
review the paleoecoinformatics ecosystem. We then review the characteristics and informatics
needs of aeDNA data and recommend solutions for meeting these needs. These recommenda-
tions represent the collective perspective of an emerging community of aeDNA researchers, data
scientists, and paleoecologists and, if enacted, will enable the next generation of cutting-edge
global-scale research into past biodiversity dynamics jointly powered by the latest advances in
aeDNA methods, a rapidly growing worldwide network of sites, and a shared community data
architecture.

Scientific rationale for global, interdisciplinary, and integrative aeDNA data
systems
Multiple scientific advantages accrue from integrating aeDNA into the established cyberinfrastructure
for paleoecoinformatics and bioinformatics (Figure 3). First, aeDNA, as a newer proxy, needs cross-
checking against independent paleoecological proxies (Box 1). All paleoecological proxies recovered
from sedimentary archives, including macrofossils, microfossils, biogeochemical tracers, and
aeDNA, are produced by some mixture of ecological and post-depositional processes [25]. Organ-
ismal differences in preservability and transportability will cause each proxy to carry some form of
taphonomic bias that causes the after-death assemblage to differ from the source communities.
Prior comparisons of aeDNA inventories to other proxies (e.g., as plant pollen and macrofossils
[26–28], diatom remains [29–31], or micro-algal pigments [32]) demonstrate that concomitant tem-
poral shifts are often observed in aeDNA and other proxies [33], despite differences in detectability,
apparent abundance, and sensitivity to sedimentary context.
Figure 1. A mapped inventory of published ancient environmental DNA (aeDNA) datasets and other
paleoecological proxies, compiled as of July 18, 2022 [60], shown for the purpose of comparing the spatial
and taxonomic coverage of aeDNA to classic paleoecological data types. (A) All aeDNA datasets,
(B) metabarcoding aeDNA datasets only, and (C) other paleoecological proxies from Neotoma. In (A) and (B), sites are
color-coded by four broad categories of taxonomic groups targeted in aeDNA analyses (animals, plants, fungi, and
microorganisms), while shape indicates type of sedimentary archive. The ‘All’ category is used for shotgun metagenomics
studies, given the untargeted nature of this data type. The number of sites representing marine or lake surface sediments
is 436 (A) and 393 (B). In (C), Neotoma datasets are organized into similarly broad taxonomic and functional groups:
aquatic organisms (diatoms, dinoflagellates, ostracods), vertebrates, macroinvertebrates, testate amoebae, and plants
(pollen and macrofossils).
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Figure 2. A schematic of the knowledge domains for ancient environmental DNA (aeDNA) to be supported by
cyberinfrastructure. Initial collection requires tracking of metadata from field to laboratory, where information about
processing of samples and controls must be tracked along with metadata associated with bioinformatics pipelines. These
pipelines act to reduce data volume, compare sequences with reference databases, and infer taxonomic identities (Figure 4).
Further extraction of ecological and evolutionary insights from aeDNA requires precise temporal positioning through
geochronological controls and age depth-modeling, understanding of other environmental and ecosystem dynamics from
other proxies at the same site, placement in the tree of life through phylogenetics, and linking to paleoecological and
paleoenvironmental records at other sites.
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Glossary
Amplicon sequence variant (ASV): a
unique DNA sequence generated by
metabarcoding analysis. ASV methods
seek to identify true sequences and
discard putative sequencing and PCR
errors. ASVs are increasingly replacing
clustering methods based only on
similarities among sequences (i.e., OTUs).
Ancient environmental DNA (aeDNA):
ancient DNA is any DNA that is recovered
from a non-living tissue, organism, or
environmental sample; the latter is
aeDNA. To clearly differentiate aDNA
frommodernDNA, aDNA is anyDNA that
has degraded into short fragments and
exhibits postmortem damage signatures.
Common examples of aeDNA include
DNA extracted from sedimentary
archives, such as soil samples fromcaves
or archaeological sites or samples from
lake or marine sediments.
Archive: a sedimentary record or other
geological medium fromwhich aeDNA or
other paleoecological and
paleoenvironmental proxies are retrieved.
Community-curated data resources
(CCDRs): an active database in which
data are added and stewarded by
experts drawn from the community that
initially generated the data.
Library: (or sequencing library); DNA
molecules that have been prepared for
high-throughput sequencing by adding
readable adapters (artificial DNA
sequence) to their ends. In a
metagenomic library, the DNAmolecules
are prepared directly from a DNA
extract, whereas an amplicon library is
prepared from PCR amplicons.
Metabarcoding: taxonomic
identification of aeDNA molecules
through sequencing of selected short
(typically ~30–600 bp) regions of DNA
called barcodes, which are standardized
markers that are sufficiently conserved
to target a higher taxonomic group but
variable enough to discriminate species
or genera.
Operational taxonomic unit (OTU):
DNA sequences recovered from a
metabarcoding analysis that are
clustered together based on sequence
similarity. The clustering of DNA
sequences into OTUs is done from
processed reads. OTU identification of
taxa typically requires long barcodes
with multiple substitutions.
Paleoecoinformatics: the intersection
of the information, Earth, and biological
sciences in which biological data are
collected from geohistorical archives
Second, analyzing aeDNA with other proxies can reveal multiple dimensions of past environmen-
tal change and multiple levels of ecological response. For instance, long-term effects of lake eu-
trophication on species turnover at multiple trophic levels were revealed by combining aeDNA
inventories with invertebrate remains and algal pigments [34]. In the Black Sea, salinity-driven
changes in plankton communities were inferred from parallel analysis of aeDNA and hydrogen
isotopes from algal biomarkers [35]. Pollen and aeDNA from the High Arctic show that the Last
Interglacial period resulted in high latitude greening and northward plant range shifts over
hundreds of kilometers [36]. These site-level studies show the power of multiproxy investigations
into past environmental and ecosystem change; similar capacity is needed globally.

