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Structure-informed microbial population genetics
elucidate selective pressures that shape protein
evolution
Evan Kiefl1,2*, Ozcan C. Esen1, Samuel E. Miller1,3, Kourtney L. Kroll2, Amy D. Willis4,
Michael S. Rappé5, Tao Pan6, A. Murat Eren1,3,7,8,9*

Comprehensive sampling of natural genetic diversity with metagenomics enables highly resolved insights into
the interplay between ecology and evolution. However, resolving adaptive, neutral, or purifying processes of
evolution from intrapopulation genomic variation remains a challenge, partly due to the sole reliance on gene
sequences to interpret variants. Here, we describe an approach to analyze genetic variation in the context of
predicted protein structures and apply it to a marine microbial population within the SAR11 subclade 1a.3.V,
which dominates low-latitude surface oceans. Our analyses reveal a tight association between genetic variation
and protein structure. In a central gene in nitrogenmetabolism, we observe decreased occurrence of nonsynon-
ymous variants from ligand-binding sites as a function of nitrate concentrations, revealing genetic targets of
distinct evolutionary pressures maintained by nutrient availability. Our work yields insights into the governing
principles of evolution and enables structure-aware investigations of microbial population genetics.
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INTRODUCTION
Genetic diversity within populations emerges from and is shaped by
a combination of stochastic and selective pressures, which often lead
to phenotypic differences between closely related individuals, some-
times within a few generations (1, 2). Surveys of microbial commu-
nities within natural habitats through phylogenetic marker genes
(3–5) and metagenomics (6, 7) have revealed a tremendous
amount of genetic variation within environmental populations (8,
9), and an ever-increasing number of available genomes and meta-
genomes have provided insight into the selective pressures that
shape such variation. However, the overwhelming complexity and
dynamicity of these selective pressures, which occur even in the sim-
plest environments (10), have hindered our ability to determine
which variants are under the influence of which pressures (11, 12).

Inferring selective pressures through the isolation of microbial
strains and comparative genomics has been widely successful.
More recently, metagenome-assembled genomes (13) and single-
amplified genomes (14) have markedly increased the number
(15–17) and diversity (18) of microbial clades represented in
genomic databases, offering an even larger sampling of environ-
mental microbes to study the emergence and maintenance of
genetic variation (19). Nevertheless, genomes represent static snap-
shots of individual members of often complex environmental pop-
ulations, and thus, working with genomic sequences alone

substantially undersamples genetic variability in natural habitats
and its associations with environmental and ecological forces
(20). This shortcoming is partially addressed by shotgun metage-
nomics (21) and metagenomic read recruitment, where environ-
mental sequences that are aligned to a reference can be studied to
identify genetic variants at the resolution of single nucleotides (22,
23). In particular, using genomes to recruit reads from metage-
nomes enables a comprehensive sampling of all genetic variants
within environmental populations (6). Because of the immensity
of sequencing data generated by metagenomic studies, even subtle
genetic variation in natural populations is now resolvable, making it
possible to explicitly correlate patterns of genomic variation with
temporal or spatial environmental variables to elucidate the inter-
play between ecology and evolution (24–32). Although quantifica-
tion and analysis of sequence variants derived from metagenomic
data have improved markedly, inferring the functional impact of in-
dividual nucleotides remains a fundamental challenge in part due to
the sole reliance on DNA sequences, which do not represent phys-
ical properties of proteins they encode and thus disguise the func-
tional impact of individual mutations.

Given the intermediary role that structure plays within the “se-
quence-structure-function paradigm” (33), including protein struc-
tures as a dimension of analysis is commonplace in studies of
protein evolution (34–36), and it is appreciated that the accuracy
of evolutionary models improves with combined analyses of
protein structures and the evolution of underlying sequences (37).
In contrast, the state-of-the-art approaches that quantify genetic
variants in environmental microbial populations typically treat
genes as strings of nucleotides (24, 31, 38–40). While this strategy
enables rapid surveys of population dynamics through single-nucle-
otide variants (SNVs), it disregards the physical properties of three-
dimensional (3D) gene products that selection acts upon and thus
misses a critical intermediate to understand the relationship
between selection and fitness (41, 42). The importance of
mapping sequence variants on predicted protein structures to
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identify genetic determinants of phenotypic variation has been
noted more than two decades ago (43), yet the limited availability
of protein structures has historically rendered protein structure-in-
formed microbial population genetics impractical. Given marked
advances in both solving and predicting protein structures in
recent years (44), most notably deep learning approaches such as
AlphaFold (45) that offer highly accurate protein structure predic-
tions, this constraint is likely a problem of the past. Together, open
questions in microbial ecology and evolution, advances in compu-
tation, and increased availability of data are culminating in a re-
search landscape that is ripe for advanced software solutions that
integrate protein structures with omics data to observe and interpret
evolutionary processes that shape sequence variation in natural
populations.

Here, we develop an interactive and scalable software solution
for the analysis and interactive visualization of metagenomic se-
quence variants in the context of predicted protein structures and
ligand-binding sites as a new module in anvi’o, an open-source,
community-led multi-omics platform (https://anvio.org). By im-
porting AlphaFold-predicted protein structures into anvi’o struc-
ture, we (i) demonstrate the shortcomings of purely sequence-
based approaches to interpret patterns of polymorphism observed
within complex microbial populations; (ii) propose two structural
features to interpret genetic variation, relative solvent accessibility
(RSA) and distance to ligand (DTL); and (iii) illustrate that nonsy-
nonymous polymorphism is more likely to encroach upon active
sites when selection is low but is purged from active sites when se-
lection is high.

RESULTS AND DISCUSSION
To investigate selective pressures that drive protein evolution within
microorganisms inhabiting complex naturally occurring environ-
ments, we chose a single microbial taxon and a set of metagenomes
that match to its niche boundaries: SAR11 (Candidatus Pelagibacter
ubique), a microbial clade of free-living heterotrophic alphaproteo-
bacteria that dominates surface ocean waters (46), and Tara Oceans
Project metagenomes (47), a massive collection of deeply sequenced
marine samples from oceans and seas across the globe. SAR11 is
divided into multiple subclades with distinct ecology (48). Thus,
we further narrowed our focus to HIMB83, a single SAR11 strain
genome that is 1.4 Mbp in length. HIMB83 is a member of the en-
vironmental SAR11 lineage 1a.3.V, one of the most abundant (39)
and most diverse (27) microbial lineages in marine systems, which
recruits as much as 1.5% of all metagenomic short reads in surface
ocean metagenomes (27).

