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ABSTRACT Microbes have inhabited the oceans and soils for millions of years and are
uniquely adapted to their habitat. In contrast, sewer infrastructure in modern cities dates
back only ;150 years. Sewer pipes transport human waste and provide a view into
public health, but the resident organisms that likely modulate these features are rela-
tively unexplored. Here, we show that the bacterial assemblages sequenced from
untreated wastewater in 71 U.S. cities were highly coherent at a fine sequence level,
suggesting that urban infrastructure separated by great spatial distances can give rise to
strikingly similar communities. Within the overall microbial community structure, temper-
ature had a discernible impact on the distribution patterns of closely related amplicon
sequence variants, resulting in warm and cold ecotypes. Two bacterial genera were
dominant in most cities regardless of their size or geographic location; on average,
Arcobacter accounted for 11% and Acinetobacter 10% of the entire community.
Metagenomic analysis of six cities revealed these highly abundant resident organisms
carry clinically important antibiotic resistant genes blaCTX-M, blaOXA, and blaTEM. In contrast,
human fecal bacteria account for only ;13% of the community; therefore, antibiotic re-
sistance gene inputs from human sources to the sewer system could be comparatively
small, which will impact measurement capabilities when monitoring human populations
using wastewater. With growing awareness of the metabolic potential of microbes
within these vast networks of pipes and the ability to examine the health of human
populations, it is timely to increase our understanding of the ecology of these systems.

IMPORTANCE Sewer infrastructure is a relatively new habitat comprised of thousands of
kilometers of pipes beneath cities. These wastewater conveyance systems contain large
reservoirs of microbial biomass with a wide range of metabolic potential and are signifi-
cant reservoirs of antibiotic resistant organisms; however, we lack an adequate under-
standing of the ecology or activity of these communities beyond wastewater treatment
plants. The striking coherence of the sewer microbiome across the United States demon-
strates that the sewer environment is highly selective for a particular microbial commu-
nity composition. Therefore, results from more in-depth studies or proven engineering
controls in one system could be extrapolated more broadly. Understanding the complex
ecology of sewer infrastructure is critical for not only improving our ability to treat
human waste and increasing the sustainability of our cities but also to create scalable
and effective sewage microbial observatories, which are inevitable investments of the
future to monitor health in human populations.

KEYWORDS Acinetobacter, Arcobacter, antibiotic resistance, metagenomics, microbial
communities, sewer infrastructure

Sewer systems perform an essential role in collecting and transporting wastewater
in cities, which prevents the rapid spread of diseases caused by human enteric patho-

gens. Sewer systems are often extensive but unseen, as they encompass thousands of
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kilometers of conveyance pipes beneath cities (1). This unseen system contains a diverse set
of microorganisms that are continuously transported to wastewater treatment facilities.
Significant progress has been made in understanding the composition and activity of the
microorganisms involved in and removed by treatment processes at wastewater treatment
plants (WWTPs), but the biological and ecological processes in the conveyance systems are
not well understood. For example, microbes in WWTPs have received considerable attention
for their ability to remove excess primary nutrients (carbon, nitrogen, and phosphorus) and
degrade toxic compounds from wastewater before it is discharged into the environment
(2–5). However, the resident sewer microbiome has not been explored in depth for its meta-
bolic potential for pretreatment of waste within the vast network of pipes.

Sanitary sewer pipes have three main microbial habitats: wastewater, biofilm, and
sediment, each hosting a distinct and considerably diverse microbial community (6–8)
involved in various forms of carbon, sulfur, and nitrogen metabolism. To date, sewer
bacterial assemblages have been studied primarily in biofilms with a focus on detri-
mental effects, such as creating nuisance odors and contributing to pipe corrosion
from H2S or H2SO4 emission (9). A growing number of studies also indicate that sewer
microorganisms can transform and/or remove pollutants (5, 10, 11), making the sewer
network a full-fledged stage in water treatment.

Sewer conveyance systems are a habitat that is aqueous, dark, and with high levels
of nutrients. Gravity sewers, which are common in most cities, can be aerobic but
become anaerobic or microaerophilic depending on flow, turbulence, organic matter,
and temperature (12). Despite these strong fluctuating conditions, modern sanitary
sewer systems hold a surprisingly coherent and reproducible taxonomic composition
worldwide (13). Upstream in the sewer network, the bacterial community appears to
contain a higher proportion of fecal-associated bacteria (;35%) compared with down-
stream (;10%), where it is dominated by nonfecal-associated taxa (14, 15), in particular,
(alphabetic order) Acidovorax, Acinetobacter, Aeromonas, Arcobacter, Cloacibacterium, or
Trichococcus (16–19). These organisms dominate regardless if the sewer system is sepa-
rated (i.e., carries only sanitary sewer) or combined (i.e., conveys a mix of wastewater
and stormwater during rain events) (18, 20). A better understanding of the sewer micro-
bial composition, including identifying universally present members, and understanding
how the microorganisms interact with each other could lead to common engineered
controls to enhance beneficial metabolism or reduce detrimental effects. Such controls
could also influence the efficiency of biological treatment at WWTPs, as it has been
shown that the microbial community in raw wastewater shapes those in WWTPs (21, 22).

Untreated wastewater entering the WWTP contains an abundance of antibiotic re-
sistant bacteria and associated resistance-conferring genes. Antibiotic resistance genes
occur in pathogenic but also nonpathogenic bacterial populations in these systems
(23). High-abundance resident pipe bacteria include Acinetobacter spp., Arcobacter
spp., and Aeromonas spp. known to carry multidrug resistance (24–27). There is grow-
ing interest in using wastewater for population health surveillance; therefore, it is im-
portant to understand the fraction (human or resident) of the community contributing
to antibiotic resistance profiles observed in wastewater and the potential for various
microorganisms to propagate or transfer resistance traits within these systems.

