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Abstract 

Peatlands store and emit large amounts of greenhouse gases. With the climate changing due to 

global warming, measuring these emissions helps to get a better understanding of the role of 

peatlands in the global carbon cycle. Measurements at a bog site of the Siikaneva peatland 

show that the emissions vary along the different microtopographies shaped by their vegetation 

and ground water level. To upscale these measurements, a supervised classification of the 

study area was implemented in this study by testing a method that uses high-resolution 

multispectral aerial imagery, captured by a UAV (Uncrewed Aerial Vehicle), and a Random 

Forest classifier. A cohesive orthomosaic of the study area was produced, training data were 

generated to adjust the Random Forest model, and the study area was classified. The results 

show that the applied methods were successful in generating a multispectral orthomosaic as 

well as a classified raster of the study area. A mean classification accuracy of 75.7 % was 

achieved, which can be considered as a good result. Misclassification rates of neighboring 

microtopographies with similar vegetation could be mitigated by utilizing a LiDAR (Light 

Detection and Ranging) sensor in further studies. 
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1. Introduction 

Peatlands are a distinctive wetland type and it is estimated that they store about half as much 

carbon as present in the Earth’s atmosphere in form of CO2 (carbon dioxide) (Gorham, 1991; 

Turunen et al., 2002). Thus, they play a significant role in the global carbon cycle and contribute 

to the atmosphere’s balance of greenhouse gases (Yu, 2011). Peatlands are characterized by 

high water levels and the accumulation of partially decayed organic matter, forming layers of 

peat. Approximately 87 % of peatlands are concentrated in the boreal and subarctic regions of 

North America, Russia, and Fennoscandia (Joosten and Clarke, 2002). Peatlands accumulate 

organic matter faster than it decomposes due to their waterlogged conditions and nutrient-

poor substrate. Consequently, surplus organic matter transforms into peat, forming layers that 

can reach several meters of depth (Rydin and Jeglum 2013). Since they absorb more CO2 than 

they release, peatlands act as persistent carbon sinks (Yu, 2012). Peatlands can be classified 

into two primary types: minerotrophic fens, which receive water and nutrients from 

surrounding runoff and groundwater, and ombrotrophic bogs, relying solely on atmospheric 

deposition for water and nutrients (Vitt, 2006). 

As the effects of global warming increase, these peatlands have gained significant attention due 

to their potential to influence greenhouse gas emissions into the atmosphere (Bu et al., 2011). 

Thus, monitoring the greenhouse gas emissions from peatlands is of great importance to better 

understand the interplay between these ecosystems and the changing climate. The research in 

this study takes the Siikaneva bog in southern Finland as an example. Chamber systems are 

being used at the Siikaneva bog to regularly measure its CO2 and CH4 (Methane) emissions. 

There are measuring plots for each microtopography. These microtopographies exhibit along a 

water-level gradient from dry hummock patches to wet water pools and are shaped by their 

different plant communities. Due to their difference in vegetation and water-level they also 

emit different quantities of greenhouse gases (Korrensalo et al., 2018). 
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It is necessary to learn about the spatial distribution of these microtopographies in order to 

produce an accurate extrapolation of the emission measurements. This supervised classification 

of the Siikaneva Bog’s land cover was conducted by using high-resolution aerial UAV (Uncrewed 

Aerial Vehicle) imagery and a Random Forest classifier. The objectives of this study were to 

capture aerial images at Siikaneva using a UAV, create a cohesive orthomosaic of the mapped 

area, adjust the Random Forest model suitable for the data, and generate a classified raster 

with the land cover classes and their area size. Finding out if this approach fits the cause of 

more advanced greenhouse gas emission monitoring at boreal bogs is very helpful for further 

research. 
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2. Data & Methods 

2.1 Study Site 

Siikaneva is a 12 km2 boreal peatland in Ruovesi, southern Finland, primarily shaped by 

minerotrophic fen areas. However, the study site is an ombrotrophic bog within Siikaneva. It is 

located at 61°50’N, 24°12’E in the southern boreal vegetation zone (Figure 1) and surrounded 

by coniferous forest (Ahti et al., 1968). According to the Juupajoki-Hyytiälä weather station (10 

km from the site), the mean annual temperature is 4.2°C. Mean January and July temperatures 

are -7.2°C and 17.1°C, respectively. The annual rainfall is 707 mm, with one third precipitating 

as snow (Korrensalo et al., 2020). 

