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ABSTRACT: Climate variability occurs over wide ranges of spatial and temporal scales. It exhibits a complex spatial covariance

structure,which depends ongeographic location (e.g., tropics vs extratropics) and also consists of a superposition of (i) components

with gradually decayingpositive correlation functions and (ii) teleconnections that often involve anticorrelations. In addition, there

are indications that the spatial covariance structure depends on frequency. Thus, a comprehensive assessment of the spatio-

temporal covariance structure of climate variability would require an extensive set of statistical diagnostics. Therefore, it is often

desirable to characterize the covariance structure by a simple summarizing metric that is easy to compute from datasets. Such

summarizing metrics are useful, for example, in the context of comparisons between climate models or between models and

observations. Here we introduce a frequency-dependent version of a simple measure of the effective spatial degrees of freedom.

The measure is based on the temporal variance of the global average of some climate variable, and its novel aspect consists in its

frequency dependence. We also provide a clear geometric interpretation of the measure. Its easy applicability is demonstrated

using near-surface temperature and precipitation fields obtained from a paleoclimatemodel simulation. This application reveals a

distinct scaling behavior of the spatial degrees of freedom as a function of frequency, ranging from monthly to millennial scales.

KEYWORDS: Atmospheric circulation; Large-scale motions; Climate variability; Paleoclimate; Spectral analysis/models/

distribution

1. Introduction

Quantification of climate variability requires, from a statis-

tical point of view, the estimation of its full spatiotemporal

covariance function. Given the nonstationarity of the vari-

ability, this is not only a function of spatial distance in either

direction and of time lag; it also depends on space and time.

Even for a two-dimensional spatial domain (e.g., for global

temperature fields), this yields already a six-dimensional covari-

ance function. Therefore, it is often desirable to define a simple

metric that concisely summarizes the covariance structure—-

whether it be for climate model intercomparison or validation,

for the formulation of stochastic forecasting models (Lovejoy

et al. 2018), or for assigning a representative spatiotemporal

scale to an observational data point (Smith et al. 1994), as

needed for interpolation of spatially incomplete fields (Cowtan

andWay 2014) or for data assimilation into paleoclimatemodels

(Hakim et al. 2016).

To characterize the spatial structure, a common approach is

to define a measure of the effective spatial degrees of freedom

(ESDOF), to be interpreted as the effective number of inde-

pendent spatial samples. Thus, the size of the entire spatial

domain divided by this number equals the effective spatial

extent of the associated fluctuations. Inherent to any ESDOF

measure is a spatial averaging operator, implicitly removing

any information on spatial nonstationarity. Effectively, the

entire spatial correlation structure is condensed into a single

number. A variety of ESDOFmeasures of different complexity

have been presented in the literature (Livezey and Chen 1983;

Smith et al. 1994; Jones et al. 1997; Wang and Shen 1999;

Bretherton et al. 1999, and references therein).

To also consider the temporal structure, the variability may

be filtered in the time domain before application of an ESDOF

measure. Jones et al. (1997), for example, apply their ESDOF

measure to annual mean and to decadal mean temperature fields,

and find a reduction of the ESDOFs by roughly a factor of 2 to-

ward decadal scales, both for observations and models. In quali-

tative agreementwith this are the results ofNorth et al. (2011) and

Rypdal et al. (2015), who demonstrate that in a simple diffusive

energy balance model (EBM) the decorrelation length scale in-

creases toward lower frequencies, which is consistent with fewer

ESDOFs at longer time scales. The latter study confirms this re-

sult also for a climate model simulation over a range of fre-

quencies from annual up to centennial time scales. These findings

motivate us to formulate a frequency-dependent ESDOF mea-

sure as a simple summarizing metric of climate variability.

Section 2 illustrates the frequency dependence of the spatial

correlation structure, using a paleoclimate model simulation. This

further motivates the formulation of a frequency-dependent

ESDOF measure to be introduced in section 3. Application

examples are presented in section 4, followed by a discussion

of the measure in section 5. The conclusions and potential

future applications are itemized in section 6.

2. Frequency dependence of the spatial correlation
structure

This section illustrates the fact that the spatial covariance

structure of climate variability may indeed exhibit a notable

frequency dependence. This is demonstrated, in particular,
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for near-surface temperature variability generated by a paleo-

climate model simulation, which allows us to investigate

a wide range of frequencies from monthly to millennial

time scales.

Specifically, we use monthly mean 2-m temperature fields

from the Transient Climate of the Last 21,000 Years (TraCE-

21ka) coupled general circulation model simulation (Liu et al.

2009; He 2011) with T31 atmospheric horizontal resolution.

We restrict our analysis to the preindustrial Holocene by se-

lecting the last 7000 years under preindustrial conditions (i.e.,

up to 1890 CE) of the simulation, including only natural (i.e.,

nonanthropogenic) external forcings [for a detailed description

of the forcings, see He (2011)]. Finally, the obtained time series

are linearly detrended at each grid point.

From these data we compute the spatial correlation func-

tion, defined as r(r, r0)5R(r, r0)/[s(r)s(r0)], where R(r, r0) is
the covariance between a reference location r and any other

location r0 on the globe, ands2(r)5R(r, r) is the local variance.

To demonstrate frequency dependence, correlations are esti-

mated from the data within narrow frequency bands centered

at various frequencies n. These frequency-dependent correla-

tion estimates are based on the smoothed and normalized co-

spectral density, as detailed in section 3d, including only

information on simultaneous correlation. Figure 1 shows the

spatial correlation function for three different frequencies,

which correspond to millennial, multidecadal, and interannual

time scales, and for three selected reference locations. These

are located over the northern North Atlantic, over central

Europe, and over the western tropical Pacific.

It turns out that the area that is positively correlated with the

reference location (red and yellow colors), which characterizes

the spatial extent of the temperature fluctuations, increases with

time scale. In addition, the spatial extent varies with latitude,

most strikingly at interannual time scales. In this frequency band,

the largest positively correlated area is found for the tropical

reference location, extending over most of the tropical belt

around the globe, in contrast to the much smaller decorrelation

length scales found in the extratropics. These findings are con-

sistent with the results of Jones et al. (1997, see their Figs. 3 and

4), comparing decorrelation length scales at interannual and

decadal time scales, obtained fromboth observations and general

circulation models. Furthermore, for some reference locations,

most clearly for the tropical one at interannual and multidecadal

time scales, the spatial correlation function exhibits a large de-

gree of anisotropy, which is also in agreement with the analysis of

model temperature data by Jones et al. (1997, see their Fig. B1).

To quantify the spatial extent of the temperature fluctua-

tions, Jones et al. (1997) fit an exponential decay function

FIG. 1. Spatial correlation function r(r, r0) of 2-m temperature, obtained from the TraCE-21ka paleoclimate model simulation, using 7000

years until 1890 CE. Colors indicate the correlation between the reference location r, marked by the black circle, and any other location r0 on
the globe.Reference locations r are at (top) 57.58N, 45.08W, (middle) 53.88N, 11.38E, and (bottom) 9.38S, 161.38W.Correlations are shown for

three different frequency bands centered at (left) n5 (1000 yr)21, (middle) n 5 (70 yr)21, and (right) n 5 (5 yr)21 (correlation estimates are

based on k5 180 degrees of freedom). The global average (with respect to r0) of the correlation function, r(r), is specified above each panel,

which can be interpreted as the fractionof theEarth’s surface covered by the effective spatial extent of the fluctuations associatedwith r. Thus,
the reciprocal of this average specifies how many times the effective spatial extent fits onto the globe.
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to the estimated correlation as a function of spatial distance.

An alternative measure of the spatial extent is the global av-

erage (or integral) of the spatial correlation function. An ad-

vantage of this measure is its insensitivity to anisotropic

structures. In Fig. 1, the global average (with respect to r0) of
the spatial correlation function for a particular reference lo-

cation r, denoted by r(r), is specified at the top of each panel.

This average can be interpreted as the fraction of Earth’s surface

covered by the effective spatial extent of the fluctuations asso-

ciated with r.1 The obtained values reconfirm the above findings

regarding the dependence of the spatial extent on frequency and

location. For the reference location over the northern North

Atlantic (top row), for example, r(r) ranges from about 1/3 at

millennial time scales to 1/8 at multidecadal and 1/25 at inter-

annual time scales. Thus, the associated fluctuations, at these

three different time scales, have an effective spatial extent that

fits 3, 8, and 25 times onto the globe, respectively.

