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GLORIa - a globally representative 
hyperspectral in situ dataset for 
optical sensing of water quality
Moritz K. Lehmann et al.#

the development of algorithms for remote sensing of water quality (RSWQ) requires a large 
amount of in situ data to account for the bio-geo-optical diversity of inland and coastal 
waters. The GLObal Reflectance community dataset for Imaging and optical sensing of 
Aquatic environments (GLORIA) includes 7,572 curated hyperspectral remote sensing 
reflectance measurements at 1 nm intervals within the 350 to 900 nm wavelength range. 
In addition, at least one co-located water quality measurement of chlorophyll a, total 
suspended solids, absorption by dissolved substances, and Secchi depth, is provided. The 
data were contributed by researchers affiliated with 59 institutions worldwide and come from 
450 different water bodies, making GLORIA the de-facto state of knowledge of in situ coastal 
and inland aquatic optical diversity. Each measurement is documented with comprehensive 
methodological details, allowing users to evaluate fitness-for-purpose, and providing a 
reference for practitioners planning similar measurements. We provide open and free access 
to this dataset with the goal of enabling scientific and technological advancement towards 
operational regional and global RSWQ monitoring.

Background & Summary
Light from the sun reflected back across the water-air interface carries characteristic spectral signatures of 
several key water quality constituents due to their wavelength-specific absorption and scattering properties1,2. 
Chlorophyll a, total suspended solids, and colored dissolved organic matter are the dominant optically active 
constituents in inland and coastal waters3,4, and common measures of water quality used for the management of 
ecosystem and public health5–8. Accurate measurements of spectral reflectance (i.e., the upwelling radiance nor-
malized by the downwelling solar irradiance) are the foundation for synoptic and cost-effective environmental 
monitoring applications using satellite sensors, automated sensors installed near the water surface and portable 
instruments for manual field surveys9.

Space-borne instruments have been providing accurate estimates of chlorophyll a and particle backscattering 
in the open ocean since the late 1990s with data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) 
followed by many others, including the MEdium Resolution Imaging Spectrometer (MERIS) and Moderate 
Resolution Imaging Spectroradiometer (MODIS) in the 2000s, and the Ocean and Land Colour Instrument 
(OLCI) and Visible Infrared Imaging Radiometer Suite (VIIRS) over the last decade10–17. However, in coastal 
and inland waters, uncertainties in these estimates are typically much higher due to factors that include diverse 
atmospheric contributions, stray light from adjacent land areas, potentially uncorrelated variability of optically 
active constituents, and, in optically shallow water, bottom reflection9,18–20. Further, coarse-resolution imagers 
with a nominal resolution near 1 km are limited in nearshore and narrow systems where modern high-resolution 
missions like Landsat-8 and Sentinel-2 offer valid observations21. Overall, the retrieval of water quality in lakes, 
rivers, estuaries, lagoons and nearshore coastal waters remains an active area of research where improvements are 
needed so that satellite observations can fulfill their potential and become part of routine monitoring programs 
for ecosystem states, trends, and public-health alerting systems22–26.

Large and globally representative in situ datasets are essential for the development and validation of 
bio-optical algorithms to support large-scale monitoring using satellite Earth observation technologies. Such 
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datasets are particularly scarce and geographically fragmented from inland and coastal waters as radiometric 
measurements are not part of most routine sampling programs and many lakes are remote and difficult to access.

We address these shortcomings with our GLObal Reflectance community dataset for Imaging and optical 
sensing of Aquatic environments (GLORIA). GLORIA includes over 7000 curated hyperspectral remote sens-
ing reflectance (Rrs, sr−1) and co-located chlorophyll a (Chla, mg m−3), total suspended solids (TSS, g m−3), 
absorption by colored dissolved organic matter (CDOM) at 440 nm wavelength (aCDOM(440), m−1) and Secchi 
depth (m) measurements. The data were contributed by researchers affiliated with 59 institutions in 20 countries 
who made the measurements for a range of objectives under diverse funding sources and resource levels, but 
shared attention to strict sampling protocols, tenacity to reach remote and inaccessible sites, commitment to 
establish long-term trend monitoring sites, and the recognition of the value of open-access datasets for public 
benefit. With its almost global coverage, geomorphic range of water bodies, and 30-year time span (Fig. 2), 
GLORIA represents the de-facto state of knowledge of in situ coastal and inland water bio-geo-optical diversity. 
Subsets of the data have already produced significant contributions to global algorithm development for the 
satellite-based estimation of Chla, TSS, and aCDOM(440) using data-intensive machine-learning methods27–31 or 
global semi-analytical approaches32. Where they were available, we also provide uncertainty estimates of Rrs and 
water quality measurements as standard deviations and means from replicate measurements. Nevertheless, some 
methodological detail which is currently considered relevant may not have been recorded at the time of obser-
vation, which limits our ability to retrospectively assess sources of uncertainty to subsets of the global dataset.