In natural systems, physical separation and unique local environmental conditions
lead to the diversification of organisms (28). Although cities are separated islands in a
landscape, the engineered habitat they host leads to similar communities across sys-
tems. Therefore, it may be possible to identify and promote universally adapted organ-
isms with beneficial functions through further engineering measures (29). Also, a
deeper understanding of the ecology of the sewer ecosystems can contribute to the
development of baseline metrics of microbial community signatures to better identify
concerns of public health, especially against the background of antibiotic resistance
genes that occur naturally. Such insights would allow for the creation of more universal
sewage pollution tracking assays, including those that are more sensitive than tracking
microbes from human feces. Here we use microbial community structures in a large
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data set of 71 U.S. cities and metagenomes of six cities to provide insight into the dis-
tribution of the microorganisms in this unique environment that represents the “gut”
of every city.

RESULTS

Bacterial communities from 215 domestic sewage samples across 71 U.S. cities and
1 city in Spain (Fig. 1; Data Set S1 in supplemental material) were characterized by
sequencing the V4–V5 variable regions of the 16S rRNA gene. Minimum entropy
decomposition analysis was applied to 11,924,709 sequences, resulting in 1,893 ampli-
con sequence variants (ASVs) representing 96% of the initial sequence data set.

Reproducibility and coherence of microbial communities in sewer infrastruc-
ture. We observed a coherent and reproducible bacterial taxonomic composition among
71 U.S. city sewer conveyance system samples regardless of system size or geographic
location (Fig. 1). The sewer microbiome was dominated by Proteobacteria (55.94 6 9.78%,
means 6 SD), Bacteroidetes (24.28 6 9.49%), and Firmicutes (16.10 6 7.42%). There were
only 18 bacterial families with an abundance of more than 1% of the total community
(Fig. 1). These families were shared across all U.S. cities and the sample from Spain. The 18
families made up 92%, on average, of the 16S rRNA gene sequences in a sample.
Although sewer systems receive significant microbial inputs from other microbial systems
(e.g., human fecal microbiome, soil, groundwater), the bacterial community structure in
sewage did not resemble any of the communities commonly found in these other ecosys-
tems (Fig. 2).

Although overall bacterial community composition was similar across cities, on av-
erage individual cities had a more consistent bacterial assemblage among the three
sampling dates than comparisons across cities (average Bray-Curtis dissimilarity index
of 45% versus 62%, respectively; Fig. S1). Four samples with a high amount of industrial
waste (estimated from 60% to 100% of load) had a distinct community structure

FIG 1 Relative abundance of the top 20 bacterial families across 71 influent samples sorted by the collection date average air temperature, January
samples (ordered left to right). The temperature ranges from 217 to 19°C. Asterisks indicate families with an average relative abundance of greater than
1% of the total bacterial community across the 211 domestic sewage samples. Black diamonds indicate industrial wastewaters.
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(Fig. S2). These cities were the only ones estimating that industrial waste contributions
accounted for at least 45% of the input to their sewer systems.

Temperature-driven patterns in sewer microbiome structure. Underlying the
consistency of the bacterial community structure in wastewater influent, distinct orga-
nism (based on ASVs) abundance patterns were observed across the cities investigated
(Fig. 3). Air temperature best explained the ASV abundance patterns among the factors
tested (redundancy analysis; Fig. S3). The 250 most abundant ASVs separated into
three coherent abundance pattern bins, which we termed: no (NTP)-, high (HTP)-, and
low (LTP)-temperature preference (Fig. 3). Using random forest regression, we deter-
mined that an air temperature of 10°C (9.7°C and 10.3°C for HTP and LTP, respectively)
was the breakpoint between organisms at higher abundances in the LTP versus HTP
bins. This measured air temperature corresponded to an estimated below-ground tem-
perature (1-meter deep) between 12 and 15°C (see Materials and Methods). The temper-
ature-based ecological preference was highlighted because the communities from warm
cities were more similar to each other than they were to the communities from cold
cities (Fig. S2). In addition, assemblages from cold cities were more similar to each other
than those from warm cities. A larger shift was observed in the bacterial community
composition between sampling periods for cities with a larger change in temperature
between their winter and summer samples (Fig. S4).

The NTP bin was further divided into two perceptible organism abundance pat-
terns, ASVs having low (LV)- or high (HV)-abundance variation across samples. The
NTP-LV ASVs, representing 25% of the top 250 ASVs, had remarkably consistent abun-
dance across all sewer samples and were mostly assigned to the phyla Bacteroidetes
and Firmicutes. Nearly all the ASVs in the NTP-LV bin had 100% sequence identity with
V3–V5 amplicon sequences in the Human Microbiome Project human stool data set,
suggesting that they represent a human fecal signature in wastewater. In contrast, the
remaining 75% of the bacterial assemblage was assigned mainly to Proteobacteria and
had much more variable abundance patterns across samples. Very few of these
sequences matched those from the Human Microbiome Project human stool data set
(Fig. 3).