In addition to this frequency dependence of the effective

spatial extent, Fig. 1 also reveals an increased occurrence of

anticorrelations at short time scales. In particular, at interan-

nual time scales (right column), considerable areas are anti-

correlated with the reference location (blue colors), preferably

in the extratropics. Although some of those negative correla-

tion estimates might not be statistically significant, it suggests

that at those time scales and locations the correlation structure

is notably influenced by teleconnections, such as the North

Atlantic Oscillation, Pacific–North American pattern, or El

Niño–Southern Oscillation (ENSO) phenomenon [see, e.g.,

Wallace and Gutzler (1981) or Feldstein and Franzke (2017)

for an overview of atmospheric teleconnections]. In some cases

thismay even lead to a negative global average of the correlation

function, an example of which is given by the reference location

over central Europe at interannual time scales (Fig. 1f). In these

cases the global average of the spatial correlation function has a

different interpretation, as to be explained in the next section in

the context of the ESDOF measures.

Whereas in Fig. 1 maps of r(r, r0) are shown, with fixed r and

varying r0, Fig. 2 (top row) shows maps of r(r), with varying r,

again for the same three frequencies as before. These results

confirm the previous findings, namely that (i) the effective

spatial extent increases with time scale, (ii) it increases toward

the tropics, particularly at interannual time scales, and (iii)

anticorrelations occur preferably at these shorter time scales

and in the extratropics, suggesting an involvement of tele-

connections. At the top of each panel in Fig. 2 (top row) the

global average of r(r) is specified, defined as

r
+
5

�
R(r, r0)
s(r)s(r0)

�
, (1)

where the first averaging operator applies to r0 and the second

one to r. From the specified values, the fluctuations at millen-

nial, multidecadal and interannual time scales have an average

spatial extent that fits roughly 4, 10, and 25 times onto the

globe, respectively.

According to (1), the average spatial extent r+ is obtained

by first normalizing the spatial covariance function R(r, r0) in
amplitude, and then averaging it in space. An alternative

measure of the average spatial extent can be obtained by re-

versing the order of operations, defined as

R
+
5

R(r, r0)

s2
, (2)

FIG. 2. (top) Maps of the global average of the spatial correlation function r(r) of 2-m temperature; model data and frequency bands

(from left to right) as in Fig. 1. The global average of this quantity r+ is specified above each panel. (bottom)As in the top row, but for the

normalized covariance function,R(r)/s2, instead of the correlation function. The global average of this quantityR+ is specified above each

panel. The reciprocals of r+ and R+ are equal to the ESDOF measures Dr and DR, respectively, to be defined in section 3a.

1 This interpretation holds because the average r(r) would attain

the same value if r would be perfectly correlated with that area

fraction and fully uncorrelated with the remaining area (keeping

the integral of the spatial correlation function constant; see

section 3b for further interpretation).
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where in the numerator the first averaging operator applies

again to r0 and the second one to r, and s2 in the denominator is

the global average of the local variance s2(r). Because R+ is

based on the spatial distribution of covariance, rather than

correlation, it represents an average weighted by the local

variance, in contrast to r+. Thus, the correlation structure in

regions with large local variance has a greater impact on the

value of R+ than the structure in regions with small variance.

The effect of this variance weighting can be seen in Fig. 2

(bottom row), showing maps of R(r)/s2, which also has the

interpretation of an effective spatial extent; and where R(r) is

the global average (with respect to r0) of R(r, r0). Smallest

values are preferably found in the tropics, particularly at mil-

lennial to multidecadal time scales, and largest values in the

northern extratropics, which is consistent with typical spatial

variance patterns of near-surface temperature. The global av-

erage of this effective spatial extent is equal toR+, the value of

which is specified at the top of each panel. It turns out that R+

also increases with time scale, but values are smaller than those

of r+ (top row), consistent with the above finding that the

temperature fluctuations in the extratropics have a smaller ef-

fective spatial extent and are more affected by anticorrelations

due to teleconnections. From the specified values of R+, the

variance-weighted fluctuations at millennial, multidecadal, and

interannual time scales have an average spatial extent that fits

roughly 6, 16, and 53 times onto the globe, respectively. It is this

type of information that we intend to characterize and quantify

with a frequency-dependent ESDOF measure, to be defined in

the next section.

3. Effective spatial degrees of freedom

In this section a simple ESDOF measure is defined and its

interpretation is provided in terms of idealized spatial fields.

Subsequently, estimators of slightly different variants of the

measure are presented and their basic properties are specified.

Finally, the measures are equipped with an explicit depen-

dence on frequency, allowing for the estimation of ESDOF-

frequency spectra, which can then serve to infer the basic

space–time scaling behavior of climate variability.

a. Definition

Various ESDOF definitions have been proposed in the liter-

ature, each of which has its specific interpretation. Accordingly,

a number of ESDOF measures of different complexity have

been presented, depending on the purpose of application.

These range from simple variance ratios computed directly

from the time-varying spatial fields [as used by, e.g., Smith

et al. (1994) and Jones et al. (1997)] to ratios of higher-

moment statistics, sometimes involving principal component

analysis, and moment matching approaches [see Wang and

Shen (1999) and Bretherton et al. (1999), and references

therein, for an overview]. Here we are adopting one of the

simplest ESDOF definitions that is based on a variance ratio

and that is directly related to the average spatial extent of the

fluctuations discussed in the previous section.

For a precise definition, consider a zero-mean random field

X(r), defined on a continuous spatial domain S of finite size A,

where r 2 S is a position vector and A5
Ð
SdA(r), with

the Lebesgue measure A. Although, in general, the domain

S could be of any dimension, in the following we assume

the domain be two-dimensional and spherical (unless

otherwise noted), in which case A is an area and the dif-

ferential dA(r) represents an area increment. For exam-

ple, X (r) could be a global temperature field and A the

surface area of Earth. The spatial covariance function can

then be expressed as R(r, r0)5 hX(r)X(r0)i, where h�i de-

notes the expected value operator with respect to the re-

alization of the random field, and the spatial averaging

operator (�) can be defined as x5A21
Ð
Sx(r)dA(r) for any

spatial field x(r).

As illustrated in the previous section, the averaged and

normalized spatial covariance function R+, defined by (2),

represents the average spatial extent of the fluctuations of

the field, as a fraction of the size A of the domain. Thus, its

reciprocal can be interpreted as the effective number of

independent spatial samples. Accordingly, a simple ESDOF

measure can be defined as

D
R
5 1/R

+
(3)

5s2/s2
0 , (4)

where s2
0 denotes the variance of the spatial average X, and the

second step follows from (2) and from the fact that s2
0 5 hX2i5

A22
Ð
S
Ð
ShX(r)X(r0)idA(r0)dA(r) 5 A21

Ð
SR(r)dA(r) 5 R .2

Thus, the ESDOF measure DR is given by the ratio of the

spatial average of the local variance to the variance of the

spatial average, and it is identical to the measure of Smith

et al. (1994) [see their Eq. (7)] and of Jones et al. (1997) [see

their Eq. (10)]. Alternatively, an ESDOF measure can be

defined based on the averaged spatial correlation function r+,

defined by (1), as

D
r
5 1/r

+
. (5)

Note that for random fields with stationary variance, it

follows from (1) and (2) that R+ 5 r+ and, thus, DR 5 Dr,

where here and in the following stationarity refers to the

spatial dimension (unless otherwise noted). For fields with

nonstationary variance, the measure DR depends on the

spatial distribution of the local variance, as discussed in the

previous section in the context of R+. In practical applica-

tions to nonstationary fields, the measure Dr can be ob-

tained by standardizing the field at each location, as detailed

in section 3c.

Whereas the above ESDOF measures are based on the in-

tegral of the spatial covariance or correlation function, it can

sometimes be useful to construct alternative ESDOFmeasures

that are based on other aspects of the spatial correlation

structure—for example, the e-folding length scale of the cor-

relation function. In particular, for spherical domains, where

2 Note that, for a discrete spatial field, the two averages involved

in R correspond to the (area weighted) sums over the rows and

over the columns of the covariance matrix.
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the distance between two locations r and r0 can be expressed in

terms of their angular distance u, one can define the radial

covariance function R(u, r)5R(r, r0)(u) for a particular refer-

ence location r. Here, the operator (�)(u) denotes the spatial

average over all r0 with the same angular distance u relative to r.

With this, one can then define the normalized average radial

covariance function,

R
+
(u)5R(u, r)/s2, (6)

where the spatial average applies to r as previously defined.

Likewise one can define the radial correlation function

r(u, r)5 r(r, r0)(u) and, based thereon, the average radial

correlation function,

r
+
(u)5 r(u, r). (7)

Note that R+(0)5 r+(0)5 1 and that R+(u), r+(u)# 1

for u . 0.

