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Hotspot movement of compound 
events on the Europe continent
Smit Chetan Doshi 1,2*, Gerrit Lohmann 1,2 & Monica Ionita 1,3

Climate indices are often used as a climate monitoring tool, allowing us to understand how the 
frequency, intensity, and duration of extreme weather events are changing over time. Here, based 
on complex statistical analysis we identify highly correlated significant pairs of compound events at 
the highest spatial resolution, on a monthly temporal scale across Europe. Continental-scale monthly 
analysis unleashes information on compound events such as high-risk zones, hotspots, monthly shifts 
of hotspots and trends, risk exposure to land cover and population, and identification of maximum 
increasing trends. While there are many studies on single or compound climate extremes there are 
only a few studies that addresses the relationship between pairs of hazards, the incorporation of 
bioclimatic indices, the determination of a grid best-fit copula approach, and the outlining relevance 
of this work of compound event risks with exposures. In this respect, here, using 27-bivariate and 
10-trivariate copula models, we show that the different hazard pairs have high combined risks of 
indices related to radiation, temperature, evapotranspiration, bioclimatic-based indices, such as 
the universal thermal climate index, wind chill index, and heat index, mainly over the northern and 
eastern European countries. Furthermore, we show that over the last 7 decades, agricultural and 
coastal areas are highly exposed to the risks of defined hotspots of compound events. In some of the 
hotspots of compound events-identified by clusters, there is no monthly shifts of hotspots, leading 
to higher impacts when compounded. Future work needs to integrate the framework and process to 
identify other compound pairs.

Extreme weather events, such as heatwaves, droughts, floods and storms (including cyclones) have become more 
frequent and severe in recent years due to the impact of climate change (IPCC, 2021 and the references therein). 
Extreme events are of major interest due to their potential to produce significant harm and repercussions on 
people, infrastructure, and  environment1. However, we still need a better overview and an in-depth understand-
ing of what happens when two or more of these extreme events occur simultaneously, creating what’s known as 
a compound extreme event. Compound extreme events can result in devastating consequences for human and 
natural systems, and understanding their likelihood and impact is crucial for effective risk management and 
decision-making2. Compound events which are two or more events occurring concurrently or consecutively 
would increase the impacts and cause major extreme consequences that may not necessarily be extreme occur-
rences  independently3–6. For example, in central Europe and western Russia during 2003 and 2010, severe drought 
conditions concurrent with extreme heat waves produce more damage than either excessive heat or extreme 
dryness would have  alone7. Other compound event examples includes April 2021 and 2022, with Central Europe 
experiencing consecutive frost days following warm spring which highly impacted the crop  yield8. Experience 
of compound floods due to coincidence of storm surges, waves, tides, precipitation and discharges of river are 
already identified in many locations of Europe (e.f. over the period 1870–2016, 23 compound flood events 
were  recorded9). Extratropical cyclones were identified due to co-occurrences of precipitation and wind across 
northwestern central Europe during winter  season10, where events in Great Britain showcased a time difference 
of 0 to 13 days between peak discharge and extreme  wind11. Further, the latest IPCC report about “weather and 
climate extreme events in changing climate” has mentioned that the likelihood of compound events has probably 
grown in past and will continue to rise with further climate  change12. It has been suggested that heatwaves and 
droughts are occurring more often, with hot, dry, and windy events leading to long-lasting fire hazards. Moreover, 
the number of compound flooding due to extreme rainfall, storm surge, and river discharges also  increased12. 
Hazards warnings can be evaluated by climate and weather  variables13. Numerous societally significant extremes 
are not well represented by a single climatic variable at a defined location and time, which leads us to focus our 
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study to account for multiple climate variables and links between extremes of similar or different types in time 
and  space14. An effort is required to comprehend the dependence structure among multiple climate variables 
through multivariate  techniques15–20. Copula-based multivariate techniques have garnered the most attention to 
study the interplay between various climatic variables due to the process of creating joint distribution for differ-
ent marginal distribution of random  variables21,22. Nevertheless, is challenging to apply the strategy to a highly 
multivariate situation due to the fact that the majority of copula dependence models are bivariate with higher 
dimensions produced by nested bivariate  copulas23.

The probabilistic behaviour of extreme events has been investigated in previous research works either through 
 univariate24–26 or  multivariate13,22,27 approach. Previous studies had lacked in one or several aspects such as con-
sidering climate extreme indices to determine compound events through multivariate approach by undergoing 
straightforward application of copula for development of joint distribution, but this might not hold true and 
may change regionally at different spatial and temporal scales. Defining correlation coefficient only using one 
technique to indicate the climate indices dependence strengths between one another can diverge too far from 
reality in evaluation. There are families of copula and selection of copula methods based on the goodness-of-
fit, which is commonly considered the best approach in previous published  papers27,28, but whole study region 
considering each grid needs to be verified for a proper selection of copula. Recent literature  review29 had high-
lighted the missing information gaps of covering all the aspects such as dependence of multiple climatic variables, 
pre-treatment of data, copula selection and statistical examination of fits of the selected copula. It is essential to 
define the ties (data with similar rank) or autocorrelation and stationarity between the climate extreme indices 
but smaller temporal scales such as monthly analysis using daily data overcomes the essential requirement as it 
is less likely to be  observed29. Most of the compound events are linked with joint probabilities of precipitation 
and temperature based climate indices but it must be acknowledged there are indices which are physiologically 
relevant and needs to be assessed in these  combination30–33. Comparing multiple climate indices, gains added 
understanding of the climate system and connection through different sectors. With the available daily weather 
data and known possible indices—74 monthly spatial climate indices are computed which covers multidiscipli-
nary range of indices with integration of bioclimatic indices that is often neglected. Bioclimatic indices, which 
indicate how the climate affects human physiology, need also to be considered as they vary both seasonally and 
regionally in  Europe34. For the temporally compounding of clusters, an identified gap based on persistence of 
co-occurrences of compound events requires further  study35. Persistence refers to climatic events that occur in 
same location for a consecutive time  span36. This hotspot identification is important from two reasons: first, the 
identified hotspot have an increased vulnerability even though not extreme in nature, and second if there are 
co-occurrences at one specific zone than there will be more limited time to make mitigation decision due to 
similar or different type of compound event.

