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Petty,umd Fangli Qiao,fio David Schröder,cpom Axel Schweiger,apluw Qi Shu,fio Michael

Sigmond,cccma Michael Steele,apluw Julienne Stroeve,um Nico Sun,cryo Steffen Tietsche,ecmwf

Michel Tsamados,ucl Keguang Wang,nmi Jianwu Wang,b Wanqiu Wang,cpc Yiguo Wang,no Yun

Wang,sysu James Williams,giss Qinghua Yang,sysu Xiaojun Yuan,la Jinlun Zhang,apluw and

Yongfei Zhangpu

a National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics Laboratory,

Princeton, New Jersey, USA
b Department of Information Systems, University of Maryland Baltimore County, Maryland, USA

c National Center for Atmospheric Research, Boulder, Colorado, USA
d State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid

Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences, Beijing,

100029, China
e Direction de la Climatologie et des Services Climatiques, Météo-France, Toulouse, France
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ABSTRACT: This study quantifies the state-of-the-art in the rapidly growing field of seasonal

Arctic sea ice prediction. A novel multi-model dataset of retrospective seasonal predictions of

September Arctic sea ice is created and analyzed, consisting of community contributions from

17 statistical models and 17 dynamical models. Prediction skill is compared over the period

2001–2020 for predictions of Pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice

concentration (SIC) initialized on June 1, July 1, August 1, and September 1. This diverse set

of statistical and dynamical models can individually predict linearly detrended Pan-Arctic SIE

anomalies with skill, and a multi-model median prediction has correlation coefficients of 0.79,

0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar

skill to Pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower

in the Canadian, Atlantic, and Central Arctic sectors. The skill of dynamical and statistical models

is generally comparable for Pan-Arctic SIE, whereas dynamical models outperform their statistical

counterparts for regional and local predictions. The prediction systems are found to provide the

most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007,

and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has

been minimal change in inherent sea ice predictability over the satellite era. Overall, this study

demonstrates that there are bright prospects for skillful operational predictions of September sea

ice at least three months in advance.
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SIGNIFICANCE STATEMENT: The observed decline of Arctic sea ice extent has created an

emerging need for predictions of sea ice on seasonal timescales. This study provides a comparison

of September Arctic sea ice seasonal prediction skill across a diverse set of dynamical and statistical

prediction models, quantifying the state-of-the-art in the rapidly growing sea ice prediction research

community. We find that both dynamical and statistical models can skillfully predict September

Arctic sea ice 0–3 months in advance on Pan-Arctic, regional, and local spatial scales. Our

results demonstrate that there are bright prospects for skillful operational seasonal predictions of

Arctic sea ice and highlight a number of crucial prediction system design aspects to guide future

improvements.

CAPSULE: September Arctic sea ice seasonal prediction skill is compared across a diverse set of

dynamical and statistical prediction models, quantifying the state-of-the-art in the rapidly growing

sea ice prediction community.

1. Introduction

The rapid decline of summer Arctic sea ice over the satellite era (Fig. 1) has led to increased

socioeconomic activity in the region and an emerging need for skillful predictions of sea ice con-

ditions (Jung et al. 2016; Wagner et al. 2020). Following the then-record-setting 2007 September

Arctic sea ice extent (SIE) minimum, a new research subfield emerged focused on scientific under-

standing of sea ice predictability and prediction. At the core of this research community has been

the Sea Ice Outlook (SIO), which collects, analyzes, and synthesizes real-time seasonal predictions

of September Pan-Arctic SIE (Stroeve et al. (2014); see arcus.org/sipn/sea-ice-outlook). From

2008–present, the SIO has collected predictions of September SIE initialized on June 1, July 1, and

August 1, months that span the summer Arctic melt season. The SIO began additionally collecting

September 1 initialized predictions in 2021. The number of annual SIO submissions has grown

steadily over time, with approximately 40 groups submitting predictions in recent years. These

submissions are provided by an international community of polar scientists and employ a diverse

mix of dynamical modeling, statistical, and heuristic approaches.

