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Abstract. Here we describe LegacyClimate 1.0, a dataset of the reconstruction of the mean July tempera-
ture (TJuly), mean annual temperature (Tann), and annual precipitation (Pann) from 2594 fossil pollen records
from the Northern Hemisphere, spanning the entire Holocene, with some records reaching back to the Last
Glacial Period. Two reconstruction methods, the modern analog technique (MAT) and weighted averaging par-
tial least squares regression (WA-PLS), reveal similar results regarding spatial and temporal patterns. To reduce
the impact of precipitation on temperature reconstruction, and vice versa, we also provide reconstructions using
tailored modern pollen data, limiting the range of the corresponding other climate variables. We assess the re-
liability of the reconstructions, using information from the spatial distributions of the root mean squared error
in the prediction and reconstruction significance tests. The dataset is beneficial for synthesis studies of proxy-
based reconstructions and to evaluate the output of climate models and thus help to improve the models them-
selves. We provide our compilation of reconstructed TJuly, Tann, and Pann as open-access datasets at PANGAEA
(https://doi.org/10.1594/PANGAEA.930512; Herzschuh et al., 2023a). The R code for the reconstructions is pro-
vided at Zenodo (https://doi.org/10.5281/zenodo.7887565; Herzschuh et al., 2023b), including the harmonized
open-access modern and fossil datasets used for the reconstructions, so that customized reconstructions can be
easily established.

1 Introduction

The comparison of climate model outputs with climate data
is essential for model improvements (Eyring et al., 2019).
The extratropical Northern Hemisphere is of particular in-
terest because it is known for complex spatial and temporal
temperature and precipitation patterns. However, the period
for which instrumental observations are available is only of
limited use to validate simulations, in particular when assess-
ing the climate response to natural climate drivers, because
it is too short and because it is impacted by human-induced
greenhouse gas forcing. Climate proxy data derived from nat-
ural archives are therefore of great value.

Previous proxy-based climate inferences have contributed
to major debates about Holocene climate change. For ex-
ample, while simulations indicate gradual warming of the
Holocene, temperature proxy data syntheses rather support
a mid-Holocene optimum, which resulted in the “Holocene
conundrum” debate (Liu et al., 2014). While the debate has
progressed since, new proxy-based syntheses can help us to
understand regional differences and contribute further to the
debate. Qualitative proxy-based inferences indicate that the

mid-Holocene in the Northern Hemisphere midlatitudes was
rather dry and warm when compared with the present day,
which is in agreement with modeling outputs (Routson et al.,
2019). Also, quantitative precipitation reconstructions from
eastern and central Asia unveiled the complex monsoon–
westerlies interactions (Chen et al., 2019; Herzschuh et al.,
2019). However, evaluating modeling outputs using proxy-
based reconstructions is a complex task and strongly de-
pends on the purpose of the proxy data–model comparison
study (e.g., the purpose of an evaluation could either target
the mean or site-specific changes or it could target relative
changes or absolute values, or the purpose could be to infer
spatial or temporal climate variability at specific scales). All
these types of evaluations require a specific handling of the
proxy data and have to be considered for proxy–model com-
parisons.

Fossil pollen records are well established in their
use as a paleoecological and paleoclimatological proxy
and are of great value as indicators of past en-
vironmental and climatic change over many decades.
Considerable efforts have been made to establish re-
gional, continental, and even global data repositories like
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the North American Pollen Database (NAPD; https://
www.ncei.noaa.gov/products/paleoclimatology, last access:
1 July 2020), the European Pollen Database (EPD; http:
//www.europeanpollendatabase.net/index.php, last access:
1 July 2020), and the Neotoma Paleoecology Database
(https://www.neotomadb.org/, last access: 1 April 2021;
Williams et al., 2018). Pollen data from archives across mul-
tiple environmental settings, such as lakes, wetlands, or ma-
rine sediments, have been widely used to quantitatively re-
construct past vegetation and climate variables (Birks, 2019;
Chevalier et al., 2020). Among land-derived proxy data,
pollen is particularly suitable for a temporarily and spa-
tially high-resolution evaluation of climate model simula-
tions of the late Quaternary period. A number of methods
have been proposed for making pollen-based climate recon-
structions (Chevalier et al., 2020). Among them, classifica-
tion approaches like the modern analog technique (MAT)
or regression approaches like the weighted averaging partial
least squares regression (WA-PLS) are most commonly used.
MAT and WA-PLS rely on extensive collections of modern
spectra. Hence, designing a robust calibration dataset from
modern pollen assemblages is a crucial part of the recon-
struction process. A suitable calibration dataset should cover
a wide range of climatic and environmental gradients in order
to represent an empirical relationship between pollen assem-
blages and climate (Birks et al., 2010; Chevalier et al., 2020).
As with fossil pollen records, data syntheses and reposito-
ries also exist for modern surface pollen data, e.g., for North
America (Whitmore et al., 2005), Eurasia (Davis et al., 2013,
2020), and China (Cao et al., 2013; Herzschuh et al., 2019).

For temperature reconstruction time series, several broad-
scale syntheses exist; however, they either originate from dif-
ferent proxies (Kaufman et al., 2020a, b) or are restricted to
certain continents or regions and/or are poorly documented
(Mauri et al., 2015; Marsicek et al., 2018; Routson et al.,
2019). Temperature reconstructions from extratropical Asia
are mostly lacking. Precipitation syntheses are available from
Europe (Mauri et al., 2015), North America (Gajewski et al.,
2000), and China and Mongolia (Herzschuh et al., 2019), but
hitherto, no global or hemispheric syntheses of quantitative
precipitation changes are available for the Holocene.

