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Abstract
Permafrost regions, characterised by extensive belowground excess ice, are highly vulnerable to
rapid thaw, particularly in areas such as the Yedoma domain. This region is known to freeze-lock a
globally significant stock of soil nitrogen (N). However, the fate of this N upon permafrost thaw
remains largely unknown. In this study, we assess the impact of climate warming on the size and
dynamics of the soil N pool in (sub-)Arctic ecosystems, drawing upon recently published data and
literature. Our findings suggest that climate warming and increased thaw depths will result in an
expansion of the reactive soil N pool due to the larger volume of (seasonally) thawed soil. Dissolved
organic N emerges as the predominant N form for rapid cycling within (sub-)Arctic ecosystems.
The fate of newly thawed N from permafrost is primarily influenced by plant uptake, microbial
immobilisation, changes in decomposition rates due to improved N availability, as well as lateral
flow. The Yedoma domain contains substantial N pools, and the partial but increasing thaw of this
previously frozen N has the potential to amplify climate feedbacks through additional nitrous
oxide (N2O) emissions. Our ballpark estimate indicates that the Yedoma domain may contribute
approximately 6% of the global annual rate of N2O emissions from soils under natural vegetation.
However, the released soil N could also mitigate climate feedbacks by promoting enhanced
vegetation carbon uptake. The likelihood and rate of N2O production are highest in permafrost
thaw sites with intermediate moisture content and disturbed vegetation, but accurately predicting
future landscape and hydrology changes in the Yedoma domain remains challenging. Nevertheless,
it is evident that the permafrost-climate feedback will be significantly influenced by the quantity
and mobilisation state of this unconsidered N pool.

1. Introduction

Regions with a high amount of belowground excess
ice are especially prone to rapid thaw and associ-
ated deep mobilisation of sedimentary organic mat-
ter (OM). A prime candidate for rapid and deep thaw
processes is the focus region of this study: the Yedoma
permafrost domain in Siberia and North America.
This permafrost region, covering 2587 000 km2

(Strauss et al 2021) consist of tens of metres of ice-
rich silty soil intersected by ice wedges that developed
in tundra-steppe environments of the late Pleistocene
(as seen from the cliff shown in figures 1 and 2).
Other deposits, such as thermokarst lake and drained
lake sediments orHolocene cover layers started devel-
oping due to permafrost degradation and aggrada-
tion during the Late Glacial and the Holocene warm
periods (Schirrmeister et al 2020). Because of the
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region’s relatively high OM content and substan-
tial sedimentary volume, the Yedoma domain con-
tains 327–466 Gt organic carbon (OC) and 37–45 Gt
total nitrogen (N) (Strauss et al 2017, 2022), which
amounts for 26% and 42% of the C and N stocks
located in permafrost worldwide, respectively. The
thawing of the Yedoma domain can mobilise the car-
bon reservoirs and release significant amounts of the
greenhouse gases carbon dioxide (CO2) and meth-
ane (CH4) (Jongejans et al 2021, Schuur et al 2022).
It can also enhance nutrient mobilisation, including
a primary nutrient N. This is important, since des-
pite the high abundance of N in soil OM, its avail-
ability in reactive forms is limited by low temper-
atures and slow mineralization rate in Arctic soils
(Nadelhoffer et al 1991). The increased mobilisation
of N due to thawing can promote primary productiv-
ity in both terrestrial and aquatic ecosystems (Sanders
et al 2022). On the other hand, it can enhance soil
decomposition processes, potentially counteracting
the benefits of photosynthetic C-uptake by enhanced
vegetation growth (Mack et al 2004). Consequently,
alterations in N availability can influence the OC
balance in the Yedoma domain through these feed-
back mechanisms, although the overall impact is
uncertain.

In this study, motivated by the discovery of a
significant N stock in the Yedoma domain (Strauss
et al 2022), we discuss three main questions related
to the fate of soil N, increasingly liberated from the
frozen ground in the thawing Yedoma domain: (1)
how does the thawed N become accessible for plants
and microbes? (2) What are the most likely N-loss
pathways through which the liberated N becomes
inaccessible to these organisms?, and (3)which are the
potential climate feedback loops associated with these
different pathways of N uptake and release?

To address these questions we also develop a
concept of N-mobilisation, where we include thaw,
physical erosion processes, leaching and microbial
transformations.