Here, we depict the first high resolution European hotspot monthly movement of compound events through 
bivariate and trivariate copula analysis. Hotspot refers to the high joint probability of the identified compound 
events. Movement is referred to the path followed by these shifts of hotspots across each month. To understand 
which could be the new hotspots in future and track its movement, trend analysis with maximum increasing trend 
was identified along with computing the magnitude of change. Monitoring these hotspots movement can help 
the stakeholders to allocate the resources effectively and if any strategical planning or management is required 
than, they could prioritize those areas understanding its impact joint probabilities. For warning systems, hotspot 
movement acts as a predicted path for the evacuation, mitigation or preparation purposes. If previous mitigated 
regions underlying causes are unidentified, it can relate to the hotspot compound events. Initially hotspots and 
later on movement through patterns for various compound events are determined by applying a joint copula 
distribution and evaluation of the joint probabilities are based on the combination of these 74 climate indices. 
Climate indices are downscaled based on the dependence strength determined by the correlation coefficient 
from three different techniques and determining the best-fit copula for each of the grid individually from the 
families of copula for further analysis. This research analyses gaps of missing  information29 such as consideration 
of climate indices, ties, best-fit copula selection, secondly the computation possible in terms of climate indices 
from available daily data over a longer period (72 years) and thirdly representation of hotspots plus movements 
of compound event for Europe at a monthly scale. The compound pairs we would discuss check three criteria (i) 
high correlation value > 0.6 and < − 0.6 for each month (ii) significance value < 0.05 (iii) climate indices computed 
from different variables (e.g. precipitation, minimum and maximum temperature, radiation, etc.). The graphical 
representation and analysis would involve best-fit copulas, hazard maps, patterns of hotspots, and risk analysis 
in conjunction with population density and landuse maps for highly dependent combination of climate indices 
responsible for compound events, which will be of high importance to many stakeholders across the European 
region. Based on the interest of the stakeholder these relationships would be useful for estimating the risk of 
an  impact13.

Results and discussion
Determining compound events
To determine the compound event pairs for bivariate and trivariate analysis it is necessary to first evaluate the 
correlation and significance values of various combinations of the 74 climate indices (abbreviation elaboration 
in Table 1) using Pearson, Kendall and Spearman correlation methods. On the basis of climate indices com-
puted, 5402 pairs of combination could be produced, with a wide range of computed values. The correlation 
and significance values for each method and each month can be visualized in Supplementary Fig. S1. Out of all 
potential combinations of climate indices and based on the 3 criteria defined above, we look for further analysis 
of 27 combinations of bivariate analysis and 10 combinations of trivariate analysis. The hazard pairs for each 
month that have a positive correlation of greater than 0.80 are gtn and gtx, gtn and txn, gtx and tnn, gtx and tnx, 
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ID Indices name Definitions Units

Drought indices

 PHDI Palmer hydrological drought index Time series of palmer hydrological drought index

 scPDSI Self-calibrated palmer drought severity index Time series of self-calibrated palmer drought severity index

 spi-1 Standardized precipitation index 1 Standardized precipitation index calculated at 1-month time scale

 spi-3 Standardized precipitation index 3 Standardized precipitation index calculated at 3-month time scale

 spi-6 Standardized precipitation index 6 Standardized precipitation index calculated at 6-month time scale

 spi-9 Standardized precipitation index 9 Standardized precipitation index calculated at 9-month time scale

 spi-12 Standardized precipitation index 12 Standardized precipitation index calculated at 12-month time scale

 spi-24 Standardized precipitation index 24 Standardized precipitation index calculated at 24-month time scale

 spei-1 Standardized precipitation-evapotranspiration index 1 Standardized precipitation-evapotranspiration index calculated at 1-month time scale

 spei-3 Standardized precipitation-evapotranspiration index 3 Standardized precipitation-evapotranspiration index calculated at 3-month time scale

 spei-6 Standardized precipitation-evapotranspiration index 6 Standardized precipitation-evapotranspiration index calculated at 6-month time scale

 spei-9 Standardized precipitation-evapotranspiration index 9 Standardized precipitation-evapotranspiration index calculated at 9-month time scale

 spei-12 Standardized precipitation-evapotranspiration index 12 Standardized precipitation-evapotranspiration index calculated at 12-month time scale

 spei-24 Standardized precipitation-evapotranspiration index 24 Standardized precipitation-evapotranspiration index calculated at 24-month time scale

 WPLM Weighted palmer drought severity index Time series of weighted palmer drought severity index

Global radiation

 bio20 Mean radiation Average daily global radiation W/m2

Multi-element indices

 hi Heat index Combines air temperature and relative humidity to determine the human-perceived equivalent 
temperature

 mi Mould index Combined air temperature and relative humidity affecting growth rate of mould. Number of days 
with a relative humidity over 90% and temperature falls over 10 °C

 pet Reference evapotranspiration Using Hargreaves method mm/day

 utci Universal thermal climate index Air temperature of reference condition causing the same model response as actual conditions

 wci Wind chill index Combines air temperature and wind speed; lowering of body temperature due to the passing-flow 
of lower-temperature air

Precipitation indices

 cdd Longest dry period Maximum length of consecutive dry days days

 cwd Longest wet period Maximum length of consecutive wet days days

 d50mm Heavy precipitation days Number of days with precipitation above 50 mm days

 d95p Very wet days Days with precipitation > 95th percentile days

 dd Dry days Number of days with precipitation less than 1 mm days

 dr1mm Wet days 1 mm Total number of wet days ≥ 1 mm days

 dr3mm Wet days 3 mm Total number of Wet days ≥ 3 mm days

 prcptot Total precipitation wet days Precipitation amount on days ≥ 1 mm mm

 r10mm Days precipitation ≥ 10mm Days with daily precipitation amount ≥ 10 mm days

 r20mm Days precipitation ≥ 20mm Days with daily precipitation amount ≥ 20 mm days

 r95tot Percentage precipitation of very wet days Precipitation at days exceeding the 95th percentile divided by total precipitation %

 r99tot Precipitation fraction extremely wet days Precipitation at days exceeding the 99th percentile divided by total precipitation %

 rti Total precipitation Total amounts of precipitation mm

 rx1day Maximum precipitation Highest amount of daily precipitation mm

 rx5d Maximum 5 days precipitation Maximum consecutive 5-day precipitation mm

 sdii Simple precipitation intensity index Sum of precipitation in wet days (> 1 mm) divided by number of wet days in the period mm/day