In parallel to the growth of the SIO, a body of work on sea ice predictability has been developed,

which underpins the expectation that sea ice could be predictable on seasonal timescales. Coupled

global climate models (GCMs) have been used to estimate the upper limits of sea ice predictability
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based on “perfect model” ensemble experiments, which quantify potential prediction skill in the

case of perfectly known initial conditions, forcing, and model physics. These studies have shown

that, with typical sample sizes, Arctic SIE potential predictability is statistically significant up

to 12-36 months in advance (Koenigk and Mikolajewicz 2009; Blanchard-Wrigglesworth et al.

2011b; Holland et al. 2011; Tietsche et al. 2014; Day et al. 2014; Bushuk et al. 2019; Holland

et al. 2019), however they may overestimate nature’s true predictability limits due to the overly

persistent SIE anomalies present in most modern GCMs (Blanchard-Wrigglesworth and Bushuk

2019; Giesse et al. 2021). The inherent predictability of Arctic sea ice is determined by a

competition between the slowly evolving predictable components of the ice-ocean-land system and

the comparatively unpredictable variability of the atmosphere (Tietsche et al. 2016). A number of

physical mechanisms for summer Arctic SIE predictability have been demonstrated. These include

the persistence and reemergence of SIE and sea ice concentration (SIC) anomalies (Blanchard-

Wrigglesworth et al. 2011a; Bushuk and Giannakis 2015; Ordoñez et al. 2018; Giesse et al. 2021;

Zhang et al. 2021), the persistence and advection of sea ice thickness (SIT) anomalies (Holland et al.

2011; Blanchard-Wrigglesworth et al. 2011b; Chevallier and Salas y Mélia 2012; Krumpen et al.

2013; Blanchard-Wrigglesworth and Bitz 2014; Day et al. 2014; Collow et al. 2015; Massonnet

et al. 2015; Guemas et al. 2016; Williams et al. 2016; Blanchard-Wrigglesworth et al. 2017; Bushuk

et al. 2017b; Dirkson et al. 2017; Blockley and Peterson 2018; Holland et al. 2019; Bonan et al.

2019; Brunette et al. 2019; Babb et al. 2019; Ponsoni et al. 2020; Babb et al. 2020; Balan-Sarojini

et al. 2021), ocean heat transport and persistence of upper ocean heat content anomalies (Serreze

et al. 2016; Lenetsky et al. 2021; Bushuk et al. 2022), melt onset and summer ice-albedo feedback

processes (Schröder et al. 2014; Kapsch et al. 2014; Liu et al. 2015; Landy et al. 2015; Cox et al.

2016; Zhan and Davies 2017; Kwok et al. 2018; Bushuk et al. 2020), and summertime atmospheric

circulation patterns (Ding et al. 2017, 2019; Baxter et al. 2019; Baxter and Ding 2022). Taken

together, these studies have laid critical groundwork, showing that sea ice should be potentially

predictable on seasonal timescales.

Have modern prediction systems capitalized upon this potential predictability and produced

skillful predictions of observed Arctic sea ice? There is a tension in the sea ice prediction literature

regarding this question. On one hand, a number of studies have evaluated the performance of

September SIE predictions submitted in real-time to the SIO and found that these predictions
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2016; Zhan and Davies 2017; Kwok et al. 2018; Bushuk et al. 2020), and summertime atmospheric

circulation patterns (Ding et al. 2017, 2019; Baxter et al. 2019; Baxter and Ding 2022). Taken

together, these studies have laid critical groundwork, showing that sea ice should be potentially

predictable on seasonal timescales.

Have modern prediction systems capitalized upon this potential predictability and produced

skillful predictions of observed Arctic sea ice? There is a tension in the sea ice prediction literature

regarding this question. On one hand, a number of studies have evaluated the performance of

September SIE predictions submitted in real-time to the SIO and found that these predictions

have only a modest skill advantage relative to a baseline linear trend prediction (Stroeve et al.

2014; Blanchard-Wrigglesworth et al. 2015; Hamilton and Stroeve 2016; Lukovich et al. 2021;

Blanchard-Wrigglesworth et al. 2023). The initial assessment performed by Stroeve et al. (2014)

on SIO predictions submitted over the period of 2008–2013 found that, regardless of method,

predictions struggled to capture years with large SIE anomalies relative to the linear trend. These

initial findings have been largely corroborated over the longer assessment periods of 2008–2015

and 2008–2022 considered by Hamilton and Stroeve (2016) and Blanchard-Wrigglesworth et al.