Third, assembling aeDNA records across many sites is essential to achieving aeDNA’s promise
for new global-scale insights into biodiversity dynamics. Macro-scale syntheses, which integrate
many kinds of data frommany sites and times, are transforming our understanding of species and
Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10 949
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and are stored, integrated, and analyzed
through an informatic pathway.
PCR: a laboratory technique to increase
the concentration of a genomic fragment
of interest from a DNA template by
performing multiple rounds of
amplification. This technique requires a
pair of short synthetic DNA fragments
(primers) that bind to either side of the
genomic region of interest.
Proxies: physical, chemical, or
biological data that preserve some signal
of past environments and ecosystems to
provide information about the
unobservable past states of the
variable(s) of interest.
Reference database: an inventory of
identified DNA sequences that
unidentified aeDNA sequence data can
be compared against. Reference
databases differ in their marker
representation, completeness, scope,
and quality of curation.
Shotgun metagenomics: direct
sequencing of a metagenomic library
without any enrichment that offers a
randomized sampling of aeDNA present
within a sample.
Surface samples: sediments containing
recently deposited and therefore usually
well-preserved eDNA. Surface samples,
together with independent observations of
contemporary environments, are used to
understand the taphonomic processes
governing the relationships between living
and ancient assemblages and to constrain
proxy-based quantitative inferences.
Target enrichment: the enrichment of
a metagenomic library for genomic
regions of interest using predesigned
DNA or RNA probes. The probes
hybridize with genomic library fragments
of interest, which are then immobilized.
Nonhybridized library molecules are then
removed, resulting in an enrichment of
data from the targeted genomic regions.
Probe sequences can target a wide
range of taxa and single loci, organellar
genomes/exomes, and/or low-copy
nuclear regions.
Taxonomic inventory: a list of taxa
identified from an aeDNA sample by
matching sequence data to a reference
database.
Template: extracted DNA used to
perform a molecular assay, such as a
PCR, quantitative PCR (qPCR), droplet
digital PCR (ddPCR) reaction, or to
prepare a shotgun metagenomics
library. For PCR analyses, template
molecules must be long enough to
include the primer binding sites and
genomic region of interest.
community response to environmental change across scales [37,38] and are necessary to identify
teleconnections, biosphere–atmosphere interactions, and other emergent phenomena. A
global infrastructure for aeDNA data can help identify spatiotemporal gaps in coverage and pri-
ority areas for future research. Other classic paleoecological proxies show the power of build-
ing global-scale networks of sites. Global networks of fossil pollen records have been used to
assess the sensitivity of terrestrial ecosystems to global warming [16] and identify periods of
rapid change [15], some of which can be attributed to human arrival [17]. Continental- to
global-scale syntheses of terrestrial vertebrates are a foundation for modeling drivers of extinc-
tion [39,40] and the functional relationship to ecological traits [19]. Via syntheses of archaeolog-
ical, paleoecological, and paleoclimatic data, the worldwide impact of humans on the Earth
system can be detected [41,42]. Hence, the building of a global aeDNA data system can
build upon lessons learned and paleoecoinformatic resources developed for these other global
investigations of past biodiversity dynamics.