FIG 2 Nonmetric multidimensional scaling analysis of microbial communities in distinct aquatic and
terrestrial biomes.
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We also examined the relationships among the top 250 ASVs by performing a co-
occurrence network analysis (Fig. S5) for each of the three sampling campaigns
(January, May, and August). We found that the human fecal-associated ASVs (NTP-LV)
were highly interconnected, reflecting a strong cohesive co-occurrence pattern within
this group. Very few of these ASVs had a network connection with a non-NTP-LV ASV,
which indicates the abundance patterns of these ASVs are largely uncoupled from the
community majority and do not respond to the dominant drivers of community compo-
sition change in these data. Moreover, these two modules were mainly split according to
the phylogenetic origin of the ASVs, Firmicutes versus Bacteroidetes. This distinction could
reflect a difference in physiology or decay between the two taxonomic groups (e.g.,
Gram-positive vs Gram-negative) within sewage conveyance systems.

Consistent with our cluster analysis, the network analysis also identified a major co-
occurrence module consisting of HTP and LTP ASVs. This module was recreated in
each of the three sampling months, a further indication that geographic factors influ-
ence the community composition. Among the 27 ASVs we categorized as dominant
(Fig. S7), four were classified as module hubs, i.e., they had a high within-module con-
nectivity (Zi). These ASVs included oligo_06371 (Arcobacter), oligo_07868 (Acidovorax),
oligo_00948 (Acetoanaerobium), and oligo_08466 (Cloacibacterium). Furthermore,
within this module, the LTP ASVs and HTP ASVs had the highest number of connec-
tions with ASVs with the same temperature preference classification.

FIG 3 Bacterial community patterns within the 211 sewage samples. (a) The heatmap shows the relative abundance of the 250 most
abundant amplicon sequence variants (ASVs) (white = low relative abundance; black = high relative abundance). Samples are sorted
by average air temperature during sampling period from the coldest (blue, 217°C) to the warmest cities (red, 128°C). The estimated
size of human population served by the wastewater treatment facilities is depicted on the right panel with the smallest population
displayed in white (960 inhabitants) and largest population displayed in black (2,000,000 inhabitants). ASVs were clustered using the
UPGMA algorithm based on the Bray-Curtis dissimilarity matrix. Four distinct patterns were visible, including ASVs with no-
temperature preference and low-abundance variance across samples (NTP-LV), no-temperature preference and high-abundance
variance across samples (NTP-HV), high-temperature preference (HTP), and low-temperature preference (LTP). The yellow cursor
indicates the temperature threshold (10°C) at which the HTP and LTP community assemblages shifted significantly. (b) Distribution of
the Spearman correlation between the ASV proportions and temperature, and the variance of the ASV proportions across the
samples for each of the four temperature profiles. NMDS, nonmetric multidimensional scaling.
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Dominance of nonfecal-derived genera in sewer microbiome. Among the 1,893
ASVs in the sewer microbiome, 27 were considered dominant as they had a maximum
relative abundance of at least 10% (Figure 4a). The top 10 genera were Arcobacter (with
an average relative abundance of 11%), Acinetobacter (10%), Bacteroides (7%), Acidovorax
(6%), Cloacibacterium (5%), Aeromonas (4%), Flavobacterium (4%), Trichococcus (2%),
Pseudomonas (2%), and Prevotella (3%). These genera all had at least one ASV detected
in $80% of sewage samples. Only seven ASVs were found in all sewer systems investi-
gated. Among them, five shared 100% identity with species deposited in National
Center for Biotechnology Information (NCBI): Arcobacter cryaerophilus (oligo_06304) the
most abundant ASV (not detected in the 100% industrial sewage samples), Acinetobacter
johnsonii (oligo_08632), Aeromonas hydrophila (oligo_08738), Bacteroides graminisolvens
(oligo_06647), and Cloacibacterium normanense (oligo_08466). All have been previously
isolated from sewage (24, 30–33).

Because fragments of the 16S rRNA gene are not discriminant enough to confi-
dently assign sequences to the species level, we used metagenomic sequencing from
18 of the WWTP samples (representatives from cold and warm cities) to identify the
species belonging to the top 10 genera identified using 16S rRNA gene data. To do
this, we mapped our metagenomes to 603 NCBI reference genome assemblies. Overall,
coverage results confirmed the dominance of putative species detected using 16S data

FIG 4 Maximum relative abundance of each ASV as a function of the prevalence of detection across the 211 sewage samples. (a) ASVs are color-coded by
phylum. Asterisks indicate species with 100% match to sequences deposited in NCBI. (b) ASVs are color-coded by temperature preference patterns (see
Fig. 3 and Fig. S7). (c) Families sharing ASV(s) with the Human Microbiome Project (HMP) stool data set. Symbol size corresponds to the median
proportion of sequences for each ASV (when detected). The four sewage samples dominated by industrial waste were not included in this analysis.
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(see Table S1 and Fig. 5 for partial results). In fact, among the NCBI Arcobacter genome
assemblies, A. cryaerophilus (median coverage of 1.79%) and A. butzleri (0.62%) had the
largest coverage. Acinetobacter was dominated by A. johnsonii (2.85%), A. lwoffii (2.33%), A.
colistiniresistens (1.18%), and A. junii (1.01%). Aeromonas was dominated by A. temperans
(3.52%), A. delafieldii (2.05%), A. carolinensis (1.74%), and A. soli (1.47%). Cloacibacterium,
which is represented by one species in the reference genomes, C. normanense, had a me-
dian coverage of 0.39%. Unlike the results predicted from the 16S rRNA gene assignments,
the coverage of Bacteroides graminisolvens (0.13%) was lower than B. dorei (0.66%) and B.
uniformis (0.64%). It should be taken into consideration that these analyses are limited to
the representative genomes deposited in NCBI databases, and unnamed species within
each genus were not included in these analyses.

