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Abstract. Data assimilation is a common technique em-
ployed to estimate the state and its associated uncertainties
in numerical models. Ensemble-based methods are a preva-
lent choice, although they can be computationally expen-
sive due to the required ensemble integrations. In this study,
we enhance the capabilities of the Weather Research and
Forecasting—Advanced Research WRF (WRF-ARW) model
by coupling it with the Parallel Data Assimilation Frame-
work (PDAF) in a fully online mode. Through minimal mod-
ifications to the WRF-ARW model code, we have developed
an efficient data assimilation system. This system leverages
parallelization and in-memory data transfers between the
model and data assimilation processes, greatly reducing the
need for file I/O and model restarts during assimilation. We
detail the necessary program modifications in this study. One
advantage of the resulting assimilation system is a clear sep-
aration of concerns between data assimilation method devel-
opment and model application resulting from PDAF’s model-
agnostic structure. To evaluate the assimilation system, we
conduct a twin experiment simulating an idealized tropical
cyclone. Cycled data assimilation experiments focus on the
impact of temperature profiles. The assimilation not only sig-
nificantly enhances temperature field accuracy but also im-
proves the initial U and V fields. The assimilation process in-
troduces only minimal overhead in runtime when compared
to the model without data assimilation and exhibits excellent
parallel performance. Consequently, the online WRF-PDAF
system emerges as an efficient framework for implementing
high-resolution mesoscale forecasting and reanalysis.

1 Introduction

Data assimilation (DA) plays a pivotal role in enhancing
the precision and dependability of numerical weather predic-
tion (NWP) models, effectively bridging the divide between
model simulations and real-world observations. It bolsters
the accuracy, proficiency, and trustworthiness of weather
forecasts, supplying invaluable insights for a diverse array of
applications, encompassing weather prediction, climate re-
search, and environmental assessments (Lorenc, 1986; Song
et al., 2022).

Based on the mode of data transfer between the numer-
ical model and assimilation algorithm, ensemble-based DA
computational setups can be categorized into two coupling
modes: offline and online DA. In offline DA, data exchanges
between the model ensemble and assimilation algorithm hap-
pen through disk files. Examples of this approach encompass
the Advanced Regional Prediction System Data Assimilation
System (ARPSDAS; Xue et al., 2000), the Data Assimila-
tion Research Testbed (DART; Anderson et al., 2009), the
Gridpoint Statistical Interpolation (GSI) ensemble Kalman
filter (EnKF) system (Kleist et al., 2009), the Weather Re-
search and Forecasting model’s Community Data Assimila-
tion system (WRFDA; Barker et al., 2012), and WRF-EDAS
(Ensemble Data Assimilation System; Zupanski et al., 2011).
Offline DA offers convenience for implementing DA proce-
dures in relatively short timeframes. Although the actual I/O
time may not be substantial, as described by, e.g., Karspeck
et al. (2018), offline DA systems incur costs associated with
restarting the model after each analysis cycle for ensemble
simulations and the potential redistribution of data.

Online DA is typically implemented by coupling a numeri-
cal model and DA algorithm into a single executable program
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and exchanging data between the model and assimilation in
memory. Notable online DA systems include the ensemble
DA system by Zhang et al. (2007) based on the Geophysical
Fluid Dynamics Laboratory coupled climate model (CM2)
and the ensemble DA system (Sun et al., 2022) based on
the Community Earth System Model (CESM). Further, the
Parallel Data Assimilation Framework (PDAF, Nerger and
Hiller, 2013) provides online DA, e.g., in its implementa-
tion with the fully coupled Alfred Wegener Institute Climate
Model (AWI-CM; Nerger et al., 2020; Mu et al., 2023). In
this paper, PDAF version 2.0 (http://pdaf.awi.de, last access:
21 February 2023) is adopted to carry out the coupling work.
In this version, the interface for observations, named the Ob-
servation Module Infrastructure (OMI), is completely newly
developed.

The WRF-ARW model (Skamarock et al., 2021) has
gained extensive usage in regional research and real-time
forecasting. It is a reginal modeling system serving atmo-
spheric research and operational weather prediction commu-
nities. Different studies have explored extensive DA works
with WREF, such as WRFDA (Wang et al., 2008; Liu et
al., 2020), WRF-DART (Kurzrock et al., 2019; Risanto et
al., 2021), and WRF-GSI (Yang et al., 2015; Liu et al.,
2018). These studies are predominantly grounded in of-
fline DA frameworks, necessitating read and write oper-
ations for restart files at each assimilation time step and
model restarts for each subsequent forecast phase. This time-
intensive approach poses challenges for generating efficient
high-resolution reanalysis. In pursuit of an efficient reanaly-
sis, particularly with the goal of high-resolution WRF-ARW
DA, an online DA system coupled with WRF-ARW has
emerged as an imperative need. This study presents an exten-
sion of WRF-ARW’s capabilities by introducing the online-
coupled WRF-PDAF (Shao, 2023a) DA system to bolster its
potential for mesoscale research and high-resolution DA ap-
plications. WRF-PDAF facilitates in-memory data transfer,
avoiding the need for repeated model restarts and thus en-
abling efficient support for high-resolution simulations. Fur-
ther, WRF-PDAF utilizes ensemble parallelization to ensure
computational efficiency.