Relative humidity indices

 rh Mean relative humidity Average daily relative humidity %

Sea level pressure indices

 slp Mean sea level pressure Average daily sea level pressure hPa

Temperature indices

 cfd Maximum consecutive frost days Maximum number of consecutive days with TN < 0 °C days

 csd Maximum consecutive summer days Maximum number of consecutive summer days with TX > 25 °C days

 csdi Cold spell duration Count of days with at least 6 consecutive days when daily minimum temperature < 10th percentile days

 dd17 Difference days above/below TX-17 °C days TX > 17 °C–days TX < 17 °C days

 dtr Diurnal temperature range Mean difference between TX and TN °C

 etr Extreme temperature range Difference between the maximum TX and the minimum TN °C

 fd Frost days Number of days with TN < 0 °C days

 gd4 Growing degree days Sum of degree days of TG over 4 °C °C

Continued
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hi and wci, tnn and txn, tnn and txx, tnx and txn, tnx and txx, gtn and txx, hi and pet, pet and wci, pet and utci; 
pairs with correlation greater than 0.60 are bio20 and gd4, bio20 and gtg, bio20 and gtn, bio20 and hi, bio20 and 
ntg, bio20 and tnn, bio20 and txn, bio20 and utci, bio20 and wci, bio20 and xtg, bio20 and tnx; and the pairs of 
bio20 and hd17, cfd and txx, fd and txx (see Data and method for the definition of each index) have correlation 
less than 0.60. All the aforementioned pairs of climate indices have significance level less than 0.05. These pairs 
act as a base step for further bivariate analysis and for trivariate analysis. The similar pairs are correlated result-
ing in a combination of hi, pet and wci for correlation greater than 0.80; bio20, txn and gtn, bio20, wci and hi, 
bio20, txn and tnn, bio20, tnx, and txn, bio20, gtn and txx, bio20, tnn and txx, bio20, tnx and txx for correlation 
greater than 0.60; and correlation less than 0.60 results in cfd, txx and bio20, fd, txx and bio20. Figure 1 depicts 
the maximum correlation value of climate indices pairs using three different techniques. There are compound 
event pairs which are identified that could be opposite in nature such as hi and wci. Statistically it makes a 
pass but the physical meaning retains to the rare event, which occurs during transition of winter to summer 
or vice versa perceived by humans. The winter events perceived in Europe were linked to winter cold spells in 
North America; the wind related indices bivariate pairs might have relevance with the compound extreme pan-
Atlantic37. Compound pairs of low radiation and high temperature indices can be a major limiting factor for the 
crop  yield38. Linkages between heat and human health has raised awareness, thus the pairs of utci, wci, and hi in 
relation to temperature and radiation that compounds would help to estimate humans feel with varietal climatic 
 conditions39. Interdependence of variables of compound events can result from a number of interacting physical 
processes such as regional sensitivity to global warming, circulation patterns (high or low pressure system)40 or 
natural cycles (El Nino – Southern Oscillation, ENSO)41.

Overall, from the hazard monthly pairs global radiation indices such as bio20, combined indices such as pet, 
hi, utci, wci, and some of the temperature indices (cfd, fd, gd4, gtn, gtg, gtx, hd17, ntg, tnn, tnx, txn, txx, xtg) 
indicates high correlation and significance level less than 0.05 using all three-correlation measures. There are 
climate indices related to drought, precipitation, relative humidity, sea-level pressure and wind speed which have 
strong correlation across the list of indices computed but they do not follow throughout annual strong positive 
or negative correlation hence have been eliminated. However if seasonal or specific month is to be focused then 
further analysis could be carried  out42. Supplementary Table S1 indicates those pairs of very high and statistically 
significant positive (negative) correlation of seasonal and monthly climate indices, which do not fall in the annual 
cycles. Further, climate indices derived from similar weather data might reveal strong correlation values that 
must also be eliminated. The strength of correlation values however varies slightly, with Pearson being largest, 

ID Indices name Definitions Units

 gtg Mean TG Mean of daily mean air temperature (TG) °C

 gtn Mean TN Mean of daily minimum air temperature (TN) °C

 gtx Mean TX Mean of daily maximum air temperature (TX) °C

 hd17 Heating degree days Accumulated degree when TG is below 17 °C °C

 id Ice days Number of days with TX < 0 °C days

 ntg Minimum TG Minimum value of daily mean air temperature °C

 ogs6 Onset of growing season 6 days Date of the start of the first span with at least 6 days with TG > 5 °C days

 ogs10 Onset of growing season 10 days Date of the start of the first span with at least 10 days with TG > 5 °C days

 su Summer days Number of days with daily maximum temperature > 25 °C days

 tn10p Percentage of cold nights Percentages of days with TN < 10th percentile %

 tn90p Percentage of warm nights Percentages of days with TN > 90th percentile %

 tnn Minimum TN Minimum of daily minimum air temperature °C

 tnx Maximum TN Maximum of daily minimum air temperature °C

 tr Tropical nights Number of days with TN > 20 °C days

 tx10p Percentage of cold days Percentages of days with TX < 10th percentile %

 tx90p Percentage of warm days Percentages of days with TX > 90th percentile %

 txn Minimum TX Minimum of daily maximum air temperature °C

 txx Maximum TX Maximum of daily maximum air temperature °C

 vcd Very cold days Days with TN < 1st percentile days

 vdtr Mean daily difference dtr Mean absolute day-to-day difference in dtr °C

 vwd Very warm days Days with TX > 99th percentile days

 wsdi Warm spell duration Number of days which are part of groups of at least 6 consecutive days when TX > 90th percentile days

 xtg Maximum TG Maximum of daily mean air temperature °C

 zcd Zero crossing days Number of days with TX > 0 °C and TN < 0 °C days

Wind speed indices

 fg Mean of daily FG Mean of daily mean wind strength m/s

 fg6bft Number of days with FG ≥ 10.8m/s Number of days with averaged wind ≥ 10.8m/s days

 fgcalm Calm days Number of days with averaged wind ≤ 2m/s days

Table 1.  List of climate indices computed for Europe (1950–2021).
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followed by Kendall and Spearman where the difference are smaller. Characteristics of each correlation technique 
creates these differences as Pearson assumes that the relationship is parametric between variables and highly 
sensitive to outliers whereas Kendall and Spearman are non-parametric and robust to extreme values. Our results, 
depicts that Kendall (tau), Pearson (r), and Spearman (rho) are useful measures for selection of hazard pairs for 
compound events giving further insights of relationship between climate indices variables under significance 
value of 0.05. Based on the correlation strength (threshold > 0.60 & < − 0.60) and significance values < 0.05; 27 
bivariate and 10 trivariate pairs are highly possible compound events for the European region. The bivariate and 
trivariate pairs that include wind speed computed indices that is wci and utci, results in less spatial coverage due 
to the missing observed gridded data (~ 31%), limitation of the risk map coverage related to entire European 
continent for those indices based compound pairs must be acknowledged in this analysis.