GLORIA builds upon the existing data repositories aimed at remote sensing studies of aquatic environments. 
We address poorly represented optically complex coastal and inland waters in existing open-data platforms such 
as the SeaWiFS Bio-optical Archive and Storage System (SeaBASS, https://seabass.gsfc.nasa.gov)33,34. In contrast 
to other relevant data repositories, such as the Lake Bio-optical Measurements and Matchup Data for Remote 
Sensing (LIMNADES, https://limnades.stir.ac.uk) database, GLORIA is open-access. By carrying out consistent 
quality control across the entire dataset, and providing comprehensive methodological details associated with 
each measurement, we have produced an analysis-ready, standalone data package for the community.

The commitment of space agencies towards maintaining and enhancing optical Earth observing systems 
and the burgeoning fleet of commercial platforms indicate that our coupled reflectance-water quality attribute 
dataset fills a strong need to facilitate algorithm and application development. We anticipate that our collection 
of field setups and methodologies will encourage targeted data collection for the calibration and validation of 
upcoming satellite sensors35–37, as well as the growth of in situ observatories38–40.

Methods
The GLORIA dataset was collated from the aquatic optics community of researchers or research groups working 
towards a range of goals including the routine monitoring of high-priority sites, one-off bio-optical characteri-
zation of a range of water bodies, data gathering to support algorithm development, or designated sampling for 
validating equivalent satellite-derived products. Efforts to gather this data started in 2018 with the second atmos-
pheric correction intercomparison exercise (ACIX-II Aqua), an international collaboration to test processors 
that generate aquatic reflectance products from radiance measurements made at the top of the atmosphere19. 
Requests for contributions were made at pertinent conference sessions and via the research networks of indi-
viduals. These requests were for quality assured remote sensing reflectance spectra at 1 nm intervals within the 
350 to 900 nm wavelength range and at least one co-located water quality attribute (Chla, TSS, aCDOM(440), or 
Secchi depth), and associated uncertainties. The sections below provide more details of the data and processing.

Radiometric data collection and processing. The central radiometric quantity reported in our dataset 
is remote sensing reflectance, Rrs (sr−1). It is defined as the ratio of the water-leaving radiance just above the water 
surface (Lw(0+), W m−2 sr−1 nm−1) over above-water downwelling irradiance (Es, W m−2 nm−1)(Eq. 1, Fig. 1). 
We use the symbology of Ruddick et al.41 with slight modifications:
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Rrs and Lw are dependent on the viewing nadir angle Θ (measured from the downward vertical axis) and azi-
muth viewing angle ɸ (measured clockwise from the sun); λ identifies the wavelength dependence. For aquatic 
remote sensing applications, it is conventional to define Rrs as derived from a sensor looking straight down Lw(λ, 
Θ = 0) where ɸ is not defined42. Therefore, we omit λ, Θ, and ɸ for notational brevity. Several methods and 
instruments were used for the measurement of the downwelling and upwelling radiometric quantities reported 
in our dataset. Here we provide brief descriptions of the broad types of methodologies used for their measure-
ment, and a list at the end of this section gives a formal summary.

Lw can be measured directly using a radiometer just above the water surface, looking vertically down and 
shielded from light reflected off the water surface43. Other common techniques include measurement of the 
upwelling radiance at nadir below the water surface (Lu(0-))44, or from above the water surface where the sen-
sor is directed at a non-zero nadir angle (Lt)45. Both of these radiance measurements require conversions to 
Lw, which are referenced in the list at the end of this section. In brief, Lu(0-) can be derived by extrapolating 
upwelling radiance from measurements at practical depths below the water surface to just below the water 
surface46. Propagation through the water-air interface by accounting for the reduction of radiance by internal 
reflection off the water surface yields Lw. The estimation of Lw from Lt is more involved, as Lt contains a consid-
erable amount of sky radiance reflected off the water surface into the sensor field of view (reflected sky radiance) 
in addition to Lw(Θ, ɸ), where we note the angular dependence to emphasize the need for conversion to Θ = 0. 
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Sky radiance (Lsky) is therefore usually measured simultaneously with Lt at the same azimuth angles and at zenith 
angles Θz (from the upward vertical axis) near 40°42.

Three different approaches were used to measure Es in the present dataset and a detailed review is provided 
by Ruddick at al.47. Most commonly Es was measured directly using a plane irradiance sensor above the water 
surface directed straight upwards. The second most used method employed a downward pointing radiance sen-
sor measuring the reflectance of a horizontally held Lambertian plaque with known reflective properties. This 
method has the advantage that a single sensor can be used for all measurements needed for the calculation of Rrs, 
potentially reducing cost, equipment load and uncertainties from the intercalibration of several sensors. In some 
cases, Es was estimated from irradiance measurements below the water surface (just below the surface: Ed(0-), 
or at depth z: Ed(z)). These measurements are typical of autonomous installations on vertical sensor chains or a 
single sensor package on a vertically profiling platform44.

