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ABSTRACT: A fundamental statistic of climate variability is its spatiotemporal correlation function. Its complex struc-
ture can be concisely summarized by a frequency-dependent measure of the effective spatial degrees of freedom (ESDOF).
Here we present, for the first time, frequency-dependent ESDOF estimates of global natural surface temperature variabil-
ity from purely instrumental measurements, using the HadCRUT4 dataset (1850–2014). The approach is based on a newly
developed method for estimating the frequency-dependent spatial correlation function from gappy data fields. Results re-
veal a multicomponent structure of the spatial correlation function, including a large-amplitude short-distance component
(with weak time scale dependence) and a small-amplitude long-distance component (with increasing relative amplitude to-
ward the longer time scales). Two frequency-dependent ESDOF measures are applied, each responding mainly to either of
the two components. Both measures exhibit a significant ESDOF reduction from monthly to multidecadal time scales, im-
plying an increase of the effective spatial scale of natural surface temperature fluctuations. Moreover, it is found that a
good approximation to the global number of equally spaced samples needed to estimate the variance of global mean tem-
perature is given, at any frequency, by the greater one of the two ESDOF measures, decreasing from ;130 at monthly to
;30 at multidecadal time scales. Finally, the multicomponent structure of the correlation function together with the de-
tected ESDOF scaling properties indicate that the ESDOF reduction toward the longer time scales cannot be explained
simply by diffusion acting on stochastically driven anomalies, as it might be suggested from simple stochastic-diffusive en-
ergy balance models.
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1. Introduction

Global natural surface temperature variability occurs over
wide ranges of spatial and temporal scales, and it exhibits a
complex spatiotemporal correlation structure. This complex
structure can be concisely summarized by simple metrics, char-
acterizing the space–time statistics of the variability. Inherent to
such metrics is always a dimension reduction of the spatiotem-
poral domain.

A common approach to characterize the spatial correlation
structure consists in applying a measure of the effective spa-
tial degrees of freedom (ESDOF) to a time series of, for ex-
ample, global temperature fields. Although various ESDOF
measures of different complexity have been proposed in the
literature (Livezey and Chen 1983; Smith et al. 1994; Jones
et al. 1997; Wang and Shen 1999; Bretherton et al. 1999; Kunz
and Laepple 2021, and references therein), each of these
measures effectively condenses the entire correlation struc-
ture into a single number, which can be interpreted as the ef-
fective number of independent spatial samples.

To also include the time scale dependence of the spatial
correlation structure, it is possible either to filter the time se-
ries before applying an ESDOF measure (Jones et al. 1997)
or to apply an explicitly frequency-dependent ESDOF mea-
sure to the unfiltered time series (Kunz and Laepple 2021).
The latter approach has the advantage that it directly yields
ESDOF-frequency spectra, allowing for an evaluation of the
ESDOF scaling properties across time scales.

There are various motivations for summarizing the space–time
statistics of temperature variability by applying a frequency-
dependent ESDOFmeasure. For example, frequency-dependent
ESDOF estimates may provide information regarding the repre-
sentative spatial scale of a local measurement and its dependence
on time scale. Another application consists in determining the
global number of samples needed to estimate the variance of
global mean temperature at a given time scale. Furthermore,
ESDOF-frequency spectra may serve as a simple diagnostic for
comparing the space–time statistics between different climate
models or between models and observations, and they may pro-
vide a basis for the formulation of simple stochastic models of
global temperature variability.

In this study we present, for the first time, ESDOF-frequency
spectra of global natural surface temperature variability, ranging
from monthly to multidecadal time scales, and based exclusively
on instrumental measurements. The datasets used are described
in section 2, and the methods applied to them are provided by
section 3, including the definitions of the frequency-dependent
ESDOF measures. The results are presented in section 4, and a
discussion and conclusions follow in section 5.
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2. Data

a. Instrumental data: HadCRUT4

We use the global gridded (58 longitude 3 58 latitude) desea-
sonalized surface temperature dataset HadCRUT4 (Morice
et al. 2012) that is exclusively based on instrumental measure-
ments, combining ship-based sea surface temperature with land
station air temperature data. For this study we select the time
period 1850–2014 (165 years). Grid boxes without any observa-
tions in a given month are represented as data gaps. The aver-
age spatiotemporal coverage of the global dataset during the
selected period is about 60%.

Since we are interested in natural temperature variability, we
apply a nonlinear detrending procedure to remove the anthropo-
genic warming signal. Specifically, zonally averaged temperature
is regressed, separately at each latitude, onto the global and an-
nual mean time series of the total anthropogenic surface radiative
forcing,1 Flog(CO2eq)(t), using the logarithm of the CO2-equivalent
concentration. The response to anthropogenic forcing is then de-
fined as b(f)Flog(CO2eq)(t), where b(f) is the latitude-dependent
regression coefficient. This response is extended in longitude and
subtracted from the global temperature fields.

We also investigate the sensitivity of our analysis to variations
in the temporal and spatial structure of the calculated response
to anthropogenic forcing. To investigate the sensitivity to the
temporal structure, the full forcing time series Flog(CO2eq)(t) is
decomposed into the CO2 and the remaining non-CO2 compo-
nent, denoted by Flog(CO2)(t) and [Flog(CO2eq)(t) 2 Flog(CO2)(t)],
respectively. The latter one is then either increased or de-
creased by 50%, that is, zonally averaged temperature is now
regressed onto Flog(CO2)(t) 1 a[Flog(CO2eq)(t) 2 Flog(CO2)(t)],
with a 5 0.5 or 1.5. This approach is motivated by the fact
that the CO2 contribution to the total anthropogenic forcing
is relatively certain, whereas the non-CO2 contribution is
rather uncertain, mainly caused by the uncertainties associ-
ated with anthropogenic aerosols. To investigate the sensi-
tivity to the spatial structure, globally (rather than zonally)
averaged temperature is regressed onto the full forcing time
series, Flog(CO2eq)(t), which eliminates the latitudinal structure
from the response.

The HadCRUT4 dataset is provided together with detailed
error covariance estimates for each month and grid box, which
we use to correct our spatial correlation and ESDOF metrics
(defined in section 3). Because the errors are assumed to be
independent of temperature, and our metrics are all based on
second-moment statistics like variances, covariances, and power
spectral densities, we can simply compute the same metrics
from the HadCRUT4 temperature fields and from random real-
izations of the errors, and then subtract the latter from the for-
mer to obtain error corrected estimates of our metrics.

b. Reanalysis: NOAA20CRv3

We use the ensemble mean NOAA Twentieth Century Reanal-
ysis, version 3, global surface temperature dataset (NOAA20CRv3
hereinafter; see Slivinski et al. 2019; selecting again the period
1850–2014, and from which we subtracted the climatological an-
nual cycle, including its higher harmonics) to study the potential
impact of the data gaps on our spatial correlation and ESDOF
metrics. For this purpose, we interpolate the NOAA20CRv3
temperature fields onto the HadCRUT4 58 3 58 grid, using a
second-order conservative remapping scheme, such that the
HadCRUT4 data gaps can be imposed to the NOAA20CRv3
fields. This allows us to compute our metrics from both the
complete and the gappy data fields, and to compare the ob-
tained results. We also apply the same nonlinear detrending
procedure to remove the anthropogenic warming signal as de-
scribed in section 2a for HadCRUT4. Using the reanalysis has
the advantage that it is based on the same trajectory of internal
climate variability as the instrumental observations. Thus, it al-
lows us to investigate the interaction between this trajectory
and the specific spatiotemporal distribution of the HadCRUT4
data gaps.

c. Climate models: CMIP6

To investigate the estimation bias and uncertainty of our spa-
tial correlation and ESDOF metrics, we use the global surface
temperature fields from an ensemble of Coupled Model Inter-
comparison Project phase 6 (CMIP6) climate model simulations
(Eyring et al. 2016) from which we subtracted the climatological
annual cycle, including its higher harmonics. Specifically, we ana-
lyze simulations of length 165 years of the preindustrial control
(CMIP6-piCtrl) experiment which includes no external forcings
and, thus, generates only internal climate variability. We employ
27 climate models (listed in Table A1 in appendix A) from each
of which we use 3 independent simulations, resulting in an en-
semble of 81 members in total. As for NOAA20CRv3, all
CMIP6 temperature fields are interpolated onto the HadCRUT4
58 3 58 grid, which allows us to impose the HadCRUT4 data
gaps and, thus, to investigate the impact of the gaps on the results
for the climate models in an ensemble mean sense, and where
the trajectories of internal climate variability are independent of
the observed trajectory.