Most of the dominant ASVs displayed high (HTP)- or low (LTP)-temperature prefer-
ences (Fig. 4b). In some cases, all ASVs belonging to a genus exhibited a temperature
preference. For example, all ASVs assigned to Cloacibacterium displayed HTP, and all
ASVs assigned to Trichococcus showed LTP. These 16S rRNA gene preferences were
supported by the metagenomic read distributions for the warm versus cold sewage
cities (Table S1). Other genera, Flavobacterium and Acidovorax, had ASVs with tempera-
ture and no-temperature preferences, and some abundant genera, including Arcobacter
and Acinetobacter, had both HTP and LTP ASVs. A focus on Arcobacter and Acinetobacter
revealed a strong bifurcation in their ASV abundance patterns that was explained largely
by the ambient air temperature. Among the Arcobacter ASVs assigned to the species
level, A. butzleri (oligo_06218) and A. aquimarinus (oligo_08706) were preferentially
observed in high-temperature samples, while A. suis was preferential to low tempera-
tures (oligo_06232 and oligo_08269). Interestingly, A. cryaerophilus displayed both high

FIG 5 Coverage of published representative pangenomes (row) across the 18 sewage metagenomes (columns) (left), and detection levels of targeted ARGs
among the reads mapped to the representative pangenomes (right). Only the five top Arcobacter, Acinetobacter, Bacteroides, Acidovorax, and
Cloacibacterium representative pangenomes of each species are displayed (based on the median coverage across the 18 metagenomes). The complete
coverage analysis of 603 representative pangenomes is shown in Table S1. Right: green squares show the ARGs detected using DeepARG among all
metagenomic reads mapped to the representative pangenomes. Black borders display ARGs detected in the representative pangenomes using blastx. qacS
was not found in the five most common Acinetobacter species but is present in A. baumannii.
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(oligo_06304)- and low (oligo_06371)-temperature preferences. Regarding the Acinetobacter
assemblage, A. johnsonii (oligo_08632) did not display strong temperature preferences,
unlike A. towneri (oligo_03803), for example, which had a high-preferred temperature.

Human fecal organisms are a small component of sewage. None of the domi-
nant ASVs were attributed to human feces as a source (Fig. 4b and c). Overall, ASVs
shared with human fecal bacteria identified in the HMP represented a small fraction of
the sewer microbiome (;13% of total sequence proportion) (Fig. S6). These ASVs were
primarily assigned to Bacteroidetes and Firmicutes and were classified as NTP-LV, dem-
onstrating a substantial homogeneity of the human signature in sewage regardless of
the city investigated. Notably, within the family Enterobacteriaceae, which contains
common fecal pollution indicators, only 5 of the 30 ASVs were also present in the HMP
database. However, one of these ASVs was fairly abundant (maximum abundance
.5%; Fig. 4c).

The V4–V5 sequences of the gene markers commonly used to track human fecal
contamination, i.e., HF183 and Lachno3, were ubiquitously recovered across the nonin-
dustrial sewer systems (oligo_04154 and oligo_01392, respectively). However, their
maximum relative abundance never exceeded 2.5%, and their median abundance was
0.3%, suggesting that additional indicators specific to sewer systems could offer a
more sensitive measure for surveying the sewage signal in the environment.

Antibiotic resistance profiles of high-abundance organisms. A DeepARG analysis
was performed on reads recruited to the 603 NCBI genomes of the predominant
Arcobacter, Acinetobacter, Bacteroides, Acidovorax, and Cloacibacterium species (Fig. 5).
This process allowed us to use the metagenomic data to assess the occurrence of spe-
cific antibiotic resistance genes (ARGs) associated with these organisms. We found that
blaOXA was present in both the Arcobacter and Acinetobacter reads. Furthermore, sul1
was enriched in Acinetobacter spp., and ermB and tetQ were enriched in Bacteroides
spp. (Fig. 5). Since we only assessed ARG occurrence in the representative genomes
from reference species in NCBI, some classes of ARGs previously reported within these
genera (particularly Arcobacter and Acinetobacter) may not be reflected in this analysis.

DISCUSSION
Sewer systems, a unique environment with a consistent bacterial signature.

The wastewater arriving at treatment plants provides an integrative sample of the mi-
crobial communities harbored in the vast network of pipes beneath our cities. Similar
to how we have gained insight into the microbial ecology of the human gut using fecal
samples, wastewater samples can reflect the metabolic potential of the resident com-
munity members, in addition to surveying the human-derived microbiome passing
through the system. This study entailed a large-scale effort to characterize these micro-
bial populations with a comprehensive U.S. geographic and seasonal representation
and includes a range of system sizes and ages. Each of the 71 U.S. and 1 Spain sewer
systems investigated had a microbial taxonomic composition consistent with sewer
microbiomes reported worldwide (7, 34–36).

The predominance of the same ASVs in gravity sewer systems worldwide underlines
that just like other terrestrial and aquatic (e.g., soils, lakes, or oceans) or host-associated
(e.g., human gut) systems, sewer systems are a highly defined environment that exert
similar and/or convergent selective pressures, which results in bacterial assemblages
with ecologically coherent life strategies or functional traits (37). A high prevalence of
co-occurring members across the 208 samples used in this study may indicate the
presence of metabolic networks that could be explored for either their detrimental
effects or beneficial metabolisms. To draw an analogy to the gut microbiome of mam-
mals (38–40), this urban gut microbiome is shaped primarily by the “diet” of the host,
through human fecal, urine, and household waste loads, creating a common substrate
landscape worldwide. Alterations to typical municipal waste streams seem to have a
large impact on the resultant community. For instance, the predominant Arcobacter
ASV (oligo_06304), detected in all domestic sewer systems, was not detected in the

Microbial Ecology of Sewer Infrastructure mSystems

July/August 2022 Volume 7 Issue 4 10.1128/msystems.00118-22 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

3 
A

pr
il 

20
24

 b
y 

13
4.

