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Abstract 

Se veral studies ha ve in vestigated changes in microbial community composition in thawing permafrost landscapes, but microbial 
assemb la ges in the transient ecosystems of the Arctic coastline remain poorly understood. Thermokarst lakes, abrupt permafrost thaw 

featur es, ar e widespr ead along the pan-Arctic coast and transform into thermokarst lagoons upon coastal erosion and sea-level rise. 
This study looks at the effect of marine water inundation (imposing a sulfate-rich, saline environment on top of former thermokarst 
lake sediments) on microbial community composition and the processes potentially driving microbial community assembly. In the 
uppermost lagoon sediment influenced from marine water inflow, the microbial structures were significantly different from those 
deeper in the lagoon sediment and from those of the lakes. In addition, they became more similar along depth compared with lake 
communities. At the same time, the diversity of core microbial consortia community decreased compared with the lake sediments. 
This work provides initial observational evidence that Arctic thermokarst lake to lagoon transitions do not onl y substantiall y alter 
micr obial comm unities but also that this transition has a larger effect than permafr ost thaw and lake formation histor y. 

Ke yw or ds: Ar ctic; coastal permafr ost; micr obial changes; thermokarst la goon 
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Introduction 

Global climate warming is acceler ating permafr ost degr adation.
Gr adual degr adation is manifested b y top-do wn permafrost thaw- 
ing and thickening of the active la yer. T hermokarst processes lead 

to r a pid and deep thawing of permafr ost and the de v elopment 
of thermokarst ponds and lakes, which is extremely common in 

ice- and or ganic-ric h permafr ost (Gr osse et al. 2013 , Olefeldt et al.
2016 , Strauss et al. 2017 ). In Alaska, for example, thermokarst 
lakes have doubled in number and incr eased a ppr oximatel y by 
37.5% in area from 1949 to 2009 (Walter Anthony et al. 2021 ).
Thermokarst lakes in Siberian ice-rich permafrost have generally 
de v eloped since the early Holocene (Jongejans et al. 2020 ). Arc- 
tic thermokarst lakes contribute to ∼80% of Arctic contemporary 
CH 4 hotspot emissions and gener all y r elease lar ge amounts of 
methane r elativ e to CO 2 , and thus have a dispr oportionatel y high 

climate effect (Walter Anthony et al. 2018 , 2021 , Knoblauch et al.
2018 ). 

Coastal erosion in the pan-Arctic can establish periodical or 
perennial connection of thermokarst lakes to the sea, which 

converts these lakes to lagoons . T hermokarst lagoons were es- 

timated to account for 54% of the estimated total of ∼470 la- m  
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oons, whic h wer e identified along the Arctic coastline by re-
ote sensing as of 2021 (Angelopoulos et al. 2021 , Jenrich et al.

021 ). Thermokarst lagoons represent a transitional state between 

reshwater thermokarst lakes and a fully marine environment.
n these coastal lagoons, the hydrological connection to the sea
lays a crucial role in facilitating the exchange of abiotic and
iotic conditions between the two ecosystems (Gianuca et al.
017 ). Vertical diffusion of marine water generates a sulfate-rich
aline gradient on the top part of pr e vious fr eshwater sediments
Schindler 2019 ). Along with the transition, microbial methane 
ycling comm unity c hanges , for example , can influence carbon
urnover and greenhouse gas emission (Yang et al. 2023 ). In an
arlier study, w e sho w ed that within the sulfate zone, spatial co-
ccurrence of methane and sulfate thermodynamically favours 
ulfate-dependent anaerobic oxidation of methane, which miti- 
ates methane emissions from thermokarst lagoons (Yang et al.
023 ). 