2. N quantity and quality: soil N forms in
permafrost and N bioavailability

The ecosystem N cycle consists of multiple micro-
bial and plant-related processes, which are respons-
ible for transformations between numerous solid,
soluble and gaseous forms of N (figure 1). The
reactive N forms available for biological organisms
includemineral N in the form of ammonium (NH4

+),
nitrite (NO2

−) and nitrate (NO3
−), as well as dissolved

organicN (DON). From these reactiveN forms,DON
was found to be the most important in high-latitude
soils because of the low abundance of mineral N
(figure 1) (Jones and Kielland 2002, Fiencke et al
2022). DON comprises approximately half of total
dissolved N stocks in a boreal wetland (Kane et al

2010), which is a dominating ecotype of the Yedoma
domain, especially in its southern parts.

In the ice-rich Yedoma domain, permafrost
warming will increase the size of the active soil N
pool due to an increase in seasonally thawed soil
volume (figure 2) and more rapid N-cycling pro-
cesses in warming soil (Schuur et al 2022). From
a geomorphological perspective, the two processes
determining the fate of N currently locked to per-
mafrost are active layer deepening (gradual thaw),
and rapid thaw processes, like thermokarst or ther-
mo/thaw slump erosion (figure 3). This physical pro-
cess of permafrost degradation is the first step of
N-mobilisation through liberation from thawed soil,
which needs to happen before any organisms can
access the permafrost N. Although thermokarst and
erosion caused by excess ice thawing are more prone
to happen in ice-rich permafrost such as the Yedoma
domain, gradual thaw is happening across the entire
permafrost region, encompassing millions of square
kilometres beyond the Yedoma domain, where act-
ive layers are deepening. This makes N liberation via
gradual thaw a phenomenon spanning the circum-
Arctic region

Studies on lability of N compounds in Yedoma
deposits are sparse, but one of these rare studies, con-
ducted in SiberianYedomadeposits (Mack et al 2010),
found a liberation of 250± 107µgN g−1 soil yr−1 in a
laboratory incubation experiment. Based on these N
release rates, they assumed that thaw and decompos-
ition of a 1 cm deep layer of frozen Yedoma depos-
its alone, if exposed to unfrozen, oxygenated condi-
tions, could supply 3 g N m−2 (Mack et al 2010) to
microbial growth and metabolism as well as to veget-
ation growth. This amount is comparable to plant N
uptake rates of 0.2–8.3 g N m−2 yr−1 reported for
shrubby grass, tussockmoss and forest tundra vegeta-
tion, summarised byWild et al (2018), clearly demon-
strating the importance of this added N liberated
from permafrost. Additionally, significantly higher
rates of net N mineralisation and nitrification were
found in thawed Yedoma as compared to Holocene
cover deposits (Marushchak et al 2021).

Differences in N density between the Yedoma
domain’s active layer (1.6 kg Nm−3) and the Yedoma
domain’s permafrost soils (0.9–2.2 kg N m−3) were
found to be small (Strauss et al 2022). While Arctic
soils contain significant N stocks in soil OM, typic-
ally little of this N is biologically available (Shaver et al
1992, Buckeridge et al 2010, Beermann et al 2017).
The fraction of readily biologically available dissolved
N in Arctic ecosystems ranges from 0.01% to 3% of
total soil N stocks (Shaver et al 1992, Buckeridge
et al 2010).

A simple, first order proxy for the bioavailabil-
ity of N following thaw is the C:N ratio. Compared
to Pleistocene (Yedoma) and early Holocene perma-
frost deposits (Taberites), the active layer soils of the
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Figure 1. The simplified nitrogen (N) cycle in the context of the potential response of the Yedoma domain (land, river, and delta)
to climate change. Terrestrial permafrost thaw in the ice-rich Yedoma domain causes landscape collapse and can affect terrestrial
gas fluxes, or it can be leached into freshwaters, affecting its reactivity. The cliff picture inset shows an eroding Yedoma cliff in
Alaska at the Itkillik River, Alaska (located∼69.567,−150.869). Sketch adapted fromMann et al (2022). CC BY 4.0.

Figure 2. Illustration of alternative usage and loss pathways (gaseous losses, lateral flow/leaching, plant uptake) in various
conditions. Background pictures from the Buor Khaya peninsula, Siberia (located∼71.60, 132.23).