1.
1.

55
.

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00118-22


industrial sewer networks, suggesting that high industrial waste discharges and/or low
human loads affect the composition of a typical sewer microbiome.

Temperature-driven sewer ecotypes. The relative abundance patterns of a large
fraction of the nonfecal-derived ASVs exhibited strong high- or low-temperature pref-
erences regardless of the geographic distances between the cities. The result was a
consistent association of some ASVs with cities with a warmer climate and other ASVs
with cities with a colder climate (Fig. S2). Results from this large scale comparison are
congruent with our recent publication exploring the temporal dynamics of the bacte-
rial community over a 5-year monthly time-series within a single city (Milwaukee, WI,
USA) (14). That work showed a striking seasonal cycle that was strongly correlated to
wastewater temperature. Similar observations were reported in German influent sam-
ples (36). The 5-year Milwaukee study at two treatment plants demonstrated that other
water quality parameters, including total suspended solids, biological oxygen demand
(BOD), system flow, or nutrients had either weaker correlations than wastewater tem-
perature or no correlation to the change in microbial community composition. Of
those parameters that were correlated, all were additionally correlated with waste-
water temperature.

In the present study, we found flow or population size did not explain the bacterial
community variability, whereas temperature explained the most variability (Fig. S3) con-
current with the recovery of strong temperature patterns (Fig. 3). We did not further
investigate a global relationship of wastewater parameters to community composition
since each city only had three samples and individual system parameters are often de-
pendent on each other (i.e., amount of gravity flow impacting BOD). Wastewater temper-
ature was not available for many of the plants in our study, or was not measured in a
uniform manner, therefore, we used the past 30-year average daily low air temperatures
on the collection date as a proxy for the climate of that city during the sampling time.
We note that recent studies in the Milwaukee system show the temperature range meas-
ured in sensors within the system is narrower and time-lagged compared to air tempera-
ture (14, 41). While this makes it difficult to relate an actual temperature to the warm or
cold ASVs ecotypes, this method did allow us to bin cities by their general climate at the
time of sampling, which provides a useful metric that may be more accessible than
wastewater temperature for extrapolating to other urban sewer systems.

Most of the predominant bacterial genera in sewers exhibited temperature prefer-
ences. The Cloacibacterium genus showed high-temperature preferences, while overall,
Acidovorax, Flavobacterium, and Trichococcus genera presented opposite temperature
preferences, confirming that previous observations from a single city (14, 18) were
globally applicable. Other genera, including the most dominant organisms Acinetobacter
and Arcobacter, presented contrasted temperature preferences among their members. A
preliminary study with the samples from 12 of the 71 U.S. cities and the samples from
Reus, Spain showed the two most dominant Arcobacter ASVs were at similar levels at a
averaged monthly air temperature below 20°C but diverged greatly above this tempera-
ture, with one increasing and the other decreasing in relative abundance (17). Warm
temperatures appeared to favor ASVs assigned to A. butzleri and A. aquimarinus, while
cold waters favored A. suis (42). In contrast, A. cryaerophilus members presented both
warm and cold temperature preferences. This differentiation may be explained by the
lack of taxonomic classification of short 16S rRNA gene reads beyond the species level
(43) or the existence of four genomovar clusters within this species having contrasted
ecological niches (44). The importance of temperature for modulating microbial com-
munities is a common feature of aquatic habitats (45, 46). In other ecosystems, colder
temperatures may favor aerobic conditions (12); modify biotic interactions, including
competition, grazing, or viral lysis (47); or alter competitive balances through growth
rate modulation. It would be of interest in future work to determine if the within-spe-
cies ecotypes have unique metabolic activities or alternatively, have redundant capa-
bilities but are adapted to different temperature ranges.

Ecology of the most abundant bacterial groups in sewers. Most of the predomi-
nant pipe residents, including Arcobacter, Acidovorax, Aeromonas, Cloacibacterium, and
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Trichococcus members have been described as capable of facultative anaerobic (30,
48–51) or aerotolerant anaerobic growth (52). This suggests that oxygen tolerance/use
flexibility is a key factor in surviving the oxic-anoxic fluctuations that are common to
gravity sewer systems.

Arcobacter and Acinetobacter have been highlighted as part of the core genera in
sewage worldwide (13). They even have been found in Hong Kong (China) sewer sys-
tems, where toilets are flushed with seawater (19, 53), even though salinity is a major
environmental determinant of microbial community composition (54). In this study, we
show that at a very fine taxonomic level, i.e., ASVs, there are abundant core members
of these genera in nearly all (.95%) of the 71 U.S. cities examined.

In wastewater, both Arcobacter and Acinetobacter members have been described as
chemoautotrophic nitrate-reducing, sulfide-oxidizing bacteria under anaerobic condi-
tions (55–57), showing their ability to oxidize sulfide to sulfur or sulfate or using nitrate
and/or nitrite as the electron acceptor through the dissimilarity and assimilatory nitrate
reduction to ammonia pathways, respectively (58–60). Thus, similar to other sulfur-oxidiz-
ing bacteria, Arcobacter and Acinetobactermay have a selective advantage in sewage envi-
ronments by tolerating higher concentrations of hydrogen sulfide and growing at very
low-molecular-oxygen concentrations (61). In addition, some Arcobacter species, including
A. cryaerophilus strains isolated from wastewaters, were observed/predicted to produce
hydrogen sulfide (62–64), which can contribute to pipe corrosion in sewer systems, a
highly detrimental effect of bacterial metabolism within these systems.