To quantify the genetic variability of 1a.3.V, we used HIMB83 as
a reference genome of the subclade and competitively recruited
short reads (see Methods) from 93 low-latitude surface ocean meta-
genomes (table S1), resulting in 390 million reads that were 94.5%
identical to HIMB83 on average (fig. S1). As an individual member
of a diverse subclade, HIMB83 has a genomic context that is insuf-
ficient for resolving the extent of genetic diversity within 1a.3.V. Re-
gardless, HIMB83 has the “core” gene set of 1a.3.V, and so reads
recruited by these genes represent the diversity of the 1a.3.V core
genome. Of the 1470 genes in HIMB83, we restricted our analysis
to 799 genes that we determined to form the 1a.3.V core genes, and
74 metagenomes in which the average coverage of HIMB83 exceed-
ed 50× (see Methods). The reads recruited to the 1a.3.V core

represent a dense sampling of the diversity within this environmen-
tal lineage that far exceeds the evolutionary resolution and volume
of sequence data achievable through comparisons of cultured
SAR11 genomes alone (fig. S1). As a result, these data provide a
unique opportunity to zoom in and track how genomic variation
in one of the most abundant microbial populations on Earth
shifts in response to ecological parameters throughout the global
ocean (fig. S2).

Polymorphism rates reveal intense purification of
nonsynonymous mutants
To quantify genomic variation in 1a.3.V, in each sample, we iden-
tified codon positions of HIMB83 where aligned metagenomic
reads did not match the reference codon. We considered each
such position to be a single-codon variant (SCV). Analogous to
SNVs, which quantify the frequency that each nucleotide allele
(A, C, G, and T) is observed in the reads aligning to a nucleotide
position, SCVs quantify the frequency that each codon allele
(AAA,…, TTT) is observed in the reads aligning to a codon position
(see Methods for a more complete description). Since SCVs are
defined to be “in-frame,” they provide inherent convenience when
relating nucleotide variation in the genomic coordinates to amino
acid variation in the corresponding protein coordinates, as well as
for determining whether nucleotide variation leads to synonymous
or nonsynonymous change. Within the 1a.3.V core genes, we found
a total of 9,537,022 SCVs, or 128,879 per metagenome on average.
These SCVs distributed throughout the genome such that 78% of
codons (32% of nucleotides) exhibited minor allele frequencies
>10% in at least one metagenome. Despite this extraordinary level
of diversity, our read recruitment strategy is stringent and yields
reads that, on average, differ from HIMB83 in only 6 nt (nucleo-
tides) out of 100 (table S2), precluding the possibility that this diver-
sity is generated from excessive nonspecific mapping. While
puzzling, this level of diversity is expected as it agrees with numer-
ous studies that have pointed out the astonishing complexity of the
SAR11 subclade 1a.3.V (27, 39, 49) that could not be further divided
into sequence-discrete populations (27).

We found this diversity to be overwhelmingly synonymous. By
splitting each SCV into its synonymous (s) and nonsynonymous
(ns) proportions, we calculated per-site rates of s-polymorphism
and ns-polymorphism as pS(site) and pN(site), not to be confused
with the related concepts dS and dN. While dS and dN quantify
rates of synonymous and nonsynonymous substitution between di-
verged species, pN(site) and pS(site) can (i) resolve shorter evolution-
ary time scales than the characteristic fixation rate, (ii) be calculated
from metagenomic read recruitment data without complete haplo-
types, and (iii) define rates on a per-sample basis, thus enabling in-
tersample comparisons. Overall, we found that the average pS(site)

outweighed pN(site) by 19:1 (table S3), revealing an overwhelming
fraction of the 1a.3.V diversity to be synonymous and illustrating
how nonsynonymous mutants are purified at a much higher rate
than synonymous mutants in the population at large. While this
is generally assumed to be true in general, SAR11 clades have
been shown to exhibit particularly high enrichment of synonymous
polymorphism relative to other marine-dwelling clades (50).

Nonsynonymous polymorphism avoids buried sites
pN(site) values varied significantly from site to site and from sample
to sample, but overall, site-to-site variance was more explanatory
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than sample-to-sample variance [79.74% ± 0.11% versus
0.42% ± 0.01% of total variance, ANOVA (analysis of variance)]
(fig. S3). The extent that a given site can tolerate ns-polymorphism
is largely determined by the local physicochemical environment of
the encoded residue, which is defined by the 3D structure of the
protein. Thus, we broadened our focus by developing a computa-
tional framework, anvi’o structure (Supplementary Information),
that enabled the integration of environmental sequence variability
with predicted protein structures (Fig. 1).

We used two independent methods to predict protein structures
for the 799 core genes of 1a.3.V: (i) a template-based homology
modeling approach with MODELLER (51), which predicted 346
structures, and (ii) a transformer-like deep learning approach
with AlphaFold (45), which predicted 754. Our evaluation of the
339 genes for which both methods predicted structures (Supple-
mentary Information) revealed a comparable accuracy between Al-
phaFold and MODELLER (fig. S4 and table S4). Thus, we opted to
use AlphaFold structures for all downstream analyses due to its
higher structural coverage. AlphaFold-predicted protein structures
covered more than 90% of the core genes, highlighting the emerging
opportunities afforded by recent advances in de novo structure
prediction.

Aligning SCVs to predicted structures enabled us to directly
compare the distributions of s-polymorphism and ns-polymor-
phism rates relative to biophysical characteristics of the encoded
proteins. We first investigated the association between polymor-
phism rates and RSA, a biophysical measure of how exposed
(RSA = 1) or buried (RSA = 0) a site is. Since nonsynonymous mu-
tations at buried sites are more likely to disrupt folding and stability,

RSA serves as a powerful proxy to discuss the strength of structural
constraints acting at a site (52). By calculating RSA for each site in
the predicted structures, and then weighting every site by the pN(site)

and pS(site) across all samples, we established proteome-wide distri-
butions for pN(site) and pS(site) relative to RSA (Fig. 2A and fig. S5).
These data showed that pS(site) closely resembled the null distribu-
tion (two-sample Kolmogorov-Smirnov statistic = 0.016), which il-
lustrates the lack of influence of RSA on s-polymorphism, while
pN(site) deviated significantly and instead exhibited strong prefer-
ence for sites with higher RSA (two-sample Kolmogorov-Smirnov
statistic = 0.235). This finding aligns well with the expectation that
buried sites are likely to purify nonsynonymous change due to dis-
ruption of protein stability while being relatively more tolerant to
synonymous change and validates our methodology.