Risk maps of compound event
Compound event hazard pairs are identified based on the correlation coefficient and using various copulas; (see 
“Methodology”—“Hazard maps of compound events”). The joint probabilities are computed at a monthly scale 
for a spatial resolution of 0.1°. In multivariate analysis (bivariate and trivariate) joint probabilities for each grid 
are based on selection of best-fit copula from the combined statistical indicators Akaike information criterion 
(AIC), Bayesian information criterion (BIC), Maximum likelihood (MAXL), Nash–Sutcliffe model efficiency 
coefficient (NSE) and root mean square error (RMSE). Statistical significance (p-value) of the selected copula 
was tested using Cramér-von-Mises (CvM) hypothesis. Previous research study shows the application of the 
goodness-of-fit requires at least one performance measure with CvM being utilized often in comparison to Kol-
mogorov–Smirnov (K-S)  statistics27. However, CvM tends to be more powerful than K-S test taken with similar 
 approach43. To include as a tool for elimination before application of statistical indicators depends on several 
factor, as the significance value is highly inaccurate for smaller sample size as it plays a significant role in the 
parametric bootstrap procedure to determine the statistics null  distribution43. All the monthly risk maps related 
to bivariate and trivariate compound event pairs are shown in Supplementary Fig. S2. The hotspot analysis leads 
to the assumption that we are targeting only the highest value (joint probability). However, the next best value 
could be a region near the hotspot or another area in Europe. Defining the threshold for a hotspot could be a dif-
ficult decision if one does not understand the regional functioning, as lower probabilities sometimes lead to high 
risks and vulnerabilities due to lack of resources and timely decisive  management44,45. Figure 2 shows a conclusive 
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Figure 1.  Compound event pairs using correlation coefficient values. Indicating compound event pairs with 
strong positive (maroon and pink), negative (green) correlation coefficient values, and significance level < 0.05 
obtained from 74 climate indices, Pearson, Kendall, and Spearman analysis.
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Figure 2.  Highlighting Europe’s high risk zone: compound event analysis with joint probability exceeding 50%. 
(A) Identifying the zones, which are of high risk. Red (maroon) colour indicates maximum joint probability for 
bivariate (trivariate) pair. (B) Highest joint probability of 97% for bivariate pair bio20 and gd4 during December 
to analyse the risks.
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risk map of compound events occurring in various countries with a joint probabilities > 50%. Once the country 
and the compound event identified, the specific risk maps can be examined in detail from Supplementary Fig. S2.

Prior research  studies8,42,46,47 estimated copula selection using one best fit for entire study area; however each 
grid could represent a different copula fit; this misconception leads to errors which have been highlighted in a 
recent  study29. Furthermore, steps of methodology failed to demonstrate best copula method opted was on which 
statistical indicators as their integration with combining performance of multiple indicators were missing. In 
our study, we have identified the proper copula, through ranking statistical indicators on a scale of 0 to 1, and 
assigning this scales based on their performance and cumulating it at the end for each grid. The findings indicate 
that the copula method at each grid for defined pairs of compound event varies. If the values are averaged, for 
each of the compound event across Europe than Gumbel method is best fit for capturing maximum number 
of outliers and Student-t can capture both the minimum and maximum outliers. Gaussian copula has outper-
formed in comparison with all the copula methods and can fit maximum values of joint probability based on the 
quartile range. Supplementary Fig. S3 indicates comparison of various copula approaches through visualization 
of box plots for all the determined monthly joint probability of compound event pairs. The above statements 
of using averaged best-fit copula method on whole Europe would be misleading and add uncertainty if every 
grid is not tested separately to determine joint probability. Figure 3 hotspots for compound events are shown 
in Supplementary Table S2, along with the month in which they had high joint probabilities, the best-fit copula 
technique for that particular grid at that time, and the value of joint probability for bivariate and trivariate pairs.

Based on the aforementioned findings, it is evident that the northern and eastern regions of Europe face the 
highest risk for the derived compound events. Hotspot regions with compound events of high correlation value 
for each month where the climate monitoring is required are Sweden, Finland, Russia, Ukraine, Greece, United 
Kingdom and Ireland. Specifically, the combinations of various hazard pairs, such as temperature, radiation, 
potential evapotranspiration, and bioclimatic indices, pose significant threats to Norway, Sweden, Finland, and 
Russia. Belarus and Ukraine are at risk of similar combination of compound event pairs except potential evapo-
transpiration. Southern Europe is also vulnerable, with temperature and radiation based extremes, posing the 

Figure 3.  Hotspot of high risks compound events. (A) Hotspots of compound events highlighting bivariate and 
trivariate pairs (B) LandUse/LandCover map of Europe (resolution ~ 1 km) (reference: European Environment 
Agency for coastline  demarcation48; Food and Agriculture Organization for landcover  map49) (C) Population 
density map (resolution ~ 1 km) (reference: socioeconomic data and application  center50).
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higher risk. In Italy, additional threats from radiation and bioclimatic indices – heat index occur. In the western 
part of Europe, the Faroe island are affected by radiation, bioclimatic indices such as heat and wind chill index, 
while the United Kingdom faces risks associated with temperature and radiation indices. For bivariate pair bio20 
and gd4 (hd17), pet and utci (wci) indicates a likelihood of occurrence of > 90%. The upper bound for trivariate 
pairs is 64% for bio20, wci and hi compound event. Ireland, Switzerland and Austria are at risk from trivariate 
pairs of potential evapotranspiration, heat index, and wind chill index. The joint probability increases in extent 
along the adjoining zones as the threshold of joint probability decreases. However, the assumption of consider-
ing the threshold > 50% should not be misinterpreted as the impact of lower joint probabilities being ignorable. 
This is because the compounding effect with other pairs or unidentified pairs could lead to more  vulnerability51. 
Therefore, it is crucial to consider all possible combinations of hazards to fully assess the risk posed by compound 
events in different regions of Europe. Figure 3 displays the countries of European regions where compound events 
are producing high risks based on the visualization and copula analysis of joint probability.

According to the zonal analysis of hotspot, combined effects of radiation with growing degree days > 4 °C, 
thermal stress and prevailing wind effects on environment experienced by Kiruna-Sweden. The landuse map 
reveals that the agricultural sectors of mixed forest and grass in that zone are affected by this phenomenon. Even 
though there is no significant trend over past 100 years, the ongoing climate change leads to flooding in Sweden, 
primarily due to temperature acting as a strongest climatic driver resulting in high flows due to  snowmelt52. 
Potential evapotranspiration with thermal stress and prevailing wind effects is influencing Northern Lapland and 
Finland coastal zones of similar landcover type. Various zones of western Russia experience a higher likelihood of 
extreme events due to radiation, with minimum of daily minimum, mean and maximum temperature, maximum 
of daily minimum and maximum temperature, mean of daily minimum and mean temperature, growing degree 
days > 4 °C and heating degree days < 17 °C, heat index and potential evapotranspiration. Western Russia also 
experiences a higher likelihood of events due to radiation, maximum of daily maximum temperature and frost 
days. The landcover type for most of the hotspot zone in western Russia is a mixture offorest and grass, with 
some regions in proximity to the coastline. Frost days and maximum of daily maximum temperature combined 
effects are prevailing in Inverness-United Kingdom as well whereas Donegal-Ireland experiences trivariate effect 
of potential evapotranspiration, heat and wind chill index. Landcover for both the event pairs is grass zone and 
near coastal zone. Zhytomyr (Cherkasy) Oblast located in northern (central) Ukraine are likely to be impacted 
by combined effect of radiation with heat index and wind chill index. Various locations in the Greece are likely 
to be influenced by bivariate and trivariate pairs of minimum, mean and maximum of daily minimum, mean and 
maximum temperature, radiation and frost days. The areas of Ukraine and Greece impacted are urban and crop 
areas. Population density map indicates that most of the regions where hotspots are marked lies under a low-
density class. However, regions in proximity to the hotspots especially the southern Europe could lead to more 
distress condition as that zone is under high population density class. There are different seasonal or monthly 
compound event pairs (Supplementary Table S1) but the focus was on pairs that have a high correlation value 
(i.e. > 0.8 and < − 0.8) and is statistically significant (p-value < 0.05) throughout the annual period for this hotspot 
zones of high priority as monthly shifts could be tracked.