If, additionally, the spatial domain covers the entire sphere,

such that the domain is cyclic in each direction and u 2 [0, p],

then the radial functions R+(u) and r+(u) are directly re-

lated to the above ESDOF measures DR and Dr, respec-

tively. Specifically, by defining the global, area-weighted

mean of any radial function x(u) over the interval [0, p] as

M[x(u)]5
�Ð p

0
x(u)sinudu

�
/2, we can write R+ 5M[R+(u)] and

r+ 5M[r+(u)], from which the ESDOF measures DR and

Dr are readily obtained, according to (3) and (5), respec-

tively. Now, in order to construct an alternative ESDOF

measure, one can fit a parametric correlation function, for

example, an exponential decay function, to either R+(u) or

r+(u). If we denote the fitted parametric radial functions

by R+,fit(u) and r+,fit(u), respectively, we can define the

ESDOF measures

D
R,fit

5 1/M[R
+,fit

(u)] (8)

and

Dr,fit 5 1/M[r
+,fit

(u)], (9)

where the latter one corresponds to the second ESDOF mea-

sure of Jones et al. (1997) [see their Eq. (14)] if r+,fit(u) is an

exponential decay function fit to r+(u) over the entire interval

[0, p]. Note that for random fields with stationary variance,

R+(u)5 r+(u) and, thus, DR,fit 5Dr,fit.

In the present study, we use DR as our main ESDOF mea-

sure. We compare DR toDr to demonstrate possible effects of

data standardization, and we also compare DR to DR,fit to il-

lustrate how various aspects of the radial correlation structure

may affect the measure DR in different ways. Furthermore,

because DR is identical to the first ESDOF measure of Jones

et al. (1997) [see their Eq. (10)], we can compare estimates of

this measure between the two studies. Finally, one can loosely

compare estimates of DR,fit to the second ESDOF measure of

Jones et al. (1997) [see their Eq. (14)] because it corresponds to

the closely related measure Dr,fit. An overview of the various

measures and their relation to those of Jones et al. (1997) is

provided by Table 1.

b. Interpretation

1) SENSITIVITY TO THE CORRELATION STRUCTURE

A few idealized example cases are presented to illustrate the

interpretation of the ESDOF measures DR and Dr for differ-

ent spatial correlation structures. Since only the correlation

structure varies between these cases, we can consider fields

with stationary variance, such that DR 5 Dr, and simply write

D for the ESDOF measure. We distinguish between cases

without and cases with anticorrelations.

As an example without anticorrelations and with stationary

correlation function, consider the idealized case of a random

field defined on the entire sphere, and which has a rotationally

symmetric correlation function, falling off from one at the

reference location to zero at the opposite point on the sphere,

according to a cosine bell-shaped structure [i.e., according to

cos2(u/2)], in which case r+ 5 1/2. Thus, the fluctuations of the

random field have an average spatial extent of A/2, which fits

D5 2 times onto the sphere. As an example with nonstationary

correlation function, consider the idealized case of coherent

but mutually uncorrelated hemispheres, that is, with a corre-

lation of one for all pairs of locations within a hemisphere, but

with zero interhemispheric correlation. Again r+ 5 1/2, be-

cause each hemisphere has a spatial extent of A/2. Likewise,

one could divide the entire domain S into Nbox equally sized

and uncorrelated boxes, such that r+ 5 1/Nbox and, thus,

D 5 Nbox.

In cases without anticorrelations, it can be useful to introduce

an associated length scale measure L. For spherical domains, it

may be defined as the radius of a spherical cap, the area of which

covers that fraction ofA that is equal to r+. As shown in appendix

A, this definition implies that L5REarccos(12 2fA/D), where

RE is the radius of Earth, and fA 5A/(4pR2
E) is the area fraction

of A relative to the surface of the entire sphere.

As an example with anticorrelations (and nonstationary

correlation function), consider the idealized case of a spa-

tial domain S of size A 5 1 that is divided into two

subsections of size a and 1 2 a (with 0 # a # 1), and let all

locations within either subsection have a correlation of r(r,

r0)5 1, and all cross correlations between the subsections be

equal to r(r, r0) 5 r (with 21 # r # 1). Performing the two

spatial averages involved in (1), or likewise (2), we obtain

r+ 5R+ 5 a[a1 (12 a)r]1 (12 a)[(12 a)1 ar]. Simplifying

and taking the reciprocal yields

D5 [12 2a(12 a)(12 r)]21 . (10)

TABLE 1. List of ESDOF measures defined in the present study

and their correspondence to those previously defined by Jones

et al. (1997).

Symbol Defined by

Used in

this study

Corresponds to

Jones et al. (1997)

DR Eq. (4) Yes Their Eq. (10)

Dr Eq. (5) Yes —

DR,fit Eq. (8) Yes —

Dr,fit Eq. (9) No Their Eq. (14)
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For r5 0 and a5 1/2, this corresponds to the previous case with

D5Nbox5 2. For r, 0 and 0, a, 1, the correlation structure

represents an idealized teleconnection dipole covering the

domain S. Setting a 5 1/2 yields D 5 2/(r 1 1), which shows

that for negative r the ESDOF measure grows beyond D 5 2,

and for r 5 21, corresponding to a ‘‘perfect teleconnection

dipole’’ setting, it is not defined. Thus,D does not behave like a

conventional ESDOF measure in this case. In cases with per-

fectly anticorrelated subsections, r521, the measure is rather

sensitive to the spatial partitioning a of the teleconnection di-

pole, D 5 [a 2 (1 2 a)]22. Hence, whenever significant anti-

correlations occur in the random field, thenD is not an ESDOF

measure in the conventional sense, but a more general sum-

marizing metric of the spatial correlation structure. The use-

fulness of such a metric, for applications to fields describing

climate variability, is demonstrated in section 4.

Figure 3 illustrates a few of the abovementioned idealized

cases with stationary variance, and how the corresponding

value of D comes about. Specifically, a case with a stationary

Matérn class correlation function is shown in Fig. 3a, a case

with a nonstationary (box-shaped) correlation function, but

with the same value ofD, is shown in Fig. 3b, and an example of

an idealized teleconnection dipole in Fig. 3c.

2) LOWER AND UPPER BOUNDS

Both DR and Dr attain their lowest possible values, denoted

by min(DR) and min(Dr), respectively (under variation of the

spatial correlation function, given the spatial distribution of the

local variance), if the variability is spatially coherent. Specifically,

D
R
5min(D

R
)5s2/s2 $ 1 (11)

if r(r, r0) 5 1 for all r, r0 with s2(r), s2(r0) . 0, and

Dr 5min(Dr)5 1 (12)

if r(r, r0)5 1 for all r, r0. The lower bound ofDR depends on the

spatial distribution of s(r). For example, if s(r) 5 1 over one

hemisphere and zero over the other, then min(DR) 5 (1/2)/

(1/4) 5 2.

Corresponding upper bounds, on the other hand, do not

exist. In cases with r(r, r0)$ 0 for all r, r0, both measures may

become arbitrarily large (Dr, DR / ‘) for random fields ap-

proaching continuous spatial white noise. However, we may

also have Dr, DR / ‘ in cases with nonzero decorrelation

lengths if the random field exhibits anticorrelations, r(r, r0), 0

for some r, r0, that is, if there is strong cancelation between

positive and negative fluctuations (e.g., a perfect telecon-

nection dipole). This latter case occurs, for instance, if the

variability of the underlying field X arises exclusively from

redistribution within the spatial domain S, such that the

spatial average X is conserved (implying s2
0 5 0). For exam-

ple, if the measures were applied to global surface pressure

fields, then, because mass conservation implies s2
0 5 0, both

measures are undefined. Hence, the ESDOF measures Dr

andDR are meaningful (and, thus, applicable) only if X is not

conserved (implying s2
0 6¼ 0), for example, for global tem-

perature or precipitation fields, or for regional fields of sur-

face pressure.

3) SENSITIVITY TO SPATIAL REDISTRIBUTION

In general, however, the presence of a process associated

with redistribution does not necessarily imply an (unbounded)

increase of the ESDOF measures. In particular, when the

process of redistribution is combined with a nonconservative

FIG. 3. Schematic illustration of different spatial correlation

structures, shown, for simplicity, for the case of a one-dimensional,

continuous, and cyclic spatial domain of size A5 1. (a) Scenario with a

Matérn class correlation function r(x, x0) that is stationary in space; i.e., it
is identical for any reference location x. Coloreddots indicate 21 example

reference locations, for every third of which the correlation function is

shown by a line with the same color. For x 5 1/2 (blue symbols) the

integral of r(x, x0) is illustrated by shading, and its value is specified as a

number. This scenario hasD5 7 spatial degrees of freedom. (b) As in

(a), but for a nonstationary scenario with seven equally sized and un-

correlated boxes withD5 7. (c) Scenario of a spatial domain split into

two anticorrelated sections, representing an idealized teleconnection di-

pole. It corresponds to the setting a5 2/3, r521, withD5 9 according

to Eq. (10); with reference locations shown only for x, a.
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process (in the sense that it does not conserve X), the effect of

the redistribution can be an increase or decrease of the ESDOF

measures, because the redistribution does not affect s2
0, but it

may increase or decrease s2.