In a recent effort, we synthesized and taxonomically har-
monized pollen records available in the Neotoma Paleoecol-
ogy Database (Williams et al., 2018) and additional records
from China and Siberia (Cao et al., 2013, 2020) into a
global late Quaternary fossil pollen dataset (LegacyPollen
1.0; Herzschuh et al., 2022b) and revised all chronologies
of those records using a Bayesian approach that allows for
the inference of temporal uncertainties (LegacyAge 1.0; Li
et al., 2022). Here, in the third part of a series of intercon-
nected studies, we present the pollen-based reconstruction
of the mean July temperature (TJuly), mean annual tempera-
ture (Tann), and annual precipitation (Pann), including the re-
construction and temporal uncertainties in addition to quality

measures from 2594 records from the Northern Hemisphere,
using WA-PLS and MAT (LegacyClimate 1.0; this study).

2 Methods

2.1 Input data

The objective of this study is to create a dataset of quan-
titative reconstructions of TJuly, Tann, and Pann, spanning the
last 30 kyr and beyond from fossil pollen records. These vari-
ables (or variables highly correlated to them) were shown
to explain most variance in the modern pollen data (TJuly;
Pann) or are typically used in syntheses and proxy–model
comparison studies (Tann). Accordingly, we selected these
three variables. We used the fossil dataset compiled in Lega-
cyPollen 1.0 (stored on the PANGAEA open-data reposi-
tory and presented in Herzschuh et al., 2022b) that inte-
grates pollen records archived in the Neotoma Paleoecology
Database, a dataset from eastern and central Asia (Cao et al.,
2013; Herzschuh et al., 2019), and a dataset from northern
Asia (Cao et al., 2020). Ages were taken from the Bacon
(Blaauw and Christen, 2011) age–depth models presented
in Li et al. (2022; LegacyAge 1.0), and for each record,
we provide an ensemble of 1000 realizations of the age–
depth model in our data product so that it can be used to
account for chronological uncertainty in the reconstructions.
As the chronological and reconstruction errors are indepen-
dent, they can be added in quadrature to obtain the combined
error. With this information, users can easily produce curves
with all relevant uncertainties (as shown in Appendix Fig. 1).

We compiled the fossil data into four subcontinental
datasets for eastern North America (< 104◦W; Williams et
al., 2000), western North America, Europe (< 43◦ E), and
Asia (> 43◦ E). We restricted the analyses to the 70 most
common taxa on each continent to reduce computational
power, after making sure that a higher taxa number would
not substantially improve model statistics in climate recon-
structions. The number of taxa is limited by the modern train-
ing dataset from North America, which contains 70 taxa af-
ter applying our taxa harmonization routine (see details in
Herzschuh et al., 2022b). We therefore restricted the number
of taxa in all fossil datasets to keep the taxa comparable for
the reconstructions. To identify the most common taxa, we
used Hill’s N2 diversity index (i.e., the effective number of
occurrences of a species in the dataset; Hill, 1973). For all
analyses, square root percentages were used, if not indicated
otherwise.

A modern pollen training dataset comprised of 15 379 sites
includes datasets from Eurasia (EMPD1, Davis et al., 2013;
EMPD2, Davis et al., 2020; Herzschuh et al., 2019; Tarasov
et al., 2011) and North America (Whitmore et al., 2005). The
modern pollen datasets were taxonomically harmonized in
accordance with the fossil pollen dataset.

The site-specific Tann, TJuly, and Pann were derived from
WorldClim 2 version 2.1 (spatial resolution of 30 s;∼ 1 km2;
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https://www.worldclim.org, last access: 22 November 2021;
Fick and Hijmans, 2017), by extracting the climate data at
the location of the modern sample sites using the raster pack-
age in R (version 3.5-11, Hijmans et al., 2021; R Core Team,
2020). The WorldClim 2 dataset provides spatially interpo-
lated gridded climate data aggregated from weather stations
as temporal averages between 1970–2000 (Fick and Hij-
mans, 2017). We used monthly average temperature data to
extract the mean TJuly and the bioclimatic variables of bio1
(Tann) and bio12 (Pann).

2.2 Reconstruction methods

Our reconstruction approach included MAT (Overpeck et al.,
1985) and WA-PLS (ter Braak and Juggins, 1993), by apply-
ing the MAT and WA-PLS functions from the rioja package
(version 0.9-21, Juggins, 2019) for R (R Core Team, 2020)
on our northern hemispheric fossil pollen synthesis. For each
fossil location, we calculated the geographic distance be-
tween each modern sampling site and the fossil pollen record
using the rdist.earth function from the fields R package (ver-
sion 10.3, Nychka et al., 2020) and selected a unique calibra-
tion set from modern sites within a 2000 km radius. We fixed
the radius to 2000 km instead of 1500 km, as suggested in a
study in eastern Asia by Cao et al. (2017), because the mod-
ern dataset density is rather low in northern Asia. For the
reconstruction with MAT, we used the original pollen per-
centages of the selected fossil pollen taxa, looking for seven
analogs between the pollen data and the selected calibration
dataset. The dissimilarity between the fossil samples and the
modern pollen assemblages was determined by the squared-
chord distance of the percentage data (Simpson, 2012; Cao
et al., 2014).

In addition to the classic WA-PLS reconstruction, we
also propose WA-PLS_tailored. This approach addresses the
problem that covariation in climate variables today in space
is transferred to the reconstruction, even if the past temporal
relationship among the climate variables differs mechanis-
tically. In fact, this approach aims to make use of the full
climate space covered by the modern pollen samples, avoid-
ing those samples in the calibration set that cause spatial co-
variation. This approach is based on the assumption that sev-
eral climate variables can be reflected in one and the same
pollen assemblage because different plant taxa have differ-
ent optima in temperature and precipitation ranges and might
therefore occur with different co-occurrences and abundance
patterns. To reconstruct TJuly, we identified the Pann range re-
constructed by WA-PLS and extended it by 25 % to both ends
of the modern Pann range in order to reduce the influence of
Pann on the Tann and TJuly reconstruction due to covariation.
We applied the same method to the reconstruction of Pann.
Tann and TJuly were tailored by Pann; Pann was tailored by
TJuly and, additionally, by Tann (illustrated, for an example, in
Appendix Fig. 2). Reconstruction uncertainties are provided
as root mean square errors (RMSEs) derived from the output

in the MAT and WA-PLS functions. Model errors in WA-
PLS and MAT are reported as root mean square errors in the
prediction (RMSEP) that are derived from the leave-one-out
cross-validation.