(2023), respectively. Blanchard-Wrigglesworth et al. (2023) found that the SIO multi-model median

prediction has similar skill to a damped anomaly persistence forecast from July 1 and August 1

initialization dates, and is slightly more skillful than damped persistence from June 1. They found

that the skill of individual models was lower than the multi-model median skill and had worse skill

than damped persistence.

On the other hand, there has been a recent proliferation of studies that document the development

of seasonal prediction systems capable of skillfully predicting detrended September Arctic SIE

anomalies. These skill assessments are based on retrospective seasonal predictions (also known

as hindcasts or reforecasts), which use a fixed initialization and modeling formulation to make

seasonal predictions of past observations using only data that would have been available at the

time of initialization. Many dynamical prediction systems, which are based on initialized coupled

dynamical models, have recently shown skillful seasonal predictions of detrended September Arctic

SIE anomalies (Wang et al. 2013; Sigmond et al. 2013; Chevallier et al. 2013; Merryfield et al.

2013; Msadek et al. 2014; Peterson et al. 2015; Collow et al. 2015; Sigmond et al. 2016; Guemas

et al. 2016; Bushuk et al. 2017a; Dirkson et al. 2017, 2019; Kimmritz et al. 2019; Harnos et al.

2019; Batté et al. 2020; Shu et al. 2021; Bushuk et al. 2022; Zhang et al. 2022; Martin et al. 2023).

Simultaneously, many statistical prediction systems, which leverage empirical relationships in past

observational data, have also demonstrated skillful detrended SIE predictions (Drobot et al. 2006;

Lindsay et al. 2008; Schröder et al. 2014; Kapsch et al. 2014; Yuan et al. 2016; Williams et al. 2016;

Serreze et al. 2016; Petty et al. 2017; Kondrashov et al. 2018; Brunette et al. 2019; Ionita et al.

2019; Walsh et al. 2019; Gregory et al. 2020; Andersson et al. 2021; Chi et al. 2021; Horvath et al.

2021). Both dynamical and statistical predictions (see subsection 2b ahead) have been shown to
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outperform the damped persistence forecast in most cases. This discrepancy between retrospective

and real-time prediction skill represents a key tension in the sea ice prediction literature.

While many dynamical and statistical prediction systems have documented “skillful” SIE pre-

dictions, it is arguably more important to consider the quantitative level of skill and whether such

predictions could provide value to end users (Murphy 1993). The sea ice prediction community

gathered for a Sea Ice Outlook Contributors Forum in 2021 where this and many other issues

were discussed (Steele et al. 2021). Many workshop attendees expressed a need to rigorously

quantify the current state-of-the-art across modern sea ice prediction systems. Unfortunately, this

quantitative skill comparison is challenging due to differences in the evaluation time period and

skill metrics considered across different studies and the relatively short period of real-time SIO

predictions. This knowledge gap led to a key outcome of the SIO Forum–the expressed need

for an “apples-to-apples” skill comparison of modern dynamical and statistical sea ice prediction

systems. This community intercomparison of sea ice prediction skill forms the basis of the present

study.

The outline for this paper is as follows. In section 2, we describe a retrospective prediction data

request that was sent to the SIO contributor community, summarize the prediction methodologies

used by the 35 groups who contributed predictions, and outline our methods for assessing prediction

skill against multiple observational products. In section 3, we assess Pan-Arctic September SIE

prediction skill across dynamical and statistical models and consider whether SIE prediction skill

has changed over time. In section 4, we consider smaller spatial scales, evaluating regional

SIE prediction skill in five Arctic regions and comparing Pan-Arctic and regional performance.

Finally, we assess prediction skill for local SIC and ice-edge predictions in section 5. We discuss

our findings in section 6, focusing on the key elements of successful sea ice prediction systems

and the skill differences between retrospective and real-time predictions. Conclusions and a future

outlook are presented in section 7.