Fourth, integrating advances and linking resources across paleoecoinformatics and bioinformat-
ics will help advance the harmonization of associated bioinformatic workflows and other re-
sources, thereby helping establish best practices. Best practices now exist for sampling and
laboratory protocols designed to minimize and monitor for contamination by exogenous DNA
[33], but bioinformatic and data analysis standards are not yet broadly established (e.g., for raw
sequence preprocessing thresholds, taxonomic assignment, contaminant removal, and down-
stream ecological inferences).

The paleoecoinformatics ecosystem: current resources and recent
developments
The contemporary paleoecoinformatics ecosystem comprises a coalition of CCDRs that are
loosely but increasingly interconnected, each of which supports and is supported by communi-
ties of researchers. The scientific origins of these resources can be traced to early campaigns
to gather networks of proxy sites at continental to global scales to study past evolutionary, eco-
logical, and climate dynamics [43–45]. Both the emergent structure of the paleoecoinformatics
ecosystem and its deep history result from the nature of fossil and paleoenvironmental proxy
data. On the one hand, these are classic ‘long tail’ data, in which millions of data points across
tens of thousands of individual field sites are collected by thousands of scientists dispersed
globally (https://bit.ly/3OfHymM). Knowledge is also dispersed, as each scientist is expert in par-
ticular taxonomic groups or proxies. On the other hand, paleoecological data, once collected,
have long-lasting value, because they represent a unique measurement of the state of the
Earth-life system at some particular spatiotemporal locus, and each measurement accrues
value as it is joined to an ever-expanding network of other measurements. Hence, paleoecolog-
ical data are ‘small data’ at point of collection but ‘big data’ in aggregate. Gathering and using
these data effectively requires close partnerships between proxy specialists and data scientists
[23].

Several major paleoecological and paleoenvironmental data resources have emerged, including
the Neotoma Paleoecology Database [46], Paleobiology Database (PBDB) [47], Neptune Sandbox
Berlin [48], NOAA’s National Center for Environmental Information (NCEI-Paleoclimatology) [49],
the Linked Paleodata standard (LiPD and LiPDverse) [50], and PANGAEA [51]. Each resource dif-
fers in its focus, curation model, data types, and spatiotemporal domains. Some, such as
PANGAEA or Dryad (https://datadryad.org/), are general-purpose repositories. Others are tailored
for macro-scale paleoecological analysis, with domain-specific metadata. For example, Neotoma
focuses on the Late Neogene and stores paleoecological time series, associated geochronological
and paleoenvironmental data, and surface sample datasets for calibration. Conversely, PBDB
950 Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10
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Figure 3. A site-level schematic of how the interpretation of the biodiversity dynamics recorded by ancient environmental DNA (aeDNA) can be further
enriched by other proxies that provide indicators of past climate variations (e.g., biomarkers) and independent indicators of past community dynamics
(e.g., pollen, diatoms, sterols). Ecological interpretation of aeDNA can be based upon simple presence, abundance based on relative read counts, and/or frequency of
occurrence across PCR replicates (either collected as ‘technical replicates’ from the same extract or as ‘biological replicates’ as multiple samples from the same spatio-
temporal location), combined with phylogenetic position. Temporal position is based on an age-depth model that infers time as a function of depth, with uncertainty, based
on age controls such as radiocarbon (14C) dates.
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focuses on evolutionary dynamics over the last 500 million years and stores taxonomic names and
synonyms, spatiotemporal coordinates, and can handle tectonic-driven locational shifts [52]. The
Linked Paleo Data (LiPD) standard is a popular data exchange format for paleoclimatic data with
crowd-sourced data standards [53]. These data systems combine backend databases with a soft-
ware stack and user interfaces for finding, obtaining, viewing, and analyzing data. These efforts also
focus on building the scientific communities essential for high-quality global-scale data gover-
nance, curation, and analysis. PAGES, an international coordinator for past global-change re-
search, convenes scientists into working groups to tackle macro-scale scientific challenges,
while PBDB and Neotoma are led by councils of experts who set science-driven priorities for
growth and development. These community data resources, which ensure that paleoecological
and paleoenvironmental data are findable, accessible, interoperable, and retrievable (FAIR), remain
a central priority for the paleoenvironmental research community [54]. A new and fast-growing pri-
ority is to develop ways to support the principles of collective benefit, authority to control, respon-
sibility, and ethics (CARE) [55].