Human bacterial signatures in sewage. Understanding the composition, function,
and ecology of these systems is not only important for treating waste, but for monitor-
ing the health of human populations, as the COVID-19 pandemic has illustrated.
Overall, the human fecal signature within the sewer microbiome was highly consistent
and homogeneous across the cities. Our team previously reported that this signature
reflects the fecal microbial community of human populations, allowing for the capture
and prediction of global health traits, e.g., obesity (20). Other applications include
tracking antibiotic resistant bacteria and biomarkers of human health (65–68).

In this study, about 30% of the ASVs belonged to fecal-associated families, but only
half (13% of the community) matched the human fecal microbiome. Congruent with
the proportion observed in other studies (14, 15), this result underlines that specific
taxa within commonly fecal-associated families (e.g., Bacteroidaceae, Lachnospiraceae,
Ruminococcaceae) are likely pipe-associated members. In fact, pipe-associated ASVs
belonging to fecal-associated families displayed strong temperature-driven preferen-
ces and were not recovered within the same network as the fecal bacteria (Fig. S7).
Previous work by Feng and McLellan (69) demonstrated that the most abundant
Bacteroides was not associated with human stool. Interestingly, in this study,
Enterobacteriaceae had ASVs that matched the human fecal microbiome but also pre-
sented temperature preferences. Although these findings may reflect actual ecological
preferences of gut-specific taxa in a secondary habitat (70), they may also be a result of
false-positive matches between sewage ASVs and the Human Microbiome Project
databases due to the low resolution of short 16S rRNA gene amplicons. Nevertheless, it
is interesting to note that Enterobacteriaceae comprise a small fraction of the stool
microbiome of healthy individuals (40, 70) but represented ;2% of the sewer micro-
biome overall. This enrichment may be of concern since Enterobacteriaceae produces
extended-spectrum beta-lactamases, including carbapenemases that have emerged
over the last two decades as a major antimicrobial-resistance health concern (71).

Human-specific markers, e.g., human Bacteroides or human Lachnospiraceae (72,
73), have been developed to track human fecal pollution in the environment. However,
these markers do not represent a large fraction of the overall sewer microbiome. Using
markers specifically associated with sewer infrastructure could increase sensitivity for
monitoring human sewage contamination in the environment (13). Arcobacter and
Acinetobacter are in extremely high abundance in untreated sewage, and while both
have been isolated independently from human and animal hosts and other habitats
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such as agricultural soils and polluted industrial environments (74, 75), their co-occur-
rence is indicative of sewage contamination (76–79). Tracking a suite of these organisms
could serve as a microbial signature for contamination from sewer infrastructure (76, 80).

Antibiotic resistance gene reservoirs in dominant organisms. There are ongoing
concerns that sewer systems are hot spots for ARGs in sewers (7, 81, 82). However,
within sewer systems, many ARGs are likely primarily associated with pipe-resident
rather than human-associated bacteria. This is an important distinction if untreated
wastewater is going to be used to survey for ARGs (23, 83). The two dominant genera
Arcobacter and Acinetobacter contain multiclass ARGs (24, 27, 84), and specific species
within these genera are considered opportunistic pathogens. Some ARGs may be
intrinsic to the organisms and present in ancestorial strains (85). Furthermore, the pres-
ence of multiple ARGs might underline the strong biotic pressures in sewers (e.g., com-
petition) and/or the constant trace levels of chemicals, which may favor the enrichment
of ARGs as ultimate survival strategies (86). We identified multiple extended spectrum
beta-lactamase (ESBL) ARGs in the metagenomic data mapped to the pangenomes of
Arcobacter, Acinetobacter, and other highly abundant members, but also did not identify
some previously reported ARGs associated with these genera. We utilized multiple
genomes (up to 50) obtained from NCBI to represent the species of the dominant organ-
isms. Mapping of metagenomic reads recovered patterns similar to ASV distribution
across these samples; however, the density of metagenomic reads may not be accurate
since reads may be recruited to highly conserved regions of the 16S rRNA gene or other
conserved genomic features such as transposons or phages that would result in a false
positive signal. Our analysis was limited by the number and sources of published
Arcobacter and Acinetobacter genomes, highlighting the need for cultured representa-
tives and a more detailed analysis of the genomic content of these dominant genera
from the sewer system environment.

The human-derived component of the sewage microbial community is most relevant
for wastewater surveillance of ARGs. The potential propagation of Enterobacteriaceae
and the large reservoir of ESBL genes within highly abundant resident pipe bacteria con-
found these assessments and require a more comprehensive understanding of their
ecology before wastewater surveillance for these targets would be interpretable.