Thermokarst lakes and lagoons can serve as a natural labora- 
ory to disentangle the mechanisms of microbial species replace- 

ent and e v aluate the envir onmental contr ols on micr obial com-
 unity assembla ge in r a pidl y degr ading permafr ost landsca pes.
 is an Open Access article distributed under the terms of the Cr eati v e 
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ermafr ost usuall y limits dispersal of species due to its frozen
tate (Bottos et al. 2018 ), while thawing will alleviate the disper-
al constraints on microbes . T he lateral and vertical expansion
f thermokarst lakes pr esumabl y r e works the sediments to more
omogeneous conditions than the pr e viousl y fr ozen gr ound. The

nfiltration of saline marine water into the thawed sediment will
ot onl y r e work the geoc hemical pr ofile in the lake, but also intro-
uce marine microbes to the newly formed lagoon ecosystems.
ubsea permafrost was found to contain an enormous amount
f organic carbon (Miesner et al. 2023 ) originating from onshore
err estrial permafr ost, wher e micr obial dynamics wer e found to
e linked with changes of geochemical conditions along the sed-

mentation history (Mitzscherling et al. 2019 ). Ho w ever, little is
nown about the changes of microbial structure and interspecies
onnection during the tr ansition fr om thermokarst lakes to
agoons. 

This study investigates how microbial communities, beyond
hose involved in methane cycling, shift along the transition from
oastal thermokarst lakes to thermokarst lagoons in the Arctic.
e presume that the restratification of geochemical profiles fol-

owing thermokarst lake to lagoon transitions result in restructur-
ng and conv er gence of the core consortia and address how mi-
r obial comm unities r espond to the div er ging geoc hemical con-
itions between thermokarst lakes and lagoons. We studied sedi-
ents of two thermokarst lakes and a lagoon from the Bykovsky

eninsula in northeastern Siberia where lagoons are extensively
istributed and many thermokarst lagoons started to emerge
bout 2 ka before present (BP) (Jongejans et al. 2020 ) utilizing
eep amplicon sequencing, and multiple numeric ecological ap-
r oac hes. 

aterial and methods 

tudy site and sampling 

ediment cores of three thermokarst bodies were retrieved on the
ykovsk y P eninsula in the La pte v Sea, northeastern Siberian per-
afr ost r egion. Lake Golzov o y e (LG) and Northern Polar Fo x Lak e

LNPF) ar e fr eshwater thermokarst lakes while Polar Fox Lagoon
PFL) is a thermokarst lagoon to the south of LNPF (Fig. 1 ). Details
bout the thr ee r esearc h sites can be found in Yang et al. ( 2023 ).
 aleoclimatic pr oxies suggested thermokarst erosion to LG and
NPF since 8 cal ka BP and lagoon formation of PFL started about
 cal ka BP (Jongejans et al. 2020 ). The PFL has more dynamic en-
ironmental conditions because of seasonal hydrological connec-
ion to Tiksi Bay, which is broken by ice in winter (Schirrmeister
t al. 2018 , Jenrich et al. 2021 ), while the thermokarst lakes main-
ain gener all y stable fr eshwater conditions. 

Sampling and subsampling were performed during a field ex-
edition in April 2017. Thr ee cor es (PG2420, PG2426, and PG2423)
er e r etrie v ed for a total length of 5.2 m, 5.4 m, and 6.1 m, respec-

iv el y, fr om sediments of lake LG, LNPF, and PFL, using an UWITEC
iston cor er. Subsequentl y, based on the specific r esearc h objec-
iv es of differ ent participants during the joint field campaign, the
ore segments were either stored in N 2 -flushed, vacuum sealed
ags at ∼4 ◦C for pore-water analysis or sediment plugs were taken
ith sterile syringes dir ectl y in the field and subsequently frozen
ntil further processing. The cores for microbial studies were di-
ided into 49 samples, r epr esenting v arious depths in the sedi-
ent cores: 13 samples were retrieved from lake LG, 17 from LNPF,

nd 19 from PFL. In our recent study (Yang et al. 2023 ), we analyzed
 subset of 23, which encompassed complete dataset of both geo-
 hemical and micr obial information. In the curr ent study, all the
9 microbial samples were used, independent of completeness of
eochemical data, in order to obtain comprehensive information
bout microbial composition. 