3. Methods

In this study we use two different frequency-dependent ESDOF
measures, introduced previously by Kunz and Laepple (2021). The
first measure is defined as

D( f ) 5 1/M[R(u; f )], (1)

where R(u; f ) denotes the frequency-dependent spatial cor-
relation function, u 2 [0, p] is the angular distance between
two locations on the globe (the angle between them as
seen from the center of Earth), f is frequency, and the
operator M[x(u)]5 [�p0 x(u) sinu du]/2 represents the area-
weighted global mean of any radial function x(u). Specifically,
R(u; f) 5 C(u; f)/C(0; f), where C(u; f) is the spatial covariance
of surface temperature variability at frequency f, averaged over

1 The annual mean time series is linearly interpolated to
monthly resolution for the regression. The time series consists of
historical data for the period 1850–2004 and is extended by the
representative concentration pathway RCP4.5 time series for
the period 2005–14 (Meinshausen et al. 2011). A visualization of
the total anthropogenic surface radiative forcing time series is
given by Fig. 8.18 (red line) in Myhre et al. (2013).
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all pairs of locations separated by an angular distance u. The
procedure to estimate C(u; f) from a time series of global
gridded temperature fields follows the approach of Kunz and
Laepple (2021) that uses spherical harmonic and Fourier de-
compositions for the transformation from longitude, latitude,
and time to angular distance u and frequency f. Here we ap-
ply an advanced variant of that approach which is capable
of dealing with gappy temperature fields, that is, with fields
that include empty grid boxes due to missing observations
(see appendix B for details).

It can be shown (see Kunz and Laepple 2021) that
M[R(u; f )] 5 M[C(u; f )]/C(0; f ) 5 Sglb(f )/Sloc(f ), where
Sglb(f ) is the power spectral density of the global mean and
Sloc(f) is the global mean of the local power spectral density of
surface temperature anomalies. Thus, the above frequency-
dependent ESDOF measure (1) can also be expressed as [see
Kunz and Laepple 2021, their Eq. (20)]

D( f ) 5 Sloc( f )/Sglb( f ): (2)

The basic interpretation of this ESDOF measure is as follows.
If all grid boxes of the global temperature field are perfectly
correlated (and have equal power spectral density), at a given
frequency f, then Sglb(f)5 Sloc(f) and, thus, D(f)5 1. On the
other hand, if there are N uncorrelated (and equally weighted)
grid boxes, then Sglb(f)5 Sloc(f)/N and, thus,D(f)5 N. In appli-
cations to global temperature fields, D(f) typically attains values
between 1 and N [for a detailed discussion of the measure, see
Kunz and Laepple (2021)]. Note that a frequency-independent
version of this measure can be defined that is identical to the
ESDOF measure of Jones et al. (1997) according to their
Eq. (10).2

The second frequency-dependent ESDOF measure, used
in this study, is defined as [see Kunz and Laepple 2021,
their Eq. (26)]

Dfit( f ) 5 1/M[Rfit(u; f )], (3)

where Rfit(u; f) 5 exp[2u/ue(f)] is an exponential correlation
function, the e-folding scale of which matches that of R(u; f),
that is, R[ue(f); f ] 5 1/e. By analogy with our first ESDOF
measure, a frequency-independent version can also be defined
of our second measure, which corresponds to the second
ESDOF measure of Jones et al. (1997) according to their
Eq. (14),3 with the exception that they use a different normali-
zation procedure to obtain the correlation function from
which ue is determined. In summary, our first measure, D(f),
represents a summarizing metric of the entire radial correlation
structure of the global temperature field, whereas our second
measure,Dfit(f), depends only on the e-folding scale ue(f).

To investigate the estimation bias and uncertainty of the
two ESDOF measures we use the CMIP6 climate model
ensemble [as the theoretical expressions for the estimation
bias and uncertainty, derived by Kunz and Laepple (2021),
are only valid for the first measure D(f ) and only if it is
applied to complete data fields]. The ensemble allows us to
define an unbiased and a biased ensemble mean estimator,
the difference of which equals the expected estimation bias
of an ESDOF estimate obtained from a single realization of
temperature variability, as given by HadCRUT4. The ensem-
ble is also used to quantify the expected estimation uncer-
tainty by investigating the ensemble spread (see appendix C
for details of the bias and uncertainty analysis).

Both ESDOF measures can be translated into an associ-
ated length scale, defined as the radius of a spherical cap,
the area of which covers that fraction of the globe that is
equal to the reciprocal of the ESDOF measure. It can be
shown that this definition implies (see Kunz and Laepple
2021, their appendix A) that

L(f ) 5 r arccos[1 2 2/D(f )] (4)

and

Lfit(f ) 5 r arccos[1 2 2/Dfit(f )], (5)

where r denotes the radius of Earth. These length scales can
be interpreted as an effective correlation radius. Note, that
the e-folding length, defined as

Le(f ) 5 rue(f ), (6)

which is simply the e-folding scale ue(f) expressed in units of
length, is not equal to Lfit(f) because of the spherical geome-
try of the spatial domain.

In addition to estimating the spatial correlation functions
R(u; f) and Rfit(u; f) at each specific frequency f, they are also
estimated for three different frequency bands,4 denoted as
the multidecadal, interannual, and subannual band (defined
in Table 1). From these frequency-band correlation functions,
R(u) and Rfit(u), the corresponding frequency-band values of
D, Dfit, L, Lfit, and Le are computed by analogy with (1), (3),
(4), (5), and (6), respectively.

One potential application of a global ESDOF measure con-
sists in using its value, after rounding it to the nearest integer
N, as the global number of equally spaced samples that is
needed to estimate the variance of the global mean, s2

glb.
Likewise, the value of a frequency-dependent ESDOF mea-
sure can be used to estimate Sglb(f). This application makes

2 This frequency-independent measure is defined byD5 s2
loc/s

2
glb,

where s2
loc 5

�‘
2‘

Sloc(f ) df is the global mean of the local variance

and s2
glb 5

�‘
2‘

Sglb(f ) df is the variance of the global mean.
3 Note that from their Eq. (14), and realizing that the expres-

sion x0 /R in their notation is equal to ue in our notation, we can re-
write our above frequency-dependent ESDOF measure in Eq. (3)
asDfit[ue(f )]5 2[11 1/u2e(f )]/{11 exp[2p/ue(f )]}.