Nonsynonymous polymorphism avoids active sites
While structural constraints ensure that a given protein folds prop-
erly and remains stable, they do not guarantee its function. Compre-
hensive analyses of diverse protein families show that residues that
bind or interact with ligands are depleted of mutations (53) due to
strong selective pressures that maintain active site conservancy. This
constraint is not limited to the immediate vicinity of ligand-binding
residues and has been observed to radiate outward from the active
site with a strength inversely correlated with distance from active
site (54, 55). More generally, it has been observed that conserved
sites induce “conservation gradients” that surround them, leading
to increased conservation among neighboring sites (56). On the
basis of these ideas, we conceptualized the metric “distance to
ligand” (DTL) as the distance of a given site to the closest active

Fig. 1. The Anvi’oworkflow for structure-informed population genetics. The proposed workflow combines predicted structures and metagenomic read recruitment
results to interpret intrapopulation genetic variants in the context of protein structural properties.
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Fig. 2. Synonymous and nonsynonymous population genetic variants in the context of protein structures. (A) Structural constraints shift the pN(site) distribution
toward high RSA. The pN(site) distribution (red line) and pS(site) distribution (blue line) were created by weighting the RSAvalues of 239,528 variable sites by the pN(site) and
pS(site) values observed in each of the 74metagenomes. The average distribution of 10 independent, randomly shuffled datasets of pN(site), is depicted by the gray regions
for pN(site) and represents the null distribution expected if no association between pN(site) and RSA existed. (B) Functional constraint shifts the pN(site) distribution toward
high DTL values. The pN(site) distribution (red line) and pS(site) distribution (blue line) were created by weighting the DTL values of 155,478 sites from 415 genes that had
predicted structures and at least one predicted ligand by the pN(site) and pS(site) values observed in 74 metagenomes. (C) pN(site) and RSA. The two distributions show
Pearson correlation coefficients produced by linear models of the form log10[pN

(site)] ~ RSA (red-filled region) and log10[pS
(site)] ~ RSA (blue-filled region); dashed lines

visualize distributionmeans (see Supplementary Information). (D) pN(site) and DTL. The two distributions show Pearson correlation coefficients produced by linearmodels
of the form log10[pN

(site)] ~ DTL (red-filled region) and log10[pS
(site)] ~ DTL (blue-filled region). (E) Per-group polymorphism rates with respect to (w.r.t.) RSA and DTL. Left

and right: Heatmaps of pN(group) and pS(group). Each cell represents a group defined by RSA and DTL ranges shown on the x and y axes, respectively. The color of each cell
represents the respective value for the group, where dark refers to low values and light refers to high values. White lines show the contour lines of smoothed data.
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site and hypothesized that DTL may be a suitable proxy for inves-
tigating functional constraints in a manner complementary to RSA,
a proxy for investigating structural constraints. To test this, we in-
vestigated distributions of pN(site) and pS(site) as a function of DTL
for each predicted structure by first predicting sites implicated in
ligand binding using InteracDome (53), and then calculating a
DTL for each site, given the closest predicted ligand-binding site
(table S5).

The average per-site ns-polymorphism rate throughout the
1a.3.V core genomewas 0.0088; however, we observed a nearly four-
fold reduction in this rate to just 0.0024 at predicted ligand-binding
sites (DTL = 0), indicating significantly (left-tailed Z test, P < 1 ×
10−300) stronger purifying selection at ligand-binding sites
(Fig. 2B and fig. S5). Sites neighboring ligand-binding regions
also harbored disproportionately low rates of ns-polymorphism,
as indicated by the significant deviation toward larger DTL values
(two-sample Kolmogorov-Smirnov statistic = 0.157). This illustrates
that purifying selection that preserves proper ligand-binding func-
tionality is not limited to residues at ligand-binding sites but
extends to proximal sites as well. When we computed DTL in se-
quence space rather than Euclidean space afforded by protein struc-
tures, this effect was no longer observable beyond sequence
distances of ~5 to 10 amino acids (fig. S6). Comparatively, pS(site)

deviated minimally from the null distribution (two-sample Kolmo-
gorov-Smirnov statistic = 0.013). Overall, integrating predicted
protein structures and ligand-binding sites into the analysis of the
genetic diversity of an environmental population has enabled us to
demonstrate that (i) structural constraints bias pN(site) distributions
toward solvent-exposed sites (i.e., high RSA) (Fig. 2A) and (ii) func-
tional constraints bias pN(site) distributions toward sites that are
distant from ligand-binding sites (i.e., high DTL) (Fig. 2B).

Proteomic trends in purifying selection are explained by
RSA and DTL
Given the clear shift in ns-polymorphism rates toward high RSA
and DTL sites across genes, we next investigated the extent that
RSA and DTL can predict per-site polymorphism rates. By fitting
a series of linear models to log-transformed polymorphism data
(table S6), we conclude that RSA and DTL can explain 11.83 and
6.89% of pN(site) variation, respectively. On the basis of these
models, we estimate that, for any given gene in any given sample,
(i) a 1% increase in RSA corresponds to a 0.98% increase in
pN(site and (ii) a 1% increase in DTL (normalized by the
maximum DTL in the gene) corresponds to a 0.90% increase in
pN(site). In a combined model, RSA and DTL jointly explained
14.12% of pN(site) variation, and, after adjusting for gene-to-gene
and sample-to-sample variance, 17.07% of the remaining variation
could be explained by RSA and DTL. In comparison, only 0.35% of
pS(site) variation was explained by RSA and DTL. Using a comple-
mentary approach, we constructed models for each gene-sample
pair (Supplementary Information), the correlations of which we
used to visualize the extent that pN(site) can be modeled by RSA
and DTL relative to pS(site) (Fig. 2, C and D). Analyzing gene-
sample pairs revealed that the extent of ns-polymorphism rate
that can be explained by RSA and DTL is not uniform across all
genes (table S7) and can reach up to 52.6 and 51.4%, respectively
(figs. S7 and S8). Last, we averaged polymorphism rates within
groups of sites that shared similar RSA and DTL values, which dem-
onstrated the tight association between the rate of within population

ns-polymorphism rate and protein structure (Fig. 2E and table S8).
Linear regressions of these data show that 83.6% of per-group ns-
polymorphism rates and 20.7% of per-group s-polymorphism rates
are explained by RSA and DTL (Supplementary Information).

The true predictive power of RSA and DTL for polymorphism
rates is most likely higher than we report, since our approaches
suffer from methodological shortcomings. For instance, we calcu-
late RSA from the steric configurations of residues in predicted
structures. Thus, errors in structure prediction propagate to errors
in RSA. Errors in structure also propagate to errors in DTL, since
DTL is calculated using Euclidean distances between residues,
which is exacerbated by the uncertainty associated with ligand-
binding site predictions. Furthermore, RSA and DTL calculations
assume that the protein is monomeric, although oligomeric pro-
teins are common, and they represent the majority of proteins in
some organisms (57). In these cases, exposed sites in the monomer-
ic structure could be buried once assembled into the quaternary
structure, and this is similarly true for estimates of DTL. Even if
we assume structural predictions are 100% accurate, it is notable
that binding site predictions exclude (i) ligands that are proteins,
(ii) ligand-protein complexes that have not cocrystallized with
each other, (iii) ligands of proteins with no shared homology in
the InteracDome database, and (iv) unknown ligand-protein com-
plexes. Each of these shortcomings leads to missed binding sites,
which leads to erroneously high DTL values in the proximity of un-
identified binding sites (fig. S9). Furthermore, our predictions
assume that if a homologous protein in the InteracDome database
binds to a ligand with a particular residue, then so too does the cor-
responding residue in the HIMB83 protein. This leads to uncertain
predictions, since homology does not necessitate binding site con-
servancy. In addition, studies have shown that conservation gradi-
ents are stronger for catalytic versus noncatalytic binding sites (58),
yet we do not distinguish between these ligand classes. Last, sincewe
do not control for conformational changes induced by allostery,
there are likely instances of sites under strong functional constraint
that we have labeled as high DTL. Yet, despite all these methodolog-
ical shortcomings, our analyses show that RSA and DTL prevail as
significant predictors of per-site and per-group variation.