Yedoma domainwere found to have higher C:N ratios
(Strauss et al 2022), implying a lower rate of N min-
eralisation there (Booth et al 2005, Liu et al 2017).
Significantly higher rates of net N mineralisation and
nitrification were found in thawed Yedoma as com-
pared to Holocene cover deposits (Marushchak et al
2021). An accumulation of NH4

+ was observedwithin
Yedoma permafrost as compared to the active layer
(Strauss et al 2022), likely due to mineralisation of
OM with lower C:N ratios and delayed or lacking
plant uptake (Uhlí̌rová et al 2007). This elevated sup-
ply of NH4

+ could also fuel the nitrification rates.
Recently, Hansen and Elberling (2023) confirmed this

by stating that permafrost soils across the Northern
Hemisphere contain larger concentrations of biolo-
gically available inorganic N (mainly as NH4

+) than
the active layer. Also in sub-Arctic peatlands, available
N in near surface permafrost were seven times higher
than in active layer permafrost; and higher rates of
net N mineralisation and plant N uptake were also
observed (Keuper et al 2012). For permafrost from
the Tibetan Plateau, the opposite case was found, hav-
ing more N in the active layer than in the permafrost
below (Mao et al 2020).

The vegetation type dominating during the time
Yedoma deposits accumulated can partly explain the

3
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high lability of N compounds in Yedoma perma-
frost. Most of the Yedoma domain includes thick
permafrost deposits that accumulated in the late
Pleistocene, when grassland ecotype was dominating
there (Zimov et al 2012). In their synthesis study on
gross Nmineralisation rates, Booth et al (2005) found
that OM from grasslands appears to have lower C:N
ratios and is inherently more productive for NH4

+

than OM from forested or woody sites with higher
C:N ratios. Themobilisation of the deeper still peren-
nially frozen N rich Yedoma OM during permafrost
thaw likely represents an important source of addi-
tional bioavailable N to the terrestrial as well as adja-
cent aquatic ecosystems.

3. Fate of N from thawed permafrost

3.1. Plant N uptake
Since plant growth in high-latitude ecosystems is
usually N limited (Beermann et al 2015, 2017), N
release from thawing permafrost deposits may boost
plant productivity and thus CO2 fixation from the
atmosphere through photosynthesis. However, the
strength of this feedback is strongly affected by how
well the liberated nutrients includingNwill be access-
ible for plants (Pedersen et al 2020) or microbes
(Baker et al 2023). The accessibility of nutrients is
influenced by the spatial and temporal patterns of
N release and transport, the presence or absence
of plants, plant, species composition, plant root-
ing depth as well as soil characteristics. Seasonal
variability plays an important role here: Plants and
microbes are able to immobilise available N (figure 2)
before photosynthetic activity sets in during the win-
ter/spring transition (Edwards and Jefferies 2010).
However, seasonal declines in microbial biomass may
result in another pulse of available N (Bardgett et al
2007). Active layer deepening, apart from exposing
more OM to microbial decomposition, leads to a
longer thawing period, thereby prolonging the period
with biologically available soil N.

Active layer deepening likely also results in direct
N inputs to the ecosystemN cycle from newly thawed
permafrost to the bottom of the active layer, as well as
longer soil N availability, especially in the first years
after thaw (Salmon et al 2016, 2018).

It has been shown, however, that due to a tem-
poral mismatch between peak vegetation growth
(mid-summer) and maximum thawing depth (late
summer/autumn), there is incomplete utilisation of
nutrients by plants near the permafrost table (Lacroix
et al 2022). Also, plants will not necessarily be able
to access the N released from permafrost, if they are
located deeper down than their rooting zone (Keuper
et al 2017). Incomplete plant N use can cause a nutri-
ent oversupply near the permafrost table, which may
lead to freely available N for microbial cycling pro-
cesses such as nitrification and denitrification. This,

in turn, could lead to emissions of N2O, a strong
greenhouse gas and stratospheric ozone-depleting
substance (figure 2 and Lacroix et al (2022)), or
increased losses of N via downward vertical leaching
and lateral flow (figure 2, chapter 3.2). This may be
the case with gradual active layer deepening, while
abrupt thaw exposes the newly thawed material to
the surface, making it readily available for newly
established vegetation on retrogressive thaw slumps
(Marushchak et al 2021) or in thermokarst lakes
(Walter Anthony et al 2014).

In retrogressive thaw slumps and other disturbed
sites, however, development of full vegetation cover
takes several years, and easily exceeds the capacity
of plants to take up N during early stages of succes-
sion the mineral N supply (Marushchak et al 2021).
This successional mismatch is probably also true for
the process of surface water generation resulting from
the melting of ground ice and subsequent subsid-
ence, although there is limited literature on this topic.
Thermokarst lake and gully formation leads to dis-
tinct vegetation dynamics, influencing the utilisation
of newly available N by plants. The development
of aquatic landscape features, such as small pools
and troughs, requires colonisation by aquatic veget-
ation (primarily consisting of mosses and sedges)
before they can effectively utilise the accessible N
for carbon sequestration. Nevertheless, once the full
vegetation cover is established on these disturbance
sites, they exhibit the potential for considerable
productivity.