 

  

Figure 1: Study site location 
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Based on the large variety in water table levels, the bog was disaggregated into six vegetated 

microform classes, high hummock (HHU), hummock (HU), high lawn (HL), lawn (L), hollow (HO), 

mud bottom (MB), and open water (W)(Figure 2). Their species composition varies along the 

water table gradient from dry hummocks to wet water pools, in the listed order. All 

microtopographies, except mud bottom, are dominated by Sphagnum mosses (Table 1) 

(Hayward and Clymo, 1982; Rydin, 1993).  

 

For the vegetated microforms, eighteen permanent sample plots were established to represent 

the different plant community types (Korrensalo et al., 2020). These enable regular greenhouse 

gas retention and emission measurements for the different microtopographies. 

Figure 2: A close-range view of the study area with outlined vegetation classes: 1 = high hummock 

(HHU) ridge with 1−6-m high pine trees; 2 = hummock (HU); 3 = high lawn (HL) with reddish 

Sphagnum rubellum; 4 = lawn (L); 5 = hollow (HO); 6 = mud-bottom hollow (MB); 7 = water (W). 

Figure adapted from Korpela et al., 2020. 
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Table 1: Microtopography types at the Siikaneva bog site. Table adapted from Korpela et al., 2020 

  

Surface class Description 

High hummock, 
HHU 

High cover of dwarf shrubs (Empetrum nigrum L., Calluna vulgaris (L.) 
Hull, and Betula nana L.). Bottom layer is dominated by Sphagnum 
fuscum (Schimp.) H. Klinggr. 

Hummock, HU No shrubs, except for Andromeda polifolia L., which may constitute a 
significant percentage of the field layer. S. fuscum covers more than 10 
% of the bottom layer. 

High Lawn, HL Field layer consists of A. polifolia and Eriophorum vaginatum L. 
Coverage of S. fuscum is less than 10 % and the dominant Sphagnum 
species is S. rubellum Wils. 

Lawn, L Field layer may be missing, or scarcely covered by Rhynchospora alba 
(L.) Vahl., Scheuchzeria palustris L., A. polifolia, E. vaginatum or Carex 
limosa L. In the bottom layer, the dominant Sphagnum species are S. 
papillosum Lindb., S. magellanicum Brid. and S. balticum Russ. 

Hollow, HO Field layer may be missing, or has R. alba, S. palustris or C. limosa. 
Dominant Sphagnum species are S. majus (Russow) C.E.O. Jensen and 
S. cuspidatum Ehrh. ex Hoffm. 

Mud-bottom, 
MB 

Field layer may be missing, or scarcely covered by R. alba, S. palustris 
or C. limosa. Most of the bottom layer surface is covered by bare peat. 

Water, W Open water surface without ground layer vegetation (pool). A few S. 
palustris shoots may be found. 
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2.2 Field Methods 

During a field trip in September 2022, aerial images of the Siikaneva peatland were collected, 

under mostly overcast sky conditions and low to medium winds. A DJI Phantom 4 Multispectral 

UAV was used, carrying sensors covering different spectral ranges: four 32 nm wide bands 

centered in the blue (450 nm), green (560 nm), red (650 nm), and red edge (730 nm) ranges, as 

well as a 52 nm wide band centered in the near infrared (840 nm) range. Additionally, a sixth 

camera captured true-color imagery through an RGB-sensor (Red, Green, Blue). The integrated 

spectral sunlight sensor on top of the UAV captured solar irradiance. With a weight of 1.487 g 

the Phantom 4 Multispectral falls into the category C2 and requires an operating license of the 

type A3. The area was checked for NOTAMs (Notice To Air Missions), possible flight restrictions 

for example due to the nearby airfield or military area. 