For illustration, consider a simple energy balance model

(EBM) for global surface temperature fields (referred to

hereafter as the North-EBM; see North et al. 2011; Rypdal

et al. 2015). In this model, temperature variability is driven by a

spatiotemporal white noise forcing h (stationary in space and

time, implying DR 5 Dr), and is modified by local thermal

damping with time scale t, and by horizontal diffusion with

length scale l. The temporal evolution of this system is de-

termined by the equation

›X

›t
1
X

t
2
l2

t
=2

sX5h , (13)

where =2
s denotes the Laplace operator in spherical

coordinates.

If the white noise forcing h is truncated at a given wave-

number NT (to ensure that spatial averaging over the random

fluctuations leaves a nonzero residual, such that s2
0 6¼ 0), and if

diffusion is switched off (l5 0), then the resulting field of X is

associated with finite DR and Dr according to the finiteness of

NT. However, if diffusion is included (l. 0), then the variance

of the local variability, s2, is reduced, whereas s2
0 remains

unaffected because the diffusion only redistributes tempera-

ture in space. Thus, according to (4),DR (and, thus,Dr) is also

reduced. If, on the other hand, diffusion is replaced by another

process of redistribution that is stochastically independent of

the forced variability, then s2
0 is again unaffected, but s2 is

increased, and so are DR and Dr in this case.

c. Estimation

To obtain estimators of the above ESDOF measures,

consider a set of realizations of a discrete random field

Xi 5X(ri), i 5 1, . . . , N, that is given at a finite number, N, of

positions ri, being a discrete subset of the spatial domain S. In
the following, we use the notation s2

i 5s2(ri) and rij 5 r(ri, rj),

and the spatial average of some discrete field xi is then given by

the weighted sum ~x5�N

i51wixi, where the spatial weights wi

are normalized according to�N

i51wi 5 1. Using hat notation for

estimators, we can write the estimator of the measure DR as

D̂
R
5 f̂s2/ŝ2

0 , (14)

where ŝ2
0 is the estimated variance of ~X , and ŝ2

i and ŝ2
0 are

variance estimators.

To characterize the properties of D̂R in terms of its stan-

dard error, we consider its relative bias, bR 2 1, where

bR 5 hD̂R/DRi, and its relative scatter, dR 5Var(D̂R/DR)
1/2.

As shown in appendix B, both the bias and scatter vanish if

r+ 5 1, that is, bR 5 1 and dR 5 0 if DR 5 min(DR). For the

case of the opposite limit, that is, if r+ / 0 (such that DR /

‘), appendix B shows that bR and dR increase monotonically,

but stay below an upper bound, given by

b
R
,b

R,max
5 lim

DR/‘
b
R
5k/(k2 2) , (15)

d
R
, d

R,max
5 lim

DR/‘

DR#N

d
R
5b

R,max
[2/(k2 4)]1/2 , (16)

where k (.4) denotes the degrees of freedom of the variance

estimates. Here bR,max is the expected value and d2R,max is the

variance of a scaled-inv-x2(k, 1) distribution. These upper bounds

are based on the additional assumption that Xi ;N (0, s2
i ), with

stationary s2
i . It can be shown that, according to the above upper

bounds, the bias is always smaller than the scatter, specifically, that

the ratio (bR,max 2 1)2/d2R,max , 1 and that it attains a maximum

value of 1/8 at k 5 8.

To estimate the measure Dr from data with nonstation-

ary variance, one may use the standardized time series

(Xs)i5 (Xi 2 m̂i)/(ŝ
2
i )

1/2
, where m̂i denotes the estimated

mean of Xi, to define the estimator of Dr as

D̂r 5 1/ŝ2
0,s, (17)

where ŝ2
0,s is the estimated variance of fXs. The derivation of

analytic expressions for the bias and scatter of D̂r is more in-

tricate, but it is found, from numerical simulations (see

appendix B), that the above upper bounds for D̂R, given by (15)

and (16), apply reasonably well also to D̂r as long as Dr # N.

Estimating the normalized average radial covariance func-

tion,R+(u), directly from two- (or higher-) dimensional discrete

fields is not possible, because it involves the averaging operator

(�)(u) at constant u, whereas the discrete locations ri are generally
not aligned in circles around each other. However, this issue can

be circumvented by transforming the spatial fields into wave-

number space. Specifically, for the case of discrete fields cover-

ing the entire sphere, we can decompose the discrete fields into

their spherical harmonic components (with total wavenumber n

and zonal wavenumberm) and then estimate the variances2
nm of

each spherical harmonic time series. By analogy with Rypdal

et al. (2015)—see their Eq. (10) where the same is done for the

case of the North-EBM—we can then write the estimator

R̂(u, r)5�NT

n50

h�
�n

m52nŝ
2
nm

�
Pn(u)

i
in terms of the estimated

spherical harmonic component variances ŝ2
nm. Here Pn(u) is the

nth-order Legendre polynomial3 and NT is the truncation

wavenumber (with, for example, NT 5 31 in the case of the

TraCE-21ka paleoclimate model simulation). This approach

shifts the discretization in the spatial dimension to a discretiza-

tion in wavenumber space, and the spatial dimension appears

now in the analytically given Legendre polynomials. With this

we can write the estimator of the normalized average radial

covariance function (for fields covering the entire sphere):

R̂
+
(u) 5̂ R(u, r)=f̂s2. (18)

Accordingly, we can express the estimator of the ESDOF

measure DR,fit as

3 The Legendre polynomials are an orthogonal system if ex-

pressed as Pn(cosu). Here they are expressed as Pn(u) to facilitate

interpretation in spherical coordinates. To recover their orthogo-

nality, the Pn(u) have to be multiplied by the spherical area

weighting factor sinu.
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D̂
R,fit

5 1/M[R̂
+,fit

(u)], (19)

where R̂+,fit(u) denotes a parametric correlation function fit to

R̂+(u). We do not characterize the properties of D̂R,fit, in terms

of its bias and scatter, because of their dependence on the

specific fitting procedure, which can be done in numerous

different ways.

d. Frequency dependence

1) DEFINITION

In the following, the above ESDOF measures are equipped

with an explicit dependence on frequency. For this purpose,

the variances s2(r) and s2
0 are interpreted as temporal vari-

ances, and are decomposed into their frequency components,

that is, they are effectively replaced by the corresponding

power spectral densities, S(n; r) and S0(n), respectively (with

frequency n), assuming the field is stationary in time. By analogy

with the relation s2
0 5R [see the explanation of (4)], we can

then write S0(n)5R(n), whereR(n; r, r0)5Re[C(n; r, r0)] is the
covariance contribution from frequency n, given by the real

part of the cross-spectral density C(n; r, r0). Accordingly, the

spatial correlation function at frequency n is given by

r(n; r, r0)5R(n; r, r0)/[S(n;r)S(n;r0)]1/2. Note, that the maps in

Fig. 1 are indeed based on this quantity, and the maps in

Fig. 2 on r(n; r) and R(n; r)/S(n). From this we can define the

frequency-dependent versions of the average spatial extent

of the fluctuations, by analogy with (1) and (2), as r+(n) and

R+(n), respectively.

Consequently, we can define the frequency-dependent ver-

sion of DR, by analogy with (4), as

D
R
(n)5 S(n)/S

0
(n) , (20)

and the frequency-dependent version of Dr, by analogy with

(5), as

Dr(n)5 1/r
+
(n) . (21)

If S(n; r) is stationary in space at n, thenDR(n)5Dr(n) at that

frequency. Note, that the frequency-independent measure DR

can be recovered from the frequency-dependent version by

integration, performed separately on the numerator and the

denominator:

D
R
5

ð‘
2‘

S(n)dn=
ð‘
2‘

S
0
(n)dn . (22)

Similarly, the measure DR valid for some limited frequency

band can be obtained by integration over that frequency range.

Note, however, that Dr can similarly be recovered from Dr(n)

only if X(r) is white noise (in time) at each location r. By

analogy with (11) and (12), the lower bounds of these measures

are given by

D
R
(n)5min[D

R
(n)]5 S(n)/[S1/2(n)]

2
$ 1 (23)

if r(n; r, r0)5 1 for all r, r0 with S(n; r), S(n; r0). 0, and

Dr(n)5min[Dr(n)]5 1 (24)

if r(n; r, r0)5 1 for all r, r0. Finally, the frequency-dependent

version of the normalized average radial covariance function

can be defined, by analogy with (6), as

R
+
(n; u)5R(n; u, r)=S(n), (25)

and the frequency-dependent version of the ESDOF measure

DR,fit, by analogy with (8), as

D
R,fit

(n)5 1/M[R
+,fit

(n; u)]. (26)

2) ESTIMATION

By analogy with (14), the estimator of DR(n) is given by

D̂
R
(n)5

ê
S(n)/Ŝ

0
(n) , (27)

where Ŝ0(n) is the estimated power spectral density of ~X at n.