Thus, increased N availability by permafrost thaw
in soils could enhance net primary productivity and
increase OC stocks in plant biomass, but this might
not always be the case. Some experimental evid-
ence confirms that plant growth increases with newly
thawed deep N sources, while other studies show that
effects on OC acquisition might be limited since only
few deep-rooting plant species will be able to exploit
the newly thawed N (Keuper et al 2017). Considering
that a large part of the Yedoma domain lies within
the continuous permafrost zone (with a shallow act-
ive layer depth of <1 m), it is likely that N in the soil
layers exposed by active layer deepening may become
accessible to deep rooting plants (see the gradual
thaw pathway in figure 3), if there is no temporal
mismatch.

Recently, a study of vegetation types in retrogress-
ive thaw slumps (Buckeridge et al 2023) revealed that
shrubs are the best candidate for plant N uptake as
they have a deep vertical rooting potential (figure 2)
and can reach the deep N stocks, as also found by
Hewitt et al (2019). This is in line with the shrubifica-
tion which has been observed in Arctic tundra due to
recent warming (Frost et al 2013). Whether increased
vegetation stocks may offset soil OC losses is there-
fore still uncertain (McGuire et al 2018, Mauritz et al
2021, Schuur et al 2021, 2022).
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3.2. Lateral and vertical flow
In the Yedoma domain (and other ice-wedge-bearing
permafrost), the thawing of ground ice frequently
results in elevated surface water levels. This phe-
nomenon becomes apparent through the degradation
of ice-wedge polygonal landscapes, resulting in the
formation of polygonal pools and ice wedge troughs,
and sometimes leading to interconnected hydrolo-
gical pathways (Liljedahl et al 2016). Importantly,
this process is likely to serve as an increasingly sig-
nificant source of nutrients (Vonk et al 2015). For
instance, Koch et al (2018) observed a rapid decline in
ammonium (NH4

+) levels within deep trough ponds,
attributable to biogeochemical cycling.

Runoff from Holocene cover on top of Yedoma
uplands and some refrozen thermokarst basins sed-
iments of the Yedoma domain can transport nutri-
ents like NO3

− and NH4
+ to aquatic systems. This

runoff/lateral flow is limited in deeper strata, espe-
cially in Taberites beneath thermokarst lakes, as they
are (at least partially) (re-)frozen. Vertical flow could
occur as well if a groundwater connection is present,
or through transport within plant roots in a through-
going talik. Particulate N and DON originating from
runoff could be deposited on floodplains, in river
deltas, or in the nearshore sediments of the Arctic
shelf seas (Ramage et al 2018, Marzadri et al 2021).
If leached and transported to the aquatic systems, the
fate of N strongly depends on the form and quality
of N, as well as other stream network characteristics
such as redox potential, oxygen status, availability of
other nutrients, pH, temperature and microbial and
plant community composition. Additionally, water
transparency and sediment content are controlling
the availability of light and thus nutrient uptake and
primary productivity.

Nutrient losses through lateral flow and vertical
leaching are potentially a major factor in overall tun-
dra nutrient budgets (Mack et al 2004, Schaeffer
et al 2013). Given the observed increases in tundra
stream NO3

− export from 1978 to 2006 (McClelland
et al 2007, Townsend-Small et al 2011), understand-
ing mechanisms for N availability and losses in tun-
dra soils is important. However, estimates of nutri-
ent leaching losses from tundra soils remain limited
(Harms and Jones Jr 2012, Treat et al 2016). Rates of
N mineralisation, N assimilation and immobilisation
vary seasonally due to interactionswith plant biomass
andmicrobes (Schmidt et al 2002, Sorensen et al 2008,
Baker et al 2023) and further complicate estimates of
N leaching losses. For example, soil N losses increased
significantly during the late growing season at a
high-Arctic tundra site as plants senesced (Schaeffer
et al 2013).

Losses of DON account for the majority of soil N
leaching to streams from pristine ecosystems (Hedin
et al 1995, Perakis and Hedin 2007) like Arctic eco-
systems (Lafrenière and Lamoureux 2008,McNamara

et al 2008). The export of dissolved OM, and there-
fore DON, is related to dissolved OM concentrations
within the soils, dissolved OM retention within the
soil, and hydrologic flux from the soil.