Figure 3: Operating the UAV during fieldwork 
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Since there are no clear borders between the bog and fen areas, several AOIs (Areas Of 

Interest) were defined and prioritized by their distance to the bog site around the measuring 

plots. Then, flight routes equal to the AOIs were generated in the DJI Pro software on an iPad 

attached to the RC (Radio Control) the UAV was operated with.  

Besides some scattered boardwalks, the bog was rather inaccessible, and it was not feasible to 

distribute physical ground control points throughout the survey areas. A precise geolocation 

error correction was therefore not possible during data post-processing. 

To fulfill legal regulations requiring the UAV to always be within the operator’s visible range, 

four different takeoff points across the AOIs were determined. The UAV flew the pre-

programmed routes at an altitude of 100 m above ground level at 31 km/h speed on average. 

The camera took a picture every two seconds with a spatial resolution of about 5.3 cm/pixel. 

This generated an in-track overlap of 75 % and an across-track overlap of 80 %. Due to limited 

battery power, the UAV’s power supply needed to be changed after about 25 minutes of flying. 

This resulted in a total of 83 individual flights. Overall, an area of 5.1 km2 was surveyed. 

Additionally, ground truth images were captured with a DJI Mini 2 UAV for inaccessible areas. 

These were geolocated with the UAV’s internal GPS. 

2.3 Processing Methods 

2.3.1 Image Processing 

To create large orthomosaics from the single aerial UAV images, they were processed with 

Pix4D. Separately for each flight, the images were processed on a high-end Windows 10 

workstation with 512 GB RAM (Random Access Memory) and a 2.00 GHz AMD EPYC 7702P CPU 

(Central Processing Unit). The processing in Pix4D consists of three steps. 1. “Initial processing”, 

2. “Point cloud and mesh” and 3. “DSM, orthomosaic and index”.  
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In the first step, the images were calibrated. The Pix4D algorithm identified specific features of 

each image and extracted them as keypoints. Based on these keypoints, matching images were 

recognized. Default settings were used, except for the calibration method. With the default 

calibration method, some results in the blue band came out blurry. These deficiencies were 

enormously mitigated by choosing the alternative calibration method which is “optimized for 

aerial nadir images with accurate geolocation, low texture content and relatively flat terrain” 

(Pix4D online user manual). 

As the area is characterized by relatively flat terrain, the second step did not perform very well. 

Since the point cloud and the resulting digital surface model was not of interest for this study, 

this step was omitted. 

In the third step the single tiles were merged for each multispectral band as well as for the RGB-

images. The sun irradiance data were considered in the process. To get the raw-value-images 

without color correction, the reflectance maps were generated in addition to the default 

orthomosaics. Because of slight resolution differences between the flights, all scenes were 

downscaled to 6 cm/pixel. The processing results were exported as GeoTIFFs with a reflectance 

map of each band for every flight. 

After visually assessing the bog area, the single bands of all 12 flights within that area were 

combined into raster stacks in RStudio. Corrupted pixels with values < 0 and > 1 were masked 

out. The raster stacks were then merged into one large raster, after being georeferenced 

manually with the QGIS Georeferencer. Eventually a final area of 0.75 km2 was determined, 

removing remained forest and fen areas on the edges. The final raster was cut and used to 

generate a true-color (Figure 4) and an infrared-false-color (Figure 5) version in QGIS (Table 2). 

Therefore, the display value range of each applied band were adjusted manually to achieve an 

accurate result. 

The coordinates of the aerial ground truth images, captured with the mini UAV, were extracted 

with Opanda IExif. 
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Table 2: Band combinations 

 

  

Channel True color image Near infrared false color image 

3 (Red) Red Near Infrared 

2 (Green) Green Red 

1 (Blue) Blue Green 

Figure 4: True color image 
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2.3.2 Classification 

To find out the area size of each land cover class, representing the different microtopographies 

as well as boardwalks and mineral soil islands, a supervised classification utilizing a Random 

Forest model was realized. The Random Forest algorithm is a powerful ensemble learning 

technique used in machine learning. It requires a set of trained data to learn from and has been 

successfully used to map land cover classes (Colditz, 2015; Haas and Ban, 2014; Tsutsumida and 

Comber, 2015). It operates by creating a multitude of decision trees during training, each with a 

unique subset of the data and features. Thus, the Random Forest classifier is very effective in 

dealing with complex datasets such as multi-band rasters. Combining the predictions of 

multiple decision trees reduces overfitting and increases the model’s accuracy (Breiman, 1984; 

Özcan et al., 2021). 