We provide site- or sample-specific measures of quality,
in addition to the error estimates and model statistics, to al-
low the user to assess the quality of the climate reconstruc-
tion dataset. First, we applied a canonical correlation anal-
ysis (CCA) to the modern training dataset in order to ex-
plore the modern relationship between the pollen spectra and
the climate variables and to infer the explained variance in
the modern pollen dataset by the target climate variables (ter
Braak, 1988) by using the cca function in the vegan R pack-
age (version 2.5-7, Oksanen et al., 2020). The ratio between
the constrained (λ1) and unconstrained (λ2) explained vari-
ance was determined for all modern training datasets used
for climate reconstructions. High values of λ1 vs. λ2 (= 1)
are commonly considered to be an indicator to measure how
well the target environmental variable relates to the varia-
tion in the modern pollen dataset (e.g., Juggins, 2013). How-
ever, most training datasets encompass multiple environmen-
tal variables that are often correlated, and additional require-
ments for such variables would be necessary to explain a sig-
nificant and independent portion of the variation in the train-
ing dataset. While a careful design of the training dataset can
help reduce the effect of correlated environmental gradients,
it can never eliminate them completely (Juggins, 2013). To
infer the analog quality as an indicator of non-analog situ-
ations, we calculated the minimum dissimilarity (squared-
chord distance) between modern pollen assemblages and fos-
sil pollen assemblages with probability thresholds of 1 % (in-
dicating very good analogs), 2.5 % (good analogs), and 5 %
(poor analogs), using the minDC function from the analogue
R package (version 0.17-6; Simpson et al., 2021).

A statistical significance test (Telford and Birks, 2011)
was applied using the randomTF function in the palaeoSig R
package (version 2.0-3; Telford, 2019). In this test, the pro-
portion of variance in the fossil pollen data explained by the
reconstructed environmental variable is estimated from re-
dundancy analysis (RDA) and tested against a null distribu-
tion generated by replacing the modern training dataset with
randomly generated surrogate fields. The surrogate fields
were simulated to have realistic spatial autocorrelation by fit-
ting variograms to the WorldClim 2 temperature and precipi-
tation data; 1000-member ensembles were simulated for each
variable. A reconstruction is considered statistically signifi-
cant if the reconstructed variable explains more of the vari-
ance than 95 % of the random reconstructions (Telford and
Birks, 2011). The reconstructed climate variables were tested
as introducing the environmental variable as a single variable
in a run, in addition to partialling out the explained variance
in the pollen data by the respective other variables.

We used Plantaginaceae (mostly representing the Plan-
tago lanceolata type in Europe) and Rumex type to assess
human influence as an indicator of intense herding (Behre,
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1988). In addition, we calculated the correlation between
the WA-PLS reconstruction of TJuly, Tann, and Pann and the
pollen percentages of Plantaginaceae and Rumex for 9000,
3000 and 1000 cal years BP to assess potential biases in the
dataset.

3 Dataset description LegacyClimate 1.0: input data,
reconstructions, and reconstruction model
statistics

LegacyClimate 1.0 provides pollen-based reconstructions
and sample-specific reconstruction errors in Tann, TJuly, and
Pann for 2594 fossil pollen records (i.e., a total of 146 067 sin-
gle pollen samples) from three reconstruction methods (WA-
PLS, WA-PLS_tailored, and MAT). Furthermore, we provide
the method-specific model metadata and quality measures for
each record and each climate variable (Table 1). To ease data
handling, the dataset files are separated into western North
America, eastern North America, Europe, and Asia.

4 Dataset assessment

4.1 Spatial and temporal coverage of LegacyClimate 1.0

In total, we provide reconstructions for 2594 fossil pollen
records. Among them, 670 records are located in eastern
North America, 361 records in western North America,
1075 records in Europe, and 488 records in Asia (Fig. 1).
Some records are included that come from marine cores
which were taken from the continental shelf. They contain
information from source areas from the nearby continents
(e.g., fluvially transported material). If users want to focus
on terrestrial-only records, then those marine sites could be
filtered out by the archive type provided in the metadata.
Climate reconstructions for one fossil record in the west-
ern North American Dataset on Hawaii (dataset ID 17832;
Keālia Pond) could not be performed, as there were no mod-
ern training data available within a 2000 km area.

The temporal coverage of the records is rather uneven. A
total of 75 and 666 records cover the periods between 30–29
and 15–14 cal kyr BP, respectively (Fig. 2).

4.2 Modern relationships between pollen and climate
assessed by constrained ordination

Results from CCA applied to modern datasets reveal that
TJuly-constrained ordinations have high λ1/λ2 ratios, indicat-
ing a strong relationship between this climate variable and
modern pollen assemblages in eastern North America, while
low ratios can be found in central Asia. The spatial pattern
of λ1/λ2 of ordinations constrained by Tann is similar over-
all to those of TJuly, but the ratios are slightly higher for Tann
than for TJuly. Reconstructions for Pann show low ratios in
Europe and eastern North America. Areas with high ratios
are concentrated in Alaska and East Asia (Fig. 3).

4.3 Analog quality

The dissimilarity (squared-chord distance) between modern
pollen assemblages and fossil pollen assemblages was cal-
culated and extracted for distinct time slices at 9000, 6000,
and 3000 cal years BP. In total, 36.4 % (9000 cal years BP),
39.2 % (6000 cal years BP), and 45.6 % (3000 cal years BP)
records indicate a very good (< 1%) analog quality. The
central part of the North American continent, Scandi-
navia, and central Asia show a very good analog qual-
ity for all time slices investigated. Poor (< 5%) analogs
can be found in western Europe, the eastern parts of the
United States, and along the East Asian coastline. Non-
analogs (> 5%) are found for 22.6 % (9000 cal years BP),
20.47 % (6000 cal years BP), and 12.5 % (3000 cal years BP)
records, respectively, especially in western Europe, and at
9000 cal years BP in Alaska (Fig. 4).