For the application of DA, temperature (7') profile ob-
servations have gained significant attention in recent years
due to their potential for enhancing atmospheric models and
weather forecasts. These observations can be derived from
various remote sensing instruments, including radiosondes,
dropsondes, ground-based and space-based lidars, and mi-
crowave radiometers. The assimilation of temperature pro-
files into atmospheric models using techniques like ensem-
ble Kalman filtering (EnKF) has yielded substantial improve-
ments in model accuracy and performance (Raju et al., 2014),
particularly in the realm of short-term forecasts (Rakesh et
al., 2009). Such assimilation aids in capturing mesoscale
weather phenomena like convective systems, thunderstorms,
and localized rainfall patterns. It contributes to the more
faithful representation of atmospheric processes, enhancing
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the skill of weather forecasts, particularly in regions where
traditional observations are sparse or limited (Feng and Pu,
2023). Assimilating profiles facilitates a more precise ver-
tical profiling of atmospheric parameters, critical for com-
prehending the vertical structure of the atmosphere (Hol-
bach et al., 2023). Real-time assimilation of profiles en-
ables timely updates to atmospheric models, leading to im-
proved nowcasting and short-term forecasts. This real-time
assimilation empowers models to capture swiftly evolving
atmospheric conditions, providing crucial insights for se-
vere weather events and rapid weather developments (Pena,
2023).

This paper serves as an introduction of the fully online-
coupled WRF-PDAF system with a focus on its development
and design. Additionally, the study assesses the DA behav-
ior of the system in the case of the assimilation of 7' pro-
files using the ensemble Kalman filtering (EnKF) technique.
Twin experiments employing synthetic observations are con-
ducted, and the assimilation results are analyzed, with a spe-
cific focus on fully online assimilation of 7" profiles.

The subsequent sections of this study are organized as fol-
lows: Sect. 2 provides an overview of the WRF model and
its configuration, the tropical cyclone case, the twin exper-
iments, and the ensemble filtering algorithm. Section 3 de-
tails the implementation of the ensemble-based online WRF-
PDAF DA system, including descriptions of the PDAF sys-
tem (Sect. 3.1), the augmentation of WRF for DA with PDAF
(Sect. 3.2), and discussions on interfaces for model fields and
observations (Sect. 3.3). Section 4 encompasses the assess-
ment of the scalability and an evaluation of the assimilation
behavior with the online WRF-PDAF system. Finally, Sect. 5
offers a summary and discusses the findings.

2 Methodology

In this section, we introduce the WRF model and its config-
uration, the tropical cyclone case, the local ensemble square
root transform Kalman filter (LESTKF) assimilation scheme,
and the twin experiment.

2.1 WRF

The WRF model stands as a widely embraced numerical
weather prediction system, offering a versatile platform for
simulating a broad spectrum of atmospheric processes. Its
applicability spans both regional and global weather simula-
tions, all thanks to its modular structure, enabling tailoring
to specific research goals or operational forecasting require-
ments. The dependability and flexibility inherent in WRF
make it an invaluable tool for our study. In this work, we
harnessed WRF-ARW version 4.4.1.

In this study, we have adopted the idealized tropical cy-
clone case provided by WRF as our test case. Tropical cy-
clones represent formidable and destructive meteorological
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phenomena originating over warm ocean waters near the
Equator. These potent storms draw their energy from the la-
tent heat release accompanying the ascent and condensation
of moist air into clouds and precipitation. The idealized tropi-
cal cyclone case offers a controlled environment for conduct-
ing identical twin experiments, evaluating system scalability,
and assessing the behavior of DA with WRF-PDAF. The sim-
ulation domain encompasses 3000 km x 3000 km x 25 km,
comprising 200 x 200 x 20 grid points with a horizontal grid
spacing of 15 km and a vertical grid spacing of 1.25 km. The
simulation spans a period of 6 d, commencing on 1 Septem-
ber at 00:00 UTC (010000) and concluding on 7 September
at 00:00 UTC (070000). The model employs a time step of
60 s, the Kessler microphysics scheme, and the YSU (Yonsei
University) boundary layer physics, with radiation schemes
omitted. The initialization of the simulation necessitates both
initial and boundary conditions. The initial state establishes
a horizontally homogeneous environment defined via the de-
fault file employing the Jordan mean hurricane sounding,
named “input_sounding” within the WRF directory. The ini-
tial state is characterized by immobility (¥ = v = 0) and hor-
izontally homogeneity, with the addition of an analytical ax-
isymmetric vortex in hydrostatic and gradient—wind equilib-
rium. Additionally, periodic lateral boundary conditions are
imposed to facilitate the simulation process.

2.2 LESTKF

The EnKF technique serves as a data assimilation method,
amalgamating information from a model state ensemble and
observational data to refine the model state variables. EnKFs
use an initial state ensemble created by introducing pertur-
bations to the model initial conditions. Subsequently, assim-
ilation updates are performed by estimating analysis incre-
ments, taking into account both the ensemble spread and the
misfit between observations and model predictions. In this
context, ensemble spread, quantified as the ensemble stan-
dard deviation (SD), characterizes the dispersion of the en-
semble members around the ensemble mean. The analysis
increments derived from this process are then applied to the
ensemble members, resulting in updated state variables. The
EnKF encompassed various variants suitable for assimilat-
ing T profiles due to their capacity to manage the nonlin-
ear dynamics typical of atmospheric models. Examples of
such variants include the local ensemble transform Kalman
filter (Hunt et al., 2007; LETKF) and the local error-subspace
transform Kalman filter (Nerger et al., 2012; LESTKF).

