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Abstract

A wide variety of human diseases are associated with loss of microbial diversity in the
human gut, inspiring a great interest in the diagnostic or therapeutic potential of the
microbiota. However, the ecological forces that drive diversity reduction in disease states
remain unclear, rendering it difficult to ascertain the role of the microbiota in disease
emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity
is diminished as disease states select for microbial populations that are more fit to survive
environmental stress caused by inflammation or other host factors. Here, we tested this
hypothesis on a large scale, by developing a software framework to quantify the enrichment
of microbial metabolisms in complex metagenomes as a function of microbial diversity. We
applied this framework to over 400 gut metagenomes from individuals who are healthy or
diagnosed with inflammatory bowel disease (IBD). We found that high metabolic
independence (HMI) is a distinguishing characteristic of microbial communities associated
with individuals diagnosed with IBD. A classifier we trained using the normalized copy
numbers of 33 HMI-associated metabolic modules not only distinguished states of health
versus IBD, but also tracked the recovery of the gut microbiome following antibiotic
treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut
environments.
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eLife assessment

This study describes an important bioinformatics tool for normalizing gene copy
number from metagenomic assemblies. The tool is used in a meta-analysis of data
from inflammatory bowel disease (IBD) patients and healthy controls. While some of
the evidence for the power of the method is compelling, other evidence seems
incomplete. The inclusion of additional computational and/or experimental
validation would markedly strengthen the study. This paper will likely be of broad
interest to researchers studying the role of complex microbial communities in host
health and disease.

Introduction

The human gut is home to a diverse assemblage of microbial cells that form complex communities
(Coyte, Schluter, and Foster 2015     ). This gut microbial ecosystem is established almost
immediately after birth and plays a lifelong role in human wellbeing by contributing to immune
system maturation and functioning (Belkaid and Hand 2014     ; Maynard et al. 2012     ), extracting
dietary nutrients (Hijova 2019     ), providing protection against pathogens (Khosravi and
Mazmanian 2013     ), metabolizing drugs (M. Zimmermann et al. 2019     ), and more (Knight et al.
2017     ). There is no universal definition of a healthy gut microbiome (Fan and Pedersen 2021     ),
but associations between host disease states and changes in microbial community composition
have sparked great interest in the therapeutic potential of gut microbes (Cani 2018     ; Sorbara and
Pamer 2022     ) and led to the emergence of hypotheses that directly link disruptions of the gut
microbiome to non-communicable diseases of complex etiology (Byndloss and Bäumler 2018     ).

Inflammatory bowel diseases (IBDs), which describe a heterogeneous group of chronic
inflammatory disorders (Shan, Lee, and Chang 2022     ), represent an increasingly common health
risk around the globe (Kaplan 2015     ). Understanding the role of gut microbiota in IBD has been a
major area of focus in human microbiome research. Studies focusing on individual microbial taxa
that typically change in relative abundance in IBD patients have proposed a range of host-microbe
interactions that may contribute to disease manifestation and progression (Joossens et al. 2011     ;
Schirmer et al. 2019     ; Henke et al. 2019     ; Machiels et al. 2014     ). However, even within well-
constrained cohorts, a large proportion of variability in the taxonomic composition of the
microbiota is unexplained, and the proportion of variability explained by disease status is low
(Gevers et al. 2014     ; Schirmer et al. 2018     ; Lloyd-Price et al. 2019     ; Khan et al. 2019     ). As
neither individual taxa nor broad changes in microbial community composition yield effective
predictors of disease (Knox et al. 2019     ; M. Lee and Chang 2021     ), the role of gut microbes in
the etiology of IBD – or the extent to which they are bystanders to disease – remains unclear (Khan
et al. 2019     ).

The marked decrease in microbial diversity in IBD is often associated with the loss of Firmicutes
populations and an increased representation of a relatively small number of taxa, such as
Bacteroides, Enterococcaceae, and others (Prindiville et al. 2000     ; Saitoh et al. 2002     ; Sartor 2006;
Rhodes 2007     ; Devkota et al. 2012     ; Machiels et al. 2014     ; Vineis et al. 2016     ; Lloyd-Price et al.
2019     ). Why a handful of taxa that also typically occur in healthy individuals in lower
abundances (M. Lee and Chang 2021     ; Nishida et al. 2018     ) tend to dominate the IBD
microbiome is a fundamental but open question to gain insights into the ecological underpinnings
of the gut microbial ecosystem under IBD. Going beyond taxonomic summaries, a recent
metagenome-wide metabolic modeling study revealed a significant loss of cross-feeding partners
as a hallmark of IBD, where microbial interactions were disrupted in IBD-associated microbial

https://doi.org/10.7554/eLife.89862.1


Iva Veseli et al., 2023 eLife. https://doi.org/10.7554/eLife.89862.1 3 of 39

communities compared to those found in healthy individuals (Marcelino et al. 2023     ). This
observation is in line with another recent work that proposed that the extent of ‘metabolic
independence’ (characterized by the genomic presence of a set of key metabolic modules for the
synthesis of essential nutrients) is a determinant of microbial survival in IBD (Watson et al.
2023     ). It is conceivable that the disrupted metabolic interactions among microbes observed in
IBD (Marcelino et al. 2023     ) indicates an environment that lacks the ecosystem services provided
by a complex network of microbial interactions, and selects for those organisms that harness high
metabolic independence (HMI) (Watson et al. 2023     ). This interpretation offers an ecological
mechanism to explain the dominance of populations with specific metabolic features in IBD.
However, this proposed mechanism warrants further investigation.

Here we implemented a high-throughput strategy to estimate metabolic capabilities of microbial
communities directly from metagenomes and investigate whether the enrichment of populations
with high metabolic independence predicts IBD in the human gut. We benchmarked our findings
using representative genomes associated with the human gut and their distribution in healthy
individuals and those who have been diagnosed with IBD. Our results suggest that high metabolic
potential (indicated by a set of 33 largely biosynthetic metabolic pathways) provides enough signal
to consistently distinguish gut microbiomes under stress from those that are in homeostasis,
providing deeper insights into adaptive processes initiated by stress conditions that promote the
dominance of rare members of gut microbiota during disease.

Results and Discussion

We compiled 2,893 publicly-available stool metagenomes from 13 different studies, 5 of which
explicitly studied the IBD gut microbiome (Supplementary Table 1a-c). The average sequencing
depth varied across individual datasets (4.2 Mbp to 60.3 Mbp, with a median value of 21.4 Mbp,
Supplementary Table 1c). To improve the sensitivity and accuracy of our downstream analyses
that depend on metagenomic assembly, we excluded samples with less than 25 million reads,
resulting in a set of 408 relatively deeply-sequenced metagenomes from 10 studies (26.4 Mbp to
61.9 Mbp, with a median value of 37.0 Mbp, Supplementary Table 1b, Supplementary Information,
Methods), which we de novo assembled individually. The final dataset included individuals who
were healthy (n=229), diagnosed with IBD (n=101), or suffered from other gastrointestinal
conditions (“non-IBD”, n=78). In accordance with previous observations of reduced microbial
diversity in IBD (Kostic, Xavier, and Gevers 2014     ; Nagalingam and Lynch 2012     ; Knox et al.
2019     ), the estimated number of populations based on the occurrence of bacterial single-copy
core genes present in these metagenomes was higher in healthy individuals than those diagnosed
with IBD (Supplementary Figure 1     , Supplementary Table 1).

Estimating normalized copy numbers of metabolic
pathways from metagenomic assemblies
Gaining insights into microbial metabolism requires accurate estimates of pathway
presence/absence and completion. While a myriad of tools address this task for single genomes
(Machado et al. 2018     ; Aziz et al. 2008     ; Arkin et al. 2018     ; Palù et al. 2022     ; Shaffer et al.
2020     ; Geller-McGrath et al. 2023     ; Zorrilla et al. 2021     ; Zhou et al., n.d.; J. Zimmermann, Kaleta,
and Waschina 2021     ), working with complex environmental metagenomes poses additional
challenges due to the large number of organisms that are present in metagenomic assemblies. A
few tools can estimate community-level metabolic potential from metagenomes without relying on
the reconstruction of individual population genomes or reference-based approaches (Ye and Doak
2009     ; Karp et al. 2021     ) (Supplementary Table 5). These high-level summaries of pathway
presence and redundancy in a given environment are suitable for most surveys of metabolic
capacity, particularly for microbial communities of similar richness. However, since the frequency
of observed metabolic modules increases as microbial diversity increases, investigations of
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metabolic determinants of survival across environmental conditions with substantial differences
in microbial richness requires quantitative insights into the extent of enrichment of metabolic
capabilities in relation to microbial diversity. For instance, the estimated copy number of a given
metabolic module may be identical between two metagenomes, but one metagenome can have a
lower alpha diversity and thus have a higher selection for this module. To quantify the differential
abundance of metabolic modules between metagenomes generated from healthy individuals and
those from individuals diagnosed with IBD, we implemented a new software framework (https://
anvio.org/m/anvi-estimate-metabolism     ) that reconstructs metabolic modules from genomes and
metagenomes and then calculates the per-population copy number (PPCN) of modules in
metagenomes (Methods, Supplementary Information). Briefly, the PPCN estimates the proportion
of microbes in a community with a particular metabolic capacity (Figure 1     , Supplementary
Figure 2     ). We estimate the number of microbial populations using single-copy core genes (SCGs)
instead of reconstructing individual genomes first, thus maximizing the de novo recovery of gene
content.