Clear partitioning of environmental genetic variation by RSA
and DTL (Fig. 2) highlights the utility of these metrics for studies
of evolution following the increasing availability of protein struc-
tures. Analyses of total genetic variation lacking the ability to delin-
eate distinct processes of evolution limit opportunities to identify
determinants of fitness in rich and complex data afforded by envi-
ronmental metagenomes. The application of RSA and DTL to
SAR11 demonstrates that not all variants are created equal; a
notion considered common knowledge by all life scientists, and
yet, such a treatment is lacking in studies of genomic heterogeneity
that rely upon metagenomic read recruitment. RSA and DTL
provide quantitative means to bring a level of scrutiny to distinguish
variants based on their distributions in proteins. For instance, a col-
lection of high-RSA and high-DTL sites will be more likely to be
enriched in neutral variants. In contrast, residues under strong pu-
rifying selection will more likely be enriched in low-RSA and/or
low-DTL sites of proteins. The ability to tease apart distinct evolu-
tionary processes with absolute accuracy will remain difficult due to
a multitude of factors. However, by providing structure-informed
means to partition the total intrapopulation variation into distinct

Kiefl et al., Sci. Adv. 9, eabq4632 (2023) 22 February 2023 5 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at A

lfred-W
egener-Institut fuer Polar- und M

eeresforschung on A
pril 03, 2024



pools, RSA and DTL offer a quantitative framework that enables
new opportunities to study distinct evolutionary processes.

Differences in selection strength acting on individual genes
can be measured across environments
So far, our structure-informed investigation has focused on trends
of sequence variation within the gene pool of an environmental
population. Next, we shifted our attention to individual proteins.
pN/pS(gene) is a metric that quantifies the overall direction and

magnitude of selection acting on a single gene (24, 30), where
pN/pS(gene) < 1 indicates the presence of purifying selection, the in-
tensity of which increases as the ratio decreases. Since pN/pS(gene) is
defined for a given gene in a given sample, pN/pS(gene) values for a
single gene can be compiled from multiple samples, enabling the
tracking of selective pressures across environments (30). Taking ad-
vantage of the large number of metagenomes in which 1a.3.V was
present, we calculated pN/pS(gene) for all 799 protein-coding core
genes across 74 samples (see Methods), resulting in 59,126 gene/

Fig. 3. Polymorphism distribution patterns in glutamine synthetase. (A) Glutamine synthetase (GS) dodecameric complex. Pink molecules are adenosine diphos-
phate and phosphinothricin (steric inhibitor of glutamate), situatedwithin the active site of GS. (B) Sample-averaged pN/pS(gene) for GS (at 0.020, vertical green line) versus
sample-averaged pN/pS(gene) for all 799 genes in the 1a.3.V core (truncated at 0.30). Inset: Distribution of pN/pS(gene) value for GS as seen across all metagenomes. (C)
Pearson correlation coefficients for GS pN/pS and measured concentration of nitrates in each sample (0.34, vertical green line) versus pN/pS(gene) for all genes. Inset:
Scatterplot of pN/pS(gene) versus nitrate concentrations from which the GS correlation coefficient was calculated. (D) Each image is a view of the predicted structure of
monomeric GS. Phosphinothricin substrates were situated by aligning the predicted GS structure to the complex in (A). Red surfaces are colored according to the sample-
averaged log10pN

(site) value of each residue, and blue surfaces are colored according to the sample-averaged log10pS
(site) value of each residue. Darker colors refer to

higher rates. (E) Correlation between average RSAvalues (y axis) with pN/pS(gene) across samples (x axis). (F) RSA in (E) is replaced with the distance-to-glutamate substrate
(DTL). (G) Top: Site covariation with pN/pS(GS), where the x axis is the residue number and the y axis is the linear regression slope estimate between the sum of minor allele
frequencies and pN/pS(GS). Sites with DTL values less than the average are indicated in red. All sites above the dashed horizontal line are annotated with their residue
number. Scatterplots below show the allele frequency trajectories for a select number of these sites. A.U., arbitrary units.
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sample pairs (table S9). We validated our calculations by comparing
sample-averaged pN/pS(gene) to dN/dS(gene) calculated from homol-
ogous gene pairs between HIMB83 and HIMB122, another SAR11
isolate genome that is closely related to HIMB83 (gANI: 82.6%),
which we found to yield commensurable results (see fig. S10,
table S11, and Supplementary Information).

We found significantly more pN/pS(gene) variation between
genes of a given sample (“gene-to-gene” variation) than between
samples of a given gene (“sample-to-sample” variation) (ANOVA;
fig. S11). All but one gene (gene #2031, unknown function) main-
tained pN/pS(gene) < 1 in every sample, whereby 95% of values were
less than 0.15 (fig. S12 and table S9), indicating an intense purifying
selection for the vast majority of 1a.3.V genes across environments.
This was foreshadowed by our earlier analysis in which pS(site) out-
weighed pN(site) by 19:1 within the aggregated data across genes and
samples. However, the magnitude of purifying selection was not
uniform across all genes. Gene-to-gene variance, as opposed to
sample-to-sample variance, explained 93% of pN/pS(gene) variation
(ANOVA; fig. S11). By analyzing the companion metatranscriptom-
ic data (59) that were available for 50 of the 74 metagenomes, we
were able to explain 29% of gene-to-gene variance with gene tran-
script abundance (TA) (see table S12 and Supplementary Informa-
tion), a known predictor of evolutionary rate (60). Overall, these
data demonstrate the utility of pN/pS(gene) as a metric to understand
the overall extent of selection acting on genes.

The amount of pN/pS(gene) variation attributable to sample-to-
sample variance was only 0.7% (fig. S11). While it represents a small
proportion of the total variance, the sample-to-sample variance in
pN/pS(gene) encapsulates the extent that polymorphism varies in re-
sponse to the range of environmental parameters observed across
samples. These data therefore provide the opportunity to relate
how differences in genetic diversity of individual genes manifest
from differences in environmental parameters (table S10), which
we focused on next.

Nitrogen availability governs rates of nonideal
polymorphism at critical sites of glutamine synthetase
To gain a more highly resolved picture of how selection shapes
protein evolution, we searched for a biologically relevant gene
within 1a.3.V that exhibited evolutionary patterns that could be un-
derstood by leveraging structural information. Glutamine synthe-
tase (GS) is a critical enzyme for the recycling of cellular nitrogen
(61), a limiting nutrient for microbial productivity in surface oceans
(62). GS yields glutamine and adenosine diphosphate from gluta-
mate, ammonia, and adenosine triphosphate, an essential step in
the biosynthesis of nitrogenous compounds.