4 Note that the order of operation is as follows: first, integration
across the frequency band is performed on C(u; f) to obtain the
frequency-band covariance function C(u) and, second, normaliza-
tion is performed to obtain the frequency-band correlation func-
tion R(u) 5 C(u)/C(0), from which ue is determined to obtain
Rfit(u), because the opposite order (normalizing before integra-
tion) would create an additional estimation bias in R(u) and, con-
sequently, in ue andRfit(u), caused by the scattering estimatorC(0)
in the denominator of the integrand.
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sense in situations where one is given only sparse spatial data,
or even has to expensively collect the data first. For example,
if the variance of the global mean in a specific frequency band
is to be estimated from a past period where only data from pa-
leoclimate proxies are available or have to be collected, then,
given an ESDOF value (obtained from high-resolution instru-
mental data), its nearest integer N may be used as a first guess
(or lower bound) for the global number of samples (proxy lo-
cations) needed to obtain a reasonable variance estimate.
This approach works best if the underlying spatial fields have
the structure of (discrete) white noise. For more complex cor-
relation structures, as it is found for surface temperature or
any other climate variable, however, ESDOF values may
imply too small sample numbers N, leading to an overesti-
mation of the variance of the global mean. It is, therefore,
meaningful to investigate the extent of variance overestima-
tion that has to be expected for the various ESDOF meas-
ures across frequencies, given the frequency-dependent spatial
covariance function obtained from the HadCRUT4 instrumental
dataset.

Given the relatively high spatial resolution of HadCRUT4,
the frequency-dependent spatial covariance function C(u; f) is
estimated at a sufficiently high accuracy such that we can treat
the power spectral density of the global mean, obtained as
Sglb(f) 5 M[C(u; f)], as its true value. In addition, we can use
C(u; f) to compute the expected power spectral density of the
global mean, Sglb,N(f), if it were estimated from N equally
spaced samples around the globe. Specifically, we obtain
Sglb,N(f) by taking the mean over N equally spaced samples of
the HadCRUT4 covariance function C(d; f ), using the coor-
dinate d 5 2cosu 2 [21, 1] to account for area weighting.
From this, the expected variance overestimation can be ex-
pressed as

DSglb,N( f ) 5 Sglb,N( f ) 2 Sglb(f ): (7)

Then, substitutingN byD(f) orDfit(f), rounded to an integer,
yields the expected variance overestimation when using
the ESDOF value as the global sample number. If this is
expressed as the percentage of relative overestimation,
pN(f) 5 DSglb,N(f)/Sglb(f) 3 100, and, additionally, a required
maximum percentage of relative overestimation, p0, is set, it
can be checked which ESDOF measure at which frequencies
fulfills the required condition pN(f) , p0; with N again being
substituted by a rounded ESDOF value.

Conversely, one may ask for the number of samples Np0
(f)

that yields the required percentage of relative overestimation
p0. To obtain Np0

(f), we first determine pN(f) for a suitable

range of integer values of N. Then linear interpolation be-
tween those N associated with the p values closest to the re-
quired value p0 yields the (generally real) value Np0

(f).

4. Results

The frequency-dependent ESDOF measure D(f), estimated
from the nonlinearly detrended HadCRUT4 temperature
fields, exhibits a notable reduction from monthly toward multi-
decadal time scales (Fig. 1a, red line). In terms of the fre-
quency bands defined in Table 1, global natural surface
temperature variability has more than 100 ESDOFs in the sub-
annual frequency band and just above 10 ESDOFs in the mul-
tidecadal band. When the same measure is estimated from
CMIP6-piCtrl temperature fields (with HadCRUT4 gaps im-
posed), the ensemble median ESDOF spectrum D(f) exhibits
a similar behavior (Fig. 1a, black line), but values are roughly
25% larger across the entire frequency range. This ESDOF
spectrum appears as a superposition of two components,
namely (i) an almost uniform power-law scaling across all fre-
quencies, that is, following D( f ); fbD , with scaling exponent
bD, and (ii) a pronounced ENSO signature characterized by
smaller ESDOF values at interannual time scales, reflecting
large-scale coherent fluctuations associated with ENSO-
related teleconnections. In terms of the 5% to 95% quantile
range of the CMIP6-piCtrl climate model ensemble (Fig. 1a,
gray shading), the HadCRUT4 ESDOF spectrum appears
to be consistent with the climate models, although the su-
perposition of the two components would be less discernible
from the HadCRUT4 spectrum alone because of the estima-
tion uncertainty.

The consistency between CMIP6-piCtrl and detrended
HadCRUT4 justifies the use of the model ensemble spread and
bias as an estimate of the estimation error of the HadCRUT4
ESDOF spectrum. The bias-corrected HadCRUT4 ESDOF
spectrum and frequency-band values are shown in Fig. 1c
(red lines), ranging from 128 ESDOFs in the subannual to
25.5 ESDOFs in the interannual to 10.9 ESDOFs in the multi-
decadal frequency band, corresponding to associated length
scalesL of 1.133 103, 2.543 103, and 3.933 103 km, respectively
(Table 1). Figure 1c also indicates that the bias-corrected
HadCRUT4 ESDOF spectrum follows roughly a power-law
scaling with scaling exponent bD ’ 0.5. The uncertainty inter-
vals in D (and associated L), applied to the bias-corrected
HadCRUT4 frequency-band values, are also indicated in
Fig. 1c (vertical lines) and specified in Table 1. Note that, as
shown in Fig. 1a (black whiskers), the estimation uncertainty
alone is indeed smaller than the total uncertainty including the

TABLE 1. Names of frequency bands, associated frequency ranges, and bias-corrected frequency-band values of the ESDOF
measures D and Dfit and of the length scales L and Lfit, together with the estimation uncertainty intervals indicated in brackets,
estimated from the nonlinearly detrended HadCRUT4 temperature fields.

f band f range D Dfit L (103 km) Lfit (10
3 km)

Multidecadal 1/(165 yr) # f , 1/(10 yr) 10.9 [7.27–16.2] 29.3 [24.9–34.5] 3.93 [3.20–4.84] 2.37 [2.18–2.57]
Interannual 1/(10 yr) , f , 1/(1 yr) 25.5 [22.8–28.5] 34.4 [33.6–35.2] 2.54 [2.40–2.69] 2.19 [2.16–2.21]
Subannual 1/(1 yr) , f # 1/(2 mon) 128 [121–135] 44.2 [43.8–44.7] 1.13 [1.10–1.16] 1.92 [1.91–1.93]
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FIG. 1. (a) ESDOF measure D( f): HadCRUT4 (red), NOAA20CRv3 (green), CMIP6-piCtrl biased (black solid)
and unbiased (black dotted) ensemble estimator, and 5%–95% quantile range (gray shading). Also shown are
frequency-band values (horizontal lines), with quantile ranges (vertical black lines) and uncertainty intervals (black
whiskers}inner: estimation; outer: total). (b) As in (a), but forDfit( f), and without uncertainty intervals. (c) Bias-corrected
HadCRUT4 D( f) (red) and Dfit( f) (orange), frequency-band estimation uncertainties (vertical black lines),
sample number Np0510%( f ) (blue dashed), and power-law scaling with exponents b 5 0.1 and b 5 0.5 (gray lines).
(d) Relative variance overestimation pN( f) using bias-corrected HadCRUT4 D( f) (red) and Dfit( f) (orange) as
sample number, and p0 5 10% (blue dashed). Spectra include a log-frequency smoothing.
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intermodel spread, and that the relative difference between
them is smallest in the multidecadal frequency band.