Efforts are underway to interlink data resources. For example, the Earth-Life Consortium built ap-
plication programming interfaces to access data from multiple paleobiological resources [56].
NCEI-Paleoclimatology now makes datasets available in LiPD format and search engines hosted
by NCEI-Paleoclimatology can now retrieve data from PANGAEA and Neotoma. DarwinCore, a
data standard for biodiversity data, has been extended to include geochronological data and
metadata [57]. As these data resources continue growing and interdigitating, they can support
ever-more powerful joint analyses of aeDNA data with other proxies.
Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10 951
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Figure 4. Schematic overview of typical ancient environmental DNA (aeDNA) workflows, from sediment
sample to published data. Purified DNA is first isolated from sediment samples via DNA extraction. Negative controls are
monitored for contamination (represented by tubes without DNA molecules). A nonsequenced PCR workflow (red boxes)
estimates the abundance/quantity of a DNA template but does not generate sequence data that can be taxonomically
identified. The amplicon pipeline (blue boxes) includes metabarcoding and multiplex PCR. PCR products can either be
individually converted into a library (left; as done during a two-step library preparation) or pooled before library preparation
(right). For the sequencing runs boxes, each smaller box represents one library within a sequencing run. In metagenomic
approaches (yellow boxes), a library can be either directly shotgun sequenced or enriched for a target of interest before
sequencing. The sequence reads are postprocessed for quality control (‘read quality control’) by removing short and/or low-

(Figure legend continued at the bottom of the next page.)
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Sedimentary aeDNA: data characteristics and informatics needs
aeDNA data fall into three main categories: (i) nonsequencedPCRs, (ii) sequenced PCR amplicons
(including metabarcoding), and (iii) metagenomic data. These three data types are generated
using fundamentally different molecular biology techniques after DNA extraction (Figure 4). Here,
we focus on amplicon and metagenomic data since these data result in a taxonomic inventory,
which can be used for biodiversity and other taxon-level analyses of aeDNA data.

Amplicon data are generated via targeted PCR followed by DNA sequencing. This approach can
target a single locus acrossmultiple taxa (metabarcoding) or multiple loci across a more restricted
set of taxa (multiplex PCR). Amplicon methods are sensitive, allowing the recovery of minute
quantities of DNA template (<10 molecules) from highly complex mixtures. However, amplicon
methods require relatively long and intact template DNA molecules [often >150 base pairs
(bp)], whereas most preserved aeDNA molecules may be shorter (<100 bp) and damaged [58].
Analyses of amplicon data cannot differentiate aeDNA from modern DNA, because PCR amplifi-
cation removes signatures of DNA damage. Metagenomic methods convert an entire pool of
aeDNAmolecules into a library that can either be sequenced directly (shotgunmetagenomics)
or enriched for molecules of interest using target enrichment. In this way, metagenomic ap-
proaches can recover all lengths of aeDNA molecules and retain signatures of DNA damage,
thereby enabling aeDNA authentication [10]. Metagenomic datasets are, however, often domi-
nated by microorganismal DNA. Target enrichment offers a middle ground by allowing the cap-
ture of short fragments and retaining DNA damage signatures, while reducing the recovery of
off-target molecules.

Initially, aeDNA studies were restricted to just a few sites, but recent technological improvements
in aeDNA recovery and the massive reduction in sequencing costs are now resulting in large-
scale, multisite studies that generate both amplicon [3,11] and metagenomic aeDNA data
[1,59]. Among aeDNA data types, metabarcoding data currently represent the majority of
aeDNA sequence data (e.g., in Figure 1, 75.8% of inventoried aeDNA datasets are from
metabarcoding [60]).