2. Methods

a. Retrospective Prediction Data Request

In order to facilitate a direct “apples-to-apples” skill comparison of SIO models, a data request for

retrospective predictions of September Arctic sea ice was sent to the SIO contributor community in
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2. Methods

a. Retrospective Prediction Data Request

In order to facilitate a direct “apples-to-apples” skill comparison of SIO models, a data request for

retrospective predictions of September Arctic sea ice was sent to the SIO contributor community in

Fig. 1. Observations of (a) September Pan-Arctic SIE from NSIDC v3 and OSI SAF v2.1 Sea Ice Indices; (b)

September regional SIE from NSIDC CDR SIC (G02202); and (c) September-mean SIC interannual standard

deviation and sea ice edge positions in the extreme years of 1996 (black), 2007 (magenta), and 2012 (blue).

Panel (d) shows the regional domain definitions for the Alaskan, Siberian, Atlantic, Canadian, and Central Arctic

regions. Note that the Central Arctic time series in panel (b) is plotted using a shifted y-axis on the right (values

in gray).

early 2022. The data request was for retrospective predictions initialized on the SIO initialization

dates of June 1, July 1, August 1, and September 1, and spanning a minimum period of 2001–

2020. The requested target variables were September monthly-mean Pan-Arctic SIE, regional SIE,

and gridded SIC fields. Pan-Arctic SIE is defined as the area of all Northern Hemisphere grid

cells covered by at least 15% SIC. We define monthly-mean SIE following the NSIDC Sea Ice
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Index convention, which defines the monthly-mean extent as the monthly mean of the daily SIE

values. Regional SIE was requested for four regional domains: the Alaskan Seas (Chukchi and

Beaufort), Siberian Seas (East Siberian and Laptev), Atlantic Seas (Kara, Barents, and Greenland),

and Canadian Seas (Canadian Archipelago and Baffin Bay). These regions were defined based on a

recently updated NSIDC region mask, which has better agreement with the regional definitions used

by the International Hydrographic Organization (Meier and Stewart (2023); see map in Fig. 1d).

We also later derived Central Arctic regional SIE using the submitted Pan-Arctic and regional

SIE values by taking their difference. SIO contributors were invited to submit any combination

of the requested target variables and initialization dates along with metadata describing the design

of their prediction system. We also requested submission of individual ensemble members, if

applicable, and the initial SIC and SIT conditions used for dynamical predictions. Contributors

were informed that the NSIDC sea ice index and SIC climate data record would be the official

verification products, but we also utilize OSI SAF observations for verification in this study (see

subsection 2c ahead). For groups that only provided SIC predictions, Pan-Arctic and regional SIE

were computed on the native model grid and a post-processing was applied to remove biases (see

ahead), including those related to land-sea mask differences.

Retrospective prediction contributions were received from 17 statistical models, 17 dynamical

models, and 1 heuristic prediction (see summary of submitted data in Table 1). These contributions

span 11 countries across Europe, Asia, and North America, and provide a total of 2807 individual

predictions of September Pan-Arctic SIE (1267 statistical; 1526 dynamical; 14 heuristic). All

data have been subsequently formatted into a common format and made publicly available via an

online repository (https://zenodo.org/doi/10.5281/zenodo.10124346). The online repository also

contains scripts for processing the raw data, computing skill metrics, and producing all figures for

this study. This is the most comprehensive dataset of multi-model Arctic sea ice predictions that

has been assembled to date, and is intended to provide an open community resource for future sea

ice prediction research. In this study, we will focus on ensemble-mean sea ice predictions in order

to compare ensemble and deterministic contributions, since this is the primary focus of the SIO

and allows for the largest set of models to be compared.
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Index convention, which defines the monthly-mean extent as the monthly mean of the daily SIE

values. Regional SIE was requested for four regional domains: the Alaskan Seas (Chukchi and

Beaufort), Siberian Seas (East Siberian and Laptev), Atlantic Seas (Kara, Barents, and Greenland),

and Canadian Seas (Canadian Archipelago and Baffin Bay). These regions were defined based on a

recently updated NSIDC region mask, which has better agreement with the regional definitions used

by the International Hydrographic Organization (Meier and Stewart (2023); see map in Fig. 1d).

We also later derived Central Arctic regional SIE using the submitted Pan-Arctic and regional

SIE values by taking their difference. SIO contributors were invited to submit any combination

of the requested target variables and initialization dates along with metadata describing the design

of their prediction system. We also requested submission of individual ensemble members, if

applicable, and the initial SIC and SIT conditions used for dynamical predictions. Contributors

were informed that the NSIDC sea ice index and SIC climate data record would be the official

verification products, but we also utilize OSI SAF observations for verification in this study (see

subsection 2c ahead). For groups that only provided SIC predictions, Pan-Arctic and regional SIE

were computed on the native model grid and a post-processing was applied to remove biases (see

ahead), including those related to land-sea mask differences.