The export of dissolved OM is also controlled by
the amount of runoff. Olefeldt and Roulet (2012)
found substantially lower dissolved OM fluxes from
a permafrost peatland than from other peatlands and
concluded this was the result of less runoff due to
presence of impermeable permafrost. Changes in the
flow path of water due to permafrost thaw will alter
dissolved OM and N inputs to aquatic ecosystems,
resulting in predictions of increasing DON fluxes in
Siberian watersheds (Frey et al 2007).

In streams, nutrient export is highly variable over
time and space. The majority of nutrient export in
Arctic rivers occurs during spring freshet (Holmes
et al 2012, Juhls et al 2020). Holmes et al (2012)
estimated dissolved N loading to be 1.26 Tg per year;
roughly two-thirds (0.85 Tg) was organic N over the
inorganic remainder (NO3

− and NH4
+). Additionally,

there is seasonal variability in the quantity of the
dominant N form released in the Yedoma domain. As
was found by Sanders et al (2022), who studied the
Yedoma domain, DON is predominantly transported
to the ocean in summer, while the concentrations of
exported DON and NO3

− are similar during periods
with ice cover.

Besides quantity, the quality of dissolved OM is
also temporally variable. OM quality differs during
the spring freshet from the growing season; 20%–
46% of dissolved OM lost during spring freshet is
degraded relatively rapidly (Michaelson et al 1998,
Holmes et al 2008), while dissolved OM exported to
theArctic ocean during the summer is slow to degrade
(Holmes et al 2008). N released by dissolved and par-
ticular OM mineralisation may result in increased
stream productivity or N retention (Peterson et al
2001), denitrification (Peterson et al 2001), or export
to the Arctic Ocean (Frey et al 2007, Mann et al
2022, Sanders et al 2022, Ogneva et al 2023). The
net effect on climate, considering direct and indir-
ect greenhouse gas emissions from both OC and N
cycles is presently difficult to estimate from lakes and
rivers in the Yedoma domain, and a solid estimation
for N2O emissions from Arctic rivers is lacking until
now.

3.3. Microbial immobilisation and changes in
decomposition because of improved N availability
Excess N liberated during thaw will be partly immob-
ilised by being incorporated into the microbial bio-
mass following thaw, but with continued supply of
N, the likelihood of excess N availability increases.
This excess N is, depending on the micro-conditions,
simultaneously available for various microbial trans-
formation processes including N2O and molecular
N (N2) production as long as growth of vascular
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plants remains hampered (Palmer et al 2012, Palmer
and Horn 2012, Hetz and Horn 2021, Horn and
Hetz 2021).

The effect of excess N is a subject of discussion,
giving rise to two distinct phenomena: the concept
known as the ‘N mining theory’ (Lovett et al 2018)
and the ‘N priming effect’ (Mack et al 2004). The
N mining theory suggests an increase in decomposi-
tion due to N limitation, where microbes are forced
to mine for additional N-substrates from OM. The
theory suggests that when N is limited, N-acquiring
microbes can use OC as an energy source, thereby
enhancing OM decomposition and increasing respir-
atory CO2 losses to acquire the needed N (Chen et al
2014, Lovett et al 2018). The N priming effect, on
the other hand, can be positive or negative, entailing
a boost or a decrease in overall OM decomposition
through enhanced N availability.

Notably, the N-priming effect not only enhances
the decomposition of OM and stimulates further
N-release, but also leads to higher N availability and
enhanced decomposition of OM increase OC release
(Mack et al 2004, Lavoie et al 2011). For example,
Mack et al (2004) showed that aboveground OC stor-
age increased following N-addition, but was offset
by increased OC decomposition—and thus soil OC
losses—belowground. Similarly, Zhang et al (2023)
found that a warming-induced, enhanced soil N sup-
ply stimulated soil microbial activity and amplified
soil OC losses from permafrost soils in the Tibetan
Plateau. These findings support the ‘stoichiometric
decomposition theory’, which suggests that N addi-
tion is beneficial for OM decomposition.

In contrast to these findings, Berg and Matzner
(1997) and Riggs et al (2015) showed that increased
N availability could lead to decreased OM decompos-
ition and thus negative priming. Riggs and Hobbie
(2016) hypothesised that negative priming can be
caused by three mechanisms. First, increased N avail-
ability can improve OC use efficiency leading to
OC use for microbial growth rather than respiration
(Weintraub and Schimel 2003, Manzoni et al 2012,
Chen et al 2018). Second, N addition might lead to
decreased activity of oxidative enzymes, thereby limit-
ing decomposition of complex OC molecules such as
lignin (Eisenlord et al 2013). Third, soil acidification
following N addition might lead to decreased micro-
bial biomass and hence to decreased OM decompos-
ition rates (Mueller et al 2012).