Key biosynthetic pathways are enriched in
microbial populations from IBD samples
To gain insight into potential metabolic determinants of microbial survival in the IBD gut
environment, we assessed the distribution of metabolic modules within samples from each group
(IBD and healthy) with and without using PPCN normalization. A set of 33 metabolic modules were
significantly enriched in metagenomes obtained from individuals diagnosed with IBD when PPCN
normalization was applied (Figure 2d     , 2e). Each metabolic module had an FDR-adjusted p < 2e-
10 and an effect size > 0.12 from a Wilcoxon Rank Sum Test comparing IBD and healthy samples.
The set included 17 modules that were previously associated with high metabolic independence
(Watson et al. 2023     ) (Figure 2f     ). However, without PPCN normalization, the signal was
masked by the overall higher copy numbers in healthy samples, and the same analysis did not
detect higher metabolic potential in microbial populations associated with individuals diagnosed
with IBD (Figure 2a     ), showing weaker differential occurrence between cohorts (Figure 2b     ,
2c, Supplementary Figure 3     ). This result suggests that the PPCN normalization is an essential
step in comparative analyses of metabolisms between samples with disparate levels of diversity.

The majority of the metabolic modules that were enriched in the microbiomes of IBD patients
encoded biosynthetic capabilities (23 out of 33) that resolved to amino acid metabolism (33%),
carbohydrate metabolism (21%), cofactor and vitamin biosynthesis (15%), nucleotide biosynthesis
(12%), lipid biosynthesis (6%) and energy metabolism (6%) (Supplementary Table 2a). In contrast
to previous reports based on reference genomes (Gevers et al. 2014     ; Morgan et al. 2012     ),
amino acid synthesis and carbohydrate metabolism were not reduced in the IBD gut microbiome
in our dataset. Rather, our results were in accordance with a more recent finding that predicted
amino acid secretion potential is increased in the microbiomes of individuals with IBD (Heinken,
Hertel, and Thiele 2021     ).

The metagenome-level enrichment of several key biosynthesis pathways supports the hypothesis
that high metabolic independence (HMI) is a determinant of survival for microbial populations in
the IBD gut environment. We investigated whether biosynthetic capacity in general was enriched
in IBD samples, and 62 out of 88 (70%) biosynthesis pathways described in the KEGG database had
a significant enrichment in the IBD sample group at an FDR-adjusted 5% significance level
(Supplementary Figure 5d     ). However, a similar proportion of non-biosynthetic pathways, 63
out of 91 (69%), were also significantly increased in the IBD samples. While biosynthetic capacity
is not over-represented in the IBD sample group compared to other types of metabolism, the high
proportion of enriched pathways associated with biosynthesis suggests that biosynthetic capacity
is important for microbial resilience.
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Figure 1.

Conceptual diagram of per-population copy number (PPCN) calculation.

Each step of the calculation is demonstrated in (A) for a sample with high diversity (6 microbial populations) and in (B) for a sample with low diversity (3
populations). Metagenome sequences are shown as black lines. The left panel shows the single-copy core genes annotated in the metagenome
(indicated by letters), with a barplot showing the counts for different SCGs. The dashed black line indicates the mode of the counts, which is taken as the
estimate of the number of populations. The middle panel shows the annotations of metabolic pathways (indicated by boxes and numerically labeled),
with a barplot showing the copy number of each pathway (for more details on how this copy number is computed, see Supplementary Information and
Supplementary Figure 2     ). The right panel shows the equation for per-population copy number (PPCN), with the barplots indicating the PPCN values
for each metabolic pathway in each sample and arrows differentiating between different types of modules based on the comparison of their normalized
copy numbers between samples.
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Figure 2.

Comparison of metabolic potential across healthy and IBD cohorts.

Panels A – C show unnormalized copy number data and the remaining panels show normalized per-population copy number (PPCN) data. A) Scatterplot
of module copy number in IBD samples (x-axis) and healthy samples (y-axis). Size of points indicates fraction of samples in which the module has a non-
zero copy number, transparency of points indicates the p-value of the module in a Wilcoxon Rank Sum test for enrichment (based on PPCN data), and
color indicates whether the module is enriched in the IBD samples (in this study), enriched in the good colonizers from the fecal microbiota transplant
(FMT) study (Watson et al. 2023     ), or enriched in both. B) Heatmap of unnormalized copy numbers for all modules. IBD-enriched modules are
highlighted by the red bar on the left. Sample group is indicated by the blue (healthy) and red (IBD) bars on the bottom. C) Boxplots of median copy
number for each module enriched in the FMT colonizers from (Watson et al. 2023     ) in the healthy samples (blue) and the IBD samples (red). Solid lines
connect the same module in each plot. D) Scatterplot of module PPCN values in IBD samples (x-axis) and healthy samples (y-axis). Size, transparency
and color of points are defined as in panel (A). The pink dashed line indicates the effect size threshold applied to modules when determining their
enrichment in IBD. E) Heatmap of PPCN values for all modules. Side bars defined as in (B). F) Boxplots of median PPCN values for modules enriched in
the FMT colonizers from (Watson et al. 2023     ) in the healthy samples (blue) and the IBD samples (red). Lines defined as in (D). Modules that were also
enriched in the IBD samples (in this study) are highlighted in red. G) Boxplots of PPCN values for individual modules in the healthy samples (blue) and
the IBD samples (red). All example modules were enriched in both this study and in (Watson et al. 2023     ). A high-resolution version of this figure is
available at https://doi.org/10.6084/m9.figshare.22851173     .
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Within our set of 33 pathways that were enriched in IBD, it is notable that all the biosynthesis and
central carbohydrate pathways are directly or indirectly linked via shared enzymes and
metabolites. Each enriched module shared on average 25.6% of its enzymes and 40.2% of
metabolites with the other enriched modules, and overall 18.2% of enzymes and 20.4% of
compounds across these pathways were shared (Supplementary Table 2a). Thus, modules may be
enriched not just due to the importance of their immediate end products, but also because of their
role in the larger metabolic network. The few standalone modules that were enriched included the
efflux pump MepA and the beta-Lactam resistance system, which are associated with drug
resistance. These capacities may provide an advantage since antibiotics are a common treatment
for IBDs (Nitzan et al. 2016     ), but are not related to the systematic enrichment of biosynthesis
pathways that likely provide resilience to general environmental stress rather than to a specific
stressor such as antibiotics.

While so far we divided samples into two groups, our dataset also includes individuals who do not
suffer from IBD, yet are not healthy either. A recent study using flux balance analysis to model
metabolite secretion potential in the dysbiotic, non-dysbiotic, and control gut communities of
Crohn’s Disease patients found that several predicted microbial metabolic activities align with
gradients of host health (Heinken, Hertel, and Thiele 2021     ). To test whether the HMI signal
captures gradients in host health, we included the ‘non-IBD’ group of patients that suffer from
gastrointestinal conditions other than IBD in our analysis. The set of 78 samples classified as ‘non-
IBD’ indeed represent an intermediate group between healthy individuals and those diagnosed
with IBD (Supplementary Figure 5b     ). While the HMI signal was reduced in ‘non-IBD’ patients,
75% of the pathways enriched in IBD patients were also enriched in the ‘non-IBD’ group compared
to healthy individuals. Similarly, when sorting each individual cohort along a health gradient
based on cohort descriptions in their respective studies (Supplementary Information), the relative
proportion of metabolic pathways indicative of HMI increased as a function of increasing disease
severity (Supplementary Figure 6a     ). These findings suggest that the HMI signal is sufficiently
sensitive to resolve gradients in host health and could serve as a diagnostic tool to monitor
changing stress levels in a single individual over time.