The LESTKF has found application across diverse stud-
ies, encompassing the assimilation of satellite data into atmo-
sphere models (Mingari et al., 2022), ocean models (Goodliff
et al., 2019), atmosphere—ocean coupled models (Nerger et
al., 2020; Zheng et al., 2020), and hydrological models (Y. Li
et al., 2023). In the context of the LESTKEF, the EnKF proce-
dure is efficiently formulated, facilitating discussion on the
unique aspects of DA with respect to the ensemble filter.
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In the mathematical framework, each state vector comprises
model fields transformed into a one-dimensional vector, rep-
resented as x!. The columns of the forecast ensemble matrix
X! hold the N, state vectors. y represents observation vector.
As we are aware, temperature serves as a common state vari-
able. It is intelligible to assimilate T profiles, thereby assess-
ing the efficiency and performance of the framework. The
analysis in Egs. (1)—(4) facilitates the transformation of the
forecast ensemble X! of N, model states into the analysis en-
semble X?2.

Xt =X (wif + W)+ 1], )
. T .
w= MA(HXfT) Ry — Hi Q)
W =.,/N. — IMA'/>M" (3)
f T 1 f
A_lzoz(Ne—l)I+(HXM> R'HX'M @)

Here, xt represents the ensemble mean state of the forecast,
and IIT\,e is the transpose of a vector of size N., containing
the value 1 in all elements. The vector w with a size of N,
facilitates the transformation of the ensemble mean from the
forecast to the analysis, while the matrix w (size N x Ne)
manages the transformation of ensemble perturbations. The
matrix M defined by Eq. (5) projects into the error subspace.
H is the observation operator. R is the observation error co-
variance matrix. A is a transform matrix in the error sub-
space. « is the forgetting factor (Pham et al., 1998) used to
inflate the ensemble to avoid underestimation of the forecast
uncertainty. It leads to an inflation of the ensemble variance
by 1/a.

The forecast ensemble represents an error subspace of di-
mension N, — 1, and the ensemble transformation matrix and
vector are computed in this subspace. Practically, one com-
putes an error-subspace matrix by L = X'M, where M is a
matrix with j = N rows and i = N, — 1 columns that is de-
fined by the following.

[E——— fori =j,j < Ne

NEW'FI
M. =] —L 1 fori # j,j < N, 5
i = Ne i JsJ < Ne )
L fori = N,
-7 ori = N,

The matrix A!/2 in Eq. (3) is computed using the eigenvalue
decomposition of AL, calculated as

USUT =A"1, (6)

where U and S denote the matrices of eigenvectors and eigen-
values. Consequently, A in Eq. (2) is computed as

A=US"'UT. (7

Similarly, the symmetric square root A!'/? in Eq. (3) is com-
puted as follows.

A2 —us—1/2yT ®)
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If A—! is rank-deficient, the calculations in Egs. (6) and (7)
can be performed only for the nonzero eigenvalues. Each grid
point in the model is independently updated through a local
analysis step. Only observations falling within specified hor-
izontal and vertical localization radii are considered during
grid point updates. Therefore, the observation operator is lo-
calized and computes an observation vector within these lo-
calization radii. Furthermore, each observation is weighted
based on its distance to the grid point (Hunt et al., 2007), and
a fifth-order polynomial function with a Gaussian-like shape,
following the Gaspari and Cohn (1999) approach, is em-
ployed to determine these weights. The localization weights
are applied to modify the matrix R™! in Eqgs. (2) and (4).
As a result, the localization process yields individual trans-
formation weights w and W for each local analysis domain.
Like the LETKF, the LESTKF performs a sequence of lo-
cal analyses. However, it does the calculations directly in the
error subspaces spanned by the ensemble. This can lead to
computational savings compared to the LETKF.

2.3 DA twin experiments

Table 1 provides an overview of the experiments conducted
in this study. The setups for the true state (Exp. 1, “True”),
the control state (Exp. 2, “CTRL”), and the free ensemble
run (Exp. 3, “ENS”) are consistent with Shao and Nerger
(2024). The CTRL is derived from a single free run, which
mirrors the True in all aspects, except for a 60h delay in
its starting time. The ENS, comprising 40 ensemble mem-
bers, is generated by introducing an initial perturbation to the
CTRL. According to the ENS, the DA twin experiments are
implemented by assimilating observations using different lo-
calization radii. Hourly synthetic observations of 7 profiles
are generated from the true state on a span of 30h, starting
from 040800 and ending at 051400. The observations are lo-
cated on all of the model grid points, so the T profiles have
the same resolution as the model grid. Actually, values on all
model levels are used to generate profiles. However, random
Gaussian noise is also added to the model value. To this end,
the assumption of observation errors being uncorrelated is
still valid. Assimilation experiments (Exps. 4—14, “ANA(0-
10)”) are carried out based on the ensemble run using obser-
vations from T profiles over 30 analysis cycles. These exper-
iments vary in terms of horizontal localization radii, ranging
from O to 10 times the horizontal grid spacing (dx), where dx
is 15 km. The vertical localization radii are identical, match-
ing the height of the model top. The impact of assimilating T
profile observations on the model representation of 7', as well
as the horizontal velocities U and V, is assessed by compar-
ing the assimilated states with the true states. These experi-
ments allow us to evaluate the performance and effectiveness
of WRF-PDAF in assimilating observations and improving
the model representation of atmospheric variables.

In these twin experiments, synthetic observations are gen-
erated directly at the model grid points so that no interpola-
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Table 1. The design for varying the localization radius (dx =
15km).