As the number of laboratories using these methods grows, the need to integrate and harmonize
aeDNA data produced by different research groups has intensified. Heterogeneity among aeDNA
datasets emerges during data generation (e.g., DNA extraction method used, PCR conditions,
sequencing depth) and data processing (e.g., removal of amplification artifacts, duplicated se-
quences, or sequences with low information content) (Figure 4). Reference databases used to
identify recovered sequences also lead to heterogeneity, as these differ in geographic and/or tax-
onomic completeness (e.g., [61,62]). Community efforts are underway to establish aeDNAmeta-
data standards. The Standards, Precautions, and Advances in Ancient Metagenomics (SPAAM)
community (https://spaam-community.github.io/) is, for example, developing Minimum Informa-
tion for an Ancient DNA Sequence (MInAS) standards for metagenomic data. Standardized pipe-
lines for processing these data are emerging (e.g., OBITools [63], QIIME2 [64], SqueezeMeta
[65]). Despite these efforts, the heterogeneity in methods for aeDNA data production and analysis
substantially hinders global-scale integration of aeDNA data.
quality sequences and other artifacts and by collapsing identical sequences. After quality control, sequences are aligned with
external reference databases to enable taxonomic identification. Refinement of alignments includes the removal of
contaminants and/or curation of taxonomic assignments. The resulting data include a taxonomic inventory and information
about abundance based on counts of reads or frequency of presence across replicates, haplotypic variation within species,
and, for metagenomic approaches, information about ancient DNA damage and population genomic variation. Abbreviations:
ddPCR, droplet digital PCR; HRM, high-resolution melt.
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In order to support biodiversity science that is linked to the best-available information about tax-
onomic inferences, the cyberinfrastructure ecosystem for aeDNAmust be able to store sequence
data, the resulting taxonomic inventory, and metadata about the reference libraries, workflows,
and parameters used to generate the taxonomic inferences. In particular, a common output
of metabarcoding aeDNA studies is the amplicon sequence variant (ASV) (e.g., [66–68]) or
operational taxonomic unit (OTU) table. ASV tables store both the primary genetic sequence
and the associated inferred taxonomic name (i.e., the taxonomic inventory, Figure 4), while OTU
tables store genetic sequences aggregated into inferred taxonomic units, with a taxon identifier
assigned to one representative sequence per OTU. Because ASV and OTU tables have already
gone through some initial processing (Section 4, Figure 4), they represent an intermediate
stage in aeDNA pipelines that is valuable both to experts, who can compare the original genetic
sequences with the latest reference databases to update taxonomic inferences, and biodiversity
scientists, who can use the taxonomic inventory as the best available information about taxon oc-
currences. Open repositories for storing raw sequence data and their associated metadata exist
[e.g., the EMBL European Nucleotide Archive (ENA), NCBI Sequence Read Archive (SRA), EMBL
European Bioinformatics Institute (MGnify)], as do community-curated databases of links to these
resources for some aeDNA data (e.g., AncientMetagenomeDir [69]). However, ASV and OTU ta-
bles currently have no standard data repository and are scattered across Dryad and other generic
repositories with no attempt to, for example, standardize table structures or vocabularies. Hence,
in terms of FAIR standards [54], most ASV and OTU data are findable and accessible, but not in-
teroperable or reusable. Moreover, existing bioinformatics-oriented repositories do not currently
store metadata about depth and temporal position at the detail needed for the precise age-
depth modeling that is necessary for multiproxy and multisite paleoecological research.
Box 1. A biogeographic multiproxy and multisite case study: where was Cedrus (cedar) at the last glacial
maximum?

Understanding species' past distribution and diversity relies on accurate inferences of species’ presence and absence.
However, each type of paleoecological proxy is affected differentially by taphonomic and biological processes that
affect the probability of detecting a species, precision of taxonomic identification, and spatial source area represented
by a given fossil occurrence. Inferences based upon multiple paleoecological proxies reduce uncertainty and carry
more power.