4.4 Prediction errors found in LegacyClimate 1.0

The mean RMSEPs and their standard deviations for
Tann are 1.98± 0.52 (MAT), 2.61± 0.53 (WA-PLS), and
2.24± 0.61 ◦C (WA-PLS_tailored) and mean RMSEPs as
a percentage of the modern Tann range are 7.68± 1.93%
(MAT), 10.09±2.05% (WA-PLS), and 10.26±2.79% (WA-
PLS_tailored). The largest mean RMSEP values are located
in central Asia in Kazakhstan, Mongolia, and the northwest-
ern parts of the Tibetan Plateau and are consistent across all
three reconstruction methods. Other areas with large mean
RMSEP values are located in western North America, south-
ern and central Europe, and Southeast Asia. The smallest
RMSEPs can be found along the east coast of North Amer-
ica. Relative to the modern temperature range, the RMSEP
from this region also reveals the lowest fraction. In general,
MAT has the lowest mean error fraction relative to the mod-
ern temperature range of all three methods.

The mean RMSEPs of TJuly are 1.90±0.63 (MAT), 2.50±
0.73 (WA-PLS), and 2.21± 0.75 ◦C (WA-PLS_tailored) and
mean percentages of the TJuly range are 8.11± 1.64%
(MAT), 10.71±1.94% (WA-PLS), and 10.70±2.60% (WA-
PLS_tailored). Thus, they are slightly smaller than those of
Tann but slightly larger as a percentage of the range. The spa-
tial patterns are, however, largely similar to those of Tann.

The mean RMSEPs of Pann are 176.38± 51.40 (MAT),
244.48± 75.84 (WA-PLS), and 232.71± 98.57 mm (WA-
PLS_tailored) and mean percentages of Pann range are 6.78±
1.48% (MAT), 9.27±1.70% (WA-PLS), and 10.26±2.67%
(WA-PLS_tailored). High RMSEPs are found for western
North America, Europe, and along the coastline of South-
east Asia, while the lowest RMSEP values are found for cen-
tral Asia. A clear division in RMSEPs is found on the North
American continent; while the western part of North Amer-
ica (with the exception of Alaska) has a rather high RMSEP,
the eastern part of North America has a smaller RMSEP. This
pattern is found for all three methods (Fig. 5).
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Table 1. Structure and content of the LegacyClimate 1.0 data with details about the information contained in the input datasets, in the climate
reconstructions, and in the reconstruction model statistics.

Datasets Content

Input datasets Modern pollen dataset of 15 379 sites

Modern dataset of Tann, TJuly, and Pann

Fossil pollen data (LegacyPollen 1.0) for 2594
sites, with a total of 146 067 samples

Bacon age–depth models (LegacyAge 1.0) for
2579 sites

LegacyClimate 1.0: climate reconstructions Reconstructions and sample-specific recon-
struction errors in Tann, TJuly, and Pann for
2593 sites using MAT, WA-PLS, and WA-
PLS_tailored

Ensemble of 1000 realizations of the Bacon
age–depth models for 2579 sites

LegacyClimate 1.0: reconstruction model statistics Site information (event label, source, ID, site
name, longitude, latitude)

Modern pollen dataset information (number of
modern analogs, range of climate variables)

Model statistics for each site for MAT, WA-PLS,
and WA-PLS_ tailored (including r2 observed
vs. predicted, RMSEP, and no. of WA-PLS com-
ponents)

LegacyClimate 1.0: quality measures Canonical correlation analysis (CCA) of the
modern training dataset

Minimum dissimilarities between modern
pollen assemblages and fossil pollen assem-
blages for each record sample for MAT

Statistical significance (see Telford and Birks,
2011) for each site for MAT, WA-PLS, and WA-
PLS_tailored

4.5 Significance test

A significance test (p < 0.1, in addition to p < 0.2; see
Sect. 2), according to Telford and Birks (2011), was per-
formed for each record (Fig. 6; Table 2). For the TJuly re-
construction, 16.4 % (p < 0.2; 27.2 %; WA-PLS) and 19.0 %
(p < 0.2; 29.1 %; WA-PLS_tailored) of all records passed
the significance test when included as a single variable in
the significance test. Partialling out precipitation as a con-
ditional variable causes an increase in the number of sig-
nificant records to 19.0 % (p < 0.2; 30.6 %) for WA-PLS of
TJuly but a decrease for WA-PLS_tailored to 16.7 % (p < 0.2;
27.6 %) of all records. The Tann reconstruction is significant
for 16.5 % (p < 0.2; 27.1 %; WA-PLS) and 20.0 % (p < 0.2;
31.6 %; WA-PLS_tailored) of all records when tested as a
single variable. When partialling out precipitation, the num-
ber of significant records slightly increases for WA-PLS

but decreases for WA-PLS_tailored. In total, 13.0 % (p <
0.2; 21.8 %; WA-PLS) and 14.3 % (p < 0.2; 25.4 %; WA-
PLS_tailored) of all records pass the significance test when
testing Pann as a single variable. Partialling out the mean July
temperature as a conditional variable increases the number of
significant records for both WA-PLS and WA-PLS_tailored.

4.6 Human impact

We used the abundance of Plantaginaceae and Rumex as in-
dicators of grazing and intense animal husbandry. An over-
all weak human impact is inferred for North America and
northern Asia. The indicators show a strong human impact
only in individual records at 9000 cal years BP in China and
the Mediterranean region (Fig. 7). The percentage values of
Plantaginaceae and Rumex were high, especially in Europe
for 3000 and 1000 cal years BP, which indicates the growing
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Figure 1. (a) Map indicating the spatial distribution and record lengths covered by the LegacyPollen 1.0 dataset (Herzschuh et al., 2022b) for
which climate reconstructions, temporal and reconstruction uncertainties, and reconstruction quality measures are provided in LegacyClimate
1.0, with a total of 2594 records. (b) Spatial distribution of a modern pollen dataset used for reconstruction with a total of 15 379 sites.

