

EGU24-17501, updated on 29 Apr 2024 https://doi.org/10.5194/egusphere-egu24-17501 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Constraining glacial ocean carbon cycle – A multi-model study

Bo Liu¹, Tatiana Ilyina^{2,3,1}, Victor Brovkin¹, Matteo Willeit⁴, Ying Ye⁵, Christoph Völker⁵, Peter Köhler⁵, Malte Heinemann⁶, Takasumi Kurahashi-Nakamura⁷, André Paul⁸, Michael Schulz⁸, Ute Merkel⁸, and Fanny Lhardy⁹

- ¹Max Planck Institute for Meteorology, Hamburg, Germany
- ²Universität Hamburg, Hamburg, Germany
- ³Helmholtz-Zentrum Hereon, Geesthacht, Germany
- ⁴Potsdam Institute for Climate Impact Research, Potsdam, Germany
- ⁵Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Bremerhaven, Germany
- ⁶Kiel University, Kiel, Germany
- ⁷University of Oldenburg, Oldenburg, Germany
- ⁸MARUM Center for Marine Environmental Science, University of Bremen, Bremen, Germany
- ⁹Ecole Normale Supérieure de Lyon, Lyon, France

The ocean contained a larger carbon content at the Last Glacial Maximum (LGM, ~21kyr before present) compared to the late Holocene, making a considerable contribution to the deglacial atmospheric CO_2 rise of about 90 ppm. Yet, there's no consensus on the mechanisms controlling the glacial-interglacial changes in oceanic carbon storage due to uncertainties and sparseness of proxy data. Numerical simulations have been widely used to quantify the impact of key factors, such as changes in sea surface temperatures, ocean circulation and biological production, on glacial ocean carbon sequestration. However, the robustness of these findings is subject to further testing due to the differences in process representation, parameterization, model architecture, or external forcing employed by models.

Towards further constraining the LGM ocean carbon cycle, we conducted a multi-model comparison with three comprehensive Earth System Models (Alfred Wegener Institute Earth System Model, AWI-ESM; Community Earth System Model, CESM; Max Planck Institute Earth System Model, MPI-ESM) and one Earth system Model of Intermediate Complexity (CLIMBER-X). We carried out three coordinated experiments with each model: 1) PI (the pre-industrial control simulation), 2) LGM-PMIP (following PMIP4 LGM protocol) and 3) LGM-LowCO2 (as LGM-PMIP, but with boosted alkalinity inventory to lower atmospheric CO₂ to about 190 ppm. All experiments were conducted with the prognostic CO₂ for the carbon cycle, considering only the atmosphere and ocean reservoirs, and prescribed CO₂ for radiative forcing.

All models consistently show that applying the PMIP4 LGM boundary conditions alone leads to only a 5-40 ppm decrease in atmospheric CO_2 . Globally, the glacial CO_2 drawdown in LGM-PMIP is mainly controlled by the enhanced solubility pump. The spatial distribution of the increased glacial DIC depends on the ocean circulation state in each model. In MPI-ESM and CLIMBER-X, the

shallower and weaker AMOC facilitates carbon storage in the deep Atlantic. An LGM atmospheric CO_2 of 190 ppm can be achieved by boosting alkalinity by 5-8% in scenario LGM-LowCO2. In all models, boosting LGM alkalinity inventory increases DIC in the bottom water. However, comparison to proxy data reveals that the models lack respired carbon, particularly in the deep Pacific. This suggests a need to enhance the glacial biological carbon pump in the models.