For Alaskan Arctic and boreal soils, Lavoie et al
(2011) found that N addition could have a posit-
ive as well as a negative effect on OM decomposi-
tion. They showed that a positive effect was mainly
observed for organic soils, whereas negative effects
were mainly found for mineral soils, from which they
concluded that the direction of priming in decom-
position is highly dependent on the soils’ labile OM
fraction. Likewise, Wologo et al (2021) found that

addition of N (in the form of NH4
+ and NO3

−) and
acetate, compounds abundant in permafrost includ-
ing Yedoma (Mann et al 2022), triggered the break-
down of some dissolved OM compounds, but resul-
ted in a net decrease in overall decomposition rate.
Thus, depending on the OM degradability and the
microbial composition, the N stock in the Yedoma
domain might pose either a positive or a negative cli-
mate feedback upon thaw.

4. Newly thawed permafrost N: a positive
or negative climate feedback?

4.1. Likelihood for a negative feedback
Permafrost thaw will increase the amount of bioavail-
able N in an N-limited environment, which could
therefore boost ecosystem productivity resulting in
a negative climate feedback. Walter Anthony et al
(2014) suggest that N and other nutrients such as
P released from thawing Yedoma deposits have sup-
ported high lacustrine primary production and OC
accumulation in thermokarst lake sediments dur-
ing the Late Glacial to Holocene warming. In addi-
tion, in re-vegetated (stabilised) thermokarst basins,
plants will be able to access former deep Yedoma N
(see figure 3).

On the one hand, as mentioned before, abrupt
thaw could increase OC sequestration, while gradual
thaw poses the potential for incomplete nutrient use
by plants (due to temporal and spatial mismatch). On
the other hand, rapid thaw processes disturb or des-
troy the plant cover and thereby hinder the possibil-
ity of plants to catch the initial thaw liberates nutri-
ent pulse. Therefore, it is possible that a considerable
amount ofN is not used to promoteOC sequestration
in the short-term. As a result, the possibility to cre-
ate a negative feedback to climate via enhanced plant
growth is limited in these regions with on-going ther-
mokarst activity.

4.2. Likelihood for a positive climate feedback by
gaseous losses
While part of the excess N liberated from thawing
permafrost in the Yedoma domain will be used for
plant growth and transformed into microbial bio-
mass with continued N supply as described above
(figure 2), part of it may become available for micro-
bial transformation processes such as nitrification
and denitrification (Horn and Hetz 2021, Ramm et al
2022). These microbial N transformation processes
may cause gaseous N losses in the form of N2O as well
as N2. N2O is produced mainly by denitrification but
also as a side product during the first step of nitrific-
ation, the ammonia oxidation. Further, nitrification
has a crucial role for denitrification via NO3

− sup-
ply to serve as the electron acceptor in denitrification.
Recently published data on high N2O emissions and
potential N2 losses from retrogressive thaw-slumps
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Figure 3. Simplified visualisation of the Yedoma domain degradation processes with potential of N2O release. Key players are the
availability of water, vegetation and microbes (Voigt et al 2020, Fiencke et al 2022). Nitrate (NO3

−), ammonia (NH4
+) as well as

dissolved organic nitrogen (DON) are used qualitatively (not quantitatively!) for illustrating mobilisation. As an example: for
freshly thawed Yedoma there is a high water-filled pore space/absence of microbial community, and thus a negligible N2O flux
potential, although there is freshly thawed N around.

within Yedoma deposits demonstrate that this is a
likely scenario for such permafrost thaw features in
the Yedoma domain (Marushchak et al 2021).

There is increasing evidence from soils across the
permafrost region that, despite their general N limit-
ation due to slow N mineralisation in cold and often
humid conditions, permafrost-affected soils can be
substantial sources of N2O when three conditions
are met (Repo et al 2009, Voigt et al 2017b, 2020,
Marushchak et al 2021). First, a sufficient mineral
N supply is a key factor controlling N2O emissions
from soils (Parton et al 1996). In this context, the
C:N ratio has been linked to N2O emissions from
soils with highest emissions occurring at low to inter-
mediate range C:N ratios, which support N miner-
alisation (Klemedtsson et al 2005, Liimatainen et al

2018). In the Yedoma domain, the C:N ratios ranged
between 9–19 (medians of the different compart-
ments in Strauss et al (2022), which is low enough to
support N2O emissions as shown inMarushchak et al
(2021).