The instruments used for the radiometric measurements for each entry of the GLORIA dataset are part 
of the metadata (file GLORIA_meta_and_lab.csv) and are provided in the list at the end of this section. These 
include those customarily used for validation of satellite-derived aquatic reflectance, such as RAMSES (TriOS, 
Germany), HyperOCR (manufactured by Sea-Bird Scientific, USA; previously manufactured by Satlantic Inc., 
Canada) and C-OPS (Biospherical Instruments Inc., USA). The RAMSES and HyperOCR have 256 channel 
silicon photodiode array detectors with a 10 nm spectral resolution and a spectral sampling of 3.3 nm per pixel. 
The typical setup for RAMSES instruments for our dataset is an above-surface installation with a vertical Es sen-
sor and Lsky and Lt sensors at 40–42° zenith and nadir angles, respectively (Fig. 1). HyperOCR instruments are 
typically installed on a floating frame to measure Es, and Lu or Lw at zero nadir angle while the HyperPRO (and 
HyperPro II) are free-falling setups of the HyperOCR designed to measure vertical profiles in the water column. 
The C-OPS configuration is similar to the HyperOCR, but the instrument only has 19 spectral bands of 10 nm 
width. The HyperSAS is a three-sensor setup of the HyperOCR for above-surface installation on structures over-
looking the water or ships, similar to the RAMSES setup. The Water Insight WISP-3 is a self-contained handheld 
unit with optical inputs for Es, Lsky and Lt leading to separate spectrometers48.

A number of instruments used accommodate a single optical input into handheld units or portable instru-
ments and need to be pointed to provide the different radiometric measurements (ASD FieldSpec range, 
Satlantic HyperGun, Spectra Vista, Spectral Evolution, Spectron Engineering and Photo Research SpectraScan 
devices).

Some investigators integrated compact spectrometers (manufactured by Ocean Insight, Inc., formerly known 
as Ocean Optics, Inc., USA) with data loggers and optical fibers on frames or poles that can be pointed away 
from observation platforms. Measurements would either be accomplished through several instruments and 
optical fibers oriented for the respective radiometric quantities, or a single sequentially reoriented fiber.

Fig. 1 Optical processes of absorption and scattering in the atmosphere and the water determine the amount 
and spectral nature of light received by a sensor. Remote sensing reflectance, the central radiometric quantity of 
the GLORIA dataset, is the ratio of the water-leaving radiance just above the water surface (Lw) over above-water 
downwelling irradiance (Es).
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Data contributors provided radiometric measurements interpolated to 1 nm intervals over the 350 to 900 nm 
wavelength range. The instrument-specific bandwidths of the original measurements are provided in the data table 
(file GLORIA_meta_and_lab.csv, column ‘Spectral_resolution_nm’). Due to instrument and processing constraints, 
some spectra span the range from 400 to 750 nm, or nearby bounds. The radiometric data for each GLORIA entry 
may be from a single measurement, or the mean or median of several measurements over a time interval. When 
available, the data contributors provided the spectral Rrs means, standard deviations, and numbers of measurements 
for sampling events. Quality control was conducted on all received spectra (see section Technical validation).

The measurement setups and instruments used for radiometric measurements are listed below. The number 
of the method corresponds to the column ‘Measurement_method’ in GLORIA_meta_and_lab.csv. References to 
published descriptions of the approach and applications are provided where available.

 1. Sequential Lt, Lsky, and Es via a plaque on MP (moving platform)
Instruments: ASD FieldSpec, Photo Research PR-650 SpectraScan Colorimeter, Sea-Bird Scientific/Sat-
lantic HyperGun, Spectra Vista GER1500, Spectral Evolution SR-3500/PSR-1100f, Spectron Engineering 
SE-590, TriOS RAMSES
Approach: Mobley45

Applications: Bresciani et al.49; Kudela et al.50; Zolfaghari et al.51

 2. Lt, Lsky, and Es on MP
Instruments: Water Insight WISP-3
Approach: Mobley45

Applications: Hommersom et al.48

 3. Lu(0-) and Es on pole connected to a spectrometer via fiber optics from MP or water edge
Instruments: Ocean Insight/Ocean Optics USB2000/USB2000 + /USB4000

b

a

c d e f

Fig. 2 Summary of the geographical, temporal and water quality distributions of the GLORIA samples.  
(a) Dots mark the location of each sample and the histograms on the edges of the map show the longitudinal 
and latitudinal distributions of the dataset. (b) The earliest samples were collected in 1990 and the sampling 
effort has been steady since 2001. (c–f) Histograms of log-transformed water quality attributes illustrate the 
extreme range of values and their typical log-normal distributions.
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Approach: Chipman et al.52

Applications: Gurlin et al.53; Schalles and Hladik54; Li et al.55; Mishra et al.56; Brezonik et al.57; Werther et al.58

 4. Lw(0+) skylight blocked and Es afloat away from MP
Instruments: Sea-Bird Scientific/Satlantic HyperOCR
Approach: Lee et al.55