To outline the relevance of this work, we need to further access the compound events defined hotspot in con-
nection to ground reality. The combined effect of bio20 and gd4 on the agricultural sector influences crop growth 
development, which in turn affects landuse strategies. For instance, stakeholders in Kiruna, Sweden, have declared 
a need for a change in the landuse plans through animal footprints of reindeer herding across the Northern 
Sweden affected by rough weather  change53. Urban designs proposals for the region must also consider thermal 
 comfort54 that could be altered by the combined effect of bio20 with utci and wci. Changes in the dynamics of the 
treeline ecotone for various species has been discussed with underlying cause mentioned as global  warming55, 
but the combination of pet with utci and wci could have influenced the scenario. Western Russia has combined 
effects of temperature, heat, radiation and potential evapotranspiration, which could be responsible for hot and 
dry compound  events56. Further, these effects could also be underlying reason for a drop of more than 70% in 
wheat producing at oblasts affecting food security and agricultural  impacts57. It has already proven that the 
drought event of Western Russia had developed due to combination of heat and increased evaporative  demand58. 
Zhytomyr Oblast, Ukraine recently has experienced wildfire events where air quality change and episodes of dust 
storm were major reason for this extreme  event59 and the hazard linked with it suspects towards combination 
of radiation, heat index and wind chill index. In Greece similar extreme events took place risking infrastructure 
which compounded by ecological responses through increased crop growth leading to more vulnerable situation 
than  expected60. Inverness, United Kingdom experiences increased ticks with warmer  climate61 from ecological 
perspective and vulnerable conditions for population due to coastal  erosion62 with underlying cause unidenti-
fied other than mentioning climate change.  Landslides63 and  wildfires64 for last 12 decade has been impacting 
Donegal, Ireland county and the underlying causes are identified but combined effects identified in this study is 
still missing to be addressed as a part of the issue. Outlining the relevance of this work signifies the results would 
have added benefit in the previous researches for identifying the other drivers responsible for hazards. The identi-
fied compound event along with joint probability could further mitigate the risk by re-designing the framework 
plans. Land-use and population density maps would be a key to focus on dividing the sector responsible and the 
prioritizing the key compound events. The further assessment is based on arbitrary threshold; that is focusing 
on pairs only where the frequency of occurrence for compound event is > 50%. Further, once hotspot has been 
analysed a monthly shifts indicates how does the movement of the hotspot occurs across the European region.

Monthly shifts of compound event hotspot
Supplementary Table S3 presents the statistical performance using various statistical indicators and statistical 
significance (p-value) for the derived compound event pairs of the selected copula method. From statistical 
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performance highlighted in Supplementary Table S3 it could be stated that AIC, BIC, MAXL, RMSE and NSE for 
all the selected copula methods outperforms from statistical standards indicating a best fit. Statistical significance 
was computed for the stakeholders to make a final decision based on the best possible selection of the model with 
a similar approach to previous  study27,29. AIC and BIC value are similar for the compound events across all the 
months, while the copula method varies across each month for same compound event. Some copula families are 
best to capture extreme joint probabilities due to number of times it repeats for entire study area but an analysis 
of grid-by-grid is required as it could vary especially if hotspots are to be identified. The goodness of fit misses the 
study for consideration of p-value to check the statistical significance of theoretical copula fits to empirical copula 
as an elimination step for selection of  copula43,65. However, the underlined statistical significance of the hotspots 
determined was tested through nature of trends where the statistical threshold p-value is < 0.05, indicating the 
selection of copula fit is correct. A detailed Supplementary Table S4 indicates the monthly movement of hotspots 
of identified compound event pairs along with direction and magnitude of trend using Mann–Kendall and Sen’s 
slope approach respectively. Statistical estimation always leads to uncertainties and rather sizeable uncertainties 
exists in multivariate analysis. Previous studies have addressed this uncertainty based on copula fits and devel-
oped procedures to estimate based on parametric or non-parametric  bootstrapping66,67. This study also misses 
the uncertainty of the copula model selection, parameter and input data, which needs further investigation to 
acknowledge the stakeholders how uncertain the hotspot estimates are. In previous studies, it was estimated that 
with decreasing probabilities, the uncertainty range of the copula parameter estimation and input data for copula 
are  increasing68. Further, stronger the heavy tailed marginal distribution such as extreme events, the greater is 
the uncertainty of the joint distribution leading higher uncertainty in joint  probabilities69.