ulk parameters and pore water chemistry 

riefly, total carbon , total organic carbon, and total nitr ogen wer e
easured on bulk material using Elementar Micro Vario elemen-

al analyzer (Elementar Analysensysteme, Hanau, Germany). The
or e w ater w as drained into a vacuum syringe in an anaerobic
love box (N 2 :H 2 , 95%:5%). The corresponding analyses included
lkalinity, sulfate, c hloride, nitr ate, ferric, and ferrous iron. Alka-
inity was measured by colorimetric titration, cations and anions
er e measur ed with suppr essed ion c hr omatogr a phy, while the
issolv ed ir on (ferric and ferr ous) concentr ations in por e water
er e measur ed via spectr ophotometry by the ferr ozine method

Viollier et al. 2000 ). All samples were measured in triplicates, the
eochemical data together with detailed method description have
een deposited at GFZ Data Services ( https:// doi.org/ 10.5880/ GFZ.
.7.2022.001 ). 

N A extr action and libr aries prepar a tion for 
llumina sequencing 

otal nucleic acids were extracted in duplicates using the
o w erSoil-Kit (MO-Bio) accor ding to the manufacturer’s proto-
ol. Amplicon libr aries wer e pr epar ed b y using bar coded primer
air sets (Uni515-F[5 ′ -GTGTGYCAGCMGCCGCGGTAA-3 ′ ]/Uni806-
[5 ′ -CCGGA CTA CNV GGGTWTCTAAT-3 ′ ]), with duplicates for each
ample. PCR reactions (50 μl) contained 10 × Pol Buffer C (Roboklon
mbH, Berlin, Germany), 25 mM MgCl 2 , 0.2 mM dNTP mix (Ther-
oFisher Scientific), 0.5 mM each primer (TIB Molbiol, Berlin, Ger-
any), and 1.25 U of Optitaq Polymerase (Roboklon, Germany).

he PCR pr ogr am included an initial denatur ation step at 95 ◦C
or 7 min, follo w ed b y 33 c ycles at 95 ◦C for 15 s, annealing at 60 ◦C
or 30 s, extension at 72 ◦C for 30 s and a final extension step at
2 ◦C for 5 min. After purification with the Agencourt AMPure XP
it (Beckman Coulter, Switzerland), the recovered PCR products
er e equilibr ated into compar able equal amounts befor e pooling

ogether with positive and negative controls. For the positive con-
rols, we utilized a commerciall y av ailable moc k comm unity (Zy-

oBIOMICS Micr obial Comm unity DN A Standar d II). As for the
egativ e contr ols, they consisted of the DNA extraction buffer
nd the PCR buffer. Sequencing was run in paired-end mode (2
300 bp) on Illumina MiSeq platform by Eurofins Scientific (Kon-

tanz, Germany). 

a ta processing, numeric, and sta tistical anal ysis
aw sequences were demultiplexed by a custom Python script
hich used the ‘make.contigs’ function (pdiff = 2, bdiff = 1, other

ettings by default) in Mothur (v.1.39.5) (Schloss et al. 2009 ) to
ener ate r eport files, upon whic h the r aw sequences wer e de-
ultiplexed into individual samples. After orientation correc-

ion with ‘extract_bar codes.p y’ in QIIME1 (Ca por aso et al. 2010 ),
he sequences were processed by D AD A2 (maxN = 0, maxEE = 2,
runcQ = 2, and minLen = 175) and the output was reported in the
ormat of an amplicon sequence variant (ASV) table (Callahan
t al. 2016 ). The taxonomy was assigned against the SILVA138
atabase (Quast et al. 2013 ). Negative controls were emplo y ed to
ssess the contamination during DNA extraction and PCR pro-
esses, positiv e contr ols ensur ed that the sequencing itself did
ot introduce noticeable errors . Moreo ver, the sequencing du-
licates demonstrated high consistency ( Figure S1 , Supporting
nformation ). The contribution of different community members

https://doi.org/10.5880/GFZ.3.7.2022.001
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
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Figure 1. Maps of the study site showing (A) location with respect to the Northern Hemisphere and permafrost extent regions (B) location with respect 
to the Bykovsky Peninsula, and (C) r elativ e location of the lakes and the lagoon (modified from Yang et al. 2023 ). 
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to the total abundance and beta diversity (Bray–Curtis dissimilar- 
ity, BC) was summarized by using R pac ka ge otuSummary (version 