Applications: Wei et al.59

 5. Lu(0-) afloat away from MP, Es on MP
Instruments: Sea-Bird Scientific/Satlantic HyperOCR, TriOS RAMSES

 6. Lt, Lsky, and Es on MP
Instruments: Sea-Bird Scientific/Satlantic HyperSAS, TriOS RAMSES
Approach: Mobley45; Simis and Olsson60

Applications: Qin et al.61; Warren et al.62

 7. Lt, Lsky, and Es on a frame deployed on MP
Instruments: TriOS RAMSES
Approach: Mobley45; Mobley63

Applications: Maciel et al.64; Cairo et al.65; da Silva et al.66

 8. Lu(0-) and Ed(0-) in-water profiling from MP, Es on MP
Instruments: Biospherical C-OPS, Sea-Bird Scientific/Satlantic HyperOCR, TriOS RAMSES
Approach: Mueller et al.44; Lubac and Loisel67

Applications: Binding et al.68

 9. Lu(0-) and Ed(z) units on a depth adjustable bar (measurements at −0.21 and −0.67 m) on a frame 
afloat away from MP, Es unit lifted above water surface for Es
Instruments: TriOS RAMSES
Approach: Fritz et al.69

 10. Lu(0-) and Ed(0-) from winch on MP, Es on MP
Instruments: TriOS RAMSES
Approach: Zibordi and Talone70

 11. Lt and Es on pole from water edge
Instruments: TriOS RAMSES
Approach: Kutser et al.71

 12. Lu(0-) and Ed(0-) autonomous in-water profiling from a fixed platform
Instruments: Sea-Bird Scientific/Satlantic HyperOCR
Approach: Mueller et al.44

Applications: Minaudo et al.72

 13. Sequential Lt and Es via a plaque, mounted on gimbal stabilized pole from MP
Instruments: Ocean Insight/Ocean Optics STS-VIS

 14. Lu(0-) (and Ed(0-) only for depth information) from in-water profiling from MP, Es recorded simulta-
neously from same MP very close to profiler deployment
Instruments: TriOS RAMSES
Approach: Mueller et al.44; Stramski et al.73

Applications: Bracher et al.74; Tilstone et al.75

 15. Lt, Lsky, Es, combined with one Lu unit (aperture at −0.05 to −0.10 m) placed on a pole
Instruments: TriOS RAMSES

 16. Sequential Lu(0-) and Es via a plaque, both measurements using an optical fiber to a black masked 
perspex tube
Instruments: Spectron Engineering SE-590
Approach: Dekker76

 17. Lu(0-) and Ed(z) units on a floating frame (measurements at −0.4 m (Lu) and −0.1 m (Ed)) drifting 
10 m away from vessel
Instruments: TriOS RAMSES
Approach: Fritz et al.69

SeaBaSS data. GLORIA includes approximately 1100 entries from SeaBASS33. We searched SeaBASS for 
reflectance spectra with concomitant water quality measurements and ensured that these are from inland and 
coastal waters only by mapping sampling locations of all records from water depths less than 200 m. Where water 
depth was not part of the SeaBASS record, we assigned it based on the General Bathymetric Chart of the Ocean 
(GEBCO_2021 Grid sub-ice topo/bathy)77. Several metadata fields were unavailable for this data, but SeaBASS 
dataset identifiers are provided to allow further research if needed. All SeaBASS data were included in our qual-
ity control process. While SeaBASS allows the upload of uncertainty data for radiometry and water quality, the 
entries we located for inland and coastal waters did not contain this information.

Water sample analysis. Water quality attributes Chla, TSS and aCDOM(440) were determined using well 
established high-accuracy laboratory methods. The method for each analysis is identified in the columns ‘Chl_
method’, ‘TSS_method’, and ‘aCDOM_method’ in the file GLORIA_meta_and_lab.csv and method details are 
provided in GLORIA_variables_and_methods.xlsx. Where available, data means and standard deviations from 
replicate analyses of Chla, TSS and aCDOM(440) are provided in separate files.

The most frequently used methods for Chla were via solvent-based pigment extraction from filter pads fol-
lowed by fluorometric (U.S. EPA 445.0) or spectrophotometric (U.S. EPA 446.0) analysis. In the majority of 
samples, pigments were extracted in 90% acetone with the aid of mechanical tissue grinding. Modifications of 
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these methods included the use of 90% acetone buffered with MgCO3 and different approaches to support the 
mechanical breakdown of the algal cells. Other methods for Chla followed national and international standards 
(DIN 38412-16:1985-12, NEN 6520, HJ 897–2017, SL88-2012 and ISO 10260:1992). Methods which included 
a correction for phaeophytin, a degradation product of Chla78, are indicated by a flag (‘1’) in the data table 
(column ‘Phaeophytin_correction’) and the corresponding Chla value is found in column ‘Chla’; where phae-
ophytin was not corrected for the flag is ‘0’ and Chla is provided in column ‘Chl_plus_phaeo’ unless the cor-
rection for phaeophytin was not applicable as for certain fluorometric instrument setups79. Many investigators 
also used high-pressure liquid chromatography (HPLC) for Chla determination and the Chla value is found in 
column ‘Chla’. The only exception to lab-determined Chla are measurements from the Thetis profiler in Lake 
Geneva (Switzerland) where Chla associated with Rrs measurements was estimated from absorption line height 
at 676 nm80 and the linear relationship between the night-time fluorometric Chla (measured by a WetLabs ECO 
Triplet BBFL2W) with absorption line height (average coefficient of determination: R2 = 0.92)72.