Figure 4 provides an overview of the movement of hotspot for each month and clusters for similar compound 
events occurring and timeline for how frequently they repeat each month. This information may be helpful for 
mitigation purpose and as a deciding factor for stakeholders. The marker sizes on the map indicate the intensity 
of joint probability, whether there is an influence of this compound event over the region and underlying cause 
for any potential hazards. Figure 4 shows only the pairs where the highest monthly threshold limit of joint 
probability > 50%. Spatial distribution of identified compound event after application of Mann–Kendall and 
Sen’s slope is shown in Supplementary Fig. S4 and based on that Supplementary Table S4 is produced at each 
identified hotspot grids displaying the direction and magnitude of change of the compound events. In addition, 
it depicts the location where there is maximum increasing trend and warning signs of potential future hazards. 
This could be considered as a monthly shift of hotspots in future from the previously shown in Figs. 2, 3A and 4. 
The magnitude of change is expressed as a percentage increase/decrease per month. The hotspot movements for 
bio20 and gd4 are observed in Russia and Sweden, with Russia showing increasing trend in risks during summer 
months, and Greece at the similar time has the maximum % increasing trend. In winter, the risk is > 90% for the 
compound event to occur over Russia, however the warning zone could be Greece in future. Spring season in 
Russia indicates a decreasing trend of risks due to bio20 and hd17, but Greece during June and September shows 
an increasing trend. Greece would experience the maximum risk in future due to joint probability increasing 
each month at least at a rate of more than 0.70%/month for bio20 and hd17 compound events. Ukraine shows a 
cluster of bio20 and hi compound event with increasing trend but no significant movement across months except 
during December where Iceland is influenced. For future, Belarus shows highest increasing risk trend of > 1%/
month for the compound event pair. Winter, spring, and summer season of Finland (Ukraine) experience a 
decreasing (increasing) trend of ~ 0.9–1.1%/month joint probability for bio20 and utci (bio20 and wci). Clusters 
across Finland (Ukraine) indicates prolonged impact but the movement in future could modify. Highest increas-
ing trend ~ 0.9–1.1%/month occurs in France, United Kingdom, Netherlands, Germany, Spain for bio20 and utci 
whereas for bio20 and wci similar countries along with Hungary and Sweden movement could be possible. Greece 
for all seasons would experience a risk of compound event related to frost days and maximum temperature. 
Hotspot shows a minimum increasing risk trend > 0.6%/month in Greece but in future, for some season France 
could also influence the clusters as it is increasing at a rate ~ 0.9–1.1%/month. Gtn and gtx combined events 
across Greece is prevalent for each of the months with an increasing trend of risks ranging from ~ 0.6–1.1%/
month and this cluster could change for some months to Sweden and France where the risk has been increasing 
at rate > 0.9%/month. Hi and pet movement varies a lot across the region without following any seasonality of 
cluster but highest joint probability 50–55% is in Russia with increasing trend of ~ 0.84%/month during Decem-
ber however maximum trend is observed in France ~ 0.89%/month. Countries that are currently encountering 
the influence of these compound events are Norway, Sweden, Ukraine, Greece, Moldova and Russia whereas in 
future warnings could appear in Italy and France. Hi and wci cluster at Ukraine with no movement throughout 
the year has high probability ~ 80–90% could be replaced by France in future as the trend is increasing at an 
alarming rate of > 1%/month. Pet with combination of wci and utci follows similar movement across European 
countries influencing Finland, Norway, Switzerland, Austria, Belarus and Spain with highest risk in December 
of > 90% probability. Maximum increasing trend with a magnitude of > 1.20%/month is observed in France dur-
ing summer season. For trivariate pairs clusters forms at Ukraine region for compound event bio20, wci and hi 
and for various months, the maximum increasing trend is variable across various regions such as Sweden, Spain, 
France, Ireland, Belarus and Norway with the highest increasing trend at Ireland of ~ 1%/month during August. 
Cfd (fd), txx and bio20 hotspot movements are within the eastern Europe within Russia and Ukraine. However, 
in future Greece and Italy could also be under surveillance for the effects due to this compound event as the 
rates are increasing at ~ 0.7–1.0%/month. Hi, pet and wci is highly variable in movement as the hotspot lies in 
Spain, Belarus, Norway Luxembourg, Finland, Ireland, Sweden, and Austria that is covering all zones of Europe. 
With the maximum trend, also, it is variable and the rates are high enough to replace the movements in future 
with Latvia, Croatia and Hungary. The analysis helps in identifying how the hotspot movement is taking place 
and which regions are susceptible to the compound event hazard. Stakeholders can make decision based on the 
compound event pairs which months are under scrutiny, mitigation decision and developing country framework 
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to reduce the risk. Figure 5 is the visualization of Supplementary Table S4 but for compound events that exhibits 
maximum increasing trend that would replace in future the hotspots of Fig. 2 demarcated.

Conclusions
In this study We identified 27-bivariate and 10-trivariate pairs of compound events derived from 74 climate 
indices that exhibit a high correlation (r > 0.6) and statistical significance (p-value < 0.05) at the continental scale. 
The methodology for determining the joint probability of these hazard pairs using copula covers all the mis-
conception identified in the recent  study29. The compound events include bioclimatic indices that influence the 
living organism such as hi, utci and wci, potential evapotranspiration, radiation (bio20) and temperature based 
indices. The pairs depict correlation strength and significance marker for each month. Due to the fact that they 
only follow seasonal relationships, the pairs of indices relating to precipitation or drought were not discussed in 
the current study. Other correlation pairs could be examined in future with similar approach to determine the 
hotspots and movements within the season of interest. The average best-fit copula method is student-t copula to 
capture outliers. Considering the values of statistical indicators and the computation time, this approach could 
be utilized, but to avoid uncertainties, each grid must be tested similar to this study.

Based on the analysis of the compound event pairs derived we conclude:

Figure 4.  Monthly shifts of hotspots of compound events for joint probabilities > 50%. Movement of hotspot 
through combination of various bivariate (a–l) and trivariate analysis (m–p) where any of the month has 
threshold of joint probability > 50%. Legends include the circles where the size indicates the joint probability and 
the color depicts the specific month for the hotspot identified. The connecting line indicates the path of monthly 
hotspot shifts.
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• Northern and Eastern Europe are highly influenced by the risks due to hazard pairs of indices related to 
radiation, temperature, evapotranspiration and bioclimatic-based indices, such as the universal thermal 
climate index, wind chill index, and heat index.

• Agricultural and coastal zones highlighted higher vulnerability compared to urban infrastructure.
• Outlining the relevance of this work, results indicate that the climate change is affecting certain regions but 

most of the studies fail to indicate the influencing factors for such modification.
• Monthly shifts of hotspots for compound events are clustered for pairs related to bioclimatic indices – hi, 

utci, and wci, which leads to more risk on living organisms due to compounded effect.
• The trend analysis showcase that the increasing trend might affect the movement and the shifts of hotspot 

patterns could lead to risk other European countries.

For the future it is advisable to identify a list of compound event pairs that are of high risks and adhere to spe-
cific countries to include them as a part of a potential warning system, similar to how ETCCDI has determined a 
set of 27 core climate  indices70,71 to monitor occurrence of climate extremes. As an illustration, Sweden and Russia 
could integrate bio20 and gd4 due to high risk of joint probability and during that period Ukraine and Greece 
should be closely monitored as it is showing hotspot interference by higher increasing trend during that period. 
Overall, this study is still challenging in answering the unresolved question of why these compound events pose 
a high risk to this zone and what mitigation measures are in place to reduce vulnerability to these events when 
they increase many times over. By understanding the dependence between different variables/climate extreme 
indices, we can better predict the likelihood of extreme events occurring and develop strategies to mitigate their 
impact. Moreover, the use of copulas is an important tool for improving our understanding of the complex and 
interdependent nature of extreme climate events.