0.1.1) (Yang 2020 ). The data obtained fr om eac h of the 49 samples,
including their r espectiv e duplicates, wer e combined. The v ery 
r ar e ASVs with a cum ulativ e count less than 10 across all sam- 
ples were removed, resulting in the retention of a total of 25 880 
ASVs . T he microbial community dissimilarity was explored by 
nonmetric multidimensional scaling (NMDS) by using R pac ka ge 
v egan (v ersion 2.5.7) (Oksanen et al. 2019 ) based on the BC dissim- 
ilarity from Hellinger transformed data to mitigate the excessive 
effect of r ar e taxa. Following the clustering in NMDs, a hier arc hi- 
cal clustering ( Figure S2 , Supporting Information ) was performed 

to identify the grouping feature of samples by R base pac ka ge (R 

Core Team 2014 ). With that, permutational MANOVA was com- 
pleted by ‘adonis2’ function of vegan package with BC matrix. To 
detect taxa, which were significantly enriched in the freshwater- 
and marine water-influenced sediments, linear discriminant anal- 
ysis (LDA) effect size (LEfSe) was performed by using R pac ka ge 
microbiomeMarker (v1.1.2), based on normalized data by using a 
negative binomial model (Cao 2021 ). 

To detect associations between micr oor ganisms fr om 

thermokarst lakes and lagoon, network analysis was imple- 
mented to explore the taxon co-occurrence patterns and the 
niche spaces. An initial filtering removed poorly represented 

ASVs with mean r elativ e abundance < 0.5% from the whole 
community dataset, follo w ed b y a secondary filtering to get those 
ASV lineages with the Spearman correlation coefficient (absolute 
value > 0.75) and P -value ( < .01). Afterw ar ds, a netw ork object 
was generated and analyzed by R package igraph (version 1.2.10) 
(Csardi and Nepusz 2006 ). Community modules of the network 
were detected with the ‘cluster_edge_betweenness’ algorithm 

of igr a ph pac ka ge . T he final network contained 194 ASVs. Based 

on the membership affiliation of each node (which represents 
individual ASVs), an NMDs plot was generated to explore the 
pr efer ential occurr ence of module members (ASVs) ov er differ ent 
samples. A nonpar ametric Welc h t -statistic was used to test 
the separation of each module over different groups with base 
pac ka ge in R. In addition, the one-dimensional dia gr am was used 
o display the r epr esentativ e of individual modules over samples
y using the function ‘ linestack ’ from vegan package. 

esults 

n vironmental fea tures 

xploratory ordination analysis on environmental variables,
hic h wer e based on the por e water geoc hemistry and C, N con-

ent of bulk sediments, suggested that the marine water influ-
nced samples, which were entirely composed of the uppermost 
 m sediments of PFL clustered a wa y from the fresh water sed-
ments ( Figure S3 , Supporting Information ). The marine cluster
er e c har acterized by high le v els of sulfate, salinity, and alkalinity,
ith highl y enric hed δ13 C of methane ( −54 ‰∼−37 ‰) in contrast

o the depletion ( −90 ‰∼−75 ‰) of freshwater sediment samples.
 he marine influence , thus , had a larger effect than that of the

ocation. 