Second, a lack of vegetation growth increases the
mineralN availability formicrobes and is thus favour-
able for N2O emissions. Previous studies repor-
ted high N2O emissions in locations where vascu-
lar plants are absent or N uptake by vegetation is
otherwise disturbed, e.g. by thermokarst processes
(Marushchak et al 2011, Gil et al 2017, Voigt et al
2017a). This is frequently the case in the Yedoma
domain with its high abundance of eroded surfaces,
disrupted plant growth, and disturbed site conditions
due to abrupt thaw processes.
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Third, an intermediate moisture content has been
shown to promote N2O emissions from permafrost-
affected soils (Voigt et al 2020). On the one hand,
water-saturated conditions hinder N mineralisation
and nitrification, which are aerobic processes, thereby
limiting provision of mineral N species used for N2O
production. At the same time, a high water con-
tent promotes denitrification as this is an anaerobic
process. If denitrification is complete under water-
saturated conditions, N2O is reduced to the inert
N2 gas, and complete denitrification may also lead
to atmospheric N2O uptake (Butterbach-Bahl et al
2013, Voigt et al 2017b, 2020). On the other hand, an
intermediate moisture range allows both NO3

− and
N2O production via aerobic nitrification as well as
N2O production via anaerobic denitrification to co-
occur (Butterbach-Bahl et al 2013, Abbott and Jones
2015, Fiencke et al 2022). Thus, the magnitude of
N2O emissions following permafrost thawwill largely
depend on hydrology.

Limitations in microbially available OM together
with accumulation of NO3

− associated with high
nitrification rates might further enhance N2O pro-
duction during denitrification (Hetz andHorn 2021).
In favourable, intermediate soil moisture conditions,
a microbial community capable of intensive min-
eral N cycling (by nitrification and denitrification)
and substantial N2O production can be established
in these mineral N rich sediments (Marushchak
et al 2021). While for freshly thawed, wet Yedoma
sediments, low N2O emissions were found due to
low abundance of key functional groups, particu-
larly nitrifiers, whereas high N2O emissions occurred
after a few years of stabilisation, drying, partial
re-vegetation and changes in microbial community
(Marushchak et al 2021).

Based on these initial findings, we thus expect
that the following areas are prime candidates for sub-
stantial N2O release (figure 3): thaw slumps, freshly
drained lake basins, and thermo-erosional valleys. If
thermokarst lakes drain, unfrozen sub-lake taliks can
turn into zones of intermediate soil moisture levels.
Nitze et al (2020) observed widespread lake drain-
age in the Yedoma domain over the past decades
and predicted a similar trend of more lake drainage
events in the future, especially for southern margins
of continuous permafrost. With improved drainage,
the OM in lake sediments is exposed to enhanced
mineralisation, which will boost mineral N produc-
tion and the microbial N transformation processes
releasing N2O.

5. Estimating the future net climate
feedback from newly thawed N

The net effect on the climate of newly thawed N
from permafrost degradation in the Yedoma domain
strongly depends on local conditions (e.g. prevailing

wetness, vegetation, microbes). These conditions will
determine whether N in thawing permafrost is taken
up by vegetation or microbes or if it will be subjec-
ted to vertical leaching or to microbial transforma-
tion processes, such as denitrification, leading to N
losses in the gaseous form. In the short term, the
gradual deepening of the active layer will affect only
a small portion of the currently frozen N pool in the
Yedoma domain. Most of this newly thawed N of the
newly thawed active layer will be at depths interact-
ing with plants, thus with a potential for enhancing
the carbon sink capacity of these regions and lim-
iting losses though lateral runoff and gaseous, ver-
tical losses such as N2O emission. Speculative, but
possibly further long-term climate warming beyond
the 21st century will lead to an increasingly thawed
N pool at depths that are below the root reach of
plants. Even at present, a temporal mismatch of N
supply and demand can leave part of the mobilised
N inaccessible for plants. Furthermore, thermokarst
lake initiation, coastal and riverbank erosion as well as
erosion on thermokarst basins will continue to thaw
deep Yedoma deposits, therebymobilising substantial
amounts of deep N below 3 m. The N at these soil
depths could become available for microbes particip-
ating in N cycling under intermediate soil moisture
levels, which might lead to N2O production.