Since the ESDOF measure D(f) is based on the spatial in-
tegral of the frequency-dependent spatial correlation function
R(u; f), inspection of the latter helps to understand the behav-
ior of the former. The spatial correlation function estimated
from the detrended HadCRUT4 temperature fields is shown
in Figs. 2a–c for the three frequency bands. The structure of
these correlation functions suggests that it consists of three
components: (i) a strongly decaying short-distance component
that dominates the correlation structure at short distances
(,2 3 103 km), (ii) a weakly decaying long-distance compo-
nent that dominates at larger distances, most clearly seen in
the multidecadal frequency band, and (iii) an oscillatory com-
ponent that reflects anticorrelated teleconnections, seen most
clearly in the subannual band, with a wavelength of about
6.7 3 103 km. This HadCRUT4 correlation structure appears
to be consistent with the CMIP6-piCtrl climate model ensem-
ble in terms of the 5% to 95% quantile range.

To relate the changes of D(f) across frequencies to the
changes in the structure of R(u; f), recall that the integral of
the spatial correlation function involves the area-weighting
factor sinu (see the operator M[?] in section 3). Accordingly,
Figs. 2d and 2e show the difference of the area-weighted cor-
relation function between the multidecadal and interannual,
and between the interannual and subannual frequency bands,
respectively. This difference illustrates how the contribution
to the integral over the correlation function is distributed
across angular distance u. It turns out that the bulk contribu-
tion to the changes between frequency bands comes from
large distances, where the large-distance component of the
correlation function dominates over the short-distance com-
ponent. Thus, the reduction of the ESDOF measure D(f) to-
ward the longer time scales is caused by an increase in
relative amplitude of the weakly decaying long-distance com-
ponent. Since, however, even in the multidecadal frequency
band the relative amplitude of this weakly decaying compo-
nent is small compared to the strongly decaying short-distance
component, the e-folding length Le of the full correlation
function (indicated inside Figs. 2a–c) undergoes only little
change across frequencies (less than 20% between the sub-
annual and the multidecadal band).

This particular multicomponent structure of the spatial cor-
relation function in the multidecadal frequency band, with
strongly decaying short-distance correlations followed by a
long tail of weak long-distance correlations, may lead to sig-
nificant overestimation of the variance of global mean tem-
perature, when estimated from a finite number of D(f)
equally spaced samples across the globe. The expected rela-
tive overestimation, DSglb(f)/Sglb(f), defined by (7), is shown
in Fig. 1d (red line). The variance overestimation is indeed
largest in the multidecadal frequency band where it amounts
to about 40%, and it decreases to only about 10% in the sub-
annual band. This implies that the ESDOF measure D( f)
provides a suitable estimate of the number of samples needed,
for estimating the variance of global mean temperature, only
at subannual scale, but not at longer time scales where the

strongly decaying short-distance component of the correlation
function is effectively undersampled.

Since this short-distance component of the correlation func-
tion is characterized by the e-folding length Le even in the
multidecadal frequency band, the above issue may be solved
by using the alternative ESDOF measure Dfit(f), which de-
pends only on Le but not on the long-distance component.
The measure Dfit(f), estimated from the detrended Had-
CRUT4 temperature fields, is shown in Fig. 1b (red line). As in
the case of D(f), the measure Dfit(f) is again highly consistent
with estimates from the CMIP6-piCtrl model ensemble (Fig. 1b,
black line and gray shading), but its frequency dependence is
much weaker than that of D(f), in accordance with the weak
frequency-dependence of Le. Using the model ensemble spread
and bias as before, bias-corrected HadCRUT4 ESDOF esti-
mates in terms of Dfit(f) are obtained (Fig. 1c, orange line),
ranging from 44.2 ESDOFs in the subannual to 34.4 ESDOFs
in the interannual to 29.3 ESDOFs in the multidecadal fre-
quency band, corresponding to associated length scales Lfit of
1.92 3 103, 2.19 3 103, and 2.37 3 103 km, respectively. Thus,
Dfit(f) is roughly 3 times smaller than D( f) in the subannual,
and roughly 3 times larger than D( f) in the multidecadal
frequency band. Bias-corrected values and uncertainty intervals
are specified in Table 1. Figure 1c also indicates that the
bias-corrected HadCRUT4 ESDOF spectrum follows roughly
a power-law scaling, Dfit(f ); fbDfit , with scaling exponent
bDfit

’ 0:1. Note that in the multidecadal frequency band the
log(Dfit) model ensemble distribution (Fig. 1b, vertical black
line) is highly asymmetric with a skew toward lower ESDOF
values, such that the corresponding uncertainty interval is only
a rough guide and both the upper and lower limit must be ex-
pected to be too high.

The difference between D(f) and Dfit(f) can be related to
the (area-weighted) difference between the underlying spatial
correlation functions, R(u; f) and Rfit(u; f) (Figs. 2f–h). In the
multidecadal frequency band (Fig. 2f, red line), this difference
is largely due to the long-distance component of R(u; f),
whereas in the subannual band (Fig. 2h, red line) this differ-
ence is due to the oscillatory component of R(u; f) (reflecting
anticorrelated teleconnections), both of which are absent, by
construction, in the exponential correlation function Rfit(u; f).
In the interannual frequency band (Fig. 2g, red line) these
two opposite effects on the integral of the spatial correlation
function and, thus, on D(f) and Dfit(f), cancel each other out
to some extent, such that the difference between the ESDOF
measures is relatively small in this band (Fig. 1c).

When using the measure Dfit(f) as the number of equally
spaced samples across the globe for estimating the variance of
global mean temperature, the expected relative overestima-
tion, DSglb(f)/Sglb(f), again based on the full correlation func-
tion R(u; f), is smallest in the multidecadal frequency band
where it amounts to about 10%, and it increases to about
55% in the subannual band (Fig. 1d, orange line). It, there-
fore, exhibits the opposite behavior to the case of using D(f)
as the sample number. Hence, when accepting a variance
overestimation of 10% to 20%, the measure Dfit(f) provides a
suitable estimate of the required sample number at frequen-
cies below 1/(2 yr) (Fig. 1d), and the measure D(f) provides a
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FIG. 2. Spatial correlation function R(u) for the (a) multidecadal, (b) interannual, and (c) subannual frequency
band: HadCRUT4 (red), NOAA20CRv3 (green), CMIP6-piCtrl biased ensemble estimator (black), and 5%–95%
quantile range (gray shading). (d),(e) As in (a)–(c), but for frequency-band differences and area-weighted correlation
functions. (f)–(h) As in (a)–(c), but showing the difference between R(u) and Rfit(u), and for area-weighted correla-
tion functions. The HadCRUT4 e-folding length Le is indicated by red labels in (a)–(c).
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suitable estimate at the higher frequencies. Conversely, when
requiring an overestimation of only 10% across all frequen-
cies (Fig. 1d, blue dashed line), the implied number of equally
spaced samples across the globe, Np510%, increases from
about 30 at multidecadal to about 130 at monthly time scales
(Fig. 1c, blue dashed line). It turns out that at any frequency
the greater one of the two measures, D(f) and Dfit(f), pro-
vides a suitable estimate of the sample number needed for es-
timating the variance of global mean temperature. At the low
frequenciesD(f) provides a too small sample number because
the short-distance component is effectively undersampled. At
the high frequencies Dfit(f) provides a too small sample num-
ber because the narrow u-interval with negative correlations
of the oscillatory component is undersampled.