ommunity composition 

he most abundant ASV lineage was Caldatribacteriota JS1, with 

 r elativ e abundance of 9.7 ± 8.7% (mean ± SD) acr oss all 49 sam-
les . T he pr edominant arc haeal linea ge (4.3 ± 3.7%) was affiliated
o Bathy ar chaeia within the phylum Cr enarc haeota. At phylum
e v el, a total of 14 taxonomic groups were identified with mean
 elativ e abundance > 1%, including 12 bacterial, and two archaeal
hyla, whic h collectiv el y account for 90% of the total abundance.
hloroflexota was the most abundant phylum (19.7 ± 8.5%), fol- 

o w ed b y Caldatribacteriota (former OP9, also kno wn as Atribac-
eroita, 11.7 ± 8.3%) and Planctomycetota (11.3 ± 5.5%) (Fig. 2 ).
he abundant archaeal phyla included Crenarchaeota (4.7 ± 3.7%) 
nd Thermoplasmatota (2.5 ± 2.1%). Compositional variation over 
amples were displayed in detail at family level (Fig. 3 ), which also
ighlighted the distinct feature of the upper sediments of PFL. 

Collectiv el y, the 14 pr edominant phyla account for an av er a ge
f 74% (first quantile: 66.2%, median: 75.1%, third quantile: 85.2%)
o the total BC dissimilarity. The NMDs suggested two separate
lusters of microbial communities, with one cluster consisting of 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data


4 | FEMS Microbiology Ecology , 2024, Vol. 100, No. 3 

M
ea

n 
re

la
tiv

e 
ab

un
da

nc
e 

(%
)

Chloroflexota

Caldatrib
acteriota

Planctomycetota

Acidobacteriota

Actinomycetota

Pseudomonadota

(Proteobacteria)
Bacteroidota

Crenarchaeota

  Bacillota

(Firm
icutes)

Sva0485

Desulfobacterota

Thermoplasmatota

Verrucomicrobiota

Patescibacteria
0

5

10

15

20

15

35

55

75

95

C
um

m
ul

at
iv

e 
ab

un
da

nc
e(

%
)

Figur e 2. T he abundance of dominant phyla with mean r elativ e abundance greater than 1% over all samples . T he 14 abundant phyla account for 90% 

of the total abundance . T he y -axes in the left and right denote the scales for the barplot and cumulative abundance (line in gre y), respecti vely. 

Figure 3. Bubble plot showing abundance variation of the 45 abundant lineages (with mean relative abundance > 0.35%) over depths for the three 
thermokarst lakes (LG: Lake Golzov o y e, LNPF: Northern Polar Fox Lake, and PFL: Polar Fox Lagoon) in this study. Along the vertical axis, the taxonomy 
was presented at the family rank, and if assigning to the family level was not feasible, the next available higher taxonomic level was utilized. The 
r elativ e abundance was calculated by combining the archaeal and bacterial ASVs and then collapsed at family level for this plot. The bubble colours 
correspond to different phyla, while the size of the bubbles reflects the average relative abundance. 
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amples from the brackish layer of PFL influenced by marine wa-
er (until the sample PFL_220 r etrie v ed at depth of 220 cm), while
he second cluster encompassed samples from freshwater sedi-

ents ( Figure S3 , Supporting Information ). Interestingly, this pat-
ern aligns closely with the two clusters observed in the environ-

ental ordination, which correspond to sediments influenced by
r eshwater and br ac kish water, r espectiv el y ( Figur e S3 , Supporting
nformation ). The freshwater- and saltwater-influenced microbial
lusters were statistically different ( P < .001) according to adonis-
ased nonparametric MANOVA. 