TSS concentration was measured gravimetrically by weighing the dried residue of a water sample filtered 
on a pre-combusted and pre-weighed filter pad. aCDOM(440) was generally quantified following Mitchell et al.81. 
Therefore, the optical density of water samples, typically filtered through 0.2 μm pore size polycarbonate mem-
branes to remove particulates, was measured in a spectrophotometer and converted to absorption. Secchi depth 
was determined as the depth at which a disk, typically black and white of 20 or 30 cm in diameter, is no longer 
visible by an observer when it is lowered into the water82,83.

ancillary and metadata. Each data entry is associated with fields identifying the data contributor, 
cross-references to other databases, and details describing the sampling site and environmental conditions. 
Several categorical variables allow cursory stratification of the dataset according to water body type (lake, estuary, 
coastal ocean, river or other), data collection purpose (e.g., routine surface water monitoring or event-driven sam-
pling), dominant biogeochemical water type (e.g., sediment-dominated or algal-dominated), and optical stability 
(e.g., low for shallow lakes, rivers and estuaries or high for deep lakes and some coastal ocean environments).

Specific characteristics of the sampling event such as geocoordinates, date and time stamps, environmental 
conditions (e.g., cloud cover, wind speed and wave height), and environmental settings (e.g., elevation above 
sea level, dominant land cover and slope) are provided where known. Several metadata fields provide cross 
references to details of instrumentation, measurement and processing methods for all radiometric and water 
quality data.

Data Records
The GLORIA dataset is hosted at the PANGAEA Data Publisher for Earth & Environmental Science84. The data 
is contained in several comma-separated value (csv) files and a Microsoft Excel file provides keys to column 
names and method details (Table 1). Individual data points are identified across all files using the GLORIA_ID.

The 7,572 GLORIA Rrs spectra originate from 31 countries over an almost global geographical range from 
67°N to 54°S and from 122°W to 178°E (Fig. 2) with the majority of samples from lakes (60%), followed by 
coastal waters (32%), estuaries (4%), and the remainder from rivers and other water body types. The wide range 
of radiometric and water quality measurements in GLORIA (Fig. 2) is consistent with the global diversity of Rrs 
spectral shapes with respect to optical water types85,86 and visual color ranges87,88 (Fig. 3). The range of water 
quality attributes is comprehensive and their frequency distributions are shown in (Fig. 2).

technical Validation
All data submitted for inclusion into this compilation had undergone quality control by the providers. Our cura-
tion process included detailed information recovery with them to ensure sampling, sample processing, and labora-
tory analysis methods are fit for purpose. Further checks on the gathered data were carried out as described below.

Reflectance spectra. Reflectance spectra were checked for outliers and unrealistic spectral shapes using a 
series of quality control indicators (Table 2). By flagging, but keeping, spectra with moderate or suspected quality 
issues, we were able to retain a larger dataset and we advise the user to inspect the flags to evaluate the dataset for 
their purposes. The quality control methods are described below. Data entries with quality issues are identified by 
setting the corresponding quality flag to one (1) in the file GLORIA_qc_flags.csv.

The first round of quality control was a procedural detection of high-frequency variability (suspected noise), 
baseline shifts (e.g., from suboptimal glint removal), the presence of an oxygen absorption feature near 762 nm 
(e.g., from sensor intercalibration issues), and negative slopes in the ultraviolet to blue part of the spectrum  
(e.g., from suboptimal diffuse sky radiance correction). These are the first five flags in Table 2.

Additionally, we calculated the Quality Water Index Polynomial (QWIP) score89. This approach was devel-
oped to identify hyperspectral aquatic reflectance data that fall outside general trends observed in a large dataset 
from optically deep waters. Briefly, the QWIP is a 4th order polynomial which describes a well-formed central 
tendency for a spectrally integrated metric (Apparent Visible Wavelength90, AVW) to predict a Normalized 
Difference Index (NDI; λ = 492, 665 nm) across a continuum of water types. For a given spectrum, the difference 
between the calculated NDI and that predicted by the AVW is known as the QWIP score. If a given QWIP score 
exceeded a prescribed deviation from the polynomial relationship, in this case |0.2|, the data was identified by 
the flag ‘QWIP_fail’ in the file GLORIA_qc_flags.csv (Table 2). AVW and the QWIP score are provided in the file 
GLORIA_qc_ancillary.csv (Table 3).