Another difficulty for estimatingN2Oproduction
based on environmental conditions is related to the
process of stabilisation of rapid thaw (for example
in thaw slumps and cliff erosion), which seems to
be decoupled from hydrology parameters driving the
N2O production elsewhere. Freshly thawed Yedoma
from a permafrost exposure in Siberia was found to
be inert for N2O production right after thaw with
gradual but significant increase in N2O emissions
within the first few years after thaw (Marushchak et al
2021). This temporal dimension of the already highly
spatially variable N2O production in the landscape
further increases the uncertainty for the estimation of
the future net climate feedback in upscaling attempts.
Similarly, Chen et al (2018) found that at the early
stage of permafrost collapse, microbial N limitation is
cancelled out because of enhanced microbial N min-
eralisation. This results in a lower C:N ratio and high
N availability, which might lead to higher metabolic
efficiency, thereby decreasing CO2 release. Later on,
due to N leaching or consumption, N may become
again limited andCO2 release will likely increase. This
illustrates that these processes probably happen on
different time scales. Besides these temporal complex-
ities, uncertain future shifts in soil moisture condi-
tions can crucially alter N2O production rates.

To wrap up the future the Yedoma domain path-
way: There will be substantial mobilisation of N
by deep permafrost thaw. This, in addition to the
N release by gradual deepening of the active layer
could provide a substantial amount of additional N.
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According to a simplistic back-on-the-envelope cal-
culation approach by Ramm et al (2020), we can
illustrate the significance of thaw enhanced N cyc-
ling and N2O release in the Yedoma domain. If 10%
(following the projected 9.6% Yedoma carbon loss
over the 50 incubation year period from Strauss et al
(2017)) of theN stored in the Yedomadomain (4.1Gt,
Strauss et al (2022)) is released between the present
day and the year 2100 (assumption based on Schuur
et al (2022); Schuur et al (2015)), and 1% (IPCC’s
default N2O emission factor from mineral soils) is
emitted as N2O (0.4 Tg N2O-N yr−1, 31 Tg N2O-
N until 2100), this would be equivalent to ∼6% of
the global annual rate of N2O emissions from soils
under natural vegetation (6.6 Tg N2O-N yr−1 (Ciais
et al 2013) already. For the total permafrost N stock
of 97 Gt (Harden et al 2012, Strauss et al 2022), this
would amount to 1.0 Tg N2O-N yr−1, 76 Tg N2O-N
in total for the 76 years to 2100 and 15% of the global
annual rate of N2O emissions from soils under nat-
ural vegetation, which have not yet been accounted
for. The release of N2O resulting from thawing per-
mafrost, particularly Yedoma, is an additional contri-
bution to the currentN2Oemissions originating from
permafrost soils which have been estimated to range
between 0.14 and 1.27 Tg N2O-N (Voigt et al 2020).
Thus, the thawing Yedoma domain is likely a neg-
lected N2O source. Our study shows potential path-
ways of N release when we further ‘open‘the Yedoma-
domain-permafrost freezer by human-caused climate
warming. Future research should prioritize study-
ing N flow paths post-thaw of permafrost depos-
its, along with physico-chemical and microbial sta-
bilization/mobilization of these nutrient reservoirs.
Additionally, developing process-based models to
simulate N and carbon dynamics can enhance predic-
tions regarding permafrost-climate feedbacks in vul-
nerable ecosystems.

6. Conclusion

The increasing release of N from the recently found,
until now largely freeze-locked soil N pools in the
Yedoma domain could further accelerate climate
feedbacks from permafrost thaw through additional
N2O emissions, or it could reduce climate feedbacks
through promoting enhanced vegetation C sequest-
ration. While the latter largely depends on how well
the spatial and temporal pattern of plant N uptake
matches with those of N release, the Yedoma depos-
its are a prime candidate for N2O production if the
conditions are right (i.e./e.g. medium water con-
tent, establishment of microbial community cap-
able of active N cycling, partial vegetation cover).
More precisely, stabilising permafrost thaw sites with
intermediate soil moisture content and disturbed
vegetation cover likely have the highest potential

for N2O release. However, making reliable predic-
tions of future landscape and hydrology changes in
the Yedoma domain remains a major challenge due
to lack of data. In all cases, there is strong evid-
ence that the permafrost-climate feedback will be
affected by the amount and state of mobilisation of
this previously unquantified N pool. Future research
should focus on quantifying N flow post-thaw
in permafrost and developing process-based mod-
els to improve predictions on permafrost-climate
feedbacks.
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