Given the central role that GS plays in nitrogen metabolism, we
expected GS to be under high selection. The sample-averaged pN/
pS(GS) was 0.02, ranking GS among the top 11% most purified genes
(Fig. 3B and table S9). Although highly purified, we observed sig-
nificant sample-to-sample variation in pN/pS(GS) (min = 0.010,
max = 0.036) suggesting that the strength of purifying selection
on GS varies from sample to sample (Fig. 3B, inset), perhaps due
to unique environmental conditions (e.g., nutrient compositions)
that differentially affect the need for glutamine synthesis. Since pre-
vious work has shown that SAR11 up-regulates its transcriptional
and translational production of GS in response to nitrogen limita-
tion (63), we hypothesized that purifying selection should be
highest in nitrogen-limited environments, and lowest in nitrogen-

replete environments. We used measured concentrations of nitrate
as an indication of the level of nitrogen limitation in each sample
and found a positive correlation between measured nitrate concen-
trations and pN/pS(GS) values across samples (Pearson correlation
P = 0.009, R2 = 0.11) (Fig. 3C), which ranked among the top 12%
of positive correlations between pN/pS(gene) and nitrate concentra-
tion (Fig. 3C, inset, and table S10). In summary, we find that al-
though GS is under high selection, subtle differences in selection
strength are observed between samples and are most likely driven
by nitrogen availability.

Next, we focused on the GS protein structure to further investi-
gate the associations between GS polymorphism and processes of
selection. Since the native quaternary structure of GS is a dodeca-
meric complex (12 monomers), our monomeric estimates of RSA
and DTL are unrepresentative of the active state of GS. We ad-
dressed this by aligning 12 copies of the predicted structure to a
solved dodecameric complex of GS in Salmonella typhimurium
[Protein Data Bank (PDB) ID: 1FPY], which HIMB83 GS shares
61% amino acid similarity with (Fig. 3A). From this stitched qua-
ternary structure, we recalculated RSA and DTL, and, as expected,
this yielded lower average RSA and DTL estimates due to the pres-
ence of adjacent monomers (0.17 versus 0.24 for RSA and 17.8 Å
versus 21.2 Å for DTL). With these quaternary estimates of RSA
and DTL, we found that ns-polymorphism was 30× less common
than s-polymorphism, and it strongly avoided sites with low RSA
and the three glutamate active sites to which any given monomer
was proximal (Fig. 3D). In comparison, s-polymorphism distribu-
ted relatively homogeneously throughout the protein, whereby 17%
of s-polymorphism occurred within 10 Å of active sites (compared
to 3% for ns-polymorphism) and 19% occurred in sites with 0 RSA
(compared to 9% for ns-polymorphism). Averaged across samples,
the mean RSA was 0.15 for s-polymorphism and 0.33 for ns-poly-
morphism (Fig. 3E, left). Similarly, the mean DTL was 17.2 Å for s-
polymorphism and 22.9 Å for ns-polymorphism (Fig. 3F, left).
These observations highlight in a single gene what we previously
observed across the 1a.3.V core: Selection purifies the majority of
ns-polymorphism and does so with increased strength at structur-
ally/functionally critical sites.

We next investigated whether variance in selection strength
(Fig. 3B, inset) affects the spatial distribution patterns of polymor-
phism. For each sample, we calculated how polymorphism rates in
GS distributed with respect to RSA and DTL and associated these
distributions with pN/pS(GS). While the mean RSA of s-polymor-
phism remained relatively invariant (SD 0.005) (Fig. 3E, right),
the mean RSA of ns-polymorphism varied markedly from 0.27 to
0.37 and was profoundly influenced by sample pN/pS(GS);
samples exhibiting low selection of GS harbored lower mean RSA
and samples exhibiting high selection of GS harbored higher mean
RSA (Fig. 3E, right). In fact, 82.9% of mean RSA ns-polymorphism
variance could be explained by pN/pS(GS) alone (Pearson correla-
tion, P < 1 × 10−16, R2 = 0.829). This correlation disappeared
when the sites were shuffled (Pearson correlation, R2 = 0.014, stan-
dard error 0.006 from 10 trials). ns-polymorphism distributions
with respect to DTL were equally governed by selection strength,
where 80.4% of variance could be explained by pN/pS(GS)

(Pearson correlation, P < 1 × 10−16, R2 = 0.804; Fig. 3F). This cor-
relation disappeared when the sites were shuffled (Pearson correla-
tion, R2 = 0.011, standard error 0.004 from 10 trials).
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When selection is low, we observe high nitrate concentrations
(Fig. 3C, inset) and ns-polymorphism distributions toward lower
RSA/DTL (Fig. 3, E and F). When selection is high, we observe
low environmental nitrate concentrations (Fig. 3C, inset) and ns-
polymorphism distributions toward higher RSA/DTL (Fig. 3, E
and F). Given that proper functionality of GS is most critical in ni-
trogen-limited environments and that mutations with low RSA/
DTL are more likely to be deleterious, the most likely explanation
for the body of evidence presented is that GS accumulates nonideal
polymorphism in samples exhibiting low selection of GS that
cannot be effectively purified at the given selection strength. As se-
lection increases, so too does the purifying efficiency, which we in-
directly measure as increases in mean RSA and DTL of ns-
polymorphism. Our approach illustrates this “use it or lose it” evo-
lutionary principle over a spectrum of selection strengths that have
been sampled from natural in situ environmental conditions.

Under this hypothesis, there should exist low DTL amino acid
alleles that create a negative yet tolerable impact on fitness when se-
lection is low, yet incur an increasingly detrimental fitness cost as
selection increases. One would expect such alleles to be at low fre-
quency in low pN/pS(GS) samples and to reach increasingly higher
frequencies in higher pN/pS(GS) samples. We identified putative
sites fitting this description by scoring sites based on the extent
that their amino acid minor allele frequencies covaried with pN/
pS(GS), including only sites with DTL less than the mean DTL of
ns-polymorphisms (22.9 Å). Using an arbitrary cutoff, we identified
nine top-scoring polymorphisms that covaried with pN/pS(GS)

(Fig. 3G): I96V, L152I, Q175P/G, I176V, N230D, S288A/D,
I323V, A364S, and I379L. Although each of these sites exhibited
DTL lower than the average ns-polymorphism, the closest site
(residue number 323) was still 9 Å away from the glutamate sub-
strate. This suggests that there are no “smoking gun” polymor-
phisms occurring in the binding site that abrasively disrupt
functionality. After all, in absolute terms, GS is highly purified re-
gardless of sample—the largest pN/pS(GS) is 0.036, which is just
more than half the genome-wide average pN/pS(gene) of 0.063.
Our data therefore represent a subtle, yet resolvable signal of
minute decreases in selection strength manifesting as minute
shifts in the distribution of ns-polymorphism toward the active site.