On visual inspection, some spectra that passed the above criteria still appeared to have subtle problems. 
Further issues may be caused by instrument drift, instrument shading, stray light contamination, or errors dur-
ing sky glint correction, and are often exacerbated by environmental conditions59. Such suspicious spectra can 
be recognized by experienced practitioners familiar with how inherent optical properties of surface waters vary 
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naturally and determine reflectance through radiative transfer processes (Fig. 1)91. Utilizing this knowledge 
within the co-author community, we conducted systematic expert elicitation by randomly dividing the Rrs spec-
tra into batches of 400 to 700 and assigning each batch to an expert for identifying suspicious looking data. The 
spectra that were flagged ‘Suspect’ were then evaluated by three more experts for the purpose of improving 

Filename Description

GLORIA_variables_and_methods.xlsx

Excel file with several sheets:

Data headers: Key to columns and units in the ancillary and metadata table (GLORIA_meta_and_
lab.csv).

Radiometry methods: Details of the instruments and their setups for the radiometric 
measurements.

Chla methods, TSS methods, aCDOM Methods: Method details for the respective water quality 
measurements. Cross-referencing to data entries requires the dataset ID and methodology name 
from the table GLORIA_meta_and_lab.csv.

References: List of references cited in this file.

GLORIA_meta_and_lab.csv
Ancillary information, metadata and water quality measurements associated with each Rrs 
spectrum. The data fields in this file are defined in GLORIA_variables_and_methods.xlsx sheet 
‘Data headers’.

GLORIA_Rrs.csv Remote sensing reflectance (Rrs, sr−1) spectra (Rrs_350, Rrs_351, …, Rrs_900). The first column is 
the GLORIA sample ID.

GLORIA_Es.csv Above-water downwelling irradiance (Es, W m−2 nm−1) spectra (Es_350, Es_351, …, Es_900). The 
first column is the GLORIA sample ID.

GLORIA_Lw.csv Water-leaving radiance just above the water surface (Lw, W m−2 sr−1 nm−1) spectra (Lw_350, 
Lw_351, …, Lw_900). The first column is the GLORIA sample ID.

GLORIA_Lt.csv Above-water upwelling radiance (Lt, W m−2 sr−1 nm−1) spectra (Lt_350, Lt_351, …, Lt_900). The 
first column is the GLORIA sample ID.

GLORIA_Lu.csv Upwelling radiance just below the water surface (Lu, W m−2 sr−1 nm−1) spectra. The first column is 
the GLORIA sample ID.

GLORIA_Lsky.csv Sky radiance (Lsky, W m−2 sr−1 nm−1) spectra (Lsky_350, Lsky_351, …, Lsky _900). The first 
column is the GLORIA sample ID.

GLORIA_qc_flags.csv Quality control (QC) flags for each QC procedure described in Table 2. A value of 1 indicates that 
the issue has been detected.

GLORIA_qc_ancillary Ancillary information for quality control flags listed in Table 3.

GLORIA_Rrs_mean Mean of Rrs measurements and the number of replicates of entries where the standard deviation is 
available.

GLORIA_Rrs_std
Standard deviation of Rrs measurements. The number of replicates for the calculation of the 
standard deviation is provided in GLORIA_Rrs_mean. Standard deviation is only available for a 
subset of the dataset.

GLORIA_waterqual_uncert
Mean, standard deviation and number of replicates for water quality measurements. The replicate 
type is specified as ‘field’ (separate water samples taken in the field) or ‘lab’ (replicate analyses of the 
same water sample). This information is available for a subset of the dataset.

Table 1. Files of the GLORIA dataset and their content.

Fig. 3 Summary of the diversity of GLORIA’s Rrs spectra. (a) Thirteen Rrs spectra chosen at random, one from 
each optical water type displayed in b. (b) Bar chart of the number of GLORIA spectra assigned to each optical 
water type from Spyrakos et al.85. (c) Chromaticity diagram98 showing the visual color derived from each 
GLORIA Rrs spectrum using the tristimulus weighting functions according to the Commission Internationale 
de l’Éclairage (CIE)99; WP: white point.
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consistency across the batches from different individuals. The resulting set of suspect spectra are identified by 
the flag ‘Suspect’ in the file GLORIA_qc_flags.csv (Table 2).

Uncertainty in Rrs from above-surface measurements by means of reconstruction with a coupled 
water-atmospheric radiance model. Determining the uncertainty inherent in Rrs observations is challeng-
ing because of the variable nature of illumination and water surface conditions during repeat observations. This is 
especially true for measurements of upwelling light made above the water surface where sun glint and reflected sky 
radiance contribute to Lt, which applies to about 42% of the samples in GLORIA. To a large extent, spurious obser-
vations resulting from such random effects were already removed at source, such that the remaining variability is 
the result of various quality screening procedures and expert interpretation. However, it is possible to use models of 
atmospheric irradiance and bio-optical properties to model the most likely contribution of sun glint and reflected 
sky radiance on the Rrs observation, and thereby test the reported Rrs for physical consistency. To this end, we used 
the 3C algorithm92 to reconstruct Rrs from records where Lt, Lsky and Es were available.