The relative bias and scatter of this estimator are identical to

those of the frequency-independent version, given by (15) and

(16), respectively, with the exception that k now denotes the

degrees of freedom of the spectral density (rather than vari-

ance) estimates.

Likewise, by analogy with (17), the estimator of Dr(n) is

given by

D̂r(n)5 1/Ŝ
(0,s)n

(n), (28)

where Ŝ(0,s)n(n) is the estimated power spectral density at

n of the spatial average of the standardized Xi, but

now standardized and averaged in the Fourier domain.

Specifically, it is estimated using the standardized Fourier

transforms dF [Xi](nk)/[Ŝi(n)]
1/2 at those discrete frequencies

nk that fall into the spectral smoothing window (centered

at n) involved in the estimation of Ŝi(n). Note that esti-

mating Dr(n) directly using all the correlations rij(n), that

is, according to D̂r(n)5
h
�N

i51w
2
i 1 2�N

i52�
i21

j51wiwjr̂ij(n)
i
21

is also possible, but is computationally much more

expensive.

Finally, by analogy with (18), the estimator of R+(n; u) is

given by (for fields covering the entire sphere)

R̂
+
(n; u) 5̂R(n; u, r)=êS(n), (29)

where the estimator̂R(n; u, r)5�NT

n50

nh
�n

m52nŜnm(n)
i
Pn(u)

o
is now expressed in terms of the estimated power spectral

densities of the spherical harmonic time series Ŝnm(n). With

this we can express the estimator of the ESDOF measure

DR,fit(n), by analogy with (19), as

D̂
R,fit

(n)5 1/M[R̂
+,fit

(n; u)], (30)

where R̂+,fit(n; u) denotes a parametric correlation function fit

to R̂+(n; u).

3) ILLUSTRATION

The frequency-dependent ESDOF measures are illustrated

for the case of the North-EBM (introduced at the end of
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section 3b), for which the true ESDOF spectrum can be de-

rived. Specifically, by decomposing the temperature field X

into spherical harmonics (see North et al. 2011; Rypdal et al.

2015), we obtain an expression for DR of the North-EBM,

D
R(ebm)

(n)5 11 [(2pnt)2 1 1]�
NT

n51

2n1 1

(2pnt)
2 1 [(l/R

E
)
2
n(n1 1)1 1]2

, (31)

with the total wavenumber index n and the truncation wave-

numberNT. Toobtain (31) from (20), note, that, for the case of the

North-EBM, (i) the power spectral density of the local variability

S(n) is given byRypdal et al. (2015) [see their Eq. (12)] and (ii) the

power spectral density of the globally averaged temperature S0(n)

is given by the term with n 5 0 of the same expression.

The above ESDOF spectrum (31) is shown in Fig. 4 (solid

black line), for the North-EBM scaled to the dimensions of a

sphere with the radius of Earth,RE, and with the damping time

scale set to t 5 10 years and the diffusion length scale to l 5
1.25 3 RE, and using a truncation wavenumber of NT 5 31

(corresponding to T31 horizontal resolution). The ESDOF

spectrum is shown for a frequency range from millennial to

monthly time scales. It turns out that the ESDOFs are strongly

decreasing, from a few hundred at monthly time scales to just

above oneESDOFatmultidecadal time scales, following a power-

law scaling (i.e.,;np) with exponent p5 1, and remain constantly

low at centennial and longer time scales according to a scaling

exponent of p 5 0. The break between these scaling regimes is

located at a time scale of 2pt ’ 63 years for the above parameter

choice. In the undamped regime [n. (2pt)21], the frequency

dependence of the ESDOFs is caused by the fact that structures

with smaller spatial scale (i.e., spherical harmonics with larger n)

are diffused away more quickly than larger-scale structures. Thus,

at higher frequencies, there are more small-scale structures con-

tributing to the total variance of the local variability, relative to the

variance contribution from the global average (given by the

spherical harmonicwith n5 0, which is not affected by diffusion at

all). In the damped regime [n, (2pt)
21
], the ESDOFs are con-

stant as t represents the longest time scale of the system (such that

in this regime, all spherical harmonics have the same frequency

scaling with p 5 0 in accordance with the white noise forcing).

The expected biased estimate in the limit of largeDR is given

by hD̂R(n)i5bR,max(k)DR(ebm)(n), according to (15), and is

shown in Fig. 4 by the central dashed black line. The expected

scatter of the estimate, in the same limit, is indicated by the

upper and lower 5% quantiles (upper and lower dashed black

lines) of a scaled-inv-x2[k, DR(ebm)(n)] distribution that has the

variance d2R,max(k)D
2
R(ebm)(n), in accordance with (16). Bias and

scatter are shown for k 5 18.9 degrees of freedom, consistent

with a modified Daniell spectral smoothing window with 11

weights, which we also used for
ê
S(n) and Ŝ0(n) when estimating

D̂R(n) from a numerical simulation of the North-EBM. From

this simulation, D̂R(n) is estimated using 7000 years of monthly

mean fields at T31 horizontal resolution, shown in Fig. 4 by the

red line. Additionally, from an ensemble of 1000 numerical

simulations, we estimated the mean and the upper and lower

5% quantiles at each frequency (green lines). This confirms and

illustrates both the coincidence of the bias and scatter with their

expected values in the limit of largeDR (at high frequencies) and

their waning in the opposite limit (at low frequencies).

e. Summary

A frequency-dependent ESDOF measure, denoted DR(n),

has been introduced in this section that is based on the inte-

gral of the spatial covariance function. It is identical, in its

frequency-independent version, to the ESDOF measure used

by Smith et al. (1994) and Jones et al. (1997), but here its in-

terpretation in the presence of anticorrelations has been clar-

ified. It has also been emphasized that its lower bound, that is

attained in the case of globally coherent fluctuations, may still

be greater than one if the local variance varies in space. If this is

the case, the measure is more sensitive to those regions with

larger variance. This effect can be avoided by using a variant of

the measure, denotedDr(n), which involves a standardization at

each location and frequency, and the lower bound of which is

always equal to one. For spatial fields contaminated by noise (e.g.,

measurement noise), however, standardization may lead to noise

amplification in regions where the local variance of the underly-

ing field is small, resulting in a biasedESDOFestimate. It has also

been shown how the average radial covariance function can be

estimated from gridded fields, and how this allows to construct

alternative ESDOF measures based on other aspects of the spa-

tial covariance function than its integral. The usefulness of these

measures lies in the possibility to investigate ESDOF-frequency

spectra fromwhich the frequency scaling of the spatial covariance

structure may be estimated and visualized. It has been demon-

strated, by an application to the North-EBM, that this scaling

behavior may point to certain underlying physical processes.

4. Application to climate model temperature and
precipitation fields

This section demonstrates the applicability of the previously

defined ESDOF measures and their usefulness to characterize

the covariance structure of climate variability. The measures

are applied to 7000 years of monthly mean 2-m temperature

and precipitation fields, both obtained from the TraCE-21ka

paleoclimate model simulation and processed as described in

section 2 for temperature.

As shown in Fig. 5a, the ESDOF estimator D̂R(n), computed

from global temperature fields, exhibits an almost uniform

power-law scalingwith an exponent of roughlyp5 1/2 across the

entire frequency range, that is, from monthly up to millennial

time scales. This scaling behavior is interrupted only by a small

drop at ENSO time scales between 2 and 5 years and by the

annual cycle (including its higher harmonics). According to this

measure, there are about 220 ESDOFs at monthly and about
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four ESDOFs at millennial time scales. As explained in the

previous section, this may indicate (i) a smaller spatial extent

of the fluctuations or (ii) an increased occurrence of anti-

correlations caused by teleconnections, toward the shorter time

scales. As already suggested by Figs. 1 and 2, there seems to be a

transition from scenario (i) at millennial to decadal time scales

toward scenario (ii) at time scales shorter than decadal.