In the freshwater-influenced samples, a total of 8 c har acter-
stic taxa were observed with mean relative abundance > 2%,

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
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including Sva0485, Planctomycetota (AKAU3564 sediment group, 
SG8-4), Chloroflexota (e.g. GIF9, SCGC −AB −539 −J10), Actinomyce- 
tota (WCHB1-81), Acidobacteriota (Aminicenantales), and Bath- 
y ar c haeia. These c har acteristic linea ges occurr ed acr oss most of 
the freshwater-influenced samples and their r elativ e abundances 
ar e significantl y higher than the marine-water influenced gr oup.
In contrast, the lagoon subgroup was represented by Anaerolin- 
eaceae (Chlor oflexota), Spor osarcina, and Clostridium sensu stricto 
13 (Bacillota, also known as Firmicutes). Additionall y, linea ges 
from Caldatribacteriota JS1 were abundant in both habitat groups.
ANME-2a–2b was not highlighted as a c har acteristic linea ge of the 
marine-water group as they largely prevailed only at the upper 
tw o lay ers among the total eight marine-water-influenced group,
despite of their very high abundance in two sulfate-rich depths of 
lagoon sediments. 

Microbial co-occurrence and the environmental 
dri v ers 

The network constituted 194 ASVs (diameter: 11.01673, mean dis- 
tance: 4.688331, and av er a ge clustering coefficient tr ansitivity is 
0.765) with 912 edges, which show almost entir el y positiv e asso- 
ciation except for one negativ e inter action between ASV4 (Chlo- 
roflexota; GIF9) and ASV_193 (Actinomycetota; Cryobacterium). 
The network suggests nine nonrandom modules (modularity 
0.5635) (Fig. 4 ). In this study, two modules (M1 and M2) exhibiting 
high species richness were predominantly observed in freshwater 
sediments, while a distinct and closely interconnected subgroup 

(M3) dominated the lagoon sediments influenced by marine water 
inundation (Fig. 4 ). The one-dimensional plot r e v ealed that sub- 
groups M3 and M6 were predominantly present in the brackish 

la yers , whereas M7 was mor e commonl y found in the upper lay- 
ers. On the other hand, members of M1 and M5 wer e primaril y 
abundant at the deeper part of freshwater sediments ( Figure S4 ,
Supporting Information ). 

The module M3 comprised two archaeal and 40 bacterial ASVs,
spanning across 10 different phyla. More than half of the ASV phy- 
lotypes were affiliated with Chloroflexota (11 ASVs, mainly from 
naerolineaceae), Caldatribacteriota (comprising eight ASVs of 
S1), Pseudomonadota (also known as Proteobacteria, consisting 
f se v en ASVs fr om Gamma pr oteobacteria in this study) and Bac-
eroidota (with six ASVs from Flavobacteriaceae and Ignavibac- 
eriaceae). Additionally, this module included two archaeal lin- 
a ges, namel y fr om Halobacter ota (one ASV fr om ANME-2a–2b)
nd Asgar dar c haeota (one ASV fr om Lokiarc haeia). Suc h pr efer-
nce to marine-water inundation was also reflected by LEfSe anal-
sis (Fig. 5 ). Nonparametric Wilcoxon test implied statistical sig-
ificance of the abundance between freshwater sediments and 

arine-water influenced lagoons for each module (Fig. 6 ). For the
reshwater sediments, pairwise adonis analysis did not reveal sta- 
istical significance across different modules. 

iscussion 

his study demonstrates a substantial change in microbial com- 
unities following the infiltration of marine water into freshwa- 

er thermokarst lake sediments . T hese differences were greater 
han differences of microbial communities between the different 
akes and the deeper (freshwater influenced) lagoon sediments.
or the thermokarst lake sediments, multiple paleo-proxies have 
 e v ealed r elativ el y stable geoc hemical conditions with minor v ari-
tions over about 8 ka BP when the studied upper 8 m of the sed-

ments accumulated (Jongejans et al. 2020 ). In the thermokarst 
agoon, marine-water inundation has generated a sulfate zone 
n top of the sediments since at least 2 ka BP. Both, the fresh-
nd marine-water-influenced sediments wer e pr obabl y subjected 

o r elativ el y stable pr ocesses during the history of lake de v el-
pment, meaning that those geogr a phicall y adjacent lakes have
ikel y r eceiv ed por e waters fr om compar able sources and hav e ex-
erienced stable hydrologic conditions according to the low and 