Methods
Data
The study region focused here is Europe which is the westernmost part of Eurasia and whose climatic data cov-
ering the entire European land surface (25° N–71.5° N × 25° W–45° E) is obtained through European Climate 
Assessment and Dataset (ECA&D) Ensembles daily gridded observation dataset (E-OBS) v25.0e72. These data 
source provides daily gridded observation dataset from 1950 to 2021 (72 years) with resolution ~ 11 km (0.1°) 
of global radiation, maximum air temperature, minimum air temperature, precipitation, relative humidity, sea 
level pressure and wind speed which is further utilized to obtain the monthly gridded climate indices. The data 
source was opted due to the high resolution gridded observational data, requisite frequency of weather data, 
European area coverage, and significant model validation for climate  monitoring73–75. The European National 

Figure 5.  Footprints of future hotspots of compound events. Monitoring the compound events nature and 
magnitude of trend, (blue) arrow pointing upwards shows maximum future increasing nature and magnitude of 
trend. Countries are highlighted in yellow with the magnitude of change per month expressed in %.
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Meteorological and Hydrological Services (NMHSs) entity provides the station data; weather data such as wind 
speed is covered less spatially and global radiation is derived based on in-situ and satellite data—Clouds and 
the Earth’s Radiant Energy System (CERES). Other sources, such as ERA-5 reanalysis, could be used to obtain 
complete spatial coverage of wind speed related weather data, but it has been avoided due to different spatial 
resolution and data source that can further lead to uncertainties and lacking  consistencies76–78. However, for 
global radiation users do not have the option to utilize only in-situ observations. 74 climate indices diversified 
into drought indices, global radiation indices, multi-element indices, precipitation indices, relative humidity 
indices, sea level pressure indices, temperature indices and wind speed indices which are computed is showcased 
in Table 1 along with the description of each of them. The computation of climate indices is carried out using 
R platform “ClimInd” (https:// cran.r- proje ct. org/ web/ packa ges/ ClimI nd/ index. html) and “scPDSI” (https:// 
cran.r- proje ct. org/ web/ packa ges/ scPDSI/ index. html)  package79,80. The decision of selection of climate indices 
were based on potential monthly time-scale from the input weather data. The spatial visualization of all the 
climate indices across Europe is showcased in Supplementary Fig. S5. Further, the climate indices used in this 
study cover also all the 27 core extreme climate indices defined by Expert Team on Climate Change Detection 
and Indices (ETCCDI)70,71.

Methodology
This study’s workflow along with strategies used are detailed below and depicted in Fig. 6.

Data processing
The majority of data acquisition has been covered in the data section, with an important note to consider the 
uncertainty associated with the global radiation as well as the spatial variability coverage across Europe in rela-
tion to wind speed data for the computed climate indices. The daily gridded weather data from E-OBS, when 
used an input for the requisite R-package results in 74 different monthly climate indices. Mean wind speed (fg), 
number of days with wind speed ≥ 10.8m/s (fg6bft), and calm days (fgcalm) are climate indices that only use wind 
speed as input weather data, while universal thermal climate index (utci) and wind chill index (wci) combine 
it with other weather data. Mean radiation (bio20) is a climate index that only used global radiation as input 
weather data. Climate indices reference evapotranspiration (pet) further impacting computation of drought 
indices requires attention through proper selection of empirical method. By using the Hargreaves method which 
requires only minimum and maximum air temperature as climatological data for the calculation, instead of the 
Penman–Monteith method in this case, we are able to achieve the full coverage of Europe over uncertain global 
radiation data and lower spatial coverage due to wind speed data. The Hargreaves method is a recommended 
approach because the simulations are continuous, the approach is straightforward and produces acceptable 
results with readily available input  data81.

Analysis
Correlation of climate indices
Number of correlation coefficients are available based on various statistical hypothesis which are popular to 
quantify the degree of two variables in relation. There are three of them Kendall, Pearson and Spearman rank 
correlation coefficient commonly  used82–84. Pearson is parametric  test85 and Kendall and Spearman are non-
parametric  test86 to measure the degree of strength and association between climate indices variables. Pearson is 
utilized with an assumption that data is normally distributed about regression  line85 whereas Kendall and Spear-
man are rank-based computation illustrating monotonic  relationships86. In our situation where there are climate 
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Figure 6.  Schematic representation of the methodological framework. The steps taken to determine the 
monthly hotspots and patterns of the compound events.

https://cran.r-project.org/web/packages/ClimInd/index.html
https://cran.r-project.org/web/packages/scPDSI/index.html
https://cran.r-project.org/web/packages/scPDSI/index.html
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indices which are numerically equal such as zeros, the values are given an arithmetic mean rank numbers related 
to the ties. Kendall and Spearman have different correlation procedures to handle  ties87. For 74 climate indices, 
the correlation values based on each technique were computed using the built-in “corr” function of Matlab. In 
the documentation for the Matlab function, the formulas for each of the technique have been  described88–91. The 
next phase involved choosing the climate indices that had a strong correlation value and were statistically signifi-
cant. The correlation coefficient value ranges between ± 1; ± shows the correlation’s direction. Climate indices are 
divided into groups of ± 0.80 to ± 1.00 (very high correlation), ± 0.60 to ± 0.80 (high correlation), ± 0.40 to ± 0.60 
(medium correlation), ± 0.20 to ± 0.40 (low correlation), ± 0.00 to ± 0.20 (very low correlation). The statistical 
significance level (p-value) is set at < 0.05; this means that the null hypothesis is rejected if the targeted statistical 
correlation reaches statistical significance. With this boundary points framework, the question of correlation 
strength cannot be  justified92; however, for further multivariate analysis we are interested in the climate indices 
with correlation > 0.60, < − 0.60 and significance level (p-value) < 0.05. The correlation and significance values 
of each methodology would be different, but the combination is based on the union of a subset of the Penman, 
Kendall, and Spearman methods.

Hazard maps of compound events
“Hazard” maps is a visualization of the probability of occurrence that a given natural phenomenon of a given 
magnitude will occur within a given time frame and given  location93. In our study, multivariate analysis (bivariate 
and trivariate) through joint probability is used to visualize the hazard maps of compound events. Joint prob-
abilities are computed statistically through copula function. Early works by  Sklar94 introduced copula which is 
a joint multivariate distribution in which the marginal distribution is uniform over range (0, 1) and from which 
the joint distribution of two or more variables may be  derived95,96, assuming variables are continuous and time-
independent29. If R is an n-dimensional cumulative distribution function (CDF) with 1-dimenisonal marginal 
distribution  Fi(xi), then n-dimensional copula (C) exists such that:

where  (x1,x2,…,xn) are random variables, and  (F1(x1),F2(x2),…,Fn(xn))-denoted by  (u1,u2,…,un) are marginal dis-
tribution for which dependence structure is to be modelled by copula  C97. Copula distribution is diversified into 
empirical and theoretical copula. The two types of copulas most frequently used in theoretical work are Elliptical 
(Gaussian and Student-t) and Archimedean (Clayton, Frank, Gumbel). In this study the joint probability distri-
bution of bivariate and trivariate combinations of climate indices were analysed using Gumbel, Clayton, Frank, 
Gaussian and Student-t copula. General formula for Elliptical and Archimedean copula are defined  below29,98,99:

Elliptical copula:

where, ϕ–1 is inverse of univariate marginal distribution, ϕ is multivariate distribution.
Archimedean copula:

where, ψ–1 is pseudo-inverse of generator function, ψ is generator function which is continuous strictly decreas-
ing convex function.