The results presented in this section, obtained from the gappy
HadCRUT4 temperature fields, were shown to be in close
agreement with the corresponding results obtained from
the CMIP6-piCtrl model ensemble with HadCRUT4 gaps
imposed. Figures 1a, 1b, and 2 also include the results ob-
tained from applying the same analysis to the detrended
NOAA20CRv3 temperature fields with HadCRUT4 gaps
imposed (green lines), and again good agreement with
HadCRUT4 results is found. Therefore, both the model
ensemble and the reanalysis can be used to investigate the
impact of the data gaps on the results, by repeating the
analysis for the complete temperature fields and compar-
ing the results to those obtained from the gappy data fields.
It is found (not shown) that the impact of the gaps is small
in both cases in relation to the estimation uncertainty.
Hence, it can be concluded that the data gaps, reflecting a lack
of observations in certain months and grid boxes, do not sig-
nificantly affect the results. Note, that the spectral peak of the
ESDOF measure D(f) at periods near 15 months, seen in
both HadCRUT4 and NOAA20CRv3 with gaps imposed
(Figs. 1a,c), is found to be absent in the corresponding
ESDOF spectra obtained from the complete NOAA20CRv3
fields (not shown). Thus, this peak occurs by chance and is re-
lated to the additional scatter of the ESDOF estimator in the
presence of data gaps (see appendix B for details).

The sensitivity of the results to the details of the nonlinear
detrending procedure, intended to remove the anthropogenic
warming signal, is also investigated. It is found (not shown)
that neither the variation of the latitudinal nor of the tempo-
ral structure of the estimated response to anthropogenic forc-
ing leads to a significant change of the results presented in
this section.

To ensure the ESDOF estimates have converged toward their
true value, given the finite spatial resolution of the HadCRUT4
58 longitude 3 58 latitude grid, we recomputed both ESDOF
measures for various spatial resolutions. As demonstrated in
appendix D, convergence is actually guaranteed for both
measures in all frequency bands.

5. Discussion and conclusions

In section 4, ESDOF estimates of global natural surface
temperature variability, as a function of frequency, have been
presented, obtained from purely instrumental measurements

(HadCRUT4, using 1850–2014); and the estimates have been
translated into an effective spatial scale (i.e., the effective cor-
relation radius) of natural temperature fluctuations. Addition-
ally, it has been shown how these ESDOF estimates can be
used to determine the minimum global number of equally
spaced samples needed to estimate the variance of global
mean temperature. Since these results are based on the aver-
aged spatial correlation function, although global temperature
variability is spatially nonstationary, the derived minimum
number of samples must, therefore, be understood as an ex-
pected sample number across all possible sets of locations. In
practice, the minimum sample number will be sensitive to the
specific set of locations chosen. Nonetheless, the derived esti-
mates of the required minimum sample number provide an
important benchmark for this quantity.

This study focuses on natural surface temperature variabil-
ity from instrumental data, and the CMIP6-piCtrl model en-
semble was used only to obtain bias and uncertainty estimates
for the detrended HadCRUT4 ESDOFs, and to investigate
the impact of the data gaps on the results. Nonetheless, it is
noteworthy that the results from detrended HadCRUT4 and
from CMIP6-piCtrl are largely consistent, in terms of both the
ESDOFs and the radial correlation structure. Whereas CMIP6-
piCtrl represents exclusively internal climate variability, the
detrended HadCRUT4 temperature fields represent internal
variability plus the responses to natural external forcings. This
suggests that natural external forcings do not notably impact the
space–time statistics of global surface temperature variability in
the range from monthly to multidecadal time scales in the global
mean sense. However, this does not exclude the possibility of
forcing-induced changes in the space–time statistics at more re-
gional scales, compensating between different regions.

The physical processes underlying the detected ESDOF re-
duction toward the lower frequencies are yet to be identified.
Simple stochastic-diffusive energy balance models (EBMs;
see, for example, North et al. 2011; Rypdal et al. 2015), which
are sometimes used as paradigmatic models of global natural
surface temperature variability, may suggest horizontal diffu-
sion as the primary underlying physical process. Within the
diffusive frequency regime, these EBMs exhibit power-law
scalings at the local and the global scale, that is, Sloc(f ); fbloc

and Sglb(f ); fbglb (with bloc, bglb , 0), such that bglb 5 2bloc

(Rypdal et al. 2015, their Fig. 8). Together with definition (2),
this implies that the ESDOF measure D(f) exhibits a power-law
scaling with exponent bD 5 bloc 2 bglb 5 2bloc. Since for de-
trended HadCRUT4, it is bD ’ 0.5 (Fig. 1c) and bloc ’ 20.5
(not shown), observed natural temperature variability may
appear consistent with the EBM behavior. However, the de-
tected multicomponent structure of the HadCRUT4 spatial
correlation function (Fig. 2) is inconsistent with the EBMs,
which exhibit a single-component correlation function [see the
frequency-dependent correlation functions derived by Rypdal
et al. (2015), illustrated by their Figs. 1 and 6]. One may then
ask whether the short-distance component of the HadCRUT4
correlation function alone, approximated by the exponen-
tial correlation function underlying the ESDOF measure
Dfit(f ), might be consistent with the diffusive EBM behav-
ior. However, for HadCRUT4 it is bDfit

’ 0:1 (Fig. 1c)
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which is inconsistent with bloc ’ 20.5. Hence, the space–
time statistics, in a global mean sense, of observed natural
surface temperature variability cannot be explained simply
by diffusion acting on stochastically driven anomalies. Future
studies that systematically quantify the various components of
the frequency-dependent spatial correlation function may help
to reveal the underlying physical processes and to formulate
suitable stochastic models of natural surface temperature
variability.

Note, that we also computed the frequency-dependent spa-
tial correlation function for various spatial subdomains of the
globe, namely, the tropics (between 308N and 308S), the extra-
tropics (poleward of 308N and of 308S), the global land, and
the global sea areas. For each of the four subdomains the
frequency-dependent spatial correlation function exhibits a
multicomponent structure (not shown)5 similar to that ob-
tained from the global analysis (Figs. 2a–c), particularly in the
multidecadal frequency band. This indicates that this multi-
component structure does not simply result from a superposi-
tion of the different spatial correlation functions associated
with the various subdomains, but that it rather reflects an in-
trinsic feature of the spatial correlation structure of natural
surface temperature variability.

It is an interesting question how the ESDOF-frequency
scaling may continue beyond multidecadal time scales re-
solved by the instrumental record. As long as the underlying
physical processes are not clarified, it is unclear whether the
observed ESDOF reduction toward the longer time scales can
be expected to continue. The main climate drivers at centen-
nial and longer time scales are probably related to natural exter-
nal forcings like variations in greenhouse gas and volcanic
aerosol concentrations. Because the response to such forcings
can be expected to be of near-global scale, it is at least a plausi-
ble assumption that the ESDOFs do not increase again beyond
multidecadal time scales. Hence, the ESDOF values at multide-
cadal time scales presented in this study (Table 1) are likely to
represent upper bounds to the slower variations.

To investigate the ESDOF-frequency scaling at time scales
longer than the instrumental period in future studies, the
presented methodology may be extended and applied to col-
lections of paleoclimate data such as PAGES2k (PAGES2k
Consortium 2017). By providing statistical information on the

time scale dependence of the effective number of independent
spatial samples on the globe, such studies are potentially useful
for data assimilation efforts aiming at global paleoclimate field
reconstruction. Note, however, that paleoclimate proxies are al-
ways associated with noise for which the ESDOF results had to
be corrected, and that this noise has its own correlation structure
(Kunz et al. 2020; Dolman et al. 2021) to be taken into account
when correcting for noise.
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APPENDIX A

List of CMIP6 Climate Models

The names of the 27 CMIP6 climate models employed in
this study are listed in Table A1.