Figure 2. Number of records that cover certain millennia of the last 30 kyr.

human impact on that region. High Plantaginaceae correlate
with low TJuly and high Pann in central Europe, indicating po-
tential biases in the temperature reconstructions (i.e., temper-
atures that are too low become reconstructed). Similar corre-

lations are found for Rumex, especially in northern Europe
(Fig. 8).
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Figure 3. Maps showing λ1/λ2, representing the ratio of the explained variance of the first axis (constrained) vs. the second (unconstrained)
axis, as revealed by applying a CCA to all modern training datasets that were used for the reconstructions. High ratios (>= 1) indicate
a strong relationship between the modern pollen datasets and climate and can be used to determine ecologically important determinants.
Constraining variables and the tailoring of the dataset (see Sect. 2) is indicated in the captions of the maps.

Table 2. Percentage of records that pass the reconstruction significance test (p < 0.1 and p < 0.2; see Telford and Birks, 2011). The values
in parentheses for p < 0.1 indicate the significance values without taking the spatial autocorrelation into account.

WA-PLS WA-PLS_tailored MAT

p < 0.1 p < 0.2 p < 0.1 p < 0.2 p < 0.1 p < 0.2

TJuly 16.4 % (30.9 %) 27.2 % 19.0 % (35.2 %) 29.1 % 44.1 % (42.4 %) 56.8 %
TJuly partialling out Pann 19.0 % (35.5 %) 30.6 % 16.7 % (33.6 %) 27.6 % 48.7 % (39.9 %) 61.4 %
Tann 16.5 % (32.8 %) 27.1 % 20.0 % (36.1 %) 31.6 % 46.5 % (42.4 %) 57.7 %
Tann partialling out Pann 16.7 % (32.6 %) 27.1 % 18.4 % (34.1 %) 28.8 % 48.1 % (39.2 %) 61.9 %
Pann 13.0 % (32.1 %) 21.8 % 14.3 % (33.4 %) 25.4 % 36.5 % (36.3 %) 51.1 %
Pann partialling out TJuly 14.5 % (34.2 %) 24.1 % 16.5 % (36.5 %) 28.2 % 39.4 % (34.5 %) 53.7 %

4.7 Assessment of major temporal patterns of
LegacyClimate 1.0

To illustrate the difference between mid and late Holocene
climate, we calculated the value for the three climate vari-
ables at 6 and 1 cal kyr BP, each time taking the average of
the interpolated values at those ages for the ensemble of

1000 realizations of the age–depth models (Li et al., 2022).
Differences between these time slices reveal warmer and
drier conditions during the mid-Holocene compared with late
Holocene conditions, especially in eastern North America
and also in central and northern Europe. The overall patterns
are in good agreement for all three methods but show dif-
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Figure 4. Analog quality as assessed by the squared-chord distance between modern pollen assemblages and fossil pollen assemblages. The
results identify very good (< 1%), good (< 2.5%), and poor (< 5%) analogs. The distances > 5% are considered to indicate non-analog
situations (as a percentage of all distances among pollen samples in the modern dataset used for calibration).

ferences on a regional scale, especially when comparing the
reconstructions with WA-PLS and MAT. For TJuly, the recon-
struction with MAT shows greater temperature differences in
western North America and Southeast Asia. Compared to the
reconstruction with WA-PLS, there is a reduced cooling from
6 to 1 cal kyr BP in eastern Europe and a warming instead of
a cooling in the western Mediterranean region and along the
Southeast Asian coastline in MAT. For large areas in North
America and Europe, the reconstructions with WA-PLS sug-

gest an increase in precipitation from 6 to 1 cal kyr BP. A
shift to drier conditions can be found along the southeast-
ern coastline in North America, in the Mediterranean Re-
gion, and especially in Southeast Asia. The reconstruction
with MAT reveals a gradient from increasing precipitation
in southwestern Europe to decreasing precipitation in north-
eastern Europe. In contrast to the reconstructions with WA-
PLS, records along the Southeast Asian coastline suggest an
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Figure 5.
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Figure 5. Spatial distribution of root mean squared errors in the prediction (RMSEP), as inferred from the leave-one-out cross-validation,
presented as absolute values and as a percentage of the range of the mean July temperature (TJuly), mean annual temperature (Tann), and
annual precipitation (Pann) in the modern pollen data used for reconstruction for the three methods applied (weighted averaging partial least
squares regression (WA-PLS), WA-PLS using a training set from within a limited climate range (WA-PLS_tailored), and modern analog
technique (MAT)).

increase in precipitation with MAT rather than a decrease
(Fig. 9).

Time series of absolute Tann reconstructions reveal tem-
poral in addition to latitudinal spatial variation on the single
continents. Eastern North America and Asia show the most
variation in the low latitudes. It is also eastern North America
that shows the most pronounced latitudinal gradient. In west-
ern North America, the most variation takes place in the high
latitudes, while the variation is concentrated to the midlati-
tudes in Europe. Especially in North America, the warming
since the last deglaciation and the beginning of the Holocene
is clearly shown in the temporal variation in the time series
(Fig. 10).

4.8 Assessment of consistency among reconstruction
methods

Reconstructions with MAT are, in general, in good agree-
ment with those derived from the WA-PLS. Comparing MAT

with WA-PLS, 37.3 % (TJuly), 38.9 % (Tann), and 30.4 %
(Pann) of all records have a positive correlation of r = 0.6.
Strong positive correlations (r >= 0.9) can mainly be iden-
tified in eastern North America, while a weak correlation can
be found for large areas in central North America and most
of Europe (Fig. 11).

WA-PLS_tailored used a reduced modern training dataset
(illustrated for an example in Appendix Fig. 2). The tailor-
ing successfully reduced the covariation in temperature and
precipitation in the modern dataset, as indicated by the distri-
bution of the correlation coefficient in Fig. 12. Nevertheless,
the obtained reconstructions are largely consistent between
WA-PLS and WA-PLS tailored, with a correlation of r = 0.9
found for 59.2 % of all records for TJuly, 60.7 % for Tann, and
56.5 % for Pann.
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Figure 6. Maps showing mean July temperature (TJuly), mean annual temperature (Tann), and annual precipitation (Pann) records that passed
the reconstruction significance test (p < 0.2). Colors indicate the significance level. Records that did not pass the significance level (p = 0.2)
are shown as gray rectangles.