Microbiome data generated by different groups can result in systematic biases that may outweigh
biological differences between otherwise similar samples (Lozupone et al. 2013     ; Sinha et al.
2017     ; Clausen and Willis 2022     ). The potential impact of such biases constitutes an important
consideration for meta-analyses such as ours that analyze publicly available metagenomes from
multiple sources. To account for cohort biases, we conducted an analysis of our data on a per-
cohort basis, which showed robust differences between the sample groups across multiple cohorts
(Supplementary Figure 6b     , 6c). Another source of potential bias in our results is due to the
representation of microbial functions in genomes in publicly available databases. For instance, we
noticed that, independent of the annotation strategy, a smaller proportion of genes resolved to
known functions in metagenomic assemblies of the healthy samples compared to the assemblies
we generated from the IBD group (Supplementary Figure 4     ). This highlights the possibility that
healthy samples merely appear to harbor less metabolic capabilities due to missing annotations.
Indeed, we found that the normalized copy numbers of most metabolic modules were reduced in
the healthy group, where 84% of KEGG modules (98 out of 118) have significantly lower median
copy numbers (Supplementary Figure 5c     , Supplementary Information). While the presence of
a bias between the two cohorts is clear, the source of this bias and its implications are not as clear.
One hypothesis that could explain this phenomenon is that the increased proportion of unknown
functions in environments where populations with low metabolic independence (LMI) thrive is
due to our inability to identify distant homologs of even well-studied functions in poorly studied
novel genomes through public databases. If true, this would indeed impair our ability to annotate
genes using state-of-the-art functional databases, and bias metabolic module completion estimates.
Such a limitation would indeed warrant a careful reconsideration of common workflows and
studies that rely on public resources to characterize gene function in complex environments.
Another hypothesis that could explain our observation is that the general absence in culture of
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microbes with smaller genomes (that likely fare better in diverse gut ecosystems) had a historical
impact on the characterization of novel functions that represent a relatively larger fraction of
their gene repertoire. If true, this would suggest that the unknown functions are unlikely essential
for well-studied metabolic capabilities. Furthermore, HMI and LMI genomes may be
indistinguishable with respect to the distribution of such novel genes, but the increased number of
genes in HMI genomes that resolve to well-studied metabolisms would reduce the proportion of
known functions in LMI genomes, and thus in metagenomes where they thrive. While testing
these hypotheses falls outside the scope of our work, we find the latter hypothesis more likely due
to examples in existing literature that have successfully identified genes that belong to known
metabolisms in some of the most obscure organisms via annotation strategies similar to those we
have used in our work (Jaffe et al. 2020     ; Farag et al. 2020     ).

Taken together, these results (1) demonstrate that the PPCN normalization is an important
consideration for investigations of metabolic enrichment in complex microbial communities as a
function of microbial diversity, and (2) reveal that the enrichment of HMI populations in an
environment offers a high-resolution marker to resolve different levels of environmental stress.

Reference genomes with higher metabolic independence are
over-represented in the gut metagenomes of individuals with IBD
So far, our findings demonstrate an overall, metagenome-level trend of increasing HMI within gut
microbial communities as a function of IBD status without considering the individual genomes
that contribute to this signal. Since the extent of metabolic independence of a microbial genome is
a quantifiable trait, we considered a genome-based approach to validating our findings. Given the
metagenome-level trends, we expected that the microbial genomes that encode a high number of
metabolic modules associated with HMI should be more commonly detected in metagenomes from
individuals diagnosed with IBD.

While publicly available reference genomes for microbial taxa will unlikely capture the diversity
of individual gut metagenomes, we cast a broad net by surveying the ecology of 19,226 genomes in
the Genome Taxonomy Database (GTDB) (Parks et al. 2022     ) that belong to three major phyla
associated with the human gut environment: Bacteroidetes, Firmicutes, and Proteobacteria
(Woting and Blaut 2016     ; Turnbaugh et al. 2009     ). We used Human Microbiome Project data
(Human Microbiome Project Consortium 2012) to characterize the distribution of these genomes
across healthy human gut metagenomes. We used their single-copy core genes to identify genomes
that were representative of microbial clades that are systematically detected in the healthy human
gut (Figure 3a     ) and kept those that also occurred in at least 2% of samples from our set of 330
healthy and IBD metagenomes (see Methods). Selection of genomes that are relatively well-
detected in the HMP dataset effectively removed taxa that primarily occur outside of the human
gut. Of the final set of 338 reference genomes that passed our filters, 258 (76.3%) resolved to
Firmicutes, 60 (17.8%) to Bacteroidetes, and 20 (5.9%) to Proteobacteria. Most of these genomes
resolved to families common to the colonic microbiota, such as Lachnospiraceae (30.0%),
Ruminococcaceae / Oscillospiraceae (23.1%), and Bacteroidaceae (10.1%) (Arumugam et al. 2011     ),
while 5.9% belonged to poorly-studied families with temporary code names (Supplementary Table
3a). Finally, we performed a more comprehensive read recruitment analysis on this smaller set of
genomes using all deeply-sequenced metagenomes from cohorts that included healthy, non-IBD,
and IBD samples (Figure 3     ). This provided us with a quantitative summary of the detection
patterns of GTDB genome representatives common to the human gut across our dataset.

We classified each genome as HMI if its average completeness of the 33 HMI-associated metabolic
pathways was at least 80%, equivalent to a summed metabolic independence score of 26.4
(Methods). Across all genomes, the mean metabolic independence score was 24.0 (Q1: 19.9, Q3:
25.7). We identified 17.5% (59) of the reference genomes as HMI. HMI genomes were on average
substantially larger (3.8 Mbp) than non-HMI genomes (2.9 Mbp) and encoded more genes (3,634 vs.
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Figure 3.

Identification of HMI genomes and their distribution across gut samples.

A) Histogram of Ribosomal Protein S6 gene clusters (94% ANI) for which at least 50% of the representative gene sequence is covered by at least 1 read
(>= 50% ‘detection’) in fecal metagenomes from the Human Microbiome Project (HMP) (Human Microbiome Project Consortium 2012). The dashed line
indicates our threshold for reaching at least 50% detection in at least 10% of the HMP samples; gray bars indicate the 11,145 gene clusters that do not
meet this threshold while purple bars indicate the 836 clusters that do. The subplot shows data for the 836 genomes whose Ribosomal Protein S6
sequences belonged to one of the passing (purple) gene clusters. The y-axis indicates the number of healthy/IBD gut metagenomes from our set of 330
in which the full genome sequence has at least 50% detection, and the x-axis indicates the genome’s maximum detection across all 330 samples. The
dashed line indicates our threshold for reaching at least 50% genome detection in at least 2% of samples; the 338 genomes that pass this threshold are
tan and those that do not are purple. The phylogeny of these 338 genomes is shown in B) along with the following data, from top to bottom: taxonomic
classification as assigned by GTDB; proportion of healthy samples with at least 50% detection of the genome sequence; proportion of IBD samples with
at least 50% detection of the genome sequence; square-root normalized ratio of percent abundance in IBD samples to percent abundance in healthy
samples; metabolic independence score (sum of completeness scores of 33 HMI-associated metabolic pathways); whether (red) or not (white) the
genome is classified as having HMI with a threshold score of 26.4; heatmap of completeness scores for each of the 33 HMI-associated metabolic
pathways (0% completeness is white and 100% completeness is black). Pathway name is shown on the right and colored according to its category of
metabolism. C) Boxplot showing the proportion of healthy (blue) or IBD (red) samples in which genomes of each class are detected >= 50%, with p-
values from a Wilcoxon Rank-Sum test on the underlying data. D) Barplot showing the proportion of detected genomes (with >= 50% genome sequence
covered by at least 1 read) in each sample that are classified as HMI, for each group of samples. The black lines show the median for each group: 37.0%
for IBD samples, 25.5% for non-IBD samples, and 18.4% for healthy samples. A high-resolution version of this figure is available at https://doi.org/10.6084
/m9.figshare.22851173     .
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2,683 genes, respectively), which is in accordance with the reduced metabolic potential of non-
HMI populations (Supplementary Table 3a). Our read recruitment analysis showed that HMI
reference genomes were present in a significantly higher proportion of IBD samples compared to
non-HMI genomes (Figure 3c     , p < 1e-5, Wilcoxon Rank Sum test). Similarly, the fraction of HMI
populations was significantly higher within a given IBD sample compared to samples classified as
‘non-IBD’ and those from healthy individuals (Figure 3d     , p < 1e-24, Kruskal-Wallis Rank Sum
test). In contrast, the detection of HMI populations and non-HMI populations was similar in
healthy individuals (Figure 3c     , p = 0.267, Wilcoxon Rank Sum test). The intestinal environment
of healthy individuals likely supports both HMI and non-HMI populations, wherein ‘metabolic
diversity’ is maintained by metabolic interactions such as cross feeding. Indeed, loss of cross-
feeding interactions in the gut microbiome appears to be associated with a number of human
diseases, including IBD (Marcelino et al. 2023     ). This interpretation is further supported by the
fact that the top two HMI-associated pathways are required for the synthesis of cobalamin from
glutamate. Auxotrophy for cobalamin biosynthesis is common among gut bacteria that rely on
cross-feeding for this essential cofactor ((Degnan et al. 2014     ; Magnúsdóttir et al. 2015     ; Kelly et
al. 2019     )) (Supplementary information).

