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Abstract

Microorganisms comprise an immense phylogenetic and metabolic diversity, inhabit every

conceivable  niche  on  earth,  and  play  a  fundamental  role  in  global  biogeochemical

processes.  Among  others,  their  study  is  highly  relevant  to  develop  biotechnological

applications,  understand  ecosystem  processes  and  monitor  environmental  systems.

Functional traits (FTs) (i.e., measurable properties of an organism that influence its fitness

(McGill et al. 2006)) provide complementary information to the taxonomic composition to

improve the characterization of microbial communities and study their ecology (Martiny et

al.  2012).  The application of  FT-based approaches can be particularly  enhanced when

coupled with metagenomics, which as a culture-independent method, allows us to obtain

the genetic material of microorganisms from the environment: Metagenomic data can be

used to compute functional traits at the genome level from a random sample of individuals

in a microbial  community,  irrespective of  their  taxonomic affiliation (Fierer  et  al.  2014).

Previous  works  using  FT-based approaches  in  metagenomics  include  the  study  of

community  assembly  processes  (Burke  et  al.  2011)  and  responses  to  environmental

change (Leff et al. 2015), and ecosystem functioning (Babilonia et al. 2018). 
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In this work, we present the Metagenomic Traits pipeline: Mg-Traits. Mg-Traits is dedicated

to the computation of 25 (and counting) functional traits in short-read metagenomic data,

ranging from GC content and amino acid composition to functional diversity and average

genome size (see Fig. 1). As an example application, we used the Mg-Traits pipeline to

process the 139 prokaryotic metagenomes of the TARA Oceans data set (Sunagawa et al.

2015).  In  this  analysis,  we  observed  that  the  computed  metagenomic  traits  track

community changes along the water column, which denote microorganisms’ environmental

adaptations. 

Mg-Traits  allows  the  systematic  computation  of  a  comprehensive  set  of  metagenomic

functional traits, which can be used to generate a functional and taxonomic fingerprint and

reveal  the  predominant  life-history  strategies  and  ecological  processes  in  a  microbial

community. Mg-Traits contributes to improving the exploitation of metagenomic data and

facilitates comparative and quantitative studies. Considering the high genomic plasticity of

microorganisms and their capacity to rapidly adapt to changing environmental conditions,

Mg-Traits constitutes a valuable tool to monitor environmental systems. 

Figure 1.  

Mg-Traits  pipeline.  The  25  metagenomic  traits  computed  by  the  Mg-Traits  pipeline  are

divided into four different groups. The first includes the metagenomic traits computed at the

nucleotide level:  (1)  GC content,  (2)  GC variance,  and (3)  Tetranucleotide frequency.  The

second group includes the traits obtained from the open reading frame (ORF) sequence data:

(4) ORFs to Base Pairs (BPs) ratio, (5) Codon frequency, (6) Amino acid frequency, and (7)

Acidic to basic amino acid ratio. The third group is based on the functional annotation of the

ORF amino acid  sequences.  The first  12 metagenomic  traits  (from 8 to  19 in  the figure)

comprise the composition, diversity, richness, and percentage of annotated genes for three

different  sets  of  genes:  Pfam  (https://pfam.xfam.org),  Resfam  (http://www.dantaslab.org/re

sfams),  and  Biosynthetic  Gene  Cluster  (BGC)  domains  (https://doi.org/10.1101/

2021.01.20.427441).  Additionally,  this  group  includes  (20)  the  percentage  of  transcription

factors (TFs) and (21) the average genome size (AGS). Lastly, in the fourth group are included

the taxonomy-related metagenomic  traits:  (22)  average copy number  of  16S rRNA genes

(ACN), taxonomic (23) composition, (24) diversity, and (25) richness.
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The  Mg-Traits  pipeline  is  available  at  https://github.com/pereiramemo/metagenomic

_pipelines. It is programmed in AWK, BASH, and R, and it was devised using a modular

design to facilitate the integration of new metagenomic traits.
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