5 Data availability

The compilation of reconstructed TJuly, Tann, and
Pann is open access and available from PANGAEA
(https://doi.org/10.1594/PANGAEA.930512; see the “Other
version” section; Herzschuh et al., 2023a). The dataset files
are stored in machine-readable data format (.CSV), which
are already separated into western North America, eastern
North America, Europe, and Asia for easy access and use.

6 Code availability

The R code to run the reconstructions for single sites is avail-
able from Zenodo (https://doi.org/10.5281/zenodo.7887565;
Herzschuh et al., 2023b), including harmonized open-access
modern and fossil pollen datasets, so that customized recon-
structions can be easily established.

7 Discussion

7.1 Impact of the fossil pollen data source on
LegacyClimate 1.0 quality

LegacyClimate 1.0 contains reconstructions of climate vari-
ables from fossil pollen data derived from open-access data
repositories. The fossil records were derived from multiple
natural archives (most commonly, assemblages from con-
tinuous lacustrine and peat accumulations; Herzschuh et
al., 2022b). Different sizes of lakes and peat areas result
in varying sizes of pollen source areas and thus the spa-
tial representativeness of a record. While small lakes and
peatlands are considered to provide information about the
(extra-)local scale, the regional signal is better represented in
pollen assemblages from large lakes (Jackson, 1990; Sugita,
1993). However, taphonomic changes in the records origi-
nating, for example, from lake-level changes may impact the
reconstructed climate. Pollen from azonal riverine vegeta-
tion might be over-represented in fluvially impacted pollen
records.
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Figure 7. Abundance of Plantaginaceae (a, c, e) and Rumex (b, d, f) at 9000, 3000, and 1000 cal years BP. Colors indicate percentage values.

Our dataset is based on taxonomically harmonized modern
and fossil pollen datasets using a restricted number of taxa.
Such an approach guarantees that all records are handled
consistently. Although losing taxonomic information when
merging taxa together into a higher taxonomic level, it also
increases the possibility of matching climate analogs in the
modern and the fossil datasets. However, one needs to keep
in mind that species with different ecological requirements
may be merged together into one genus or family, for exam-
ple, Pinus species that are restricted to tropical or subtropical
areas in China or ones that grow in boreal forests (Cao et al.,
2013; Tian et al., 2017).

Along with the pollen assemblages, data repositories also
provide chronological information for fossil records. The
quality of such chronologies varies strongly with respect to
dating methods, calibration, and numerical algorithms for
determining an age–depth relationship (Blois et al., 2011;
Trachsel and Telford, 2017). Having accurate and precise
chronologies is thus of pivotal importance for reconstruct-
ing past climate in order to identify spatiotemporal patterns
and in order to help evaluate climate model outputs. The ad-
vantage of the fossil pollen dataset used for the reconstruc-

tion presented here (i.e., LegacyPollen 1.0; Herzschuh et al.,
2022b) is that it has harmonized chronologies (LegacyAge
1.0), along with information about uncertainties, in addition
to related metadata and scripts that allow a customized re-
establishment of the chronologies (Li et al., 2022). Accord-
ingly, we were able to provide sample-specific age uncertain-
ties along with reconstruction uncertainties.

7.2 Modern pollen and climate data sources and
LegacyClimate 1.0 quality

We a priori selected TJuly, Tann, and Pann as target vari-
ables for our reconstructions. However, we provide λ1/λ2
(i.e., explained variance of the climate variable in the mod-
ern pollen dataset relative to the variance explained by the
unconstrained first axis; ter Braak, 1988), a commonly used
proxy for the assessment of reconstructions. The higher the
λ1/λ2 in the spatial modern dataset, the higher the chance
that this target climate variable has also impacted vegetation
over time and is thus reflected in the variation in the fossil
pollen dataset. As a rule of thumb, a ratio of 1 is considered to
indicate reliable reconstructions (Juggins, 2013), though use-
ful reconstructions may also be obtained from datasets with
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Figure 8. Correlation between the percentage of Plantaginaceae (a, c, e) and Rumex (b, d, f) and reconstructed TJuly, Tann and Pann with
WA-PLS.

lower values. As expected, maps of RMSEPs reveal similar
spatial patterns as the results of constrained ordination. Our
results indicate that calibration sets from Europe in particular
have low ratios and a high RMSEP for all climate variables
(despite having a high number of modern samples), likely
related to the human impact on the modern and fossil data.
Some areas that are known for their sensitivity to precipita-
tion, e.g., East Asia, show low RMSEPs as expected for Pann
on the one hand but show a low sensitivity to Tann and TJuly
on the other.

For our study we used the, to our knowledge, largest mod-
ern dataset ever used in a pollen-based climate reconstruc-
tion. For fossil pollen records in areas with an insufficient
coverage of modern surface pollen samples (e.g., central Asia
or western Siberia), it might be difficult to create a calibration
dataset that maps the required variety of environmental and
climatic gradients and therefore find enough modern analogs
for reconstructions with a classification approach such as
MAT. This is indicated by the high RMSEPs as percentages
of gradient length in these areas. Our routine uses the modern
pollen data from within a radius of 2000 km around the site of

the fossil record. The information provided in the reconstruc-
tion metadata, including number of modern pollen samples
and ranges of reconstructed variables, allows an assessment
of the modern dataset used for reconstruction. Our assess-
ments of the modern dataset (e.g., using CCA), the transfer
function (e.g., RMSEP), and the reconstruction (e.g., the sig-
nificance test) also revealed the potential biases in the pollen-
based reconstruction and pointed to limitations. Further val-
idation and assessments of the results and more comprehen-
sive uncertainty analyses, e.g., by applying forward modeling
approaches (Izumi and Bartlein, 2016; Parnell et al., 2016),
would be highly valuable.