Overall, the classification of reference gut genomes as HMI and their enrichment in individuals
diagnosed with IBD strongly supports the contribution of HMI to stress resilience of individual
microbial populations. We note that survival in a disturbed gut environment will likely require a
wide variety of additional functions that are not covered in the list of metabolic modules we
consider to determine HMI status – for examples, see (Degnan et al. 2014     ; Martens et al. 2014     ;
Zong et al. 2020     ; L. Feng et al. 2020     ; Goodman et al. 2009     ; Powell et al. 2016     ). Indeed,
there may be many ways for a microbe to be metabolically independent, and our strategy likely
failed to identify some HMI populations. Nonetheless, these data suggest that HMI serves as a
reliable proxy for the identification of microbial populations that are particularly resilient.

HMI-associated metabolic potential
predicts general stress on gut microbes
Our analysis identified HMI as an emergent property of gut microbial communities associated
with individuals diagnosed with IBD. This community-level signal translates to individual
microbial populations and provides insights into the microbial ecology of stressed gut
environments. HMI-associated metabolic pathways were enriched at the community level, and
microbial populations encoding these modules were more prevalent in individuals with IBD than
in healthy individuals. Furthermore, the copy number of these pathways and the proportion of
HMI populations reflect the severity of environmental stress and translate to host health states
(Supplementary Figure 5b     , Figure 3d     ). The ecological implications of these observations
suggest that HMI may serve as a predictor of general stress in the human gut environment.

So far, efforts to diagnose IBD using microbial markers have presented classifiers based on (1)
taxonomy in pediatric IBD patients (Papa et al. 2012     ; Gevers et al. 2014     ), (2) community
composition in combination with clinical data (Halfvarson et al. 2017     ), (3) untargeted
metabolomics and/or species-level relative abundance from metagenomes (Franzosa et al. 2019     )
and (4) k-mer-based sequence variants in metagenomes that can be linked to microbial genomes
associated with IBD (Reiter et al. 2022     ). Performance varied both between and within studies
according to the target classes and data types used for training and validation of each classifier
(Supplementary Table 4a). For those studies reporting accuracy, a maximum accuracy of 77% was
achieved based on either metabolite profiles (for prediction of IBD-subtype) (Franzosa et al.
2019     ) or k-mer-based sequence variants (for differentiating between IBD and non-IBD samples)
(Reiter et al. 2022     ). Some studies reported performance as area under the receiver operating
characteristic curve (AUROCC), a typical measure of classifier utility describing both sensitivity
(ability to correctly identify the disease) and specificity (ability to correctly identify absence of
disease). For this metric the highest value was 0.92, achieved by (Franzosa et al. 2019     ) when
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using metabolite profiles, with or without species abundance data, for classifying IBD vs non-IBD.
However, the majority of these classifiers were trained and tested on relatively small groups of
individuals that all come from the same region, i.e. clinical studies confined to a specific hospital.
Though some had high performance, they either relied on data that are inaccessible to most
laboratories and clinics considering that untargeted metabolomics analyses are difficult to
reproduce (Koek et al. 2011     ; Lin et al. 2020     ), or they required complex k-mer-based models
without the resolution to differentiate gradients in host health (Reiter et al. 2022     ). These
classifiers thus have limited translational potential across global clinical settings and do not
provide an ecological framework to explain the observed shifts in community composition and
activity. For practical use as a diagnostic tool, a microbiome-based classifier for IBD should rely on
an ecologically meaningful, easy to measure, and high-level signal that is robust to host variables
like lifestyle, geographical location, and ethnicity. High metabolic independence could potentially
fill this gap as a metric related to the ecological filtering that defines microbial community
changes in the IBD gut microbiome.

We trained a logistic regression classifier to explore the applicability of HMI as a non-invasive
diagnostic tool for IBD. The classifier’s predictors were the per-population copy numbers of IBD-
enriched metabolic pathways in a given metagenome. Across the 330 deeply-sequenced IBD and
healthy samples included in this analysis, the classifier had high sensitivity and specificity (Figure
4     ). It correctly identified (on average) 76.8% of samples from individuals diagnosed with IBD
and 89.5% of samples representing healthy individuals, for an overall accuracy of 85.6% and an
average AUROCC of 0.832 (Supplementary Table 4c). Our model outperforms (Gevers et al. 2014     ;
Halfvarson et al. 2017     ; Reiter et al. 2022     ) or has comparable performance to (Franzosa et al.
2019     ; Papa et al. 2012     ) the previous attempts to classify IBD from fecal samples in more
restrictively-defined cohorts. It also has the advantage of being a simple model, utilizing a
relatively low number of features compared to the other classifiers. Thus, HMI shows promise as
an accessible diagnostic marker of IBD. Due to the lack of time-series studies that include
individuals in the pre-diagnosis phase of IBD development, we cannot test the applicability of HMI
to predict IBD onset (Lloyd-Price et al. 2019     ).

Yet, the gradient of metabolic independence reflected by per-population pathway copy number
and the relative increase in the number of HMI populations detected in non-IBD samples
(Supplementary Figure 5b     , Figure 3d     ) suggests that the degree of HMI in the gut
microbiome may be indicative of general gut stress, such as the stress induced by antibiotic use.
Antibiotics can cause long-lasting perturbations of the gut microbiome – including reduced
diversity, emergence of opportunistic pathogens, increased microbial load, and development of
highly-resistant strains – with potential implications for host health (Ramirez et al. 2020     ). We
applied our metabolism classifier to a metagenomic dataset that reflects the changes in the
microbiome of healthy people before, during and up to 6 months following a 4-day antibiotic
treatment (Palleja et al. 2018     ). The resulting pattern of sample classification corresponds to the
post-treatment decline and subsequent recovery of species richness documented in the study by
(Palleja et al. 2018     ).

All pre-treatment samples were classified as ‘healthy’ followed by a decline in the proportion of
‘healthy’ samples to a minimum 8 days post-treatment, and a gradual increase until 180 days post
treatment, when over 90% of samples were classified as ‘healthy’ (Figure 5     , Supplementary
Table 4b). These observations support the role of HMI as an ecological driver of microbial
resilience during gut stress caused by a variety of environmental perturbations and demonstrate
its diagnostic power in reflecting gut microbiome state.

https://doi.org/10.7554/eLife.89862.1
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Figure 4.

Performance of our metagenome classifier trained on per-population copy numbers of IBD-enriched modules.

A) Receiver operating characteristic (ROC) curves for 25-fold cross-validation. Each fold used a random subset of 80% of the data for training and the
other 20% for testing. In each fold, we calculated a set of IBD-enriched modules from the training dataset and used the PPCN of these modules to train a
logistic regression model whose performance was evaluated using the test dataset. Light gray lines show the ROC curve for each fold, the dark blue line
shows the mean ROC curve, the gray area delineates the confidence interval for the mean ROC, and the pink dashed line indicates the benchmark
performance of a naive (random guess) classifier. B) Confusion matrix for each fold of the random cross-validation. Categories of classification, from top
left to bottom right, are: true positives (correctly classified IBD samples), false positives (incorrectly classified Healthy samples), false negatives
(incorrectly classified IBD samples), and true negatives (correctly classified Healthy samples). Each fold is represented by a box within each category.
Opacity of the box indicates the proportion of samples in that category, and the actual proportion is written within the box with one significant digit.
Underlying data for this matrix can be accessed in Supplementary Table 4d.

https://doi.org/10.7554/eLife.89862.1
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Figure 5.