To make this more explicit, Fig. 5b shows estimates of the

normalized average radial covariance function, R̂+(n; u), for

five different frequency bands.4 It turns out that from millen-

nial to decadal time scales the e-folding length scale decreases

[corresponding to scenario (i)] but then saturates toward the

shorter time scales where changes in the spatial correlation

structure aremainly associated with an increased occurrence of

anticorrelations [corresponding to scenario (ii)]. This result

can be expressed in terms of the ESDOF estimator D̂R,fit(n) by

fitting an exponential correlation function R+,fit(n; u)5 e2u/ue(n)

to R̂+(n; u), such that both have the same e-folding length

scale ue.
5 The resulting values of D̂R,fit(n) are shown in Fig. 5a

(open dots). Whereas both ESDOF measures exhibit a similar

increase from millennial up to decadal time scales, the two

measures diverge at the higher frequencies. Specifically, whereas

D̂R,fit(n) saturates toward monthly time scales, D̂R(n) continues

to increase, with the largest discrepancy occurring within the

monthly frequency band [D̂R,fit(n)5 45 vs D̂R(n)5 183]. If, al-

ternatively, the e-folding length scale ue used to compute

D̂R,fit(n) is obtained by fitting the exponential correlation func-

tionR+,fit(n; u) to R̂+(n; u) over the entire interval [0, p] [similar

to the procedure of Jones et al. (1997)], D̂R,fit(n) is getting closer

to D̂R(n) at all time scales, but the saturation toward the higher

frequencies remains, as does the large discrepancy at monthly

time scales (closed dots). These results explicitly demonstrate

that at decadal and longer time scales the ESDOF measure

DR(n), when applied to global 2-m temperature fields, essen-

tially characterizes the spatial extent of the fluctuations, and is

not notably affected by its specific sensitivity to anticorrelations

(discussed in section 3b). Furthermore, it is an interesting result

that the scaling behavior of theESDOFmeasureDR(n) seems to

be insensitive to the transition (at decadal time scales) from

scenario (i) to scenario (ii), at least in this model simulation, as is

reflected by the uniform scaling behavior across all frequencies.

In Fig. 6a the estimator D̂R(n) is compared to D̂r(n), which

exhibits a similar scaling behavior but values are smaller by

roughly a factor of 1.5, as a result of the standardization at

each grid point and frequency. Here and for the following

results we applied an additional smoothing in log-frequency

before plotting the ESDOF spectra, separately to the numer-

ator and the denominator of the measures, to increase the

legibility of the figures. Since DR(n) is a frequency-dependent

version of the second ESDOF measure of Jones et al. (1997),

according to their Eq. (10), we can compare our results to the

ESDOF values obtained by Jones et al. (1997) (see their

Table 1). Estimating D̂R from three different unforced model

simulations, they obtain ESDOF values in the range from 20 to

83 (depending on the model) when using annual means, and

from 10 to 39 when using decadal means. To compare this with

our results, we have to integrate the numerator and the de-

nominator of DR(n) up to n 5 (1 yr)21 or n 5 (10 yr)21, re-

spectively, according to (22). This yields D̂R 5 32 for the annual

and D̂R 5 16 for the decadal time scale, both of which lie within

the above ranges obtained by Jones et al. (1997). Although

TraCE-21ka is a forced model simulation, the forcing during

our selected Holocene episode is relatively weak. By contrast,

the observational ESDOF estimates of Jones et al. (1997), es-

timated from instrumental data for the episode from 1950 to

1990, are notably influenced by the anthropogenic warming

signal, which explains the much smaller values of D̂R 5 7 for

annual means and D̂R 5 3 for decadal means, because the

forced response is expected to have a very large spatial

scale, as discussed by Jones et al. (1997). Note that evalua-

tion of D̂R(n) from TraCE-21ka at the above two frequencies

themselves (i.e., without integration) yields much larger

values of D̂R[n5 (1 yr)21]’ 100 and D̂R[n5 (10 yr)21]’ 50,

respectively, because in this case the slower variability, as-

sociated with fewer ESDOFs, is excluded.

FIG. 4. ESDOFmeasureDR(n) (left vertical axis) and associated

length scale L (right vertical axis) as a function of frequency n, for the

North-EBM.The true valueDR(ebm)(n), according toEq. (31), is shown

by the solid black line, and the expected biased value,bRDR(ebm)(n), by

the central dashed black line. The upper and lower dashed black lines

mark theupper and lower 5%quantiles of a scaled-inv-x2[k,DR(ebm)(n)]

distribution, respectively. Indicated bias and scatter represent their

expected upper bounds in the limit of largeDR. The red line shows

D̂R(n) estimated from a single numerical simulation of the North-

EBM. The green lines show the mean and the upper and lower 5%

quantiles estimated fromanensemble of 1000 numerical simulations.

4 The normalized average radial covariance function for a fre-

quency band bounded by n1 and n2 is obtained by integrating the

numerator and denominator of (25) over that frequency interval.

The five frequency bands are bounded by n1 5 (7000 yr)21, n2 5
(1000 yr)21 for the millennial, by n1 5 (1000 yr)21, n2 5 (100 yr)21

for the centennial, by n1 5 (100 yr)21, n2 5 (10 yr)21 for the de-

cadal, by n1 5 (10 yr)21, n2 5 (14 months)21 for the annual, and by

n1 5 (10 months)21, n2 5 (2 months)21 for the monthly band,

where the annual cycle has been omitted. Narrow frequency bands

(of 41 discrete frequencies) centered at the higher harmonics of the

annual cycle have been omitted from the monthly band.
5 Note that, given ue, the rhs of (26) that involves an integral over

u (through the operator M[�] defined in section 3a) is written out

explicitly by Jones et al. (1997) [see their Eq. (14)].
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For all of the above estimates, the ESDOF values at decadal

time scales are roughly half of the values at annual time scales.

This suggests that the reduction of the global ESDOFs to-

ward longer time scales is a robust feature across models and

observations. This behavior is also consistent, at least qualita-

tively, with the simple North-EBM (see section 3d and Fig. 4),

where the ESDOF reduction is caused solely by spatial diffu-

sion. Although in TraCE-21ka the ESDOF scaling is flatter and

it does not exhibit a scaling break, even such a scaling behavior

can still be obtained by a simple diffusive EBM [the fractional

EBM of Rypdal et al. (2015); not shown]. This suggests that

diffusive processes might be the basic reason for the reduction

of ESDOFs toward longer time scales, at least for internal (i.e.,

unforced) climate variability at time scales longer than those

notably influenced by teleconnections. The above ESDOF

spectra are characterizing the spatial covariance structure in a

globalmean sense. However, differences in this structure are to

be expected between different regions, for example, between

the extratropics (governed by quasigeostrophic scaling) and

the tropics (characterized by strongly divergent circulations).

When the analysis is restricted to the tropics (defined here

as the region between 308S and 308N), shown in Fig. 6d, the

scaling is different. Specifically, the scaling exponent p is near

zero at time scales longer than those of ENSO variability, with

about 5 to 10 ESDOFs, depending on whether D̂R(n) or D̂r(n)

is investigated, and a strong increase at shorter time scales up

to about 80 ESDOFs at monthly time scales. In the tropics we

also have D̂R(n). D̂r(n) across almost all frequencies. Note

that the relation between the ESDOF measures (left vertical

axis) and the length scale measure (right vertical axis) depends

on the size A of the spatial domain. Whereas for global fields,

D5 1 corresponds to L5 2000 km (the entire sphere), for the

tropical region, for example, covering half of the sphere,D5 1

corresponds to L 5 10 000 km (one hemisphere).

By contrast, in the northern extratropics, shown in Fig. 6b, a

slight opposite scaling break is found near n 5 (10 yr)21. Thus,

the frequency dependence of the ESDOFs is stronger at de-

cadal to millennial and weaker at annual to monthly time

scales. In addition, there is a narrow peak with fewer ESDOFs

at n 5 (13 yr)21, which, however, is due to an unrealistic

FIG. 5. (a) ESDOF estimator D̂R(n) (left vertical axis) and associated length scale L (right vertical axis) as a

function of frequency n, estimated from global 2-m temperature fields of the TraCE-21ka paleoclimate model

simulation, shown by the gray line. Colored line segments indicate the samemeasure, estimated from themillennial

(violet), centennial (blue), decadal (green), annual (red), and monthly (cyan) frequency band, with colored dots at

the central frequencies. Black dots indicate the ESDOF estimator D̂R,fit(n) for the same frequency bands, based on

an exponential correlation function R̂+,fit(n; u)5 e2u/ue(n) fit to R̂+(n; u) either at the e-folding length scale ue (open

dots) or over the entire interval [0, p] (closed dots); see text for details. The dotted brown line follows a power-law

frequency scaling with exponent p 5 0.45. (b) Estimator R̂+(n; u), of the normalized average radial covariance

function, for the same frequency bands, with colors as in (a). The central dashed gray line is at 1/e.
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feature of this model simulation, similar to what was found in

other simulations with this model, although with different

forcing and resolution, as reported by Danabasoglu (2008).

This feature is associated with unrealistically large variability

confined to the northern North Atlantic. It is this spatial con-

finement of the variance that causes the upward peak in the

lower bound min[D̂R(n)] at the same frequency. The above

scaling break is even more pronounced when the analysis is

further restricted to northern extratropical ocean areas, shown

in Fig. 6e. In that case, the scaling exponent is near zero at time

scales shorter than 10 years, whereas at longer time scales

the scaling is virtually unchanged. Note that at the annual

cycle frequency [n5 (1 yr)
21
] we obtain D̂R(n)5min[D̂R(n)]

because there is only one coherent structure varying at this fre-

quency (Figs. 6b,e).6When the analysis includes both hemispheres,

however, the annual cycle signature is more complex because of

interhemispheric anticorrelations (Figs. 6a,d).