While identifying signatures of positive selection is typically the
primary pursuit in evolutionary analysis, our data instead illustrate a
highly resolved interplay between purifying selection strength and
polymorphism distribution. The geography and unique environ-
mental parameters associated with each sample yielded a spectrum
of selection strengths that enabled us to quantify how polymor-
phism distributions of a gene under high selection shift in response
to small perturbations in selection strength. In the case of GS, we
were able to attribute these shifts to the availability of nitrogen,
thereby linking together environment, selection, and
polymorphism.

Throughout the 1a.3.V core genes, we observed that samples ex-
hibiting low overall selection of 1a.3.V were strongly associated with
increased accumulation of ns-polymorphism at low RSA/DTL sites
(see Fig. 4, A and B, and Supplementary Information), suggesting
that this signal is not specific to GS, but rather a general feature of
the 1a.3.V core genes. Although highly significant (one-sided
Pearson P = 9 × 10−12 for RSA and P = 2 × 10−4 for DTL), the mag-
nitude that ns-polymorphism distributions shift with respect to
DTL and RSA was subtle: Across samples, the mean DTL of ns-

polymorphism varied by less than 1 Å, and the mean RSA varied
between 0.34 and 0.38. We performed the same analysis on s-poly-
morphism (Fig. 4, C and D) and observed similar trends (one-sided
Pearson P = 1 × 10−5 for RSA and P = 3 × 10−7 for DTL), suggesting
that differences in selection between samples may subtly drive the
distribution of synonymous variants. That said, the effect size was
even smaller for ns-polymorphism, with the mean DTL of s-poly-
morphism varying less than 0.2 Å and the mean RSA varying
between 0.230 and 0.236. This is congruent with the observation
that s-polymorphism distributes more uniformly throughout
protein structure than does ns-polymorphism (Fig. 2, A and B). Re-
solving such a minute signal with such robust statistical power is
attributed to the immense quantities of sequence data afforded by
metagenomics.

With recent breakthroughs in predicting protein structures and
ligand-binding sites, microbial ecology need not be limited to just
sequences. By offering an interactive, scalable, and open-source
software solution that integrates environmental genetic variants
with structural bioinformatics, our study takes advantage of
recent advances to connect environmental omics and structural
biology. By leveraging structure and ligand-binding predictions,
we were able to describe notable patterns of nucleotide polymor-
phism in an environmental microbial population that we could
ascribe to evolutionary constraints that preserve protein structure
(folding and stability) and protein function (ligand-binding activi-
ty). By tracking a SAR11 population across metagenomes, we were
able to demonstrate the presence of dynamic processes that purge
nonsynonymous polymorphism from the vicinity of ligand-binding
sites of proteins as a function of selection strength. Overall, our
study proposes a structure-informed computational framework
for microbial population genetics and offers a glimpse into the
emerging interdisciplinary opportunities made available at the in-
tersection of ecology, evolution, and structural biology.

METHODS
Overview
The URL https://merenlab.org/data/anvio-structure/ provides a
complete reproducible workflow for all analysis steps detailed
below, including (i) downloading the publicly available metage-
nomes and genomes, (ii) recruiting reads from metagenomes, (iii)
calculating single–amino acid variants (SAAVs) and single-codon
variants (SCVs), (iv) predicting protein structures and ligand-
binding sites, and (v) visualizing metagenomic sequence variants
and binding sites onto protein structures.

Metagenomic and metatranscriptomic read recruitment
and processing
To study the population structure of the environmental SAR11 pop-
ulation 1a.3.V defined previously (27), we used anvi’o v7.1 (64) and
its metagenomics workflow (65), which uses snakemake v5.10 (66)
to automate gene calling, gene function annotation, and metage-
nomic and metatranscriptomic read recruitment steps. The com-
pendium of anvi’o programs the metagenomics workflow called
upon used Prodigal v2.6.3 (67) for gene calling, National Center
for Biotechnology Information’s Clusters of Orthologous Groups
database (68) and Pfams (69) for gene function annotation,
HMMER v3.3 (70) for profile hidden Markov model (HMM)
searches, DIAMOND v2.0.6 (71) for sequence searches, Bowtie2
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v2.4 (72) for read recruitment, and SAMtools v1.9 (73) to generate
BAM files. The metagenomic workflow resulted in two anvi’o arti-
facts, a “contigs database” (https://anvio.org/m/contigs-db) and a
“merged profile database” (https://anvio.org/m/profile-db), which
give access to gene functions, gene and genome coverages (with
metagenomic or metatranscriptomic short reads), and the sequence
variability data to study population genetics as detailed below. We
adopted a competitive read recruitment strategy by using all SAR11
genomes, rather than only HIMB83, as reference to recruit reads
from Tara Oceans Project metagenomes and metatranscriptomes
to maximize the exclusion of reads that matched better to other
known SAR11 genomes, thereby narrowing our scope of probed di-
versity and minimizing the impacts of nonspecific read recruitment.
In all subsequent analyses, we focused on the core genes of the
1a.3.V subclade by only considering (i) reads that mapped to
HIMB83, (ii) the 74 metagenomes in which HIMB83 was found
above 50×, and (iii) the 799 HIMB83 genes that were previously
found to maintain consistent coverage patterns (27).

Quantifying SCVs and SAAVs in metagenomes
To characterize the variants in metagenomic read recruitment
results, we used and extended the microbial population genetics
framework implemented in anvi’o. The program “anvi-profile”
with the flag “--profile-SCVs” characterizes SCVs, from which
SAAVs can also be calculated. Anvi’o determines allele frequency
vectors for SCVs by tallying the frequencies of codons observed
in the 3-nt segments of reads that fully map to a given codon posi-
tion. The frequencies of amino acids encoded by each 3-nt segment
yield SAAVs observed in a given position, which represent allele fre-
quency vectors of positions after collapsing synonymous redundan-
cy. For a given codon position, anvi’o excludes any reads that do not
map to all 3 nt, which can happen either if the read terminates
within the codon position or if there exists a deletion in the read
relative to the reference genome. Reads that contain insertions
within the codon relative to the reference genome are also excluded
during this step. We exported variant profiles as tabular data using
the program “anvi-gen-variability-profile,” where each row is an
SCV (or SAAV) and the columns specify (i) identifying information

such as the corresponding gene, codon position, and sample id; (ii)
the number of mapped reads corresponding to each of the 64
codons (or 20 amino acids); and (iii) numerous miscellaneous sta-
tistics, all of which can be explored at https://merenlab.org/
analyzing-genetic-varaibility/.