Classification results on an antibiotic time-series dataset from

(Palleja et al. 2018     ). Note that antibiotic treatment was taken on days 1-4. A) Samples collected per subject during the time series. B) Species richness
data (figure reproduced from (Palleja et al. 2018     )). C) Classification of each sample by the metabolism classifier profiled in Figure 4     . Samples with
insufficient sequencing depth were not classified. D) Proportion of classes assigned to samples per day in the time series.
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Conclusions
Overall, our observations that stem from the analysis of hundreds of reference genomes, deeply-
sequenced gut metagenomes, and multiple categories of human disease states suggest that
environmental stress in the human gut – whether it is associated with inflammation, cancer, or
antibiotic use – promotes the survival and relative expansion of microbial populations with high
metabolic independence. These results establish HMI as a high-level metric to classify gradients of
human health states through the gut microbiota that is robust to ethnic, geographical or lifestyle
factors. Taken together with recent evidence that models altered ecological relationships within
gut microbiomes under stress due to disrupted metabolic cross-feeding (Heinken, Hertel, and
Thiele 2021     ; Marcelino et al. 2023     ), our data support the hypothesis that the reduction in
microbial diversity, or more generally ‘dysbiosis’, is an emergent property of microbial
communities responding to disease pathogenesis or other external factors such as antibiotic use
that disrupt the gut microbial ecosystem. This paradigm depicts microbes as bystanders by default,
rather than perpetrators or drivers of noncommunicable human diseases, and provides an
ecological framework to explain the frequently observed reduction in microbial diversity
associated with IBD and other noncommunicable human diseases and disorders.

Methods

A bioinformatics workflow that further details all analyses described below and gives access to
reproducible data products is available at the URL https://merenlab.org/data/ibd-gut-metabolism/     .

A new framework for metabolism estimation
We developed a new program ‘anvi-estimate-metabolism’ (https://anvio.org/m/anvi-estimate
-metabolism     ), which uses gene annotations to estimate ‘completeness’ and ‘copy number’ of
metabolic pathways that are defined in terms of enzyme accession numbers. By default, this tool
works on metabolic modules from the KEGG MODULE database (Kanehisa et al. 2012     , 2023     )
which are defined by KEGG KOfams (Aramaki et al. 2019     ), but user-defined modules based on a
variety of functional annotation sources are also accepted as input. Completeness estimates
describe the percentage of steps (typically, enzymatic reactions) in a given metabolic pathway that
are encoded in a genome or a metagenome. Likewise, copy number summarizes the number of
distinct sets of enzyme annotations that collectively encode the complete pathway. This program
offers two strategies for estimating metabolic potential: a ‘stepwise’ strategy with equivalent
treatment for alternative enzymes – i.e, enzymes that can catalyze the same reaction in a given
metabolic pathway – and a ‘pathwise’ strategy that accounts for all possible variations of the
pathway. The Supplementary Information file includes more information on these two strategies
and the completeness/copy number calculations. For the analysis of metagenomes, we used
stepwise copy number of KEGG modules. Briefly, the calculation of stepwise copy number is done
as follows: the copy number of each step in a pathway (typically, one chemical reaction or
conversion) is individually evaluated by translating the step definition into an arithmetic
expression that summarizes the number of annotations for each required enzyme. In cases where
multiple enzymes or an enzyme complex are needed to catalyze the reaction, we take the
minimum number of annotations across these components. In cases where there are alternative
enzymes that can each catalyze the reaction individually, we sum the number of annotations for
each alternative. Once the copy number of each step is computed, we then calculate the copy
number of the entire pathway by taking the minimum copy number across all the individual steps.
The use of minimums results in a conservative estimate of pathway copy number such that only
copies of the pathway with all enzymes present are counted. For the analysis of genomes, we
calculated the stepwise completeness of KEGG modules. This calculation is similar to the one
described above for copy number, except that the step definition is translated into a boolean
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expression that, once evaluated, indicates the presence or absence of each step in the pathway.
Then, the completeness of the modules is computed as the proportion of present steps in the
pathway.

Metagenomic Datasets and Sample Groups
We acquired publicly-available gut metagenomes from 13 different studies (Le Chatelier et al.
2013     ; Q. Feng et al. 2015     ; Franzosa et al. 2019     ; Lloyd-Price et al. 2019     ; Qin et al. 2012     ;
Quince et al. 2015     ; Rampelli et al. 2015     ; Raymond et al. 2016     ; Schirmer et al. 2018     ; Vineis
et al. 2016     ; “BioProject” n.d.; Wen et al. 2017     ; Xie et al. 2016     ). The studies were chosen
based on the following criteria: (1) they included shotgun metagenomes of fecal matter (primarily
stool, but some ileal pouch luminal aspirate samples (Vineis et al. 2016     ) are also included); (2)
they sampled from people living in industrialized countries (in the case where a study (Rampelli et
al. 2015     ) included samples from hunter-gatherer populations, only the samples from
industrialized areas were included in our analysis); (3) they included samples from people with
IBD and/or they included samples from people without gastrointestinal (GI) disease or
inflammation; and (4) clear metadata differentiating between case and control samples was
available. A full description of the studies and samples can be found in Supplementary Table 1a-c.
We grouped samples according to the health status of the sample donor. Briefly, the ‘IBD’ group of
samples includes those from people diagnosed with Crohn’s disease (CD), ulcerative colitis (UC), or
pouchitis. The ‘non-IBD’ group contains non-IBD controls, which includes both healthy people
presenting for routine cancer screenings as well as people with benign or non-specific symptoms
that are not clinically diagnosed with IBD. Colorectal cancer patients from (Q. Feng et al. 2015     )
were also put into the ‘non-IBD’ group on the basis that tumors in the GI tract may arise from local
inflammation (Kraus and Arber 2009     ) and represent a source of gut stress without an
accompanying diagnosis of IBD. Finally, the ‘HEALTHY’ group contains samples from people
without GI-related diseases or inflammation. Note that only control or pre-treatment samples
were taken from the studies covering type 2 diabetes (Qin et al. 2012     ), ankylosing spondylitis
(Wen et al. 2017     ), antibiotic treatment (Raymond et al. 2016     ), and dietary intervention
(“BioProject” n.d.); these controls were all assigned to the ‘HEALTHY’ group. At least one study (Le
Chatelier et al. 2013     ) included samples from obese people, and these were also included in the
‘HEALTHY’ group.

Processing of metagenomes
We made single assemblies of most gut metagenomes using the anvi’o metagenomics workflow
implemented in the program ‘anvi-run-workflow’ (Shaiber et al. 2020     ). This workflow uses
Snakemake (Köster and Rahmann 2012     ), and a tutorial is available at the URL https://merenlab
.org/2018/07/09/anvio-snakemake-workflows/     . Briefly, the workflow includes quality filtering
using ‘iu-filter-quality-minochè (Eren et al. 2013     ); assembly with IDBA-UD (Peng et al. 2012     )
(using a minimum contig length of 1000); gene calling with Prodigal v2.6.3 (Hyatt et al. 2010     );
tRNA identification with tRNAscan-SE v2.0.7 (Chan and Lowe 2019     ); and gene annotation of
ribosomal proteins (Seemann n.d.     ), single-copy core gene sets (M. D. Lee 2019     ), KEGG KOfams
(Aramaki et al. 2019     ), NCBI COGs (Galperin et al. 2021     ), and Pfam (release 33.1, (Mistry et al.
2021     )). The aforementioned annotation was done with programs that relied on HMMER v3.3.2
(Eddy 2011     ) as well as Diamond v0.9.14.115 (Buchfink, Xie, and Huson 2015     ). As part of this
workflow, all single assemblies were converted into anvi’o contigs databases. Samples from (Vineis
et al. 2016     ) were processed differently because they contained merged reads rather than
individual paired-end reads: no further quality filtering was run on these samples, we assembled
them individually using MEGAHIT (Li et al. 2015     ), and we used the anvi’o contigs workflow to
perform all subsequent steps described for the metagenomics workflow above. Note that we used
a version of KEGG downloaded in December 2020 (for reproducibility, the hash of the KEGG
snapshot available via ‘anvi-setup-kegg-kofams’ is 45b7cc2e4fdc). Additionally, the annotation
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program ‘anvi-run-kegg-kofams’ includes a heuristic for annotating hits with bitscores that are just
below the KEGG-defined threshold, which is described at https://anvio.org/m/anvi-run-kegg-kofams
/     .

Genomic Dataset
We also analyzed microbial genomes from the Genome Taxonomy Database (GTDB), release 95.0
(Parks et al. 2018     , 2020     ). We downloaded all reference genome sequences for the species
cluster representatives.