For example, a persistent question has been whether the conifer Cedrus (cedar) survived in southern Italy across glacial–
interglacial cycles. It has been suggested, based on fossil pollen, that climate changes between 0.9 and 0.7 million years
ago extirpatedCedrus from the Italian Peninsula, while it persisted longer in Greece [72]. Palynologists have interpreted the
few pollen grains of Cedrus found in Late Pleistocene lake sediments from southern Italy as sourcing from populations in
north Africa (Figure I [73,74]).

Because aeDNA in lake sediments is believed to source locally from plants growing in the watershed and not from
windblown pollen from more distant sources [75–77], aeDNA can be used to explore hypotheses about local refugia.
However, aeDNA itself needs to be carefully checked to rule out the possibility of false positives due to laboratory con-
tamination or other factors [5,7]. At Lago Grande di Monticchio in southern Italy, prior work has reported occasional
Cedrus pollen grains from glacial-aged sediments, at levels too low to confidently establish local presence [78].
Metabarcoding aeDNA data from an investigation aimed at reconstructing the flora at Monticchio suggest that Cedrus
was present at this site during the last glacial and the late Holocene period (Figure I). Cedrus aeDNA was reported in
12 samples from Monticchio, yet was undetected in the extraction and PCR negative controls, nor in samples from
the other lakes analyzed in the same sequencing run, which argues against a false positive caused by cross-sample
contamination.

To further explore the Monticchio aeDNA findings, we mapped pollen data from Neotoma, which indicate widespread but
low abundances across late-glacial samples from southern Europe (Figure I). The combination of local aeDNA presence at
Monticchio and trace quantities of Cedrus pollen across southern Europe reinforce the hypothesis that Cedrus was
present in southern Italy during the last glacial period, showing how biogeographic inferences can be strengthened by
combining aeDNA data with regional networks of other paleoecological proxies.

954 Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10

CellPress logo


TrendsTrends inin EcologyEcology & EvolutionEvolution

Cedrus atlantica
Cedrus libani
Cedrus pollen

Cedrus reads

Figure I. Detections of Cedrus (cedar) ancient environmental DNA (aeDNA) from glacial sediments are intriguing
but, in isolation, provide an incomplete understanding of the refugial distribution of this taxon. Conversely, detections
of Cedrus from pollen are widespread, but wind-dispersed pollen is a nondefinitive indicator of local presence. The multipanel
figure on the left shows pollen sites from Neotoma where at least one Cedrus pollen grain is found, for three time periods: 32
to 11.7 thousand calendar years before present (ka BP), 11.7 to 3 ka BP, and 3 to 0 ka BP. (Open circles indicate pollen sites
with no Cedrus pollen for that time window, while filled circles indicate presence of Cedrus pollen, with the color of the fill
varying by time period.) Pink- and blue-colored regions show the current ranges of Cedrus atlantica (Atlas cedar) and Cedrus
libani (Lebanese cedar) [87]. The plot on the right reports preliminary metabarcoding DNA results for Cedrus for the 14-m
Lago Grande di Monticchio core spanning the last 31 ka (K. Nota, PhD thesis, Uppsala University, Sweden, 2022). Each bar
indicates a Cedrus detection in a PCR technical replicate and is colored by the number of reads recorded as Cedrus. For this
plot, the time scale is linear for each time period but differs among time periods.
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Building a linked open ecosystem for aeDNA-powered global biodiversity
research: vision and recommendations
Given the rapid advances in sedimentary aeDNA methods, the growing global network of sites
(Figure 1), and the ongoing growth and interdigitation of the paleoecoinformatics ecosystem, all
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pieces are in place for the next generation of multiproxy, global-scale research into past biodiver-
sity dynamics, in which new insights from sedimentary aeDNA are richly contextualized by the
ever-growing network of paleoecological and paleoenvironmental proxies (see Outstanding
questions). Global-scale biodiversity science requires high-quality data about species identifica-
tions and occurrences that are precisely positioned spatially and temporally. These needs can
be met by building an open linked ecosystem for aeDNA data that bridges across existing
open resources in bioinformatics (particularly the repositories for raw sequence data and the bio-
informatics pipelines used for taxonomic inferences) and paleoecoinformatics (particularly data
resources that support precise depth information, regeneration of age-depth models, and com-
munity data governance), and emerging community data standards (e.g., MInAS).