Calculations of polymorphism rates of individual codon
sites, pN(site) and pS(site)

We calculated the polymorphism rates of individual codon sites
from allele frequencies defined from each SCV based on a recent
study by Shenhav and Zeevi (30), where a given codon allele con-
tributes [to either pN(site) or pS(site)] an amount that is equal to its
observed relative abundance (frequency). To which rate the allele
contributes is determined by its synonymity relative to the
popular consensus, i.e., the allele that is most common across all
samples. After summing the contributions for each of the 63
codons (excluding the popular consensus), we normalized the re-
sulting values of pN(site) and pS(site) by the number of nonsynony-
mous and synonymous sites of the popular consensus, respectively.
For example, if the popular consensus is “ACC” (Thr), there are nine
possible single-point mutations, three synonymous and six nonsy-
nonymous; therefore, pS(site) will be divided by 3/3 = 1 and pN(site)

will be divided by 6/3 = 2. This procedure can be mathematically
expressed as

pN
ðsiteÞ ¼

1
nn

X

c[Cnr

fcNðc; rÞ; pS
ðsiteÞ ¼

1
ns

X

c[Cnr

fcSðc; rÞ

where C\r is the set of all codons excluding the popular consensus r;
nn and ns are the number of nonsynonymous and synonymous sites
of r, respectively; fc is the frequency of the cth allele; and N(c, r) is the
indicator function where

Nðc; rÞ ¼ 1 if not synonymous ðc; rÞ else 0

and S(c, r) is the indicator function where

Sðc; rÞ ¼ 1 if synonymous ðc; rÞ else 0

Fig. 4. Polymorphism distribution patterns with respect to genome-wide selection strength. Each data point is a sample (metagenome). Lines represent lines of
best fit and corresponding translucent areas represent 95% confidence intervals. The x axis is pN/pS(core), which is calculated across the whole core genome and is an
inverse proxy of genome-wide purifying selection strength (see Methods). (A) The ns-polymorphism distribution mean with respect to RSA is negatively associated with
pN/pS(core) (one-sided Pearson P = 9 × 10−12). (B) The ns-polymorphism distributionmeanwith respect to DTL is negatively associatedwith pN/pS(core) (one-sided Pearson
P = 2 × 10−4). (C) The s-polymorphism distribution mean with respect to RSA is negatively associated with pN/pS(core) (one-sided Pearson P = 1 × 10−5). (D) The s-poly-
morphism distribution mean with respect to RSA is negatively associated with pN/pS(core) (one-sided Pearson P = 3 × 10−7).
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We implemented this strategy into the program “anvi-gen-vari-
ability-profile” as a new flag “--include-site-pnps,” which, when de-
clared, adds pN(site) and pS(site) values as additional columns to the
tabular output after calculating them for three different choices of
the reference codon r: (i) the popular consensus (as used here), (ii)
the consensus (the allele with the highest frequency), and (iii) the
reference sequence (the sequence used for read recruitment). For
efficient computation, this calculation uses the Python package
numba (74) for just-in-time compilation. For a dataset with
12,583,626 SCVs, the current implementation computes pN(site)

and pS(site) terms in less than a minute on a laptop computer.

Calculations of polymorphism rates within a group of sites,
pN(group), pS(group), and pN/pS(group)

We defined groups such that all sites in a group share similar RSA
and DTL values. Formally, we defined pN(group) and pS(group) as

pN
ðgroupÞ ¼

XG

g¼1

P
c[Cnr f

ðgÞ
c N½c; rðgÞ�

XG

g¼1
nðgÞn

;

pS
ðgroupÞ ¼

XG

g¼1

P
c[Cnr f

ðgÞ
c S½c; rðgÞ�

XG

g¼1
nðgÞs

where G is the number of sites in the group; r(g) is the popular con-
sensus of the gth site; fc(g) is the frequency of the cth allele at the gth
site; and nn

(g) and ns
(g) are the number of nonsynonymous and syn-

onymous sites of r(g), respectively. All other definitions are the same
as for pN(site) and pS(site). pN(group) and pS(group) can be expressed in
terms of weighted sums of pN(site) and pS(site), respectively

pN
ðgroupÞ ¼

XG

g¼1
nðgÞn pNðg;siteÞ

XG

g¼1
nðgÞn

; pS
ðgroupÞ ¼

XG

g¼1
nðgÞs pSðg;siteÞ

XG

g¼1
nðgÞs

Last, pN/pS(group) is defined as

pN=pSðgroupÞ ¼ pNðgroupÞ=pSðgroupÞ

Calculations of polymorphism rates for individual and core
genes, pN(gene), pS(gene), pN/pS(gene), and pN/pS(core)

We calculated rates of polymorphism for genes and the 1a.3.V core
genome identically to the calculations of pN(group), pS(group), and
pN/pS(group). For example, pN(gene) refers to the ns-polymorphism
rate of all sites in a given gene, and pS(core) refers to the s-polymor-
phism rate of all sites in the 1a.3.V core genome.

Predicting and processing protein structures
We attempted to predict protein structures for each gene in the
HIMB83 genome that belonged to the 1a.3.V core using both Al-
phaFold (45) and MODELLER (51). To process, store, and access
the resulting protein structures, we developed a novel program,

“anvi-gen-structure-database,” which gives access to all atomic co-
ordinates as well as per-residue statistics such as RSA, secondary
structure, and phi and psi angles calculated using DSSP (75, 76).
For AlphaFold predictions, we used a version of the codebase that
closely resembles v2.0.1 (https://github.com/johnaparker/
alphafold/tree/3829f4e0ba01aa1b4f01916c83e9ca5de771d98a gives
access to its exact state) and ran predictions using six graphics pro-
cessing units, which took a week on a high-performance computing
system. AlphaFold predicted structures for 795 of 799 proteins, and
after removing structures with gene-averaged per-residue confi-
dence metric score (pLDDT) <80, we were left with 754 structures
we deemed “trustworthy” for downstream analyses. To predict
protein structures with MODELLER, we developed a pipeline
that, for each gene, (i) searches the Research Collaboratory for
Structural Bioinformatics PDB (77) for homologs using
DIAMOND (71), then downloads tertiary structures for matching
entries, and (ii) uses these homologs as templates to predict the
gene’s structure with MODELLER (51). We discarded any proteins
if the best template had a percent similarity of <30%. Unlike more
sophisticated homology approaches that make use of multi-domain
templates (78), we used single-domain templates that are conve-
nient and are accurate up to several angstroms, yet can lead to phys-
ically inaccurate models when the templates’ domains match to
some, but not all, of the sequences’ domains. To avoid this, we dis-
carded any templates if the alignment coverage of the protein se-
quence to the template was <80%. Applying these filters resulted
in 408 structures from the 1a.3.V core, which was further refined
by requiring that the root mean squared distance between the pre-
dicted structure and the most similar template did not exceed 7.5 Å,
and that the GA341 model score exceeded 0.95. After applying these
constraints, we were left with 348 structures in the 1a.3.V that we
assumed to be trustworthy structures as predicted by MODELLER.
These structures were, on average, 44.8% identical to their tem-
plates, which is within the sequence similarity regime where tem-
plate-based homology modeling generally produces the correct
overall fold (79).