The computation of multivariate joint distribution was carried out using the Statistics and Machine Learning 
Toolbox of Matlab with ‘copula’  package100. Various aspects of the dependence structure are captured differently 
by various theoretical copula families, with some copulas being better suited to model the overall dependence 
while others are suited to represent the dependence at the tails of the  distribution101–103. Main features of prob-
ability concentration of various copula such as Clayton in lower tail, Frank in symmetry, Gaussian in symmetry, 
Gumbel in upper tail, and Student-t in symmetry, upper tail, and lower  tail29. Assessment of the best-fitted copula 
based on goodness-of-fit is determined. To identify performance from the families of copula analytical tests such 
as Cramér-von-Mises (CvM) hypothesis test is one such viable  approach29. The CvM  test43,104 was used to evalu-
ate the goodness of fit of theoretical copulas with a lower p-value means we accept the null hypothesis that both 
samples are drawn from the same underlying distribution and have confidence in the theoretical distribution 
 fit27. The p-values for each copula of families for each grid of climate indices compound pair computed joint 
probability are obtained using Eq. (4)104.

where criterion of testing to obtain p-value is based on  Am and  Bn which are empirical and theoretical distribution 
of copula based on compound pairs.  HN is empirical distribution function of combined sample, with N = m + n. 
Different statistical indicators such as AIC, BIC, MAXL, NSE and RMSE are used to determine the best fit from 
families of theoretical copula in comparison to empirical copula. The formula to compute each of the statistical 
indicators:  AIC105,106,  BIC107, MAXL, RMSE and NSE are defined below.

(1)R(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) = C
(
u1,u2, . . . , un

)
,

(2)C(u1, u2) = φ
[
φ−1(u1),φ

−1(u2)
]
∈ [0, 1]2,

(3)C(u1, u2) = ψ
[
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]
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N
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∞
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where D is the number of parameters of statistical model, l is the log-likelihood value of best parameter set, 
σ̃ 2 =

∑n
i=1[ỹi−yi(θ)]2

n  is gaussian assumption of error residuals, θ is the copula parameter, and cs is a constant. AIC 
estimates are based on the residual sum of squares instead of maximizing the likelihood function of distribu-
tion; the minimum the AIC value the better is the fit of the copula. Similarly, in order to determine the copula 
of families, it is preferred that BIC have a smaller value, AIC have a higher value, NSE have a higher value near 
to 1, and RMSE have a lower value near to 0. The method is repeated for each grid in order to calculate the joint 
probability using each family of copulas and then compare the results with empirical copulas. Based on a variety 
of statistical indicators, related to each copula family the finalized theoretical copula is the one with the highest 
total towards goodness of fit. Values from the theoretical copula are close to those from the empirical copulas, 
they performed well based on statistical indicators used for various climate indices combinations. For various 
combinations of climate indices that have a correlation > 0.60 and < − 0.60 and significance level (p-value) < 0.05, 
the joint probability for each grid indicating the best matched copula, is calculated and displayed as a hazard map. 
Different combinations of the 74 possible climate indices are discussed in the result section within correlation 
of climate indices para. Best fit copula for the each of the combination using bivariate and trivariate analysis 
and the joint probability visualization has been discussed in the result section within hotspots and patterns of 
compound events para.

Final outcome
Defining hotspots and patterns
Copula-based derived joint probabilities of various combined climate indices surpassing the threshold of cor-
relation and significance level for each grid help a stakeholder to determine the frequency of occurrence of that 
particular compound event for each month. Each grid value of hazard pairs is sorted based on highest to lowest 
order and a rank is assigned. Further the hotspots are defined based on highest possible frequency of occurrence 
(rank with number 1 is assigned) across Europe. This process is repeated for each month and for each of the 
compound events shortlisted from the bivariate and trivariate analysis. Patterns are formed by linking the tagged 
month of the defined hotspot and additional analyses are based on those patterns, answering the question in the 
result section: which zones are more vulnerable? For which kind of compound event? And for which month?

Trend detection
There are parametric and nonparametric approaches for detecting significant trends in time-series of climate. 
Non-parametric trend tests need that the data be independent whereas parametric trend test demands data is 
independent as well as normally  distributed108. Non-parametric approach Mann–Kendall and Sen’s slope estima-
tor at each grid point was used to assess the trends in the joint probabilities of bivariate and trivariate analysis 
derived climate indices combinations. Assumption that while computation of trends of the joint probabilities, 
we assume the stationarity of the climate. Statistical significance of trends estimated using nonparametric Mann-
Kendall109 method and magnitude of trends were derived using Sen’s slope  estimator110. The trend analysis that 
is Kendall’s tau significance and Sen’s slope estimate is computed using R platform “wql” (https:// cran.r- proje 
ct. org/ web/ packa ges/ wql/ index. html) package with function “mannKen”. The formula to determine the trend 
using Mann-Kendall90,111 and Sen’s  slope110 is defined below:

Mann–Kendall:

where, n is number of data points,  xi and  xj are data values in time series and sign function-sgn is given by:

Increasing and decreasing trend is determined by  Zs based on positive and negative values obtained respec-
tively.  Zs is computed using:

(6)BIC = Dln(n)− 2l = Dln(n)+ nln
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https://cran.r-project.org/web/packages/wql/index.html
https://cran.r-project.org/web/packages/wql/index.html
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Sen’s Slope:

where N value is sorted for Qi from small to large and then Sen’s slope is obtained based on the two-tailed esti-
mate for the median Qi  (Qmed), which is determined by:

The outcome from Mann–Kendall would capture the direction of trend that is percentage increasing (posi-
tive value) or decreasing (negative value) and Sen’s slope would capture the magnitude of trend that is percent-
age change in year for the joint probabilities of climate indices resulting compound event over each month for 
European regions.

Data availability
All data are from E-OBS (Version 25.0e) used in our analysis are freely available. (https:// surfo bs. clima te. coper 
nicus. eu/ dataa ccess/)72. LandUse/LandCover map of Europe freely available at Food and Agriculture Organiza-
tion for landcover map (https:// data. apps. fao. org/)49. Data for coastline demarcation freely available at European 
Environment Agency (https:// www. eea. europa. eu/)48. Population density map freely available at socioeconomic 
data and application center (https:// sedac. ciesin. colum bia. edu/)50. Processed data and code to produce the results 
are available at:  https:// doi. org/ 10. 5281/ zenodo. 10014 462.
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