Exp. Name Member DA cycle Localization radius

(s) (s) (km)
1 True 1 - -
2 CTRL 1 - -
3 ENS 40 - -
4-14  ANA(0-10) 40 30 0-10dx

tions are required. Thus, the observation operator for profile
data simply selects the 7 values at the model grid points.
Gaussian noise, with a standard deviation of 1.2 K following
L. Li et al. (2023), is added to the T field of the True run
to generate the observations. Each profile represents a single
vertical column of observations located at grid points. These
profile data are then assimilated into the WRF model using
the LESTKF. The twin experiments commence at 031200,
undergoing a spin-up period of 20 h. Following this, obser-
vations are assimilated hourly during the analysis period,
spanning from 040800 to 051400. Subsequently, an ensem-
ble forecast is executed without additional assimilation from
051400 until 070000. To apply ensemble inflation, a forget-
ting factor «, where 0 < o < 1, is employed. In this study, an
adaptive scheme for the forgetting factor is adopted, utilizing
the statistical consistency measures outlined by Desroziers et
al. (2005), analogous to Brusdal et al. (2003).

3 Setup of the data assimilation program

The process of coupling the WRF with the PDAF involves
integrating function calls from PDAF into the WRF model
code to enable data assimilation capabilities. This section
provides an overview of the assimilation framework and the
setup of the DA program. Firstly, a summary of the PDAF
is presented in Sect. 3.1. The modifications made to en-
able online coupling are explained in Sect. 3.2. Furthermore,
Sect. 3.3 discusses the implementation of the interfaces for
model fields and observation.

3.1 Description of PDAF

PDAF is open-source software designed to simplify the im-
plementation and application of ensemble and variational
DA methods. It provides a modular and generic framework,
including fully implemented and parallelized ensemble fil-
ter algorithms like LETKF, LESTKF, NETF (Todter and
Ahrens, 2015), and LKNETF (Nerger, 2022), along with re-
lated smoothers and variational methods like 3D-Var or 3D-
EnVar following Bannister (2017). PDAF also handles model
parallelization for parallel ensemble forecasts and manages
the communication between the model and DA codes. Writ-
ten in Fortran, PDAF is parallelized using the Message
Passing Interface (MPI) standard (Gropp et al., 1994) and
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OpenMP (Chandra et al., 2001; OpenMP, 2008), ensuring
compatibility with geoscientific simulation models. How-
ever, PDAF can still be used with models implemented in
other programming languages such as C and Python.

The filter methods within PDAF are model-agnostic and
exclusively operate on abstract state vectors, as detailed in
Sect. 2.3 for LESTKF. This design promotes the develop-
ment of DA techniques independently from the underlying
model and simplifies the transition between different assim-
ilation approaches. Model-specific tasks, such as those con-
cerning model fields, the model grid, or assimilated obser-
vations, are executed through user-provided program rou-
tines based on existing template routines. These routines are
equipped with specified interfaces and are invoked by PDAF
as call-back routines. Thus, the model code executes PDAF
routines, which in turn call the user routines. To streamline
these interactions, calls to PDAF are integrated into inter-
face routines. These routines define the parameters for in-
voking the PDAF library routines before the actual PDAF
routine is executed. Consequently, this approach minimizes
changes required within the model code itself, as it mandates
only a single-line call to each interface routine — a total of
three routines. This call structure presents the advantage of
enabling the call-back routines to exist within the context of
the model, thus allowing them to be implemented in a man-
ner akin to model routines. Additionally, the call-back rou-
tines can access static arrays allocated by the model, such as
through Fortran modules or C header files. This capability
facilitates the retrieval of arrays storing, e.g., model fields or
grid information, exemplifying the versatility of the system.

3.2 Augmenting WREF for DA with PDAF

We adopt a fully online coupling strategy for DA here. This
approach assumes the availability of an adequate number of
processes to support concurrent time stepping of all ensem-
ble states, thereby simplifying the implementation. Each en-
semble state is integrated by one model task, which can en-
compass several processes to, e.g., allow for domain decom-
position. This approach allows each model task to consis-
tently progress forward in time. While the general strategy
for online coupling of DA remains consistent with prior stud-
ies (Nerger and Hiller, 2013, Nerger et al., 2020; Mu et al.,
2023), we present a comprehensive description here to illus-
trate the implementation of the coupling process for the WRF
model. The augmentation of WRF with DA functionality can
be visualized as depicted in Fig. 1.

In Fig. 1, solid boxes delineate the typical flow of the WRF
model flow. The program initiates in WRF_INIT, initializ-
ing parallelization, followed by activating all relevant pro-
cesses. Subsequently, the model is initialized, incorporating
grid configuration and initial fields retrieval from files. Af-
ter completing model initialization, the time-stepping pro-
cess commences in the routine INTEGRATE. Following time
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stepping, WRF undergoes cleanup in WRF_FINALIZE, fi-
nalizing parallelization and concluding the program.

Dashed boxes signify essential additions to the model code
for online coupling with PDAF. These additions involve sub-
routine calls that serve as interfaces between the model code
and the DA framework. By incorporating these subroutine
calls, the DA functionality seamlessly integrates into the
WREF code, allowing WREF to utilize the DA algorithms. Typ-
ically, these subroutine calls entail single-line additions and
can be enclosed in preprocessor checks to enable users to
activate or deactivate the data assimilation extension during
compilation.

The general functionality of the inserted routines is analo-
gous to their roles in a coupled model system (Nerger et al.,
2020) as follows.