table electrical conductivity (Jongejans et al. 2020 ). Considering 
he longstanding anoxic and r elativ el y stable conditions in the
hermokarst lakes, the low le v el of envir onmental v ariability likel y
esulted in the o verall con vergence of microbial community com-
osition. The thermokarst lagoon has seasonal connection with 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
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arine water, which not only caused more dynamic geochemi-
al variation than the freshwater sediments, but also introduced
e w micr oor ganisms. Owing to the periodic input of marine mi-
r oor ganisms , the sea water-affected part of the thermokarst la-
oon sediment microbiome potentially experienced a greater in-
uence of species gain or loss, in addition to the preceding effect
f a homogeneous environment. 

In our findings, we observ e onl y slight differ ences in micr obial
ommunity composition across the freshwater thermokarst sed-
ments in general. This could potentially be attributed to the rel-
tiv el y shallow depth of the sediment profiles examined, the ge-
gr a phic pr oximity of the thr ee r esearc h sites, and the r elativ el y
table environmental conditions as mentioned above. The frozen
onditions inherent to permafrost typically impose strong limi-
ation on the spatial distribution and exchange of micr obes, r e-
ulting in island biogeogr a phy patterns and div er gent comm u-
ities (Bottos et al. 2018 ), while the physical constraints within
hermokarst sediments were greatly alleviated, which facilitates
 higher turnover of species. Although spatial distance may still
nfluence the rate of species replacement, the local and microspa-
ial scales in thermokarst sediments are not expected to signifi-
antly impede the vertical and lateral exchange of microorgan-
sms . T his is especially true when there is a robust hydrological
onnection that facilitates species turnover within the sediments.
he co-occurrence of closely related taxa, observed as module 3

n the thermokarst lagoon (Figs 4 and 5 ), further emphasizes the
omogeneous nature of microbial communities in the sediments
f all three research sites. 

The shift from thermokarst lake (LNPF) to lagoon (PFL) resulted
n a decr eased div ersity of the core microbial network (num-
er of modules). This is manifested by the co-occurring bacterial
ubgroups that decreased from eight in freshwater sediments to
ne in the br ac kish la goon sediments. In this study, almost all
embers within the different modules are positively connected

o each other. Positive associations can enhance biological fit-
ess of a module thr ough m utualism or syntropy (Fisher et al.
017 ), which often occurs in phylogenetically related microbes or
s driven by similar environmental conditions and habitat niche
Weiss et al. 2016 ). Mor eov er, netw ork modules w er e often r e-
arded as a functional unit (Wang et al. 2017 ) and the multi-
unctional equivalent of trophic complementarity (Monto y a et al.
015 ). In this case, the overwhelming module diversity of fresh-
ater sediments suggests higher functional diversity than the
arine-water-inundated sediments. Since community modules

r e gener all y gov erned by habitat featur es and nic he differ ence
Lima-Mendez et al. 2015 ), a substantial decline of module diver-
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sity in the br ac kish la goon sediments may be a special ada pta- 
tion to the sulfate-rich saline c har acteristics, whic h led to the ob- 
served distinct and densely clustered group separate from those 
of the freshwater sediments ( Figure S4 , Supporting Information ).
The distinct single module among the br ac kish la goon gr oup (M3) 
may r epr esent a specialized functional gr oup, whic h ada pted to 
the sulfate-rich sediments. In line with the loss of module diver- 
sity of the network, a substantial decline in the r epr esentativ e 
taxa was also observed after the lagoon transition (Fig. 5 ; Figure 
S3 , Supporting Information ). The consistent change in microbial 
comm unity assembla ge pr ovides e vidence of significant habitat 
filtering following the thermokarst lake to lagoons transition. 