3C provides a reconstruction of Rrs using nonlinear optimization of atmospheric and water optical models, 
allowing for a range of optical properties to solve the relationship between the upwelling radiance and down-
welling irradiance provided as input. Due to the flexibility of the surface corrections, 3C is proposed to enable 
robust Rrs to be obtained across a wide range of measurement conditions. The resultant 3C-Rrs is expected to 
have reduced propagation of error from the variable spectral shape of sky reflectance and glint. This provides an 
advantage over methods which consider these corrections either constant, or a function of wind speed60, which 
is the case for the majority of Rrs from above-surface measurements reported in the GLORIA database (column 
‘Skyglint_removal’ in GLORIA_meta_and_lab.csv). The difference between 3C-Rrs and the originally reported 
Rrs is, therefore, an approximate measure of algorithmic uncertainty. A close match between the 3C reconstruc-
tion and the originally reported Rrs provides confidence that the reported observation was physically consistent. 

Flag name  
Number of cases Description and method

Noisy_red  
40

High-frequency variability, potentially instrument noise, near the red end: spectra were standardized to zero 
mean and unit standard deviation. A 4th order polynomial was fitted over the interval 750–900 nm. Spectra 
with a root-mean square error (RMSE) >0.2 were flagged. This threshold was determined using visual 
inspection of the distribution of RMSEs with respect to spectral shapes.

Noisy_blue  
15

High-frequency variability, potentially instrument noise, near the blue end: spectra were standardized to 
zero mean and unit standard deviation. A 4th order polynomial was fitted over the interval 350–400 nm. 
Cases where root-mean square error >0.15 were flagged (threshold determined using visual inspection of the 
distribution of RMSEs with respect to spectral shapes).

Baseline_shift  
164

Spectra shifted up are those where the minimum Rrs is 60% of its median. This percentage corresponds 
approximately to 1.5 times the interquartile range above the upper quartile of the baseline-percent distribution 
of the entire GLORIA dataset.
Spectra shifted down are those with at least 20 negative values and either:
•   a negative linear slope in the interval 765–900 nm <−8.75 × 10−7 sr−1 nm−1 (the slope threshold was 

determined as the bound of the lower quartile) and >50% negative Rrs values in this spectral region; or
•  >70% negative Rrs in the interval 765 nm-900 nm; or
•  at least 20 negative Rrs at in the interval 350–450 nm.

Oxygen_signal  
1311

Spectra where Oxygen_peak_height >0.1 (Table 3). This threshold was determined using visual inspection of 
the distribution of peak heights with respect to spectral shapes.

Negative_uv_slope  
139

Negative slopes in the ultraviolet to blue end: The spectra were standardized to zero mean and unit standard 
deviation. A straight line was fitted over the interval 350–420 nm and spectra with slopes <−0.005 were 
flagged. This threshold was determined using visual inspection of the distribution of slope values.

QWIP_fail  
278

Spectra failing a statistical quality control metric based on Apparent_visible_wavelength (Table 3). The QWIP 
score exceeded a value of |0.2|.

Suspect  
226 Spectra identified during expert elicitation as potentially fraught with measurement problems.

Flagged  
1779 A one in this column indicates the presence of at least one flag from the tests described in this table.

Table 2. Quality control tests and associated flag names in table GLORIA_qc_flags.csv.

Column name Description and method

Oxygen_peak_height
Local maximum or minimum in Rrs near 762 nm due to absorption of light by oxygen: The spectra were 
standardized to zero mean and unit standard deviation. A straight line was fitted to the interval between 
the median values of (745–755 nm) and (775–785 nm). The maximum absolute residual of the standardized 
spectrum near 762 nm was recorded and is provided as a value in this column.

Apparent_visible_wavelength Defined as the weighted harmonic mean of the visible (400–700 nm) reflectance wavelengths. This metric is 
used to assess the directionality and magnitude of shifts in the spectral shape of remote sensing reflectance.

QWIP_score
The QWIP score represents the difference between a calculated Normalized Difference Index (NDI; 
λ = 492, 665 nm) and that estimated empirically from the spectrum’s Apparent Visible Wavelength (AVW). 
Data producing absolute QWIP scores exceeding a value of ±0.2 have been found to exhibit spectral shapes 
that deviate from central tendencies typically observed in aquatic reflectance data.

Table 3. Ancillary information for quality control flags in table GLORIA_qc_ancillary.csv.

https://doi.org/10.1038/s41597-023-01973-y


9Scientific Data | (2023) 10:100 | https://doi.org/10.1038/s41597-023-01973-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

Larger discrepancies are assumed to be associated with challenging observation conditions, resulting in suspect 
Lsky, Lt or Es, but can also be caused by water or atmospheric properties which the model cannot reconstruct.