Because the taxonomic inventories available from aeDNA data are essential to biodiversity sci-
ence and have no standard data home, a first priority should be to develop standardized infor-
matics solutions for the storing and sharing of ASV and OTU tables, sourced from both
metabarcoding and metagenomics studies. Because the species identifications associated
with aeDNA data are changeable, as reference databases improve, the taxonomic inventories
available from aeDNA data must be accessioned in a way that allows direct links to the primary
sequence archives maintained by EMBL and NCBI. Datasets should also include all minimally
essential metadata (e.g., MInAS standards). These linkages will enable any given aeDNA-based
species inventory to be critically assessed and, ideally, updatable as reference libraries improve.
While both metabarcoding and metagenomics can produce a taxonomic inventory,
metabarcoding aeDNA projects are recommended for initial efforts because they are currently
the most common form of aeDNA data (Figure 1).

In this envisioned open and hybrid bioinformatic/geoinformatic ecosystem, the paleoecoinformatic
components are employed to store the taxonomic inventories represented by ASV and OTU ta-
bles, along with the necessary metadata about stratigraphic deposition and age controls that are
needed for the best-available age inferences, as age-depth models and geochronological param-
eterizations improve. Following best practices developed for other paleobiological data resources
(e.g., PBDB, Neotoma), these systems should include mechanisms for expert community data
governance, to ensure that data systems are designed to meet the needs of user communities.
Within this broad vision, we recommend the following next steps forward.

Integration and upload of aeDNA-derived ASV and OTU tables into Neotoma, LiPD, and other
paleoecoinformatics resources
Pilot efforts are already underway (Box 2) and, based on these experiments, three next steps are
ready for immediate action. First, to update paleodata schemas and associated software services
to better align with the particular needs of sedimentary aeDNA (e.g., supporting derived taxo-
nomic inferences with linkages to reference databases and analytical pipelines). Second, to ap-
point and train data steward experts in aeDNA who can help establish and implement the
community standards (e.g., controlled vocabularies) necessary for data harmonization. Third, to
engage in a broad-scale, community-supported data mobilization campaign, in which participat-
ing research groups send their data to appointed data stewards for curation and upload, in order
to establish a well-curated suite of aeDNA datasets that can serve as the backbone for further
macro-scale research.

Harmonization and integration of transparent workflows for laboratory processing and
bioinformatics standards
Informed interpretation of aeDNA results depends critically on knowledge of how the data were
generated and analyzed [e.g., the use of negative and positive controls, replicates, and other
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Box 2. Putting recommendations into action: pilot uploads of aeDNA data into Neotoma

As a first step towards integrating aeDNA site-level data with paleoecoinformatics resources, we have launched pilot up-
loads of metabarcoding-derived ASV tables into the Neotoma Paleoecology Database. Neotoma carries several advan-
tages as a home for taxonomic inferences sourced from metabarcoding and metagenomic analyses. First, most of
Neotoma’s data span the last 102 to 106 years, a time scale that matches well with the temporal duration of aeDNA data
[79–81]. Second, Neotoma already storesmuch of the spatial and temporal metadata needed to analyze past species dis-
tributions, such as site location, depositional context, radiometric and other age controls, and multiple age-depth models
and associated age inferences. Third, Neotoma contains other paleoecological proxies from both terrestrial and marine
archives. Fourth, Neotoma stores samples from modern depositional contexts (e.g., [82]), which is essential for aeDNA
ground truthing [75,83] and building statistical inferences about past ecosystems and environments [84,85]. Other
paleoenvironmental resources, such as LiPD, are also expanding support for aeDNA data (McKay, pers. comm.).

In this pilot effort, a metabarcoding dataset was uploaded from Lake Naleng on the Tibetan Plateau [86]. This effort re-
vealed a generally close but imperfect match between Neotoma’s data schema and the metadata needs associated with
aeDNA. Somemismatches could be quickly resolved, by expanding controlled vocabularies in Neotoma to accommodate
key metadata needs associated with aeDNA. For example, ‘Metabarcoding aeDNA’ is a newly added dataset type. Sim-
ilarly, the ‘Elements’ field in Neotoma is intended to indicate which part of the organism a fossil comes from, but we have
expanded its usage to also store information about the genetic locus used in metabarcoding research (e.g., ‘18S rRNA’ or
‘trnL p6-loop’).