The frequency scaling of the ESDOF measures may be

quite different when other variables are investigated. As an

example, Fig. 6c shows D̂R(n) and D̂r(n) for global fields of

stratiform (i.e., large scale) precipitation. These ESDOF

spectra exhibit no scaling behavior at all, with a constant

value of about 600 ESDOFs, in terms D̂R(n), from monthly

to millennial time scales. The reason for this different be-

havior is most likely the fact that stratiform precipitation is

not a diffusive quantity, in contrast to temperature. For

D̂r(n) the value is smaller by roughly a factor of 2, but again

without any frequency dependence. A similar behavior is

found for tropical stratiform precipitation, shown in Fig. 6f,

except that both measures yield only about 100 ESDOFs

and, additionally, exhibit a clear ENSO signature. When the

ESDOF measures are applied to convective precipitation

(not shown) a similar scaling to that of 2-m temperature is

FIG. 6. ESDOF estimators D̂r(n), D̂R(n), and the lower bound min[D̂R(n)] given the spatial distribution of Ŝi(n) at each frequency (left

vertical axis) and associated length scaleL (right vertical axis) as a function of frequency n, with colors as indicated in (a), estimated from

the TraCE-21ka paleoclimatemodel simulation. ESDOF estimates are shown for 2-m temperature (T2m) and for stratiform precipitation

(Precip-strat), and for global fields (global), the region between 308S and 308N (tropics), the northern extratropics (.308N), and northern

extratropical ocean areas (.308N, ocean), as indicated above each panel.

6 Accordingly, D̂r(n) should drop to a value of one. The reason

why it does not in Figs. 6b and 6e is the additional smoothing in log-

frequency which we applied before plotting, affecting the annual

cycle peak of the denominator of (28). By contrast, D̂R(n) has

annual cycle peaks in both the numerator and the denominator [see

(27)], which are attenuated by the smoothing by the same factor,

such that the measure itself is unaffected.
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found (although with much larger ESDOF values), probably

because convection is closely related to the thermodynamics

of the atmosphere and, thus, to temperature. By contrast,

the processes leading to stratiform precipitation can be ex-

pected to exhibit spatial scales set by the large-scale fluid

dynamics.

5. Discussion

As shown in section 3, the lower bound of the ESDOF

measureDR, defined by (4), depends on the spatial distribution

of the variance [see (11)]. More specifically, the measure

attains a value still greater than one, even if all locations

within the spatial domain are perfectly correlated, which

may seem to be counterintuitive, as one may expect DR 5 1

in this case. This suggests defining the corrected measure

DR,c 5DR/min(DR)5s2/s2
0, the lower bound of which is al-

ways one, irrespective of the variance distribution. Inspection

of Figs. 6a, 6c, and 6d indicates that the suggested correction

would bringDR in close alignment with themeasureDr, which is

independent of the distribution of variance. Given that the esti-

mation ofDR,c is computationally less expensive than estimation

of Dr (especially in the spectral domain, where standardization

has to be performed at each frequency), one may prefer DR,c

over Dr. However, Fig. 6f shows that there are cases where the

correction would rather create a mismatch withDr. This implies

that, in general, it is better to use DR together with its lower

bound, or, alternatively, the measure Dr.

Nonetheless, it is useful to realize that, whileDR represents a

scale-oriented ESDOF measure, DR,c can be interpreted as a

number-oriented measure. To understand this distinction, con-

sider the idealized case ofNbox (5Nbox,11Nbox,0) equally sized

and uncorrelated boxes, with Nbox,1 boxes having variance one

andNbox,0 boxes having variance zero. Then, from the definition

of the measures, we obtainDR5Nbox, which is the reciprocal of

the (fractional) spatial scale of the box-shaped fluctuations,

whereas we have DR,c 5 Nbox,1, which is the number of the

fluctuations.

Although, strictly speaking, this interpretation breaks down

for smooth spatial variance distributions (as is the case for

climate variability), it helps to differentiate our measure DR

from the ESDOF measure N*
ef

of Bretherton et al. (1999).

Note, that for discrete spatial domains, we can rewrite our mea-

sures as DR 5 ½�N

i51wiVar(Xi)�/½�N

i,j51wiwjCov(Xi, Xj)� and

DR,c 5 ½�N

i51wiVar(Xi)
1/2�2/½�N

i,j51wiwjCov(Xi, Xj)�, respec-

tively. Then, by replacing the raw anomalies Xi by the

squared anomalies X2
i (and, additionally, assuming that the Xi

are normally distributed), we obtain D
(2)
R 5 ½�N

i51wiVar(Xi)
2�/

½�N

i,j51wiwjCov(Xi,Xj)
2� and D

(2)
R,c 5 ½�N

i51wiVar(Xi)�
2
/

½�N

i,j51wiwjCov(Xi,Xj)
2�, respectively. It turns out, that D

(2)
R,c is

identical to the gridpoint formulation of N*
ef
of Bretherton et al.

(1999), see their Eq. (5). Thus, whereas DR is a scale-oriented

ESDOF measure based on raw anomalies, N*
ef

is a number-

oriented measure based on squared anomalies.

Using squared anomalies has the advantage that anti-

correlations do not counterintuitively increase the ESDOFs,

such that a perfect teleconnection dipole is associated with

one ESDOF, rather than diverging ESDOFs (DR / ‘, as

in our case). Hence, one may want to define a frequency-

dependent version of D
(2)
R . However, squaring anomalies in

the time domain is not possible, because this distorts the

signal in the frequency domain.7 Although squaring in the

Fourier domain or in the cross-spectral density domain does

actually turn anticorrelations into positive correlations, it

also turns phase lags into negative correlations, again lead-

ing to a counterintuitive increase of the resulting ESDOF

measure. Alternatively, one may square the real parts of the

cross-spectral densities, but this yields a strong positive bias

of the variance of the global average and, thus, a strong

negative bias of the ESDOFmeasure, as it also occurs forN*
ef
.

However, the suggested bias correction of Bretherton et al.

(1999), based on the assumption k � D, is not applicable to

our case, where k is small as it represents the spectral degrees

of freedom, such that we may easily have k , D. Thus, it

would be necessary to provide an analytically derived bias

correction valid also for small k.

6. Conclusions

A frequency-dependent ESDOF measure is introduced that

can serve as a simple and easy to compute summarizing metric

of the covariance structure of a time-varying field.

d The underlying ESDOF measure is based on the variance

of the spatial average of an anomaly field. The measure

exploits the fact that the variance of the spatial average

depends on the spatial correlation, as for largely uncorre-

lated anomalies the spatial average leaves only a small

residual, whereas the residual is large for a spatially coherent

field.
d An interpretation of the measure is provided for two

settings: (i) for fields dominated by positive correlations,

the measure characterizes the average spatial extent of the

fluctuations; and (ii) for fields dominated by anticorre-

lated structures (due to, for example, teleconnections), it

characterizes the relative spatial partitioning of the asso-

ciated patterns into the respective anticorrelated spatial

subsections.
d Two variants of the underlyingmeasure are defined: with and

without standardization of anomalies, the latter variant

being identical, in its frequency-independent version, to the

ESDOF measure used by Smith et al. (1994) and Jones

et al. (1997).
d Both measures are equipped with an explicit dependence

on frequency by replacing variances by power spectral

densities, which allows for displaying ESDOF spectra

across frequencies.
d Estimators for both measures are provided, and their bias

and scatter are characterized.
d It is shown how the average radial covariance function

can be estimated from gridded fields to construct alter-

native frequency-dependent ESDOF measures based on

7Note that squaring a harmonic oscillation doubles its fre-

quency, and further distortions occur for discrete time signals.
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other aspects of the spatial covariance function than its

integral.

These frequency-dependent ESDOF estimators are applied

to temperature and to precipitation fields obtained from a

paleoclimate model simulation. From the results we can con-

clude the following:

d Our frequency-dependent ESDOF measures are successful

at providing concise information on the covariance structure

of climate variability and, in particular, at detecting distinct

space–time scaling regimes in the frequency domain.
d For global near-surface temperature fields, the ESDOFs

exhibit a distinct reduction from monthly to millennial time

scales, consistent with (i) the results of Jones et al. (1997) for

annual to decadal time scales, and with (ii) a simple diffusive

EBM, suggesting that horizontal diffusion is a basic reason

for the reduction of the ESDOFs toward longer time scales.
d For stratiform precipitation, as an example of a non-

diffusive climate variable, the ESDOFs do not exhibit any

distinct frequency scaling between monthly and millennial

time scales.