7.3 Reconstruction method and LegacyClimate 1.0
quality

Overall, the three reconstruction approaches, MAT, WA-
PLS, and WA-PLS_tailored, yield rather similar results
(i.e., indicated by the overall high correlation between the re-
constructions of the different methods; Fig. 11). Accordingly,
the major trends at global or continental scales are similar,
even if the actual amplitude of change may vary locally. As
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Figure 9. Difference from 6 to 1 cal kyr BP for mean July temperature (TJuly), mean annual temperature (Tann), annual precipitation (Pann),
and Pann %, as reconstructed from WA-PLS (upper panel), WA-PLS_tailored (middle panel), and MAT (lower panel).
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Figure 10. Time series of absolute mean annual temperature (Tann) reconstruction with WA-PLS for each (sub-)continent. Colors denote the
latitude of the record origin. Age and reconstruction uncertainties are not plotted but are available for each time series.

each method has its own strengths and weaknesses, there is
not one set of reconstructions that is absolutely superior. One
advantage of our multi-method reconstruction dataset is that
users can identify the methods that are likely to perform best
in a selected region and/or specific reconstructions. MAT is
often recommended for large-scale studies, but it is highly
sensitive to the quality of analogs (Chevalier et al., 2020).
Low-analog situations can arise from two causes, namely cli-
mate conditions that differ strongly from today (e.g., the low
atmospheric CO2 concentration during the Last Glacial Max-
imum (LGM; ca. 19.0–26.5 cal kyr BP; Clark et al., 2009; Li
et al., 2022) or in regions with limited modern samples (e.g.,
extratropical Asia). Furthermore, growing human influence
on the landscape since the mid to late Holocene, especially in
densely settled regions in Europe, contributed to gaps within
the potential bioclimatic space of taxa and probably also
led to extinction events, especially for disturbance-dependent
taxa (Zanon et al., 2018). We report the analog distance for
each sample to help identify such situations. From our assess-
ments, we revealed that the analogs’ quality is rather good
overall, at least for the Holocene, except for western Europe
and the British Isles in particular (Fig. 4).

In contrast to MAT, WA-PLS (and most regression tech-
niques in general) model relationships between pollen and
climate and are, as such, less sensitive to the low-analog
situations (Birks et al., 2010). They are, however, based on
some modeling assumptions, such as the unimodality of the
response of the pollen taxa to climate (ter Braak and Jug-
gins, 1993). This condition is not always met at the con-
tinental scale, primarily because of the limited taxonomic
resolution of pollen data that merges several plant species
with distinct climate requirements as one single pollen taxon.
WA-PLS_tailored has the same limitation, but it has the
advantage of reducing the influence of the correlation be-
tween variables when reconstructing, for instance, temper-
ature and precipitation. This may be particularly relevant
for regions with a temperature–moisture-driven circulation
system, such as the East Asian summer monsoon (EASM),

which can heavily affect precipitation patterns in certain re-
gions (Herzschuh et al., 2019). Using WA-PLS_tailored also
increases the number of records that pass a significance level
of p < 0.1 (Telford and Birks, 2011). Providing several re-
constructions based on different assumptions also allows ex-
ploring, even if only partially, the uncertainties associated
with the modeling assumptions (e.g., MAT vs. WA-PLS, the
number of analogs, and the type of metric used to compare
pollen samples).

The significance tests (see Telford and Birks, 2011) re-
vealed a rather low percentage of reconstructions to be sub-
stantial (p < 0.1). However, a failed significance test does
not necessarily mean that the reconstruction is not reliable,
but the results should be treated more cautiously, as the
Telford–Birks test is rather conservative (Luoto et al., 2014;
Hébert et al., 2022). Several reasons for possible false neg-
ative errors are reported and discussed in the literature, in-
cluding the test supposedly being sensitive to the size of the
training data, a low magnitude of an input climate signal, the
trajectory of the core samples through calibration space, or
poor analog situations (Luoto et al., 2014; Self et al., 2015;
Andrén et al., 2015; Hébert et al., 2022).

All reconstruction methods used in this study heav-
ily rely on extensive collections of modern assemblage
data covering diverse climatic and environmental gradi-
ents and are applicable on a broad spatial scale. As dis-
cussed, all the methods may struggle with some intrin-
sic characteristics of pollen data and of pollen compila-
tions, including complex species responses, sensitivity to
spatial autocorrelation, and limited analogs that may produce
poor results in so-called “quantification deserts” (Cheva-
lier, 2019), where fossil pollen is hardly preserved or
nearby modern surface pollen samples are missing (Cheva-
lier et al., 2020). However, we designed our datasets so
that more methods can be included in our reconstruction
scripts (https://doi.org/10.5281/zenodo.7887565; Herzschuh
et al., 2023b), such as CREST, an approach that com-
bines presence-only occurrence data from species distribu-
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Figure 11. Correlation between the time series of the three different reconstruction methods used, namely the weighted averaging partial
least squares using a global training set (WA-PLS), WA-PLS using a training set with a limited modern climate range (WA-PLS_tailored),
and the modern analog technique (MAT), for the three climate variables of mean July temperature (TJuly), mean annual temperature (Tann),
and annual precipitation (Pann).

https://doi.org/10.5194/essd-15-2235-2023 Earth Syst. Sci. Data, 15, 2235–2258, 2023



2252 U. Herzschuh et al.: LegacyClimate 1.0

Figure 12. Violin plot of the correlation coefficients between TJuly and Pann in the 15 379 training datasets used for the reconstructions. The
plots, from left to right, show the WA-PLS reconstructions, WA-PLS TJuly tailored (used for the reconstruction of Pann), and WA-PLS Pann
tailored (used for the reconstruction of TJuly).