— Init_parallel_pdaf. This routine is merged into the ini-
tialization phase to commence parallelization and mod-
ify the model parallelization for running an ensemble
of model tasks. The parallelization of WRF adheres to
the MPI standard. It is initialized at the outset of the
program, generating the MPI_ COMM_WORLD com-
municator that encompasses all program processes. Do-
main decomposition is employed, with each process
computing a designated region within the global do-
main. For ensemble DA, init_parallel_pdaf adapts the
parallelization to accommodate the concurrent com-
putation of multiple model tasks. Achieving this en-
tails partitioning the MPI_COMM_WORLD commu-
nicator into communicators for WRF model tasks,
termed COMM_model, each with the same number
of processes as used by the original domain decom-
position. Each communicator within COMM_model
represents a distinct model task within the ensem-
ble. To enable this MPI_COMM_WORLD partition-
ing, the source code of WRF was modified by sub-
stituting MPI_COMM_WORLD with COMM_model.
In the case of a single model task, COMM_model
would be equal to MPI_COMM_WORLD. In addition
to COMM_model, two more communicators are de-
fined for the analysis step in PDAF. COMM_couple
facilitates coupling between WRF and PDAF, while
COMM_filter encompasses all processes involved in
the initial model task. PDAF provides a template for
init_parallel_pdaf, which users can customize as per
specific requirements.

— Init_pdaf. Inserted just before the time-stepping loop in
the model code, this routine initializes the PDAF frame-
work. It specifies parameters for the DA, which may be
read from a configuration file or provided via command
line inputs. Subsequently, the initialization routine for
PDAF is invoked, configuring the PDAF framework and
allocating internal arrays, including the ensemble state
array. At this juncture, the initial ensemble is initialized.
This can be performed using second-order exact sam-
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Figure 1. General program flow of WRF-PDAF. Solid boxes indicate routines in WRF that require parallelization adjustments for data
assimilation. Dashed boxes represent essential additions to the model code. Solid lines represent flow, while the dotted line marks a function

call inside a routine. n represents the total number of time steps.

pling (Pham et al., 1998) from a decomposed covari-
ance matrix. For this, a call-back routine, init_ens_pdaf,
is called to read the covariance matrix information and
generate the initial ensemble. Once PDAF is initialized,
information from the initial ensemble is written into the
model’s field arrays. Subsequently, the initial forecast
phase is initialized, entailing a specific number of time
steps until the initial analysis step.

— Assimilate_pdaf. This routine is invoked at the conclu-
sion of each model time step. It calls a filter-specific
PDAF routine responsible for computing the analysis
step of the selected filter method. Before executing the
analysis step, the PDAF routine verifies whether all time
steps of a forecast phase have been computed. The anal-
ysis step includes additional operations such as handling
observations, as further described below.

3.3 Interfaces for model fields and observation

PDAF interfaces play a pivotal role in executing model- and
observation-specific operations, designed to maintain low
complexity. Two types of interfaces are introduced: those for
model fields and those for observations.

3.3.1 Interface for model fields

This interface encompasses two key routines: collect_state_
pdaf and distribute_state_pdaf. These routines are invoked
before and after the analysis step, respectively, to facilitate
the exchange of information between the WRF model fields
and the state vector of PDAF. The routine collect_state_pdaf
transfers data from the model fields to the state vector, while
distribute_state_pdaf initializes the model fields based on the
state vector. Both routines execute across all processes in-
volved in model integrations, each operating within its spe-
cific process subdomain. The variables of WRF essential for
PDAF are the wind components (u, v, w, ms_l), perturba-
tion geopotential (ph, m? s~ 1), perturbation potential temper-
ature (th, K), water vapor mixing ratio (qv, kgkg™!), cloud
water mixing ratio (qc, kg kg™!), rain water mixing ratio (qr,
kgkg™!), ice mixing ratio (qi, kgkg™"), snow mixing ratio
(gs, kgkg™!), graupel mixing ratio (qg, kgkg™!), perturba-
tion pressure (p, Pa), density (rho, kg m_3), and base-state
geopotential (phb, m?>s~!). Note that some of these vari-
ables, namely p, rtho, and phb, are exclusively used by the
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observation operators and remain unaltered by PDAF. Con-
sequently, only the remaining variables are updated and writ-
ten back to WRFE.

Additionally, there is a routine called prepoststep_pdaf
that permits users to access the ensemble both before and af-
ter the analysis step. This functionality enables pre- and post-
processing tasks, such as calculating the ensemble mean,
which can be saved to a file. Users can also perform consis-
tency checks, ensuring that variables like hydrological prop-
erties remain physically meaningful, and make necessary
corrections to state variables if required.

In cases when the analysis step incorporates localization,
which is typically the case in high-dimensional models like
WRE, additional routines are invoked to handle the local-
ization of the state vector. Initially, these routines ascertain
the coordinates and dimension of the local state vector for a
given index within a local analysis domain. In WRF-PDAF
the local analysis domain is chosen to be a single grid point,
in contrast to the implementation in AWI-CM-PDAF (Nerger
et al., 2020), which utilizes a vertical column of the model
grid as the local analysis domain. Since the local analysis
domain is a single grid point here, the dimension of the lo-
cal state vector is the number of model fields included in the
state vector. The other localization functionality is the ini-
tialization of a local state vector from the global state vector
according to the index of the local analysis domain. Analo-
gously, the global state vector has to be updated from the lo-
cal state vector after this has been updated by the local anal-
ysis.