Figure 5: Near infrared false color image 
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The training and validation data for the Random Forest classifier must be statistically 

independent. The training samples must be balanced and representative of the target classes 

(Belgiu et al., 2016). Therefore, a set of 500 randomly distributed training points was generated 

in RStudio (Figure 6). 

The training was conducted in QGIS by going through the training points and visually 

determining which class each trained pixel belongs to. For this, the true color image, an infrared 

false color composition as well as the geolocated ground truth imagery were taken into 

consideration to make the most accurate decisions. Due to the imbalance of represented 

classes after training 500 points, additional training points were created. Therefore, distinct 

areas with high representation of certain classes were defined and then used to generate extra 

randomized points within these extents (Figure 6). The training was then continued until a 

minimum suitable number of trained pixels per class and a total of 722 trained points was 

reached (Table 3). Since the classes HU and HHU were hard to distinguish during training, they 

were combined into one class labeled as HU. 

 

Table 3: Trained pixels per class 

 

Class BW HL HO HU L MB MSI OW 

Trained pixels 32 149 122 104 75 75 80 85 
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Figure 6: Training Points 
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To consider the surrounding area of each pixel in the classification, a standard deviation map 

(Figure 7) was created for each multispectral layer. Additionally, a ratio map (Figure 8) was 

created to mitigate the effects of different sun irradiance. For the standard deviation maps, the 

standard deviation of the surrounding 9x9 pixels was calculated for each pixel. The ratio maps 

were composed by dividing each pixel value by the sum of pixel values from all bands. 

 

Figure 7: Clip - standard deviation map near infrared 
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Then, all 15 raster layers (five bands plus their standard deviation and ratio maps) were 

combined into one raster stack. From that raster stack and the coordinates of the training 

points, the training values and their class labels were extracted into a data frame and then split 

into 70 % training and 30 % test data. 

The Random Forest model was created and set to loop different numbers of decision trees, 

ranging from 5 to 1500 in increments of 5. For every number of decision trees, 100 iterations 

were looped. This provided a reliable mean accuracy value for each number of trees which then 

enabled a calculation for the best number of trees. Therefore, the moving average with a 

window size of 10 was created. This was done to identify the point where the classification 

performance stabilized, and thus further increasing the number of trees no longer significantly 

improved the mean accuracy at the set threshold of 0.1 %. 

Figure 8: Clip - ratio map near infrared 
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Eventually the Random Forest model was designed for classifying the area of interest using the 

raster stack of all 15 input layers. To predict the land cover classes, the best number of decision 

trees and the entire set of trained data points were employed. Also, the mean decrease in Gini 

was calculated for each input layer. The Gini impurity index reflects the likelihood of achieving 

minimal misclassification probability (Wang et al., 2020). Last, the classified raster was exported 

and used to calculate the size of each class area. 

 

3. Results 

3.1 Orthomosaic Raster 

As outlined in the Processing Methods section, the aerial images of all single flights were 

merged in Pix4D, resulting in a reflectance map for each multispectral band (Figure 10). Images 

of the bog area were calibrated properly, whereas images of the surrounding forest could not 

be calibrated (Table 5, Figure 9). The geolocation of the processed flights was accurate to about 

2 meters. Using the Georeferencer in QGIS, the geolocation error was mitigated to a few 

centimeters. The raster of the 12 combined flights (Figure 11) covered an area of 74.64 ha 

around the bog site of Siikaneva, featuring a resolution of 6 cm/pixel. With a file size of 8.36 gb 

it was stored as a GeoTIFF which contained all five multispectral layers, as well as its 

geolocation. 
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Table 4: Image processing performance in Pix4D 