5 For any of the spatial subdomains, the frequency-dependent
spatial correlation function is obtained by treating all grid boxes
outside the respective subdomain as data gaps and then perform-
ing the same computation as for the global analysis.
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APPENDIX B

Frequency-Dependent Spatial Covariance Function from
Gappy Data Fields

The frequency-dependent spatial covariance function C(u; f)
is obtained by taking the Fourier transform of the spatiotempo-
ral covariance function C(u; t), where t denotes the time lag,

C(u; f ) 5 F[C(u; t)], (B1)

using the Wiener–Khintchine theorem (e.g., Priestley 1981),
stating that the (cross-) covariance function and the (cross-)
power spectral density are a Fourier transform pair. In
(B1), for any fixed u, C(u; t) is a temporal covariance func-
tion and, thus, C(u; f) is a spectral density. Only after inte-
grating C(u; f) over a (possibly narrow) frequency band
does it have units of variance. Nonetheless, for simplicity,
we refer to C(u; f ) as the frequency-dependent spatial co-
variance function hereinafter. By using (B1), our approach
to estimating C(u; f), from gappy data fields, reduces to es-
timating C(u; t) which can be done without any interpola-
tion across data gaps. Note that interpolation must be
avoided here as it would potentially distort the spatiotem-
poral correlation structure.

In the following, in section a, the basic principle for estimat-
ing the mean covariance function from gappy data is illustrated
for the simplified case of a one-dimensional domain. Subse-
quently, in section b, it is outlined how this basic principle is ap-
plied to the multidimensional case of estimating C(u; t) from a
time series of gappy global temperature fields. Since this ap-
proach involves a spherical harmonic transform, the tempera-
ture fields have to be remapped to a Gaussian latitude grid,
and this negatively biases the local variance. It is demonstrated,
however, in section c, that this bias can be sufficiently alleviated
by using a higher Gaussian grid resolution.

a. Basic principle for estimating the mean covariance
function from gappy data

The basic principle can be illustrated most easily for the
case of a one-dimensional, zero-mean random process, Xt, de-
fined on a discrete finite time domain with t 2 {0, … , N 2 1}
and with cyclic boundary conditions (such that for any vari-
able xt1kN 5 xt for all k 2 Z). In addition, we define the

deterministic signal mt, serving as a mask, with mt 5 1 at those t
where Xt is observed and mt 5 0 where Xt is not observed, that
is, at the data gaps. Thus, any observed data series can be repre-
sented as a single realization of the masked process mtXt. By de-
fining the covariance function of Xt as CX(t, t 1 t) 5 ⟨XtXt1t⟩,
where ⟨ ?⟩ denotes the expected value operator, and the
covariance function of mt as Cm(t, t 1 t) 5 mtmt1t, the
covariance function of the masked process mtXt is then given
by CmX(t, t 1 t) 5 ⟨mtXtmt1tXt1t⟩ 5 mtmt1t ⟨XtXt1t⟩ 5

Cm(t, t 1 t) 3 CX(t, t 1 t).
The desired quantity is the (time) mean covariance function

of Xt, defined as CX(t)5N21∑
N21
t50 CX(t, t1 t). Known from

observations, however, are only the mean covariance function

of mt, given by Cm(t)5N21∑
N21
t50 mtmt1t, and the mean co-

variance function of mtXt, given by

CmX(t) 5 N21 ∑
N21

t50
CmX(t, t 1 t) (B2)

5 N21 ∑
N21

t50
mtmt1t[CX(t) 1 C′

X(t, t 1 t)] (B3)

5 Cm(t)CX(t) 1 N21 ∑
N21

t50
mtmt1tC

′
X(t, t 1 t), (B4)

where C′
X(t, t1 t)5 CX(t, t1 t)2 CX(t) denotes the nonsta-

tionary component of CX(t, t 1 t), which is equal to zero for
all t and t if the process Xt is stationary. Dividing CmX(t) by
Cm(t) yields C

(m)
mX(t), that is, the mean covariance function of

mtXt corrected for mt,

C
(m)
mX(t) 5 CmX(t)/Cm(t) (B5)

5 CX(t) 1 N21
t ∑

N21

t50
mtmt1tC

′
X(t, t 1 t), (B6)

where Nt 5∑
N21
t50 mtmt1t. Hence, if Xt is stationary, then

C
(m)
mX(t)5 CX(t) as desired. If, however, Xt is nonstationary,

there might be a bias, given by the second term of (B6), which
is simply the average over the observed part of C′

X(t, t1 t).
Note, that C

(m)
mX(t) exists only if, for all t, it is Cm(t). 0 or,

TABLE A1. List of the CMIP6 climate models employed in this study. For CanESM5 the model physics variant (denoted by p1 and p2) is
indicated in parentheses.

No. Model No. Model No. Model

1 ACCESS-ESM1-5 10 CIESM 19 IPSL-CM6A-LR
2 BCC-CSM2-MR 11 CNRM-CM6-1 20 MIROC6
3 CanESM5 (p1) 12 CNRM-ESM2-1 21 MIROC-ES2L
4 CanESM5 (p2) 13 E3SM-1-0 22 MPI-ESM1-2-HR
5 CAS-ESM2-0 14 FGOALS-f3-L 23 MPI-ESM1-2-LR
6 CESM2-FV2 15 FIO-ESM-2-0 24 MRI-ESM2-0
7 CESM2 16 GISS-E2-1-G 25 NESM3
8 CESM2-WACCM-FV2 17 GISS-E2-1-H 26 NorCPM1
9 CESM2-WACCM 18 INM-CM5-0 27 UKESM1-0-LL
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equivalently, Nt . 0 [because Cm(t)5Nt/N], that is, if for

each time lag there is at least one pair of times, separated by
a lag of t, where Xt is observed.

By defining an estimator of CmX(t), based on a single reali-

zation of mtXt, as ĈmX(t)5N21∑
N21
t50 mtXtmt1tXt1t, we obtain

an estimator of C
(m)
mX(t), denoted by Ĉ(t), according to (B5),

Ĉ(t) 5 ĈmX(t)/Cm(t) (B7)

5 N21
t ∑

N21

t50
mtmt1tXtXt1t: (B8)

Because, as seen from (B8), Ĉ(t) is simply the arithmetic
mean over all products XtXt1t available from observations,
the estimator itself is unbiased. Nonetheless, as shown above,
there might be a bias due to a lack of information, that is, if
the nonstationary component of the covariance function is
sampled by the observations such that positive and negative
contributions to the second term of (B6) do not average out.
The scatter, however, of Ĉ(t) increases in the presence of
data gaps because of the smaller number Nt (,N) of available
products involved in the arithmetic mean in (B8).

The above principle is equally applicable to spatial domains,
with time and time lag being replaced by spatial position and
distance, as well as to domains of higher dimension and with
various geometries. In the following, it is applied to the specific
case of time-dependent random fields on the sphere.

b. Spatiotemporal covariance function from gappy global
temperature fields

Let Xi,j,t denote a zero-mean, discrete, spatiotemporal ran-
dom field on the sphere, where the indices i 2 {0, … , I 2 1},
j 2 {0, … , J 2 1}, and t 2 {0, … , N 2 1} represent longitude,
latitude, and time, respectively, with I (52J) equidistant lon-
gitudes and J Gaussian latitudes, and with cyclic boundary
conditions in time (such that for any variable xi,j,t1kN 5 xi,j,t
for all k 2 Z). As before we define a deterministic signal
mi,j,t which is equal to 1 where Xi,j,t is observed and equal to
0 at the data gaps. Any observed time series of gappy global
temperature fields may then be represented as a single reali-
zation of the masked random field Zi,j,t 5 mi,j,tXi,j,t.