3.3.2 Interface for observations — Observation Module
Infrastructure (OMI)

The implementation utilizes the Observation Module Infras-
tructure (OMI), a recent extension of PDAF. OMI offers
a modular approach to handling observations. In compari-
son to the traditional approach of incorporating observations
with PDAF, OMI presents two notable advantages. The first
is simplified implementation: OMI considerably reduces the
coding effort required to support various observation types,
their respective observation operators, and localization. By
defining standards regarding how to initialize observation
information, OMI simplifies the process and minimizes the
coding complexities associated with handling observations.
With this, several routines that had to be coded by the user in
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the traditional approach are now handled internally by OMI.
The second is enhanced flexibility: OMI enhances flexibility
by encapsulating information about each observation type.
This encapsulation prevents interference between different
observation types. From the code structure, OMI is motivated
by object-oriented programming, but for the sake of simplic-
ity, the actual abstraction of object-oriented code is avoided.

Figure 2 provides a visual representation of these inter-
faces. The interfaces in the OMI framework encompass three
key components.

— Observation initialization. For each observation type, a
dedicated routine reads observations of that type from
a file. Then, it tallies the valid observations, account-
ing for factors like observation quality flags. OMI also
provides some features relating to quality control. For
example, an observation can be excluded if its value
deviates too much from the ensemble mean. The rou-
tine initializes the observation coordinates and observa-
tion errors. Additionally, it determines which elements
of the state vector are required for the observation op-
erator to compute the model counterpart to an observa-
tion. If interpolation is involved in the observation oper-
ator, interpolation coefficients may be calculated. Once
these quantities are initialized, an OMI routine is called,
transferring the observation information to OMI for use
in the PDAF analysis step. In the twin experiments, ob-
servation initialization can generate and read synthetic
observations.

— Observation operator. This routine, as described in
Sect. 2.2, implements the observation operator. It takes
an ensemble state vector as input and returns the cor-
responding observed state vector. This operation is per-
formed for each state vector within the ensemble. The
information specifying which elements of the state vec-
tor are used in the observation operator and any applica-
ble interpolation weights was initialized by the observa-
tion initialization routine. OMI provides some univer-
sal operators for interpolations in one, two, and three
dimensions, including support for triangular grids. The
observation operator with interpolation is generic. One
just needs to determine interpolation weights and the in-
dices of the elements in the state vector which are com-
bined. For instance, for profile data, the operator for T
should be implemented in obs_SOUND_ pdafomi. Fur-
thermore, for complicated remote sensing observation
operators, some possible additions would also be im-
plemented. Currently, two operator modules have been
implemented, covering sounding observation operators,
including U, V, and T, as well as Global Naviga-
tion Satellite System (GNSS) observation operators, in-
cluding precipitable water (PW) and zenith total delay
(ZTD).
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— Observation localization. The localized analysis, de-
scribed in Sect. 2.2, necessitates determining the obser-
vations within a specified distance around a local analy-
sis domain. For each observation type, a dedicated rou-
tine calls an OMI routine to identify these observations
by calculating the distance between the local analysis
domain and observations based on their coordinates.
The OMI routine takes as input a localization radius and
the coordinates of the local analysis domain. Internally,
OMI performs distance-dependent weighting of obser-
vations based on their coordinates. In WRF-PDAF, the
local analysis domain consists of a single grid point;
hence, the observation localization operates in three di-
mensions, requiring both horizontal and vertical local-
ization radii to be specified. This contrasts with the ob-
servation localization in two dimensions and the use of
only horizontal localization radius in AWI-CM-PDAF
(Nerger et al., 2020). For satellite observations, the rel-
evant coordinates used for distance calculation are de-
fined by the user.

This structured approach to model fields and observations, as
facilitated by PDAF and OMI, ensures a robust and versatile
framework for data assimilation within WRF and other geo-
scientific models. PDAF provides a model-agnostic frame-
work to create an efficient data assimilation system as well
as filter and smoother algorithms. As such, it ensures a clear
separation of concerns between model development, obser-
vations, and assimilation algorithms.

4 Evaluation of WRF-PDAF

In this section, we delve into the application of WRF-PDAF,
specifically focusing on its utility in DA. We particularly aim
for evaluating both the parallel performance and the behavior
of DA of T profiles.

4.1 Compute performance

For evaluation of the performance of WRF-PDAF we use an
ensemble of 40 tasks, in which each single WREF task is dis-
tributed across a total of 64 processes. As a result, we utilize
a grand total of 2560 processes for the ensemble DA. T pro-
files are placed at 10-grid-point intervals in both the x and y
directions. In Fig. 3a, we provide a chart outlining execution
times of the various steps of the assimilation procedure.

The breakdown of the key execution times for different
phases of the assimilation process over the full experiment
is as follows: the major execution time of roughly 288.6s
is needed to conduct the ensemble forecasts over 85 h. This
time requirement is followed by the communication related
to DA coupling (within the communicator COMM_couple),
encompassing both data collection and distribution within
the ensemble, which takes approximately 27.4 s. The initial-
ization stage (in init_ens_pdaf), which involves generating
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Observation operator
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Figure 2. Sketch of interfaces for model fields and observation (OMI) in the analysis step. The PDAF core invokes the model interface
routines and the OMI interface. The routines collect_state_pdaf and distribute_state_pdaf incorporate information on the model fields from

WRFE

the ensemble, consumes approximately 18.9s. Less time is
spent for the DA analysis, involving 30 cycles in the full ex-
periment, which has a total execution time of 7.4s. Activi-
ties associated with DA pre- and post-processing (in prepost-
step_pdaf) occupy a combined execution time of 6.6s.