 

Flight Median of keypoints 
per image 

Images calibrated Median of matches 
per calibrated image 

1509_107 10548 1366 out of 1926 
(70%) 

2108.24 

1509_108 10821 2851 out of 3023 
(94%) 

6293.06 

1509_110 11489 3048 out of 3060 
(99%) 

4550.02 

1509_112 11409 1170 out of 1170 
(100%) 

5427.42 

1709_105 11211 2917 out of 2922 
(99%) 

7075.3 

1709_106 11369 2862 out of 2862 
(100%) 

3888.17 

1709_109 11067 1134 out of 1152 
(98%) 

7638.15 

1709_111 10645 2929 out of 3102 
(94%) 

4036.54 

2009_108 10890 2433 out of 2460 
(98%) 

5493.31 

2009_109 10783 2986 out of 3017 
(98%) 

6976.36 

2009_110 10689 2820 out of 2880 
(97%) 

6377.79 

2009_111 10561 1513 out of 1764 
(85%) 

4557.95 



17 
  

 

Figure 9: Example - calibrated images flight 

1509_108 
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Figure 10: Example - reflectance maps flight 1509_108 
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3.2 Classification Model 

To achieve the best classification results, the Random Forest Model was adjusted to strike the 

ideal balance between using the fewest trees possible and maintaining a high level of accuracy. 

Therefore, different numbers of trees were tested, as outlined in the classification section. The 

best number of trees showed to be 95. More than 95 trees did not improve the mean accuracy 

and standard deviation of accuracies anymore (Figure 12).  

The mean decrease in Gini values indicated that the ratio map of the green band was the most 

important layer in the classification. The standard deviation map of the red edge band was the 

least important. Overall, the standard deviation maps had the lowest impact on the 

classification (Table 6). 

Figure 11: Orthomosaic of study area 
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Figure 12: Mean accuracies with standard deviation and best number of trees 
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Table 5: Mean decrease in Gini of each input layer 

 

  

Raster Layer Mean decrease in Gini 

Blues Band 33.695 

Green Band 46.089 

Red Band 50.314 

Red Edge Band 49.243 

Near Infrared Band 47.401 

Blue Ratio 53.346 

Green Ratio 74.467 

Red Ratio 51.16 

Red Edge Ratio 42.061 

Near Infrared Ratio 40.929 

Blue Standard Deviation 35.479 

Green Standard Deviation 22.606 

Red Standard Deviation 22.726 

Red Edge Standard Deviation 20.09 

Near Infrared Standard Deviation 29.118 
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3.3 Classified Raster 

The resulting classified raster is a 83.2 mb GeoTIFF with a spatial resolution of 6 cm/pixel and 

an extent of 74.64 ha, just like the orthomosaic (Figure 14). The raster displayes the areas of 

each land cover class. It is characterized by strips of hummock, mostly adjoined by fields of high 

lawn, lawn and hollow (Figure 13). Within these field, mud bottom areas with bare peat occur 

next to open water pools. The boardwalk is displayed very accurately and there are a few 

mineral soil islands that can be visually recognized very clearly. From the six microtopographies, 

hollow is the most frequent one with an area coverage of 21.578 ha, the least frequent one is 

open water with an area of 2.935 ha (Table 7). 

Figure 13: Classified raster 
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Figure 14: Clip - classified raster 
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Table 6: Area size of land cover classes 

 

The correlation matrix shows how well the Random Forest model performed at predicting each 

land cover class (Figure 15). The Random Forest model performed best at predicting the open 

water class with a correctness of 92.24 %. Significantly misclassified were 4.87 % as mud 

bottom and 2.37 % as boardwalk. The worst performing class was hummock. 62.11 % of actual 

hummock pixels were classified correctly, significantly misclassified were 16.42 % as high lawn, 

9 % as hollow, 8.87 % as mineral soil islands and 3.05 % as lawn. In general, spatially 

neighboring microtopographies commonly had the highest misclassification rates, e.g. 14.92 % 

of actual lawn was classified as hollow, 10.15 % of mud bottom as open water. 