Processing of GTDB genomes
We converted all GTDB genomes into anvi’o contigs databases and annotated them using the
anvi’o contigs workflow, which is similar to the metagenomics workflow described above and uses
the same programs for gene identification and annotation.

Estimation of the number of microbial
populations per metagenome
We used single-copy core gene (SCG) sets belonging to each domain of microbial life (Bacteria,
Archaea, Protista) (M. D. Lee 2019     ) to estimate the number of populations from each domain
present in a given metagenomic sample. For each domain, we calculated the number of
populations by taking the mode of the number of copies of each SCG in the set. We then summed
the number of populations from each domain to get a total number of microbial populations
within each sample. We accomplished this using SCG annotations provided by ‘anvi-run-hmms’
(which was run during metagenome processing) and a custom script relying on the anvi’o class
‘NumGenomesEstimator’ (see reproducible workflow).

Removal of samples with low sequencing depth
We observed that, at lower sequencing depths, our estimates for the number of populations in a
metagenomic sample were moderately correlated with sequencing depth (Supplementary Figure
1     , R > 0.5). These estimates rely on having accurate counts of single-copy core genes (SCGs), so
we hypothesized that lower-depth samples were systematically missing SCGs, especially from
populations with lower abundance. Since accurate population number estimates are critical for
proper normalization of pathway copy numbers, keeping these lower-depth samples would have
introduced a bias into our metabolism analyses. To address this, we removed samples with low
sequencing depth from downstream analyses using a sequencing depth threshold of 25 million
reads, such that the remaining samples exhibited a weaker correlation (R < 0.5) between
sequencing depth and number of estimated populations. We kept samples for which both the R1
file and the R2 file contained at least 25 million reads (and for the (Vineis et al. 2016     ) dataset, we
kept samples containing at least 25 million merged reads). This produced our final sample set of
408 metagenomes.

Estimation of normalized pathway copy numbers in metagenomes
We ran ‘anvi-estimate-metabolism’, in genome mode and with the ‘--add-copy-number’ flag, on
each individual metagenome assembly to compute stepwise copy numbers for KEGG modules
from the combined gene annotations of all populations present in the sample. We then divided
these copy numbers by the number of estimated populations within each sample to obtain a per-
population copy number (PPCN) for each pathway.
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Selection of IBD-enriched pathways
We used a one-sided Mann-Whitney-Wilcoxon test with a FDR-adjusted p-value threshold of p <=
2e-10 on the per-sample PPCN values for each module individually to identify the pathways that
were most significantly enriched in the IBD sample group compared to the healthy group. We
calculated the median per-population copy number of each metabolic pathway in the IBD samples,
and again in the healthy samples. After filtering for p-values <= 2e-10, we also applied a minimum
effect size threshold based on the median per-population copy number in each group (MIBD –
MHealthy >= 0.12) – this threshold was calculated by taking the mean effect size over all pathways
that passed the p-value threshold. The set originally contained 34 pathways that passed both
thresholds, but we removed one redundant module (M00006) which represents the first half of
another module in the set (M00004).

Test for enrichment of biosynthesis pathways
We used a one-sided Fisher’s exact test (also known as hypergeometric test, see e.g., (Boyle et al.
2004     )) for testing the independence between the metabolic pathways identified to be IBD-
enriched (i.e., using the methods described in “Selection of IBD-enriched pathways) and
functionality (i.e., pathways annotated to be involved in biosynthesis).

Pathway comparisons
Because the 33 IBD-enriched pathways were selected using PPCNs of healthy and IBD samples,
statistical tests comparing PPCN distributions for these modules need to be interpreted with care,
because the hypotheses were selected and tested on the same dataset (Fithian, Sun, and Taylor
2014     ). Therefore, to assess the statistical validity of the identified IBD-enriched modules, we
performed the following repeated sample-split analysis: we first randomly split the IBD and
healthy samples into the equal-sized training and validation sets. We select IBD-enriched modules
in the training set using the Mann-Whitney-Wilcoxon test, and then compute the p-values on the
validation set. We repeat this sample split analysis 1,000 times with an FDR-adjusted p-value
threshold of 1e-10 on the first split; most identified modules (89.4%; 95% CI: [87.5%, 91.3%]) on the
training sets remain significant at a slightly less stringent threshold (1e-8) on the validation sets.
This indicates that the approach we used to identify IBD-enriched modules yields stable and
statistically significant results on this dataset.

Metagenome classification
We trained logistic regression models to classify samples as ‘IBD’ or ‘healthy’ using per-population
copy numbers of IBD-enriched modules as features. We ran a 25-fold cross-validation pipeline on
the set of 330 healthy and IBD metagenomes in our analysis, using an 80% train – 20% test random
split of the data in each fold. The pipeline included selection of IBD-enriched pathways within the
training samples using the same strategy as described above, followed by training and testing of a
logistic regression model as implemented in the ‘sklearn’ Python package. We set the ‘penalty’
parameter of the model to “None” and the ‘max_iter’ parameter to 20,000 iterations, and we used
the same random state in each fold to ensure changes in performance only come from differences
in the training data rather than differences in model initialization. To summarize the overall
performance of the classifier, we took the mean (over all folds) of each performance metric.

We trained a final classifier using the 33 IBD-enriched pathways selected earlier from the entire
set of 330 healthy and IBD metagenomes. We then applied this classifier to the metagenomic
samples from (Palleja et al. 2018     ), which we processed in the same way as the other samples in
our analysis (including removal of samples with low sequencing depth and calculation of PPCNs of
KEGG modules for use as input features to the classifier model).
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Identification of gut microbial genomes from the GTDB
We took 19,226 representative genomes from the GTDB species clusters belonging to the phyla
Firmicutes, Bacteroidetes, and Proteobacteria, which are most common in the human gut
microbiome (Woting and Blaut 2016     ). To evaluate which of these genomes might represent gut
microbes in a computationally-tractable manner, we ran the anvi’o ‘EcoPhylo’ workflow (https://
anvio.org/m/ecophylo     ) to contextualize these populations within 150 healthy gut metagenomes
from the Human Microbiome Project (HMP) (Human Microbiome Project Consortium 2012).
Briefly, the EcoPhylo workflow (1) recovers sequences of a gene family of interest from each
genome and metagenomic sample in the analysis, (2) clusters resulting sequences and picks
representative sequences using mmseqs2 (Steinegger and Söding 2017     ), and (3) uses the
representative sequences to rapidly summarize the distribution of each population cluster across
the metagenomic samples through metagenomic read recruitment analyses. Here, we used the
ribosomal protein S6 as our gene of interest, since it was the most frequently-assembled single-
copy-core gene in our set of GTDB genomes. We clustered the Ribosomal Protein S6 sequences
from GTDB genomes at 94% nucleotide identity.

To identify genomes that were likely to represent gut microbes, we selected genomes whose
ribosomal protein S6 belonged to a gene cluster where at least 50% of the representative sequence
was covered (i.e. detection >= 0.5x) in more than 10% of samples (i.e. n > 15). There are 100 distinct
individuals represented in the 150 HMP gut metagenomes – 56 of which were sampled just once
and 46 of which were sampled at 2 or 3 time points – so this threshold is equivalent to detecting
the genome in 5% – 15% of individuals. From this selection we obtained a set of 836 genomes;
however, these were not exclusively gut microbes, as some non-gut populations have similar
ribosomal protein S6 sequences to gut microbes and can therefore pass this selection step. To
eliminate these, we mapped our set of 330 healthy and IBD metagenomes to the 836 genomes
using the anvi’o metagenomics workflow, and extracted genomes whose entire sequence was at
least 50% covered (i.e. detection >= 0.5x) in over 2% (n > 6) of these samples. Our final set of 338
genomes was used in downstream analysis.

Genome phylogeny
To create the phylogeny, we identified the following ribosomal proteins that were annotated in at
least 90% (n = 304) of the genomes: Ribosomal_S6, Ribosomal_S16, Ribosomal_L19, Ribosomal_L27,
Ribosomal_S15, Ribosomal_S20p, Ribosomal_L13, Ribosomal_L21p, Ribosomal_L20, and
Ribosomal_L9_C. We used ‘anvi-get-sequences-for-hmm-hits’ to extract the amino acid sequences
for these genes, align the sequences using MUSCLE v3.8.1551 (Edgar 2004     ), and concatenate the
alignments. We used trimAl v1.4.rev15 (Capella-Gutiérrez, Silla-Martínez, and Gabaldón 2009     ) to
remove any positions containing more than 50% of gap characters from the final alignment.
Finally, we built the tree with IQtree v2.2.0.3 (Minh et al. 2020     ), using the WAG model and
running 1,000 bootstraps.