The time for the DA analysis can be further broken down
into three components: PDAF internal operations, observa-
tion handling, and variable transformation. Here, the obser-
vation handling requires the most time with around 4.9 s. The
PDAF internal operations of the LESTKF, like the singu-
lar value decomposition and the multiplication of the fore-
cast ensemble with the weight matrix and vector ESTKEF,
demand approximately 1.9 s. For variable transformation, an
additional 0.6 s is dedicated to the transformation of variables
between the global and local domains. Overall, the execu-
tion time for the entire assimilation process, amounting to
349s, is largely dominated by the time required for com-
puting forecasts. For individual cycles, the execution times
are distributed as follows: 3.4 s for forecasts, 0.9 s for cou-
pling communication, 0.2 s for DA analysis, and 0.2 s for pre-
and post-operations, as demonstrated in Fig. 3b. It is crucial
to acknowledge that the execution times can vary depend-
ing on the distribution of the program across the computing
resources. Nevertheless, repeated experiments have consis-
tently shown that the timings depicted in Fig. 3b are repre-
sentative of the typical performance.

The numerical experiments, with hourly assimilation of
T profiles into WREF, exhibit high efficiency. This efficiency
is underscored by an overhead of only up to 20.9 % in com-
puting time when compared to the model without assimila-
tion functionality, with an ensemble size of 40. This favor-
able outcome is largely attributed to the optimization of the
ensemble DA program, which prioritizes efficient ensemble
integrations between observations, thus reducing the need for
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disk operations. Instead, ensemble information is retained in
memory and efficiently exchanged through parallel commu-
nication during program runtime. The execution time of the
DA analysis is influenced by the number of assimilated ob-
servations and will increase if more observations are assimi-
lated.

It is important to highlight that the forecasts presented
here are derived from an idealized case, characterized by nu-
merous simplifications. For instance, radiation schemes have
been omitted in this idealized scenario, resulting in shorter
simulation runtimes compared to real cases. In actual oper-
ational scenarios, the model physics would likely be more
complex and forecasting times would be notably longer than
those in the idealized case. Consequently, when evaluating
efficiency by dividing the time dedicated to analysis by that
of the forecast, the efficiency values tend to become even
more favorable in favor of the assimilation process.

4.2 Assimilation results

To assess the influence of the T profiles, they are assimilated
here at all vertical columns. Figure 4 presents the root mean
square error (RMSE) over time and the time-averaged (from
the start to the end) vertical RMSE profiles for 7 and the
two horizontal velocity fields U and V. The primary focus
of the experiments is to evaluate the impact of the horizontal
localization radius. Notably, the RMSE of the ensemble fore-
cast (ENS) is lower than that of the control run (CTRL) com-
pared to the true state (True). This suggests that the ensemble
approach itself improves the accuracy of the model predic-
tion. Furthermore, when assimilating 7 data, the RMSE of
T (Fig. 3) is much lower than that of ENS during the anal-
ysis period. Thus, the assimilation process significantly en-
hances the accuracy of the model prediction. Among the ex-
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Figure 3. Flowchart and execution times for different phases of the DA experiment (unit: s).

periments ANA3, ANA4, and ANAS, there are similarities
in RMSE values, with ANA4 exhibiting the lowest RMSE
among all the experiments in Table 1. Compared to ANA4,
either smaller or larger localization radii lead to increased
RMSE. When the assimilation is stopped, the RMSE value
increases significantly. At the end of the experiment after
34h of free forecast, the RMSE for T from the ANA ex-
periments is at a similar level as the RMSE of ENS.

With the aid of flow-dependent cross-variable background
error covariances, the multivariate assimilation of T profiles
not only reduces the errors of the 7' field but also leads to
improvements in the U and V fields. Specifically, in Fig. 4,
the RMSEs for U from the experiments ANA4, ANAS, and
ANAG appear quite similar, with ANAS exhibiting the lowest
RMSE among all the experiments. In Fig. 4, a similar pat-
tern is observed for V, with ANA4 having the lowest RMSE
among all the experiments. This demonstrates that the as-
similation of T data contributes to reduced forecast errors
and more consistent forecasts. Note that the localization ra-
dius notably influences the assimilation result. An appropri-
ately chosen localization radius leads to improvements in the
background model. However, when the localization radius is
set to 0, the RMSEs of U and V from ANAO become higher
than those from ENS during the forecast period, as shown in
Fig. 4b and c. Additionally, after the final assimilation cycle
at 051400, the RMSE of T from ANAO sharply increases at
the first forecast step of 051500, as is visible in Fig. 4. These
special behaviors are due to the phenomenon of overfitting;
i.e., the model is adjusted not only to the data but also to
the noise (Nerger et al., 2006). In contrast the cases ANAI1
to ANA10 show a lower RMSE for U and V at the end of
the experiment. Thus, the assimilation improves the veloc-
ity field and some of the improvement remains present in the
ensemble also after 34 h of free forecast.

In the time-averaged RMSE profiles, improvements in-
duced by the assimilation are visible in all levels of the
model. They are lowest at the uppermost layers.

