Is spring melting in the Arctic detectable by under-ice radiation?

Philipp Anhaus¹, Noémie Planat², Martin Schiller¹ Christian Katlein¹, Marcel Nicolaus¹

¹ Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany ² Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, Québec, Canada

MOSAIC

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLA UND MEERESFORSCHUNG

1st ARTofMELT 2023 **Open Science Conference** 22 - 24 April 2024 Stockholm University, Sweden

Motivation

- Melt-onset sets conditions for energy & mass balance & ecosystem
- Indicator for Arctic climate change
- Trend towards earlier melt
- Lengthening of melt season
- Increase in absorption of radiation
- Increase in ocean heat, delays freeze-up

Layer structure

Is spring melting in the Arctic detectable by under-ice radiation?

- Snow, ice, and biomass
 leave distinct features in spectral shape of radiation
- How radiation changes, e.g., from 410-490 nm

e.g., Perovich (1996) Wongpan et al. (2018) Campbell et al. (2021) Anhaus et al. (2021)

Surface classification

Surface topography

Surface topography

Terrestrial laser scanner

surface topography [m]

- Melting surfaces
 overlap with areas of low
 surface topography
 - Low snow load

Surface vs ice topography

Surface topography Ice topography -1.8 -1.6 -1.9 -1.7 surface topography [m] -2 -1.8 ce topography [m] Y-position [m] -2.1 -1.9 -2.2 -2 -2.3 -2.1 Surface melting ow ice topoo -0 -0 -10 -2.2 -10 -2.4 NO X-position [m] X-position [m] Melting surfaces Surface topo – snow

Low snow load

• High snow load HELMHOLTZ

Transmittance

Spectral transmittance

Surface vs ice topography

 Areas of low ice topography show less pronounced meltwater signal (370-400 nm)

Future plans

Acoustic echosounder

- Under-ice topography
- Bottom melting

Underwater Hyperspectral Imager (B. Lange, NGI)

Bottom biomass

750

650

600

700

Summary

• Melting on surface & possible meltwater accumulation pools

- Disentangle effects of ...
 - snow
 - ice
 - biomass
 - ... on under-ice radiation

to detect meltwater / melt-onset