 

 

Class Area [ha] 

Boardwalk 0.201 

High Lawn 20.972 

Hollow 21.578 

Hummock 14.189 

Lawn 9.527 

Mud Bottom 3.587 

Mineral Soil Island 1.656 

Open Water 2.935 



25 
  

 

  

Figure 15: Correlation matrix - actual class on the x-axis, prediction on the y-axis 
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4. Discussion 

4.1 Image Processing 

The image processing in Pix4D needed a lot of memory and was very time consuming. 

Processing each flight used up to 30 gb of RAM and took several hours to complete. Thus, 

testing out the right processing options took its time. However, nearly all images of the 

targeted area could be calibrated and matched, so the results turned out very well. Images of 

forest area could not be calibrated due to the shorter distance between tree crowns and the 

UAV, which is why some flights show a lower rate of calibrated images. These forest areas were 

not of interest for this study though. Since the microtopographies are characterized by different 

elevation levels, a 3D (three dimensional) model of the surface could have been valuable, but 

was not possible to generate at such a small scale with the two-dimensional aerial imagery. To 

generate a 3D surface model, the use of a LiDAR (Light Detection and Ranging) sensor would be 

helpful, such as done by Korpela (2020). 

4.2 Classification 

Generating training data from completely randomized training points did not work out very 

well. Due to the uneven occurrence of classes in the classification area, the initial 500 training 

points did not result in a balanced training set. Adding points within specific areas diminished 

the level of randomness, but balanced the training data for a more accurate model. A way to 

work with a fully randomized training data set would be to increase the number of training 

points until all classes would be sufficiently represented, and then use the ensemble margin 

(Mellor et al., 2015). The training takes a lot of time though. Overall, 75.7 % can be considered 

as a good accuracy. A similar study by Korpela 2020 tested different classification methods 

using RGB imagery and LiDAR data. In that study, the best results, with an accuracy of 71%, 

were achieved by using a Random Forest model and a combination of RGB imagery and LiDAR-

generated index maps. The infrared false color composition helped to visually determine the 

classes. Especially at distinguishing mud bottom from open water, due to the reflectance of 

vegetation in the near infrared band. However, distinguishing neighboring classes with similar 

vegetation during training turned out be difficult sometimes without a 3D elevation model. 
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Thus, misclassification of neighboring areas could be the result of inaccurately trained data. 

Another inaccuracy-factor could be the different capture-times of the aerial imagery. The UAV 

recorded the data within several hours at three days. Different lighting and weather conditions 

could have affected the reflection in each image. The relatively high Gini values of the red edge 

and near infrared band indicate that multispectral data are very useful for such a classification. 

Even though the quality relies on many factors, achieving a higher accuracy with multispectral 

imagery than another study did with RGB imagery and LiDAR, leads to the conclusion that 

multispectral data are very valuable for classifying boreal bog areas. A combination of LiDAR 

data and multispectral imagery could result in a more accurate classification. 

Further analysis of the data with a deeper focus on the images processing as well as the 

classification goes beyond the scope of this study. 

 

5. Outlook 

With the resulting areas of each microtopographie and the greenhouse gas emissions, 

measured at the Siikaneva bog site, emissions can be estimated on a larger scale. The use of a 

UAV to capture multispectral imagery for mapping the Siikaneva bog area turned out very 

successful. The ground truth images taken by the second UAV showed to be very helpful for 

determining the land cover classes at inaccessible areas during training. Overall, the method 

developed in this study fits the cause of greenhouse gas emission monitoring very well and it 

can be applied at any peatland area within visual range of a possible spot to operate a UAV. As 

outlined in the discussion section, the additional use of a LiDAR sensor could enhance the 

accuracy of this method.  
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6. Conclusion 

Within this study the following objectives, as outlined in the introduction, were successfully 

achieved: 

• Generating a georeferenced orthomosaic from multispectral UAV imagery 

• Designing a Random Forest model with randomly generated training points 

• Perform a classification of the study area 

• Evaluate the quality of the generated orthomosaic and the performance of the 

classification model 
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