Figure 5 illustrates the relationship between the localiza-
tion radius and the RMSEs of 7', U, and V. To achieve the
smallest RMSEs, a localization radius of 4 dx is a desirable
selection when assimilating the full set of observations. How-

https://doi.org/10.5194/gmd-17-4433-2024

ever, short localization radii (< 4 dx) are detrimental to bal-
ance. Conversely, long localization radii (> 4 dx), when com-
pared to the optimal radius, may lead to larger errors and
imbalances due to presumed spurious correlations, aligning
with findings by Greybush et al. (2011). It is important to
emphasize that the experiments conducted based on differ-
ent localization radii serve as fundamental demonstrations of
the functionality of the DA program, with in-depth analysis
not being the primary focus of this study. In addition, the
optimal selection is case-dependent. For reference, previous
research (Wang and Qiao, 2022; Huang et al., 2021) has dis-
cussed the relationship between the observation radius and
the background error covariance.

5 Discussion and conclusions

This paper introduces and evaluates WRF-PDAF, a fully
online-coupled ensemble DA system that couples the atmo-
sphere model WRF with the data assimilation framework
PDAF. In comparison to AWI-CM-PDAF 1.0 (Nerger et al.,
2020), several key distinctions stand out. Firstly, the cou-
pled models diverge significantly. AWI-CM represents a cli-
mate model, whereas WRF is an atmospheric regional model.
Consequently, the framework, state vector definition, and in-
corporated observations are fundamentally dissimilar. Sec-
ondly, the PDAF version varies. Notably, the introduction of
the newly developed OMI has led to a divergence in code
structure. This marks the inaugural use of OMI in imple-
menting observation interfaces. Lastly, there are disparities in
computational performance and assimilation outcomes. Im-
portantly, this novel endeavor underscores the adaptability of
PDAPF, as it proves its efficacy not only in large-scale climate
system models but also in mesoscale regional atmospheric
models.

A key advantage of the WRF-PDAF configuration is its
ability to concurrently integrate all ensemble states, eliminat-
ing the need for time-consuming distribution and collection
of ensembles during the coupling communication. Figure 6
describes how the ensemble runs and how the PDAF obtains
data from the ensemble in online mode. This innovative on-
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Figure 5. The RMSEs of T, U, and V using different localization
radii.

line DA system eliminates the necessity for frequent model
restarts, a common requirement in offline DA systems. With-
out the need for model restarts and file I/O operations, the
extra time required for DA, including the analysis, communi-
cation, and pre- and post-operations, amounts to only 20.6 %
per cycle in our test assimilation of 7 profile observations
every hour for 30 cycles. Twin experiments focusing on an
idealized tropical cyclone configuration were conducted to
validate that the WRF-PDAF system works correctly. The re-
sults underscore the effectiveness of the WRF-PDAF system
in assimilating T profile data, leading to significant enhance-
ments not only in three-dimensional temperature fields but
also in three-dimensional wind components (U and V). The
choice of an optimal localization radius is demonstrated, al-
though it is important to note that the localization distance
can vary depending on the specific case.

The code structure using interface routines inserted into
the WRF model code and observation-specific OMI routines
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make the assimilation framework highly flexible. Further,
the abstraction in the analysis step, which uses only state
and observation vectors without accounting for the physical
fields, allows one to separate the development of advanced
DA algorithms from the development of the model. There-
fore, ensuring a clear separation of concerns becomes imper-
ative, a requirement for the efficient development of intricate
model codes and their adaptation to contemporary comput-
ing systems (Lawrence et al., 2018). The separation allows
all users with their variety of models to use newly imple-
mented DA methods by updating the PDAF library and, if
the new method has additional parameters, to specify the ad-
ditional DA. To guarantee compatibility across various li-
brary versions, the interfaces to the PDAF routines remain
unaltered. The abstraction in the analysis step and the model-
agnostic code structure also allow users to apply the assimi-
lation framework independently of the specific research do-
main.

The example here uses a parallelization in which the anal-
ysis step is computed using the first model task and the same
domain decomposition as the model. Other parallel configu-
rations are possible. Although fully parallel execution of the
assimilation program is highly efficient, it is constrained by
the maximum job size permitted on the computer. The model
used in the example here can scale even further than the 64
processes used for WRF. Hence, on the same computer, one
could either execute a larger ensemble with fewer processes
per model, resulting in a longer runtime, or opt for a smaller
ensemble, which would reduce the runtime. The number of
processes should be set so that the requirements for the en-
semble size for a successful assimilation can be fulfilled. The
other aspect is the required memory. The analysis step needs
the whole ensemble stored in a domain-decomposed way.
Thus, the complete ensemble is collected on the processes
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Figure 6. Diagram of data exchange between the model and PDAF in online mode.

of task 1, which calculate the analysis step. In extreme cases
this might overload the available memory. For larger applica-
tions, one might need to obtain a compute allocation at larger
computing sites, such as national compute centers.

In conclusion, this study elucidates the DA program by
enhancing the WRF model code and employing in-memory
data transfers between the model and PDAF. The Obser-
vation Module Infrastructure (OMI) plays a pivotal role
in handling observational data, encompassing observation
initialization, observation operators, and observation local-
ization. While the current implementation includes opera-
tors for profile data (7, U, and V) and GNSS data (PW
and ZTD), it maintains flexibility for incorporating com-
plex remote sensing observation operators. The exemplary
outcomes of perfect twin experiments affirm the effective-
ness of the WRF-PDAF system in assimilating observations.
Importantly, given that real-world forecasting times may be
longer than ideal case scenarios operational DA performance
could be even more efficient. Overall, the online WRF-PDAF
system provides an efficient and promising framework for
implementing high-resolution mesoscale forecasting and re-
analysis, bridging the gap between cutting-edge research and
practical applications in weather forecasting and climatol-

ogy.
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