Conclusions. Sewer infrastructures are new habitats for unique microbiomes and
are increasingly being recognized as a means to monitor human populations. With the
high biomass of resident organisms and high metabolic potential of sewer microbiota,
identifying functional guilds could lead to the engineering of this community to
reduce harmful activity and enhance beneficial functions. In this study, we conducted
a large-scale survey of 71 cities over three distinct seasons that allowed us to identify
ubiquitous sewage members and common distribution patterns. The composition of
the sewer microbiome exhibited a surprising consistency at a high resolution, i.e., ASV
level, across all systems explored, suggesting characterizations of these systems could
be extrapolated globally. Furthermore, the COVID-19 pandemic has illustrated that
sewer systems can act as an integrated sample of large human populations (67, 87,
88). As we expand efforts past the current pandemic crisis, monitoring for clinically rel-
evant antibiotic resistance traits and the organisms that contain them will become
more important (68). A more comprehensive understanding of the organisms that
serve as reservoirs will be critical in this effort. Sewer infrastructure represents the guts
of a city, and in a sense, it resembles the gastrointestinal tract of an individual. The way
the gastrointestinal tract is studied extensively to understand the health and the qual-
ity of life of a single individual, much can be learned about the same metrics for a
given city and its inhabitants by keeping an eye on the sewer infrastructure.

MATERIALS ANDMETHODS
Sample collection. Sewage influent samples from 71 cities and 78 wastewater treatment plants

(WWTPs) across the United States and one city in Spain were collected during August 2012, January
2013, and May 2013 as part of former surveys. Details on the collection method can be found in (17, 20).
Briefly, 1 liter of single-time point grab or 24-h flow-weighted composite samples were collected and
shipped overnight on ice. A total of 25-mL subsamples were filtered through 0.22-mm mixed cellulose

Microbial Ecology of Sewer Infrastructure mSystems

July/August 2022 Volume 7 Issue 4 10.1128/msystems.00118-22 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

3 
A

pr
il 

20
24

 b
y 

13
4.

1.
1.

55
.

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00118-22


ester filters (47-mm diameter; Millipore, Billerica, MA, USA) and stored in 2-mL screw-cap freezer tubes at
280°C. The list of the samples and their associated metadata are reported in Data Set S1.

DNA extraction. DNA from filters was extracted using the FastDNA spin kit for soil (MP Biomedicals,
Solon, OH, USA) according to the manufacturer’s instructions. One modification of this protocol was applied:
Cells were mechanically lysed using a MiniBeadBeater-8 cell disruptor (BioSpec Products, Bartlesville, OK,
USA) for 1 min at room temperature. Crude DNA extracted was purified using the PowerCleanDNA cleanup
kit (MoBio Laboratories, Carlsbad, CA, USA), and stored at220°C until further processing.

16S rRNA gene sequencing and library construction. Amplicon libraries were constructed at the
Josephine Bay Paul Center at the Marine Biological Laboratory (Woods Hole, MA, USA) using the MiSeq
Illumina platform. Details for amplicon library construction and sequencing procedures for the V4 to V5
regions are described in Morrison et al. (89). Trimming, quality-filtering and merging procedures are
described in Newton et al. (20). Raw sequences are archived in the National Center for Biotechnology
Information Sequence Read Archive under BioProjects PRJNA261344 and PRJNA264400. Processed
sequenced can be retrieved from the website Visualization and Analysis of Microbial Population
Structures; https://vamps2.mbl.edu/) under the project name SLM_CITY_Bv4v5 (90).

We rarefied each sample to 80,000 sequences. Rarefied samples were analyzed by minimum entropy
decomposition, an unsupervised sensitive oligotyping method that uses Shannon entropy to partition
amplicon sequence data sets into homogeneous units, so-called ASVs, that can differ from each other
by as few as a single base pair (91). Performed using the oligotyping pipeline version 2.1, this analysis
distinguishes DNA sequence differences in nucleotides originating from true genetic variation among
organisms from noise due to sequencing errors. ASVs that do not meet the minimum substantive abun-
dance (M) criterion were discarded. M was set to 300. Sequences were taxonomically assigned using
RDP classifier (92) with an 80% bootstrap value.

Shotgun sequencing, library construction, and processing. We sequenced the sewage metage-
nome for six U.S. cities in all three sample periods. Shotgun metagenomic libraries were prepared with
OVATION Ultralow protocol (NuGen) and used an Illumina NextSeq 500 platform to generate 2 � 150 nt
paired-end sequencing reads. Low-quality reads were removed using the ‘iu-filter- quality-minoche’ com-
mand in illumina-utils v1.4.1 (93). We did not succeed in assembling high-quality genomes from the sew-
age metagenomes using MEGAHIT (94) using the workflow described by Delmont et al. (95), likely due to
the high bacterial diversity and diverse populations with a genus or species in this complex matrix. Raw
sequences were deposited to the NCBI Sequence Read Archive under the BioProject PRJNA801794.

The coverage of representative species belonging to predominant genera in sewage was evaluated
across the 18 sewage metagenomes. We screened a total of 3,794 genome assemblies deposited on NCBI
GenBank and RefSeq databases. A maximum of 50 genomes were used to represent a species. We
removed 1,755 redundant genomes with the function ‘anvi-dereplicate-genomes’ in anvi’o v6.1 (96) using
the program PyANI (97) with the default parameters and a similarity threshold of 0.99. Dereplicated pange-
nomes for 603 species were concatenated and were used to recruit reads from metagenomes using the
default parameters of Bowtie2 (98). The list of the NCBI deposited genomes used in this analysis is detailed
in Table S2. Finally, we performed a DeepARG analysis (99) using the online platform (using 60% identity
and 50% coverage) to explore the presence of antibiotic resistance genes in the recruited reads of the five
predominant species of the five top genera. For each species, the BAM files listing recruited reads across
the 18 metagenomes were concatenated and converted into fastq using SAMtools v1.10 (100) prior to the
analysis. In parallel, we also explored the presence of these genes in the representative pangenomes with
the command line blastx (101) (e-value,1e-50) using the DeepARG database accessible through the com-
mand ‘deeparg download_data.’