Determination of HMI status for genomes
We estimated metabolic potential for each genome with ‘anvi-estimate-metabolism’ (in genome
mode) to get stepwise completeness scores for each KEGG module, and then we used the script
‘anvi-script-estimate-metabolic-independencè to give each genome a metabolic independence
score based on completeness of the 33 IBD-enriched pathways. Briefly, the latter script calculates
the score by summing the completeness scores of each pathway of interest. Genomes were
classified as having high metabolic independence (HMI) if their score was greater than or equal to
26.4. We calculated this threshold by requiring these 33 pathways to be, on average, at least 80%
complete in a given genome.
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Genome distribution across sample groups
We mapped the gut metagenomes from the healthy, non-IBD, and IBD groups to each genome
using the anvi’o metagenomics workflow in reference mode. We used ‘anvi-summarizè to obtain a
matrix of genome detection across all samples. We summarized this data as follows: for each
genome, we computed the proportion of samples in each group in which at least 50% of the
genome sequence was covered by at least 1 read (>= 50% detection). For each sample, we
calculated the proportion of detected genomes that were classified as HMI. We also computed the
percent abundance of each genome in each sample by dividing the number of reads mapping to
that genome by the total number of reads in the sample.

Visualizations
We used ggplot2 (Wickham 2016     ) to generate most of the initial data visualizations. The
phylogeny and heatmap in Figure 3      were generated by the anvi’o interactive interface and the
ROC curves in Figure 4      were generated using the pyplot package of matplotlib (Hunter 2007     ).
These visualizations were refined for publication using Inkscape, an open-source graphical editing
software that is available at https://inkscape.org/     .

Data Availability

Accession numbers for publicly available data are listed in our Supplementary Tables at doi:
10.6084/m9.figshare.22679080. Our Supplementary Information file is also available at doi:
10.6084/m9.figshare.22679080. Contigs databases of our assemblies for the 408 deeply-sequenced
metagenomes can be accessed at doi: 10.5281/zenodo.7872967, and databases for our assemblies of
the (Palleja et al. 2018     ) metagenomes can be accessed at doi: 10.5281/zenodo.7897987. Contigs
databases of the 338 GTDB gut reference genomes are available at doi: 10.5281/zenodo.7883421.
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Table 1: Samples and cohorts used in this study. a) Description of studies/cohorts providing
publicly-available gut metagenomes from healthy people, non-IBD controls, and people with IBD.
For each study, we note the sample groups it contributes metagenomes to; whether or not those
samples were sufficiently deeply sequenced to be included in the main analyses; the country of
origin of the samples; the sample type (fecal metagenome or ileal pouch luminal aspirate); the
number of samples it contributes to each group before and after applying the sequencing depth
threshold; and cohort details/exclusions as described within the study. b) Description of 408
samples included in the primary analyses of this manuscript (ie, those with sufficient sequencing
depth of >= 25 million reads), including their associated diagnosis (ulcerative colitis (UC), Crohn’s
disease (CD), non-IBD, healthy, colorectal cancer with adenoma (CRC_ADENOMA), or colorectal
cancer with carcinoma (CRC_CARCINOMA)); study of origin; sample group; sequencing depth; and
number of microbial populations estimated to be represented within the metagenome. c)
Description of all samples initially considered and their SRA accession numbers. d) The number of
gene calls and the number/proportion of annotations per gene call for KOfams, COGs, and Pfams
in each sample. e) Description of the 57 antibiotic time-series gut metagenomes from (Palleja et al.
2018     ) used for classifier testing, including SRA accession number; sampling day in the time
series; sequencing depth; and estimated numbers of microbial populations represented in the
sample.

Table 2: Metabolism data in metagenomes. a) Description of the 33 KEGG modules enriched in
IBD samples, including: module name, KEGG categorization, and definition; their median per-
population copy numbers (PPCN) in the healthy sample group and IBD sample group; the p-value,
FDR-adjusted p-value, and W statistic from the per-module Wilcoxon Rank Sum test used to
determine enrichment in IBD; the difference between its median PPCN in IBD samples and median
PPCN in healthy samples (‘effect size’); the fraction of samples in which the module occurs with
non-zero copy number; whether the module is also enriched in the HMI populations analyzed in
(Watson et al. 2023     ); the number of total enzymes in the module; the number of total
compounds in the modules; and the numbers and proportions of shared enzymes or compounds
between this module and the other IBD-enriched modules. b) Description of all 179 KEGG modules
with non-zero copy number in at least one metagenome. Most of the columns match the
corresponding column in sheet (b) with the exception of the ‘enrichment status’ column, which
indicates whether the module was found to be enriched in the IBD samples in this study
(‘IBD_ENRICHED’), in the high-metabolic independence genomes in (Watson et al. 2023     )
(‘HMI_ENRICHED’), in both (‘HMI_AND_IBD’), or in neither (‘OTHER’). c) Matrix of stepwise copy
number of each module in each deeply-sequenced gut metagenome. d) Per-population copy
number of each module in each deeply-sequenced gut metagenome in the IBD, non-IBD and
healthy sample groups. e) Per-population copy number of each module in each antibiotic time-
series sample from (Palleja et al. 2018     ).
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Supplementary Figure 1.

Scatterplot of sequencing depth vs estimated number of microbial populations in each of 2,893 stool metagenomes.

Sequencing depth is represented by the number of R1 reads, except for (Vineis et al. 2016     ) samples, in which case it is the number of merged paired-
end reads. The vertical line indicates our sequencing depth threshold of 25 million reads. Per-group Spearman’s correlation coefficients and p-values are
shown for the subset of samples with depth < 25 million reads (top left) and for the subset with depth >= 25 million reads (top right). Regression lines
are shown for each group in each subset, with standard error indicated by the colored background.
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Supplementary Figure 2.

Technical details of the metabolism reconstruction software framework in anvi’o.

A) Workflow of metabolism reconstruction programs and their inputs/outputs. Dark arrows indicate the primary analysis path utilized in this study. Blue
background indicates optional features in the framework. A demonstration of completeness score and copy number calculations for metabolic pathways
(performed by the program ‘anvi-estimate-metabolism’ is shown using example enzyme annotation data in panels B – E (for a theoretical pathway) and
F – I (for a real pathway). B) Theoretical metabolic pathway, where hexagons represent metabolites, arrows represent chemical reactions, letters
represent enzymes (subscripts indicate enzyme components), and the example number of gene annotation hits for each enzyme is written in gray. C)
The definition of the theoretical pathway from panel B, written in terms of the required enzymes. D) Table showing the major steps in the pathway and
example calculations for step presence and copy number. Step presence is calculated by evaluating a boolean expression created from the step
definition in which enzymes with > 0 hits are replaced with True (T) and the others with False (F). Step copy number is calculated by evaluating the
corresponding arithmetic expression in which the enzymes are replaced with their annotation counts. E) Final calculations of completeness score
(fraction of present steps) and copy number for the theoretical metabolic pathway. F – I) Same as panels B – E, but for KEGG module M00043. A high-
resolution version of this figure is available at https://doi.org/10.6084/m9.figshare.22851173     .
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Supplementary Figure 3.

Comparison of unnormalized copy number data and normalized (per-
population copy number, or PPCN) data for the IBD-enriched modules.

A) Boxplot of median copy numbers for each module in the healthy samples (blue) and IBD samples (red). B) Boxplots of median PPCN for each module
in the healthy samples (blue) and IBD samples (red). Lines connect data points for the same module in each plot. The gray dashed line in each plot
indicates the overall median value.
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Supplementary Figure 4.

Histograms of annotations per gene call

from A,B) NCBI COGs; C,D) KEGG KOfams; and E,F) Pfams. Panels A, C, and E show data for metagenomes in the subset of 330 deeply-sequenced
samples from healthy people and people with IBD, and panels B, D, and F show data for all 2,893 samples including those from non-IBD controls.
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Supplementary Figure 5.

Additional boxplots of median per-population copy number for
various subsets of metabolic pathways and metagenome samples.

A) 33 modules enriched in HMI populations from (Watson et al. 2023     ) compared to the 33 IBD-enriched modules from this study, with medians
computed in the set of deeply-sequenced healthy (n = 229) and IBD (n = 101) samples. B) The 33 IBD-enriched modules from this study, with medians
computed in the set of deeply-sequenced healthy (n = 229), non-IBD (n = 78), and IBD (n = 101) samples. C) All KEGG modules (n = 117) with non-zero
copy number in at least one sample, with medians computed in the set of deeply-sequenced healthy (n = 229) and IBD (n = 101) samples. D) All
biosynthesis modules (n = 88) from the KEGG MODULE database, with medians computed in the set of deeply-sequenced healthy (n = 229) and IBD (n =
101) samples. Where applicable, dashed lines indicate the overall median for all modules, and solid lines connect the points for the same module in each
sample group. The IBD sample group is highlighted in red, the NONIBD group in pink, and the HEALTHY group in blue.
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Supplementary Figure 6.