The desired quantity is the (spatiotemporal) mean spatiotem-
poral covariance function of Xi,j,t, denoted by CX(u; t). Given
from observations, however, are only the mean spatiotemporal
covariance function of Zi,j,t, denoted by CZ(u; t), and of the
mask mi,j,t, denoted by Cm(u; t). According to the basic princi-
ple, introduced in the previous section of this appendix, we can
define the mean spatiotemporal covariance function of Zi,j,t cor-
rected for mi,j,t, by analogy with (B5), as

C
(m)
Z (u; t) 5 CZ(u; t)/Cm(u; t), (B9)

which equals CX(u; t), as desired, if the random field Xi,j,t is
stationary in space and time, but might be biased if the random
field is nonstationary, depending on how the nonstationary

component of the spatiotemporal covariance function is sam-
pled by the observations.

The approach to obtain the mean spatiotemporal covari-
ance functions CZ(u; t) and Cm(u; t) is based on Kunz and
Laepple (2021), using spherical harmonic decomposition
of the spatial fields. By projecting each realization of Zi,j,t

onto the (n, m)th discrete spherical harmonic function
(Ynm)i,j, with total wavenumber n and zonal wavenumber
m, we obtain the (n, m)th spherical harmonic component
Z̃n,m,t 5∑

I21
i50∑

J21
j50wi,jZi,j,t(Ynm)i,j, which is again a three-

dimensional random field, and where the grid box area weights
wi,j are normalized according to ∑

I21
i50∑

J21
j50wi,j 5 1. The spheri-

cal harmonic functions are normalized to have unit power,
∑

I21
i50∑

J21
j50wi,j(Ynm)2i,j 5 1, such that the spatial mean of the

local variance is related to the spherical harmonic components
by ∑

I21
i50∑

J21
j50wi,jhZ2

i,j,ti5∑
nT
n50∑

n
m52nhZ̃2

n,m,ti, where nT is the
truncation wavenumber according to the finite Gaussian grid
resolution. We can then define the temporal covariance
function of the (n, m)th spherical harmonic component,
CZ̃n,m

(t, t1 t)5 hZ̃n,m,tZ̃n,m,t1ti, and its time mean temporal
covariance function, CZ̃n,m

(t)5N21∑
N21
t50 CZ̃n,m

(t, t1 t). From
this, we finally obtain the mean spatiotemporal covariance
function of Zi,j,t as an inverse Legendre integral transform,

CZ(u; t) 5 ∑
nT

n50
Pn(u)cn(t), (B10)

with the nth Legendre polynomial Pn(u), the nth Legendre
coefficient cn(t)5∑

n
m52nCZ̃n,m

(t), and angular distance u.
The summation over m corresponds to the spatial averag-
ing operator, and it reduces the spatial domain from two
dimensions (longitude and latitude) to one dimension
(angular distance). Note, that t 2 {0, … , N 2 1} is a dis-
crete variable, whereas u 2 [0, p] is a continuous variable.
Similarly, we can obtain the spherical harmonic components
of the mask, m̃n ,m,t, and their time mean temporal covari-
ance function Cm̃n,m

(t)5N21∑
N21
t50 m̃n,m,tm̃n,m,t1t, from which,

by analogy with (B10),

Cm(u; t) 5 ∑
nT

n50
Pn(u)dn(t), (B11)

with coefficients dn(t)5∑
n
m52nCm̃n,m

(t).
By defining an estimator of CZ̃n,m

(t), based on a single

realization of Zi,j,t, as ĈZ̃n,m
(t)5N21∑

N21
t50 Z̃n,m,tZ̃n,m,t1t, we

obtain an estimator of C
(m)
Z (u; t), denoted by Ĉ(u; t), according

to (B9),

Ĉ(u; t) 5 ĈZ(u; t)/Cm(u; t), (B12)

where, by analogy with (B10), ĈZ(u; t)5∑
nT
n50Pn(u)ĉn(t), with

ĉn(t)5∑
n
m52nĈZ̃n,m

(t). By analogy with (B7), the estimator

(B12) itself is unbiased, but there might be a bias due to a
lack of information caused by the data gaps, and the scatter
of the estimator increases the more data gaps there are.
When applied to the HadCRUT4 temperature fields for the
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period 1850–2014, however, this additional scatter is found to
be small. It is also found that Cm(u; t). 0 for all combina-
tions of u and t, which ensures the existence of the estimator
over the entire domain. Finally, according to (B1), taking the
discrete Fourier transform of Ĉ(u; t), at any fixed value of u,
yields an estimator of the frequency-dependent spatial co-
variance function,

Ĉ(u; f ) 5 F[Ĉ(u; t)]: (B13)

Note, that, since Pn(0) 5 1 for all n, it follows from the
normalization condition of the spherical harmonic functions
that (B13) at u 5 0 is an estimator of the mean local power
spectral density,

Ŝ loc(f ) 5 Ĉ(0; f ): (B14)

In the absence of data gaps, the spectral density estimator
(B14) is x2-distributed as usual. When estimated from
gappy data, however, the additional scatter of the estima-
tor (B12) translates into an additional scatter of (B14),
which may then become negative at individual frequen-
cies. Since, however, the additional scatter is small when
applied to the HadCRUT4 temperature fields, spectral
smoothing of (B14) over only a few discrete frequencies
suffices to remove the negative spectral density estimates
across all frequencies.

c. Effect of the remapping from equidistant to
Gaussian latitudes

The above approach to estimating C(u; f), according to
(B13), requires data fields given on a Gaussian grid because
of the involved spherical harmonic transform, whereas the
HadCRUT4 grid is equidistant in latitude. Remapping the
HadCRUT4 temperature fields to a Gaussian grid, how-
ever, biases the spatial covariance structure. By using a
second-order conservative remapping scheme, the global
mean of the fields is unaffected and the variance bias is
largest at the local scale. To quantify this bias, we need to
compare results obtained from (B14) to an alternative esti-
mator of Sloc(f ) that can be computed from arbitrary lati-
tude grids.

1) ESTIMATION OF THE MEAN LOCAL VARIANCE FROM

ARBITRARY LATITUDE GRIDS

Assuming the same spatiotemporal random field on the
sphere, Xi,j,t, and the same mask, mi,j,t, as in the previous
section of this appendix, we can define the (spatiotemporal)
mean temporal covariance function of the masked random field

Zi,j,t 5 mi,j,tXi,j,t, as CZ(t)5N21∑
N21
t50 ∑

I21
i50∑

J21
j50wi,jhZi,j,tZi,j,t1ti,

and of the mask, as Cm(t)5N21∑
N21
t50 ∑

I21
i50∑

J21
j50wi,jmi,j,tmi,j,t1t.

From this, we obtain the mean temporal covariance function
of Zi,j,t corrected for mi,j,t, given by C

(m)
Z (t)5 CZ(t)/Cm(t),

applying the same basic principle as before. By defining an
estimator of CZ(t), based on a single realization of Zi,j,t, as

ĈZ(t)5N21∑
N21
t50 ∑

I21
i50∑

J21
j50wi,jZi,j,tZi,j,t1t, we obtain an esti-

mator of C
(m)
Z (t),

Ĉ(t) 5 ĈZ(t)/Cm(t): (B15)

By analogy with the estimators in the previous sections of
this appendix, the estimator (B15) itself is unbiased, but
there might be a bias due to a lack of information caused by
the data gaps, and the scatter of the estimator increases the
more data gaps there are. When applied to the HadCRUT4
temperature fields for the period 1850–2014, it is found that
Cm(t). 0 for all t, which ensures the existence of the esti-
mator. Taking the discrete Fourier transform of Ĉ(t) yields
an estimator of the mean local power spectral density,

Ŝ loc(f ) 5 F[Ĉ(t)]: (B16)

When applied to the same data fields on the same Gauss-
ian grid, (B16) is identical to (B14). Since (B16), how-
ever, is not based on spherical harmonic transforms, it
can be computed from fields on arbitrary latitude grids.
In particular, it can be applied to the equidistant latitude
grid of the HadCRUT4 temperature fields.