Numerous potential applications exist for these frequency-

dependent ESDOF measures. For example, as a reasonable

next step, ESDOF spectra may be estimated from observa-

tional data, as this may significantly contribute to our under-

standing of climate variability by characterizing its space–time

structure across wide ranges of frequencies. A challenge in

this context will be the treatment of data gaps in space and

time, in particular, when using paleoclimate data obtained

from proxy records. In this latter case, frequency-dependent

ESDOF estimates may provide useful information regarding

the representative spatial scale of local paleoclimate recon-

structions and how that scale varies with time scale. Data as-

similation approaches in paleoclimate modeling (e.g., Hakim

et al. 2016) may profit from this type of information. Another

possible application is the comparison of models with obser-

vations, in order to validate or improve either of them. Laepple

and Huybers (2014) detected large discrepancies in sea surface

temperatures at long time scales for local, but not for large-scale

variability, which implies different covariance structures inmodels

versus observations. ESDOF spectra may also be used to identify

climate variables and frequency bands for which the ESDOFs are

independent of frequency, as in such cases the variability may

possibly be described by statistical space–time factorization

(provided the spatial statistics are stationary across frequencies),

implying simplifications for prediction (Lovejoy et al. 2018).

Finally, our frequency-dependent ESDOF measures may help

to quantify the impact of external forcings on the space–time

structure of climate variability, as various types of forcing may

reveal different characteristic ESDOF fingerprints.
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APPENDIX A

Length Scale Measure L

The total surface area of a sphere with radius R is given by

Atot 5 4pR2, and the area of a spherical cap by Acap 5
2pR2(12 cosu), where u is half the opening angle of the cap, as

seen from the center of the sphere. Then from (5), and re-

quiring that Acap/A5Acap/(fAAtot)5 r+, according to the def-

inition of L in section 3b, we have

D5
f
A
A

tot

A
cap

5
2f

A

12 cosu
, (A1)

where D denotes DR or Dr. The radius L of the cap along its

curved surface is then given by

L5Ru5R arccos(12 2f
A
/D) . (A2)

Note that in the limit of large D (i.e., if D � 2fA), L can be

approximated by L’ 2R(fA/D)
1/2
.

APPENDIX B

Bias and Scatter of ESDOF Estimators

Analytic expressions for bR 5 hD̂R/DRi and dR 5Var(D̂R/DR)
1/2

in the limit of large DR are derived, for the case of a standard

normally distributed random field with stationary variance

and equal spatial weighting, that is, for Xi ;N (0, s2
i 5 1) and

wi5 1/N for all i, and with all possible pairs of locations having

the same correlation rij (for i 6¼ j). This latter assumption re-

quires that rmin , rij # 1, with rmin 5 21/(N 2 1). We obtain

DR 5N/[11 (N2 1)rij] and, in particular,DR5 1 if rij5 1 and

DR / ‘ as rij / rmin.

By defining A5N21�N

i51ŝ
2
i and B21 5 ŝ2

0DR, and using

(14), we can write

b
R
5 hAB i5 hAihB i1CovðA,B Þ. (B1)

Standard normality implies that hAi5 �
B21

	
5 1 and, since

B21 is a x2 variable, that

hB i5k/(k2 2), (B2)

which is the expected value of a scaled-inv-x2(k, 1) distribu-

tion. To investigate the behavior of the covariance term in

(B1) in the limit of large DR, note, that Cov


A, B21

�
5

DRCov(ŝ
2
i , ŝ

2
0)5 (2/k)DRCov(Xi, ~X)

2
. Since the spatial sta-

tionarity of s2
i and rij implies DR 5Cov(Xi, ~X)21, we obtain

Cov


A, B21

�
5 2/(kDR). Similarly, we can obtain

VarðAÞ5 2/(kD
(2)
R ) , (B3)

where D
(2)
R is the ESDOF measure based on squared

anomalies X2
i , discussed in section 5, and which, for the
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present case, can be written as D
(2)
R 5N/[11 (N2 1)r2ij].

By noting that Var


B21

�
5 2/k, we obtain the correlation

Corr


A, B21

�
5 (D

(2)
R )

1/2
/DR. Using the expression for D

(2)
R ,

this can be expressed as Corr


A, B21

�
5 [(N2 1)/(N2d)]1/2,

with d5 2DR 2D2
R. For DR 5 1, this yields a correlation

of one. For increasing DR . 1, the correlation decreases

monotonically, and approaches zero as DR / ‘. From this

we imply that the covariance term in (B1) vanishes asDR/ ‘.
Hence, from (B2), bR,max 5 limDR/‘bR 5k/(k2 2). In the

opposite limit, that is, if DR 5 1, the numerator and the de-

nominator of D̂R are always identical,A5B21, such that the

bias of the estimator vanishes, bR5 1. From a set of numerical

simulations (see Fig. B1a) we infer that bR (solid black line)

increases monotonically with DR and, thus, approaches its

limit k/(k2 2). 1 (dashed black line) from below. Hence, this

limit represents an upper bound to bR, as stated by (15) in

section 3c.

Since the covariance term in (B1) vanishes in the limit of

large DR, we can write

lim
DR/‘

d2R 5 lim
DR/‘

VarðAB Þ (B4)

5 lim
DR/‘

�hAi2VarðB Þ1 hB i2VarðAÞ1VarðAÞVarðB Þ� .
(B5)

Because DR / ‘ implies rij / rmin, we find from (B3), using

the expression for D
(2)
R
, that

lim
DR/‘

VarðAÞ5 (2/k)/(N2 1). (B6)

FIG. B1. Estimates of (a) bR and (b) d2R as a function ofDR and of (c) br and (d) d
2
r as a function ofDr for different

values of N (solid colored lines and dots), obtained from numerical simulations according to the case described at

the beginning of appendix B. Estimates from simulations with N5DR,Dr are connected by solid black lines with

open dots. The dashed black line in (a) indicates the upper bound bR,max, defined by (15), and in (b) the upper

bound d2R,max, defined by (16). Dashed colored lines in (b) indicate the upper bounds d2R,max(N), defined by (41). The

same upper bounds (dashed lines) are repeated in (c) and (d) for comparison. In all cases we set k 5 22.
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Additionally, because B21 is a x2 variable, we have

VarðB Þ5b2
R,max[2/(k2 4)] , (B7)

which is the variance of a scaled-inv-x2(k, 1) distribution. Then,

using hAi5 1, (B2), (B6), and (B7), we can rewrite (B5) as

lim
DR/‘

d2R 5 d2R,max(N)5b2
R,max

2

(k2 4)

"
11

1

b
R,max

(N2 1)

#
,

(B8)

which depends onN. In the opposite limit, that is, ifDR5 1, the

scatter vanishes, d2R 5 0, for the same reason as mentioned above

for the bias. From the numerical simulations (see Fig. B1b), we

infer that d2R (solid colored lines) increasesmonotonically withDR

and, thus, approaches its limit (B8) (dashed colored lines) from

below, for any givenN. Hence, the limit (B8) represents an upper

bound to d2R for that N. If, additionally, we let N / ‘, then this

limit reduces to limN/‘limDR/‘d
2
R 5 d2R,max 5b2

R,max[2/(k2 4)].

Since limN/‘limDR/‘d
2
R 5 limDR/‘d

2
R(DR 5N), and because

d2R(DR 5N) (solid black line) increases monotonically with DR,

the limit d2R,max represents an upper bound to d2R(DR 5N). As we

can also infer from the numerical simulations that d2R(DR #N)#

d2R(DR 5N), the limit d2R,max also represents an upper bound

to d2R for arbitrary N as long as DR #N, as stated by (16) in

section 3c.

For the estimator D̂r, the bias and the scatter can be similarly

characterized by defining br 5 hD̂r/Dri and dr 5Var(D̂r/Dr)
1/2,

respectively. Since an analytic treatment is more advanced in this

case, we only compute br and dr from the numerical simulations.

Although the spatial stationarity of the simulated random fields

implies DR 5 Dr, it does not imply D̂R 5 D̂r. Nonetheless, for

Dr 5 N (solid black line in Fig. B1c), br approaches the same

upper bound bR,max (dashed black line) asDr / ‘. ForDr , N,

however, br can slightly exceed bR,max for large values of N.

Thus, the upper bound bR,max is only approximately appli-

cable to D̂r. In cases with Dr . N, the behavior of D̂r is very

different from that of D̂R and strong negative biases can occur

(br, 1), in particular, for small values ofN. These differences

arise essentially from the fact that the correlation estimator,

implicit to D̂r, is always biased toward zero. By contrast, d2r is

found to be almost identical to d2R for bothDr5N andDr,N

(Fig. B1d), whereas for Dr . N, the scatter of D̂r is much

smaller than that of D̂R. From the above we conclude that the

upper bounds bR,max and dR,max apply reasonably well also to

D̂r as long as Dr # N.
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