tion databases instead of modern pollen samples to estimate
the responses of pollen taxa to the climate variable to recon-
struct to a climate variable (Chevalier et al., 2014; Cheva-
lier, 2022). CREST is, therefore, more independent from the
availability of modern pollen samples. Employing inverse-
modeling through iterative forward modeling (IMIFM; Izumi
and Bartlein, 2016) might also be possible in such regions.
Its use would be particularly interesting to reconstruct the
LGM samples because IMIFM is the only technique that can
explicitly take the effect of CO2 on plants into considera-
tion (Chevalier et al., 2020). The inclusion of CREST and/or
IMIFM in such large-scale studies would complement our
multi-model reconstruction ensemble by exploring a larger
fraction of the “method uncertainty” space in greater detail
(e.g., Brewer et al., 2008). Kucera et al. (2005) propose sev-
eral metrics for a multi-technique approach to assess the un-
certainty space, namely correlations between the residuals
(observed minus reconstructed values) and between pairs of
techniques are used to investigate the similarity in the recon-
structions among different techniques. The correlation be-
tween the residuals in seasonal reconstructions (e.g., sum-
mer and winter temperatures; summer and annual tempera-
tures) can be used to investigate the degree of independence
of different seasonal reconstructions. Error rate estimates
(RMSEP) determined by the cross-validation of the calibra-
tion datasets and the leave-one-out method can be used to
compare the calibration of individual transfer function tech-
niques, though it should be considered that error estimates
may vary with the choice of the cross-validation procedure
(Kucera et al., 2005).

7.4 Potential use of LegacyClimate 1.0

Our LegacyPollen 1.0 fossil pollen synthesis (Herzschuh et
al., 2022b) contains records from all over the Northern Hemi-

sphere extratropics. We used this synthesis to produce our
LegacyClimate 1.0 reconstruction dataset, which thus can be
used to infer spatiotemporal patterns in climate reconstruc-
tions that are not limited to a local or regional scale. Although
several hemispheric or global reconstruction studies exist,
they have been largely restricted to temperature or have in-
cluded relatively few records (Marcott et al., 2013; Marsicek
et al., 2018; Routson et al., 2019; Kaufman et al., 2020a, b).
Our dataset is therefore a valuable addition. It may be used in
a multi-proxy approach, to synthesize marine and terrestrial
records in order to assess temperature development during
the Holocene, and can help to highlight possible interdepen-
dencies between oceans and land masses. Globally or hemi-
spherically averaged temperature reconstructions from proxy
data indicate peak temperatures during the Holocene ther-
mal maximum around 6000 ka, followed by a pronounced
cooling trend toward the late Holocene, which is also visible
in our pollen-based reconstructions (Fig. 10). Hence, spatial
variability in the Holocene temperature trends (e.g., missing
of a pronounced maximum for certain latitudinal bands; de-
layed thermal maximum on land compared to the ocean) in-
dicate a more local rather than a global Holocene thermal
maximum (Kaufman et al., 2020b; Osman et al., 2021; Car-
tapanis et al., 2022). In contrast, climate models simulate
a monotonic warming throughout the Holocene, which re-
sulted in the Holocene conundrum debate (Liu et al., 2014).
The debate has since progressed and hints at discrepancies in
data–model comparisons due to spatiotemporal dynamics re-
lated to heterogeneous responses to climate forcing and feed-
backs (i.e., the timing of a Holocene thermal maximum in the
Northern Hemisphere extratropics between reconstructions
from continental and from marine proxy records; Cartapanis
et al., 2022) and sometimes poor spatial averaging due to un-
evenly distributed proxies. Proxy-only reconstructions often
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rely on latitudinal binning and weighting, which makes this
approach particularly sensitive to latitudinal bands that con-
tain only sparse spatial coverage and thus do not represent a
true global average (Osman et al., 2021). Those spatiotem-
poral dynamics should be considered in a data–model com-
parison.

Temperature reconstructions often use either mean annual
temperatures (Birks, 2019; Bova et al., 2021) or global mean
surface temperatures (Marcott et al., 2013; Marsicek et al.,
2018; Kaufman et al., 2020a, b). Despite Tann being more
commonly used in multi-proxy comparisons, it might be use-
ful to also consider TJuly, as on a regional scale the mean
July temperature (or in general summer temperature) is more
important in high latitudes in particular. However, it is ar-
gued that proxy-based climate reconstructions are seasonally
biased and therefore might be the reason for the observed
proxy–model divergence (Liu et al., 2014; Rehfeld et al.,
2016; Kaufman et al., 2020b). In this respect, it might help
that we provide TJuly along with Tann reconstructions derived
from our tailoring approach, which provides the opportunity
to assess seasonal impacts on the reconstruction (especially
in the high latitudes) in addition to a consistent reconstruc-
tion synthesis.

So far, reconstructions of precipitation have not been im-
plemented on a hemispheric scale. The interconnection be-
tween temperature and precipitation (Trenberth, 2011) and
its spatiotemporal variation across the Northern Hemisphere
is therefore an important aspect of evaluating climate models
(Wu et al., 2013; Hao et al., 2019; Herzschuh et al., 2022a).
A broad-scale quantitative reconstruction of temperature and
precipitation would therefore be of great value for evaluat-
ing transient climate model experiments such as TraCE-21K
(He, 2010).

Appendix A

Figure A1. Reconstruction error (shaded blue) and the chronolog-
ical error (shaded red) around the reconstruction smoothed by the
time uncertainty (i.e., when we interpolate at regular time steps for
the 1000 realizations and average over the ensemble; dashed white).
The original reconstruction with the median ages is also shown for
comparison (solid white); this underlines the point that averaging
over the age models only preserves the low frequencies but (unreal-
istically) smooths out the high frequencies.
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Figure A2. Example to illustrate the effect of tailoring the modern dataset for the location of Yellow Dog Pond (dataset ID 3047) in eastern
North America. (a, b) Reconstruction of TJuly and Pann with WA-PLS (red) and WA-PLS_tailored (blue). (c, d) Correlation of TJuly and
Pann in the modern dataset and the effect of tailoring the modern dataset (indicated with the red box). Correlations are given for non-tailored
(red) and tailored (blue) data.
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