Predicting ligand-binding sites
For the 1a.3.V core genes, we estimated per-residue binding fre-
quencies for a diverse collection of ligands by using InteracDome,
a database that annotates the sites (match states) of Pfam profile
HMMs with ligand-binding frequencies predicted from experimen-
tally determined structural data (53). To associate match state
binding frequencies of the profile HMMs to the sites of HIMB83
genes, we applied a protocol similar to that described by Kobren
and Singh.

First, we downloaded the representable-NR interactions (RNRI)
from the InteracDome web server (https://interacdome.princeton.
edu/) that “correspond to domain-ligand interactions that had non-
redundant instances across three or more distinct PDB structures”
(table S5). Next, we downloaded the profile HMMs for Pfam v31.0
and kept only those 2375 profiles that belonged to the RNRI dataset.
Then, we searched each HIMB83 gene against this set using
HMMER’s hmmsearch. After the removal of HMM hits that were
below the gathering threshold noise cutoffs defined in Pfam models,
940 of the 1,470 HIMB83 coding genes had at least one domain hit,
with a total of 1770 domain hits from 832 unique profile HMMs. Of
these, we removed 177 for being too partial (length of the hit divided
by the profile HMM length was less than 0.5), and 1 hit because the
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query sequence did not match all the consensus residues for match
states in which the information content exceeded 4 (table S5). We
then associated binding frequencies for a collection of ligand types
to the HIMB83 genes by parsing alignments of the profile HMMs to
the HIMB83 gene amino acid sequences, which are provided in the
standard output of hmmsearch. If a given HIMB83 residue aligned
to multiple match states, each which had the same ligand type, we
attributed the average binding frequency to the HIMB83 residue.
We then filtered out binding frequency scores less than 0.5, yielding
40,219 predicted ligand-residue interactions across 11,480 unique
sites (table S5). We considered each of these sites to be “ligand-
binding sites.”

Our study includes two novel programs to automate this proce-
dure and make it accessible to the community. The first, “anvi-
setup-interacdome,” downloads the RNRI and Pfam datasets, and
only needs to be run once. The second, “anvi-run-interacdome,” is
a multithreaded program that takes an anvi’o contigs database as
input and runs the remainder of the workflow described for each
gene in the database. Predicted binding frequencies are stored inter-
nally in the database, which enables a seamless integration with
other anvi’o programs to accomplish various tasks, such as the in-
teractive visualization of the binding sites of predicted structures for
any given gene with “anvi-display-structure” (see Supplementary
Information), or exporting the underlying data as TAB-delimited
files with “anvi-export-misc-data.” In the present study, “anvi-run-
interacdome” processed the HIMB83 genome in 53 s on a laptop
computer using a single thread.

Calculating RSA
We calculated RSA for each residue of each predicted structure,
where RSA was defined as the accessible surface area (ASA)
probed by a 1.4-Å-radius sphere, divided by the maximum ASA,
i.e., the ASA of a Gly-X-Gly tripeptide. RSA values were calculated
in the program “anvi-gen-structure-database” using Biopython’s
DSSP module (80).

Calculating DTL
DTL was calculated for all sites that belonged to genes with (i) a
predicted structure and (ii) at least one predicted ligand-binding
residue. Ideally, one would calculate DTL as the Euclidean distance
of a residue to the predicted ligand; however, our predictions did
not yield the 3D coordinates of ligands. Instead, we approximated
DTL as the Euclidean distance of a residue to the closest ligand-
binding residue (see Methods), which lies within a few angstroms
of the predicted ligand. Specifically, we defined this distance accord-
ing to the sites’ side-chain center of masses. A consequence of ap-
proximating DTL with respect to the closest ligand-binding sites is
that, by definition, any ligand-binding residue has a DTL of 0.

As discussed in the “Proteomic trends in purifying selection are
explained by RSA and DTL” section, missed binding sites lead to
erroneously high DTL values. We assessed the magnitude of this
error source by comparing our distribution of predicted DTL
values in the 1a.3.V core to that found in BioLiP, an extensive data-
base of semimanually curated ligand-protein complexes (81). We
found that the 1a.3.V DTL distribution had a much higher propor-
tion of values >40 Å, suggesting that these likely result from incom-
plete characterization of binding sites (fig. S9). To mitigate the
influence of this inevitable error source, we conservatively excluded
DTL values >40 Å (8.0% of sites) in all analyses after Fig. 2B.

Calculating polymorphism null distributions for RSA
and DTL
The null distributions for polymorphism rates with respect to RSA
and DTL were calculated by randomly shuffling the RSA and DTL
values calculated for each site, yielding distributions one would
expect if there was no association between polymorphism rate
and RSA. To avoid biases, each null distribution is the average of
10 shuffled datasets.

Proportion of polymorphism rate variance explained by
RSA and DTL
To calculate the extent that RSA and DTL can explain polymor-
phism rates, we constructed three synonymous models (s-models)
and three nonsynonymous models (ns-models) (table S6). s-models
fit linear regressions of log10[pS(site)] to RSA (s #1), DTL (s #2), and
both RSA and DTL (s #3). Similarly, ns-models fit linear regressions
of log10[pN(site)] to RSA (ns #1), DTL (ns #2), and both RSA and
DTL (ns #3). In addition, each model included the gene and
sample of the corresponding polymorphism as independent vari-
ables to account for gene-to-gene and sample-to-sample differenc-
es. Polymorphism rates were log-transformed because it helped
linearize the data, yielding better models. The data used to fit
each model included all codon positions across all samples in
each gene that had a predicted protein structure and at least 1 pre-
dicted ligand-binding residue. After excluding monomorphic sites
[pN(site) = 0 for ns-models, pS(site) = 0 for s-models], this yielded
5,838,445 data points for s-models and 3,850,182 for ns-models.
While every protein has RSA values that span the domain [0,1],
protein size creates marked gene-to-gene differences in observed
DTL values. We accounted for this by standardizing DTL values
on a per-gene basis, which improved variance explained by DTL.
The variance explained by RSA, DTL, sample, and gene was deter-
mined by performing an ANOVA on each model and partitioning
the sum of squares (table S6).

Calculating TA
Since proper transcription level metrics such as molecules per cell
are incalculable from metatranscriptomic data, we estimated the TA
to be

TA ¼
CðMTÞ

DðMTÞ =
CðMGÞ

DðMGÞ

where C(MT) is the coverage of the gene in the metatranscriptome,
D(MT) is the sequencing depth (total number of reads) of the meta-
transcriptome, C(MG) is the coverage of the gene in the metage-
nome, and D(MT) is the sequencing depth (total number of reads)
of the metagenome. This means, for example, that a gene with a
metatranscriptomic relative abundance that is 10% of its metage-
nomic relative abundance would have a TA of 0.10.

Statistical data analysis and visualization
We used R v3.5.1 (82) for the analysis of numerical data reported
from anvi’o. For data visualization, we used ggplot2 (83) library
in R and anvi’o, and finalized images for publication using Inkscape
v1.1 (https://inkscape.org/).
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