Human Microbiome Project comparison. We used the Human Microbiome Project (HMP) to identify
among our ASVs, which shared 100% identity with the human stool sequences. We used the files generated
by QIIME on the HMPv35 data set, including the v1.3.0-dev OTU table (https://www.hmpdacc.org/hmp/
HMQCP/). This data set was obtained by targeting the region V3 to V5 of the 16S rRNA gene. Only stool
samples not listed as mislabeled or contaminated and with a sequencing depth higher than 2,000 sequen-
ces (corresponding to the lower quartile of sequences in the stool samples) were considered. Singletons
were discarded. A total of 223 stool samples composed of 9,650 OTUs were used to compare our ASVs to
the HMPv35 data sets. An ASV was considered “detected in the stool HMPv35 data set” when its exact
sequence was found in the reverse complement of at least one of the 9,650 OTUs composing the stool
HMPv35 data set.

Earth Microbiome Project analysis. We used the Earth Microbiome Project (EMP) data set to explore
bacterial community structure differences between our 16S sewage samples and other aquatic and terrestrial
habitats. Data were gathered from the EMP database “emp_cr_silva_16S_123.subset_2k.biom” (http://ftp
.microbio.me/emp/release1/). To limit the bacterial dissimilarities associated with dispersal limitation, we only
considered samples collected in the United States and labeled as air, freshwater, freshwater sediment, human
gut, indoor, marine, marine sediment, mine drainage, and soil metagenomes. Because the EMP primers target
the region V4 of the 16S rRNA gene we trimmed our data set to the EMP primer positions (102) using
Cutadapt (103).

Environmental parameters. Chemical and physical measurements were provided by the WWTPs (see
Data Set S1 for details). Moreover, we aggregated data for the past 30-year average daily low air tempera-
tures on the collection date for each sample from National Oceanic and Atmospheric Administration (NOAA)
National Climatic Data Center (http://www.ncdc.noaa.gov) On the day of the sampling collection, 1-meter-
deep soil temperatures were also extracted from the NOAA database, when meteorological stations were
located within 100 km of the WWTPs (n = 30). Other parameters were estimated, including the size, the median
age, and the percentage of obese in the served population. Refer to Newton et al. (20) for calculation details.
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Network analysis. Co-occurrence networks were constructed for each sampling campaign based on
counts (zero left blank) of the 250 top ASVs using Molecular Ecological Network Analyses pipeline
(http://ieg4.rccc.ou.edu/mena/login.cgi) (104). Pairwise similarity was calculated for each ASV pair using
Pearson correlation coefficients. Random matrix theory-based method (using Gaussian orthogonal en-
semble statistics and Poisson distribution) was used to automatically identify the appropriate similarity
threshold (P , 0.05) to construct the networks. Network modularity was characterized using the greedy
modularity optimization method (105). Furthermore, within-module connectivity (Zi) and among-mod-
ule connectivity (Pi) of each node were calculated to classify nodes into four categories: module hubs (Zi

. 2.5 and Pi , 0.6), network hubs (Zi . 2.5 and Pi . 0.6), connectors (Zi , 2.5 and Pi . 0.6), and periph-
erals (Zi , 2.5 and Pi , 0.6) (106). Networks were visualized using Cytoscape 3.7.2 (107).

Statistical analysis. All statistical analyses were performed using R v.3.6.3 (108). The relative impor-
tance of spatial (latitude, longitude), environmental (air temperature), population (size, age, and obesity),
and WWTP attributes (grab/composite sample, separated/combined systems, and average daily flow) fac-
tors was assessed by decomposing the bacterial community variation (109) using the function varpart in
the R package vegan (110). Only the 250 most abundant ASVs were considered in this analysis. Qualitative
variables were transformed into dummy variables. Qualitative variables were centered and scaled.
Redundancy analysis (RDA) was performed on the sets of factors that explained the most variance of the
assemblages, i.e., spatial parameters (6%) and temperature (9%), to identify which variable better explained
the shift in the community. We did not include physical-chemical parameters (e.g., total phosphate, oxygen)
in this analysis due to the limited data collected across the 211 samples. However, RDA performed on a sub-
set of samples indicated that their importance was minor compared to the spatial parameters or the tem-
perature (data not shown). We identified at which temperature the bacterial community assemblage was
shifting using random forest regression (constructed with 200 trees) implemented in the package
randomForest (111). We used the function plot.getTree in the package reprtree (112) to draw the decision
tree generated by random forest. We set the temperature breakpoint as the value associated with the first
decision tree split. The breakpoint was estimated using atmospheric temperature and not ground tempera-
ture, which is more likely to reflect temperature in wastewater systems. The Correlation between air and soil
temperatures was 0.83 (Pearson correlation, n = 30, P , 0.001). A linear model was performed using the
function lm on these two variables. The normality of variables and the distribution of residuals were verified.
The function predict was used to estimate the soil temperature at a 95% level of confidence from air tem-
perature. Nonmetric multidimensional scaling (NMDS) analysis (k = 2) was performed using the R package
vegan to compare the bacterial community composition between sewage and the distinct terrestrial/
aquatic microbiomes (see Earth Microbiome Project microbiomes listed above). Figure 3a was realized using
anvi’o (96). We used an NMDS analysis (k = 2) (Fig. S7) to determine the temperature preferences of the
ASVs not classified to any of the four temperature preferences using correlations (Figure 3b).
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