Other mismatches will need deeper modifications to Neotoma’s data schema. For example, in Neotoma, just the taxo-
nomic name is stored, while an ASV table stores both the primary genetic sequence and derived taxonomic identification,
so Neotoma’s data model needs to be expanded to hold both pieces of information. Similarly, Neotoma needs better
linking capacity to other components of the emerging informatics ecosystem for aeDNA data, including repositories for
raw sequence data and reference databases. All these points are resolvable, however, so this pilot effort shows both
how conceptual and semantic misalignment can create hidden barriers to building global-scale, multiproxy, and multidis-
ciplinary community data resources and how these barriers can be overcome.

Trends in Ecology & Evolution
laboratory processing steps, as well as the choice of reference database(s)] (Section 4, Figure 4).
Not all of this information can or should be stored in paleoecoinformatics data resources. Rather,
the analytical pipelines are themselves a primary form of process documentation and transpar-
ency [64]. There exists a tension between methodological innovation and standardization, and
while aeDNA has been in its early stages, innovation has been paramount. Hence, the immediate
need is to enhance transparency by setting community norms that laboratory and analytical
workflows should be published as reproducible protocols (e.g., https://protocols.io) or code
(e.g., https://github.com), while the next step is to establish standard community pipelines and
protocols wherever possible.

Integrate emerging metagenomics standards into this open, linked, bioinformatics and
paleoecoinformatics cyberinfrastructure
Although metabarcoding data are currently the most common (Figure 1B), shotgun
metagenomics and targeted enrichment methods are rapidly growing in popularity and likely
will surpass metabarcoding soon [42]. These aeDNA data types will require their own somewhat
customized informatics and curation solutions, given large data volumes and reads from a
broader set of genomic regions than for metabarcoding. The emerging standards for
metagenomic aeDNA and eDNA (https://spaam-community.github.io/) should be integrated
into the genomics and paleoecoinformatics ecosystems that support aeDNA.

Building open, ethical, and global communities of practice and community data governance
The aeDNA community of researchers is growing quickly with a high preponderance of early career
researchers and new communities of practice are rapidly forming (e.g., PaleoEcoGen Working
Group, the SedaDNA Scientific Society). CCDRs help advance these efforts by serving as bound-
ary organizations [70], whereby specialists from different communities (e.g., aeDNA specialists,
data scientists, biogeographers, educators) can convene and exchange knowledge across
Trends in Ecology & Evolution, October 2023, Vol. 38, No. 10 957
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Outstanding questions
These questions are organized into
two categories: Scientific and Socio-
informatic

Scientific

How were past changes in biodiversity,
as revealed by aeDNA records, shaped
by past environmental change, human
activities, and biotic interactions?

How sensitive are species and
ecosystems to climate change, at local
to global scales?

What processes drive abrupt changes
in ecological systems, and can early
warnings of abrupt change be
detected in advance?

What were the causes and
consequences of past population
declines and extinctions?

Where do inferences based on aeDNA
agree or disagree with those based on
other paleoecological proxies, and
why?

Socio-informatic

Where do existing paleoecoinformatics
data systems need to be modified to
support the storage and informed
reuse of aeDNA data, with respect to,
for example, data structure, controlled
vocabularies, or supporting software
disciplinary boundaries. In this effort, enhancing inclusivity and accessibility is essential, because
paleobiogeographic data are rife with biases caused by past and present inequities in scientific
practice [71]. Similarly, management and sharing of aeDNA should support CARE principles for In-
digenous data governance [55]. As examples of initial efforts here, the SedaDNA Scientific Society
launched the African sedaDNAWorking Group in 2021, while recent data mobilization campaigns
for Neotoma have focused on improving data representation across the Southern Hemisphere.

Concluding remarks
Building cyberinfrastructure is a means, not an end; the ultimate goal is to power the next gener-
ation of question-driven macro-scale integrative research and new insights into the processes
governing biodiversity dynamics over space and time (see Outstanding questions). The scale is
too vast and the data too heterogeneous for any single researcher or research laboratory to uni-
laterally conduct global-scale analyses effectively, so well-curated, harmonized datasets are es-
sential. Our experience in this era of open science has been that as soon as new high-quality
data resources are built and openly shared, they are immediately used to advance discovery.
The steps described here are essential for conducting the next generation of integrative global-
change science.
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