Boxplots of median per-population copy number of 33 IBD-enriched modules for samples from each individual cohort,

A) with medians computed within each sample (ie, one point per sample) and B) with medians computed for each IBD-enriched module (ie, one point
per module). The x-axis indicates study of origin. C) Boxplots of median per-population copy number of 33 IBD-enriched modules for the 115 samples in
the deeply-sequenced set that are not from (Le Chatelier et al. 2013     ) or (Vineis et al. 2016     ). The dashed line indicates the overall median for all 33
modules, and solid lines connect the points for the same module in each sample group.
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Supplementary Figure 7.

Assessing batch effect of the IBD-enrichment study.

A) Scatter plot comparing the module ranks of Wilcoxon-Mann-Whitney p-values comparing IBD and healthy subjects on (Le Chatelier et al. 2013     ) and
(Vineis et al. 2016     ) (y axis) and the rest of our dataset (x axis). B) Venn diagram displaying the overlap of IBD-enriched modules identified by the 33
smallest p-values in (Le Chatelier et al. 2013     ) and (Vineis et al. 2016     ) and the rest of our dataset. There is good agreement (20 out of 33) between
the two sets of modules, indicating generalizability of the signals across studies used in our sample set.
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Table 3: GTDB genome data. a) List of 338 GTDB representative genomes identified as gut
microbes, their taxonomy, metabolic independence score, classification as high metabolic
independence (‘HMI’) or not (‘non-HMI’), genome length in base pairs, and number of gene calls.
b) Matrix of stepwise completeness of each module in each genome. c) Matrix of genome detection
in each deeply-sequenced gut metagenome in the IBD, non-IBD, and healthy sample groups. d)
Percent abundance of each genome in each deeply-sequenced gut metagenome. e) Per-genome
proportion of samples from each sample group that the genome is detected in using a threshold of
50% (ie, at least half of the genome sequence is covered by at least one sequencing read in a given
sample). f) Per-sample proportion of detected genomes that are classified as HMI. g) Average
completion of each IBD-enriched module within the HMI genome group and the non-HMI genome
group, as well as the difference between these values.

Table 4: Metagenome classifier information. a) Details and performance of previously-
published classifiers for IBD and IBD subtypes. For each classifier, we summarize the cohort
details as described by the study; the size of training datasets and validation datasets (if any); the
type(s) of samples, data, and extracted features used for classification; the target classes (that is,
what the samples were being classified as); the classifier type and training/validation strategy; and
the performance metrics as reported by the study. b) Classification of each (Palleja et al. 2018     )
metagenome by our logistic regression model trained for distinguishing IBD vs healthy samples on
the basis of PPCN data for IBD-enriched modules. This table describes whether the sample was
classified as healthy (‘HEALTHY’) or stressed (‘IBD’, which we consider to be equivalent to an
identification of gut stress), and also whether the sample had low sequencing depth (< 25 million
reads) or not. c) Summary of the performance of our metagenome classifier across different
training/validation strategies using the IBD and healthy metagenome samples. It also includes the
details of our final classifier trained on all 330 samples, though performance data is not available
for this model since there were no IBD/healthy samples left for validation – however, see
manuscript for its performance on the (Palleja et al. 2018     ) antibiotic time-series dataset. The
subsequent sheets include per-fold data and performance information for each train-test strategy:
d) random split cross-validation (25-fold) on PPCN data; e) leave-two-studies-out cross-validation
(24-fold); and f) (10-fold) cross-validation leaving out samples from the two dominating studies in
our dataset, (Le Chatelier et al 2013     ) and (Vineis et al 2016     ).

Table 5: Details of available software for metabolism estimation. For each tool (including the
one published in this study), we summarize: the software category (based upon the tool’s
architecture and mode of use); its metabolism reconstruction strategy (whether it is a pathway
prediction tool or a modeling tool or both); the data source(s) it uses for enzyme and metabolic
pathway information; how it calculates pathway completeness or generates models (depending on
reconstruction strategy); what input and output types it accepts/generates; any additional
capabilities as advertised by the tool’s publication; whether or not the tool is open-source; the
program type; and what language(s) it is developed in (if known). The reference publication and
code repository or webpage for each tool is also included.
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Reviewer #1 (Public Review):

In this work, Veseli et al. present a computational framework to infer the functional diversity
of microbiomes in relation to microbial diversity directly from metagenomic data. The
framework reconstructs metabolic modules from metagenomes and calculates the per-
population copy number of each module, resulting in the proportion of microbes in the
sample carrying certain genes. They applied this framework to a dataset of gut microbiomes
from 109 inflammatory bowel disease (IBD) patients, 78 patients with other gastrointestinal
conditions, and 229 healthy controls. They found that the microbiomes of IBD patients were
enriched in a high fraction of metabolic pathways, including biosynthesis pathways such as
those for amino acids, vitamins, nucleotides, and lipids. Hence, they had higher metabolic
independence compared with healthy controls. To an extent, the authors also found a
pathway enrichment suggesting higher metabolic independence in patients with
gastrointestinal conditions other than IBD indicating this could be a signal for a general loss
in host health. Finally, a machine learning classifier using high metabolic independence in
microbiomes could predict IBD with good accuracy. Overall, this is an interesting and well-
written article and presents a novel workflow that enables a comprehensive characterization
of microbiome cohorts.

Reviewer #2 (Public Review):

This study builds upon the team's recent discovery that antibiotic treatment and other
disturbances favour the persistence of bacteria with genomes that encode complete modules
for the synthesis of essential metabolites (Watson et al. 2023). Veseli and collaborators now
provide an in-depth analysis of metabolic pathway completeness within microbiomes,
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finding strong evidence for an enrichment of bacteria with high metabolic independence in
the microbiomes associated with IBD and other gastrointestinal disorders. Importantly, this
study provides new open-source software to facilitate the reconstruction of metabolic
pathways, estimate their completeness and normalize their results according to species
diversity. Finally, this study also shows that the metabolic independence of microbial
communities can be used as a marker of dysbiosis. The function-based health index proposed
here is more robust to individuals' lifestyles and geographic origin than previously proposed
methods based on bacterial taxonomy.

The implications of this study have the potential to spur a paradigm shift in the field. It shows
that certain bacterial taxa that have been consistently associated with disease might not be
harmful to their host as previously thought. These bacteria seem to be the only species that
are able to survive in a stressed gut environment. They might even be important to rebuild a
healthy microbiome (although the authors are careful not to make this speculation).

This paper provides an in-depth discussion of the results, and limitations are clearly
addressed throughout the manuscript. Some of the potential limitations relate to the use of
large publicly available datasets, where sample processing and the definition of healthy
status varies between studies. The authors have recognised these issues and their results
were robust to analyses performed on a per-cohort basis. These potential limitations,
therefore, are unlikely to have affected the conclusions of this study.

Overall, this manuscript is a magnificent contribution to the field, likely to inspire many
other studies to come.

Reviewer #3 (Public Review):

The major strength of this manuscript is the "anvi-estimate-metabolism' tool, which is already
accessible online, extensively documented, and potentially broadly useful to microbial
ecologists. However, the context for this tool and its validation is lacking in the current
version of the manuscript. It is unclear whether similar tools exist; if so, it would help to
benchmark this new tool against prior methods. Simulated datasets could be used to validate
the approach and test its robustness to different levels of bacterial richness, genome sizes,
and annotation level.

The concept of metabolic independence was intriguing, although it also raises some concerns
about the overinterpretation of metagenomic data. As mentioned by the authors, IBD is
associated with taxonomic shifts that could confound the copy number estimates that are the
primary focus of this analysis. It is unclear if the current results can be explained by IBD-
associated shifts in taxonomic composition and/or average genome size. The level of prior
knowledge varies a lot between taxa; especially for the IBD-associated gamma-
Proteobacteria. It can be difficult to distinguish genes for biosynthesis and catabolism just
from the KEGG module names and the new normalization tool proposed herein markedly
affects the results relative to more traditional analyses. As such, it seems safer to view the
current analysis as hypothesis-generating, requiring additional data to assess the degree to
which metabolic dependencies are linked to IBD.
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