2) QUANTIFICATION OF THE MEAN LOCAL VARIANCE

BIAS CAUSED BY THE LATITUDE REMAPPING

To quantify the mean local variance bias, we remap the
nonlinearly detrended HadCRUT4 temperature fields from
the original 58 longitude 3 58 latitude grid with 72 longi-
tudes and 36 latitudes to (i) a T23 Gaussian grid with the
same number of longitudes and latitudes (corresponding to
a truncation wavenumber of nT 5 23), and (ii) a T85 Gauss-
ian grid with 256 longitudes and 128 latitudes (nT 5 85).
From each of the three grids we estimate the mean local
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FIG. B1. Estimate of the mean spatial covariance function
Ĉ(u; t 5 0) obtained from the HadCRUT4 temperature fields re-
mapped to a T23 (dashed black) and a T85 (solid gray) Gaussian
grid. The black dot represents the unbiased estimate of the mean
local variance Ĉ(t 5 0) obtained from the original HadCRUT4
grid with equidistant latitudes.
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power spectral density according to (B16), and it is found
that the relative bias in Ŝ loc(f ) is virtually independent of
frequency (not shown). It is, therefore, sufficient to quantify
the relative bias for the total mean local variance, given
by the mean temporal covariance function at lag zero,
Ĉ(t 5 0), according to (B15). For the Gaussian grids this is
identical to Ĉ(u 5 0; t 5 0), according to (B12). For the T23
Gaussian grid the relative bias in Ĉ(t 5 0) amounts to 214%
and for the T85 Gaussian grid to 26%, relative to the unbi-
ased estimate obtained from the original HadCRUT4 grid.
Figure B1 shows Ĉ(u; t 5 0) for the Gaussian grids together
with Ĉ(t 5 0) for the original HadCRUT4 grid. This confirms
that the bias is confined to the local scale. As the T85 relative
bias seems to be sufficiently small in the context of this study,
all results presented in the main text are based on data fields
remapped to a T85 Gaussian grid.

APPENDIX C

Estimation Bias and Uncertainty

a. Bias

From the CMIP6 climate model ensemble, the expected
estimation bias of the frequency-dependent correlation
function, R(u; f ), can be obtained from the covariance
function C(u; f ) as follows. Two estimators of R(u; f ) are
defined: a biased estimator, defined as the ensemble mean
of the ratio C(u; f)/C(0; f), and a (virtually) unbiased esti-
mator, defined as the ratio of the ensemble mean of C(u; f)
to the ensemble mean of C(0; f). The latter one is (virtually)
unbiased because after averaging over the 81 ensemble mem-
bers the scatter of C(0; f) (which causes the bias) is very small.
The difference between the two estimators yields an estimate of
the expected bias.

However, the additional scatter to C(0; f) (of a single
member), caused by the data gaps, brings its estimate close
to zero at a few frequencies, leading to very large positive
outliers in the estimate of the ratio C(u; f)/C(0; f). There-
fore, for the biased estimator of R(u; f), we use the ensem-
ble median instead of the mean. Since the median is less
biased than the mean, the bias is somewhat underestimated,
but its much smaller sensitivity to the outliers makes it the
more practicable estimator.

From the two estimators of R(u; f) we obtain two estimates
of ue and, thus, of Rfit(u). Hence, two estimators of D(f) and
of Dfit(f) are obtained, which allows to compute the expected
biases of the two ESDOF measures. Finally, the bias correc-
tion of the HadCRUT4 ESDOF estimates is performed in
a relative sense because the bias scales proportionally with
the absolute ESDOF value (see Kunz and Laepple 2021, their
appendix B), that is, the biased HadCRUT4 ESDOF estimate
is divided by the ratio of the biased to the unbiased CMIP6
ESDOF estimate.

b. Uncertainty

The estimation uncertainty of the ESDOF measures is
also obtained from the CMIP6 climate model ensemble. The
ESDOF estimates (at a given frequency) of all members are

first log-transformed because the distributions of the log-
transformed ESDOF estimates are found to be largely
symmetric (little skew), such that the scatter of the log-
transformed estimates can be simply characterized by their
variance s 2. Since our 81 member ensemble consists of
nmod 5 27 models with nmem 5 3 members each, and the
various models have different climates and space–time sta-
tistics, the total ensemble variance s2 5 s2

est 1 s2
cli includes

not only the variance due to the estimation uncertainty s2
est

but also the variance due to the intermodel spread s 2
cli. The

variance s 2
est can be obtained by computing an unbiased es-

timate of the variance (dividing by nmem 2 1) across the
nmem 5 3 members, separately for each model, and then aver-
aging over these nmod variance estimates. The limits of the un-
certainty interval for the HadCRUT4 ESDOF estimates are
then defined as the bias-corrected (log-transformed) HadCRUT4
ESDOF estimate plus or minus one standard deviation sest.
Last, an inverse log-transform yields the asymmetric uncertainty
intervals around the bias-corrected HadCRUT4 ESDOF esti-
mates (as specified in Table 1).

APPENDIX D

Impact of the Spatial Resolution of the Gridded Surface
Temperature Dataset

The HadCRUT4 58 longitude 3 58 latitude grid has 72 lon-
gitudes and 36 latitudes. Since our method to obtain the
frequency-dependent spatial correlation function is based
on a spherical harmonic decomposition, and a Gaussian grid
with that number of longitudes and latitudes corresponds to a
T23 spectral resolution, with truncation wavenumber nT 5 23,
and the total number of spherical harmonic components is
equal to (nT 1 1)2, the HadCRUT4 grid is sufficient to repre-
sent a discrete global white noise with 242 5 576 ESDOFs.
By comparison, the largest ESDOF estimates obtained in our
analysis lie between 100 and 200 (Figs. 1a,c), which serves as a
first indication that the spatial resolution might be sufficient
and the ESDOF estimates may have converged toward their
true value.

To demonstrate this convergence explicitly, we recomputed
both ESDOF measures, D and Dfit, for each of the three fre-
quency bands, but with varying spectral resolution, that is, by
varying the truncation wavenumber nT. Specifically, this corre-
sponds to varying the upper limit of the sum in (B10) and
(B11). The result is shown in Fig. D1, and it turns out that
both ESDOF measures in all frequency bands have largely
converged already at nT , 23.

The fact that the results shown in Fig. D1 extend up to
nT 5 85 is due to the necessity to extrapolate the HadCRUT4
fields onto a T85 Gaussian grid before the spherical harmonic
decomposition so as to minimize the local variance bias, as
explained in appendix B, section c. All results shown here
are based on the T85 Gaussian grid.

Recall that the HadCRUT4 dataset represents monthly
temperature averages. When using, for example, daily tem-
perature time series instead, resolving also smaller-scale
synoptic variability, the 58 longitude 3 58 latitude grid resolution
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might actually be insufficient and ESDOF estimates may not
yet have converged at nT 5 23.
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FIG. D1. Frequency-band values of the ESDOF measures D
(solid lines) andDfit (dashed lines), obtained from the HadCRUT4
temperature fields, as a function of the truncation wavenumber nT,
for the multidecadal (blue), interannual (green), and subannual
(red) frequency band. The vertical black line is at nT 5 23.
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