Members of the r epr esentativ e module in the saline layers 
of the lagoon (M3), including ANME-2a–2b, Sva1033, Maribac- 
ter, Psyc hr obacter, and Lokiarc haeia, hav e potential roles as car- 
bohydr ate fermenters, r educers of sulfate, nitr ate or ir on, psy- 
c hr ophiles, or halophiles tolerant to cold environments ( Table S1 ,
Supporting Information ). It is worth noting that ANME-2a–2b was 
particularly abundant in only two sulfate-rich sediment layers 
in the upper lagoon (not in the other six samples of the ma- 
rine influenced module group), as highlighted previously (Yang 
et al. 2023 ). Ho w e v er, this linea ge was not r ecognized as c har- 
acteristic taxon because it was not abundant in most samples 
within a group. The anaerobic methanotrophs ANME-2a–2b en- 
gage in methane oxidation through syntrophic cooperation with 

sulfate-reducing bacteria (SRB), an essential process for reduc- 
ing methane emissions from the ocean into the atmosphere 
(Boetius et al. 2000 ). The w ell-kno wn (and potential) sulfate reduc- 
ers such as Desulfobacterota SEEP-SRB1 and Sva1033 co-occurred 

with syntrophic partners, including members of Lokiarchaeia, 
la vobacteriaceae , Caldatribacteriota JS1, Anaerolineaceae , and 

BR1031, as such both parts can benefit from their establishment
n the upper lagoon sediment la yers . Additionall y, prior r esearc h
n the lagoon sediments, the thermokarst lagoon water column 

as been associated with strong methane oxidation during winter 
Spangenberg et al. 2021 ). 

Members of the bacterial JS1 group appeared to be very impor-
ant ov er all. JS1 is affiliated to Caldatribacteriota (pr e vious Atrib-
cteriota, OP9) (Katayama et al. 2020 ), which was frequently ob-
erved abundant (31%–40%) in anoxic, organic-rich, and methane- 
ontaining bottom sediments (Webster et al. 2007 , Carr et al. 2015 ,
ee et al. 2018 ), as well as in Arctic marine sediment with high
ethane concentrations (Carrier et al. 2020 ). A recent study on

altic Sea methane hotspots suggested that JS1 together with De-
alococcoidia in Chloroflexi was strongly correlated with anaerobic 
ethane oxidation rates (Iasakov et al. 2022 ). As suc h, the pr e v a-

ence of bacterial phylotypes of JS1 in both marine and freshwa-
er sediments of the studied sediments likely highlight the eco-
ogical importance of this generalist taxon. Aside from JS1, lin-
ages of Bathy ar cheota occurred as abundant archaeal members 
n the ecosystem. Bathy ar chaeotal members are able to perform
cetogenesis, potentially methane metabolism, and dissimilatory 
itrogen and sulfur reduction, and can interact well with anaer- 
bic methane-oxidizing archaea, acetoclastic methanogens, and 

eter otr ophic bacteria (Zhou et al. 2019 ). The versatile metabolic
otential of this lineage should facilitate their pr e v alence in
noxic sediments . Moreo ver, metagenomic data on the same la-
oon studied here has recently explored nineteen Bathy ar chaeo- 
al genomes, which serve as peptide degraders and acetogenic mi-
robes (Berben et al. 2022 ). 

https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
https://academic.oup.com/femsec/article-lookup/doi/10.1093/femsec/fiae014#supplementary-data
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onclusion 

his stud y re presents an exploration of the microbial composi-
ion in Arctic coastal thermokarst lakes and a lagoon and suggests
ubstantial shifts in micr obial comm unity due to br ac kish marine
ater inundation in the long term. It also demonstrated distinct
icr obial comm unity compositions between marine- and fresh-
 ater-influenced lay ers of the same thermokarst lagoon sediment
 epr esenting former permafr ost layers and ne wl y formed lake
ediment. This suggests that lagoon formation alters microbial as-
embla ges mor e than thermokarst lake formation. In the upper-
ost lagoon sediment la yers , microbial communities adapt to the

ulfate-rich conditions with a reduction in spatial variation and
iversity of the core microbial population. Ho w ever, the sulfate-
ich conditions in the top br ac kish layer of the thermokarst la-
oon result in a distinct core species assemblage prevailing at the
reshwater–marine interface. 
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