For this analysis, we used the 1589 spectra which included Lt, Lsky, Es, observation time, and geographic loca-
tion, and for which the method to calculate Rrs was not already based on 3C. This analysis is also independent 
from the quality flagging in the previous section, so that all observations were included and the results pres-
ent a worst-case scenario which best represents the algorithmic uncertainty inherent to calculating Rrs, albeit 
without knowledge of quality control criteria applied prior to the data being reported. The 3C water optical 
model was configured with wide bounds for the concentration of Chla (initial condition 5 mg m−3, range 0.01–
1000 mg m−3) and TSS (initial condition 10 g m−3, range 0–1000 g m−3) whilst otherwise configured as detailed 
in Groetsch et al.92 and Jordan et al.93.

The median bias between reported and 3C-Rrs was in the order of 0.0005 sr−1, with 3C yielding lower Rrs, as 
should be expected because incomplete correction relying on a static correction factor for surface reflections 
leads to higher Rrs (Fig. 4A). Bias gradually decreased with wavelength, which suggests the reported data have 
been suboptimally corrected for diffuse sky radiance. There is considerable spread in the model-observation 
bias, in the order of 0.00004 to 0.0016 sr−1 for Rrs(560) in the interquartile range.

In relative terms (Fig. 4B), median bias in Rrs between observed and 3C-Rrs is smallest in the green spectral 
range (order of 6.4%), where peak Rrs amplitude is typically observed in this dataset, and largest in the UV and 
NIR regions of the spectrum where Rrs is typically lower. The spread (interquartile range) in the relative bias in 
Rrs(560) is 5–16%, but much wider in the UV and NIR range, exceeding −30% and 170%.

The largest differences in Rrs bias between reported and 3C spectra were found between contributed data-
sets, rather than between observation methods. The majority of datasets showed absolute relative differences in 
Rrs(400–800) in the 0–10% range, but there are also cases where the difference exceeds 100%.

This analysis points to an overall high degree of uncertainty in the methods using above-water Lt measure-
ments and the need for rigorous quality control by observers. For future work, we suggest adding Rrs model 
reconstruction as part of the data collection effort, which allows inspection of glint terms to objectively flag 
observations as suspect, before other quality controls are implemented. Furthermore, to support future algorith-
mic improvements (e.g., to elaborate bidirectional reflectance distribution functions), all component spectra and 
observation geometries should be included in datasets and these should be reported at the native resolution of 
each sensor involved to avoid convolution error when calculating Rrs

94.

Water quality. The water quality measurements were investigated using frequency distributions to identify out-
liers. Separate frequency distributions were created by ‘Water_type’, a subjective classification assigned by the data 
contributors according to the dominant optical constituent for each water body (TSS-dominated, Chla-dominated, 
CDOM-dominated, Chla + CDOM-dominated, moderately turbid coastal, clear). Any measurements above three 
standard deviations from the water-type specific mean were reevaluated to ensure they were of high confidence.

Usage Notes
References to method details. The methods used for radiometric measurements and laboratory analy-
ses are identified in the columns ‘Measurement_method’, ‘Chl_method’, ‘TSS_method’, and ‘aCDOM_method’ 
in the file GLORIA_meta_and_lab.csv. Associated details with references are provided in separate sheets in the 
file GLORIA_variables_and_methods.xlsx. Looking up the method for a particular measurement requires the 
‘Dataset_ID’ and the method name.

Fig. 4 Spectral bias of reported Rrs compared with 3C-modeled Rrs from 1589 spectra for which Lt, Lsky and Es 
were available. (A) Median and interquartile (reported - modeled). (B) Relative bias in Rrs (reported - modeled)/
modeled. Discontinuities in the bias spectrum are caused by sensors having different wavelength ranges within 
parts of the dataset.
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Quality flags. Each Rrs measurement is associated with quality flags (file GLORIA_qc_flags.csv). The quality flags 
are binary and indicate the presence (‘1’) or absence (‘0’) of the quality issue described in Table 2. Missing values indi-
cate that the flag could not be determined because the spectrum did not include the required wavelength range. Some 
numerical values generated during the quality control are provided in the file GLORIA_qc_ancillary.csv (Table 3).

cross-references to other datasets. Some of the data in GLORIA is part of other data publications, 
or is also included in the community repositories SeaBASS33 and/or LIMNADES. The columns ‘SeaBASS_ID’, 
‘LIMNADES_ID’, and ‘LIMNADES_UID’ in the data table (GLORIA_meta_and_lab.csv) provide identifiers used 
in the respective datasets to facilitate cross referencing entries, for example for the avoidance of duplicates. Other 
references to prior publication of the data are provided in the ‘Comments’ column in GLORIA_meta_and_lab.csv 
in the form of a digital object identifier (DOI).

code availability
The code to conduct the quality control flagging described in the section Technical validation is written in R95 
and available on Zenodo96. The 3C code is available at https://gitlab.com/pgroetsch/Rrs_model_3C. The code for 
QWIP is on Zenodo97.
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