Retrospective prediction contributions were received from 17 statistical models, 17 dynamical

models, and 1 heuristic prediction (see summary of submitted data in Table 1). These contributions

span 11 countries across Europe, Asia, and North America, and provide a total of 2807 individual

predictions of September Pan-Arctic SIE (1267 statistical; 1526 dynamical; 14 heuristic). All

data have been subsequently formatted into a common format and made publicly available via an

online repository (https://zenodo.org/doi/10.5281/zenodo.10124346). The online repository also

contains scripts for processing the raw data, computing skill metrics, and producing all figures for

this study. This is the most comprehensive dataset of multi-model Arctic sea ice predictions that

has been assembled to date, and is intended to provide an open community resource for future sea

ice prediction research. In this study, we will focus on ensemble-mean sea ice predictions in order

to compare ensemble and deterministic contributions, since this is the primary focus of the SIO

and allows for the largest set of models to be compared.

Table 1. Summary of submitted retrospective prediction data. Target variables are Pan-Arctic SIE (P),

Regional SIE (R), SIC (S), and the number of ensemble members (e) is indicated in parentheses. The variables

that are bias corrected are shown in parentheses in the Bias Correction column.

Name Forecast Method Time period Initialization Dates Target Variables Bias Correction

AWI Statistical 2000–2021 JJA P No

BDAL Statistical 2001–2021 JJAS P No

Cawley Statistical 2001–2021 June PR No

CPOM Statistical 1984–2021 JJ P No

CPOM-UCL Statistical 1993–2020 JJAS PR No

CSU Statistical 2011–2021 A P No

GSFC Petty Statistical 1990–2021 JJAS PR No

Damped Persistence Statistical 1990–2021 JJAS PRS No

Horvath Statistical 2001–2020 JJAS PRS Yes (S)

KOPRI Statistical 2001–2021 JJAS PRS No

Lamont Statistical 2013–2021 JJAS PRS Yes (PR)

MetNo-sparse-st Statistical 2000–2020 JJAS P No

Nico Sun Statistical 2000–2021 JJAS PRSe(3) No

SYSU/SML-KNN Statistical 2000–2020 JJAS PRS No

SYSU/SML-MLM Statistical 1980–2020 JJAS PRS No

Trend Climatology Statistical 1990–2021 JJAS PRS No

UCLA Statistical 2012–2021 JJAS PR No

UMBC-REU Statistical 2000–2020 S PS No

UPenn Statistical 2000–2021 JJAS P No

BCCR Dynamical 2003–2021 A PRSe(10) Yes (PR)

CNRM Dynamical 1993–2016 JJAS PRSe(25) Yes (PR)

CPC CFSm5 Dynamical 2006–2021 JJAS PRSe(4) Yes (S)

CPC CFSv2 Dynamical 1991–2021 JJAS PRSe(4) Yes (S)

ECCC-CanSIPSv2 Dynamical 1990–2021 JJAS PRSe(20) Yes (PRS)

EC-Earth Dynamical 1981–2014 June PRSe(10) No

ECMWF SEAS5 Dynamical 1993–2021 JJAS PRSe(25) Yes (PR)

FGOALS-f2 Dynamical 2000–2021 JJAS PRS No

FIO-ESM Dynamical 2000–2021 JJAS PRS Yes (PR)

GFDL-FLOR Dynamical 1981–2020 JJAS PRSe(12) Yes (PR)

GFDL-SPEAR Dynamical 1993–2021 JJAS PRSe(15) Yes (PR)

GFDL-SPEAR-IceDA Dynamical 1992–2021 JJAS PRSe(15) Yes (PR)

Met Office Dynamical 1993–2016 JJA Pe(21) Yes (P)

NASA GMAO Dynamical 1981–2021 JJA PRSe(10) No

PIOMAS-CFS Dynamical 2000–2020 JJAS PRSe(4) No

RASM Dynamical 2001–2021 JJAS PRSe(10) No

UCLouvain Dynamical 2006–2019 June PRSe(10) No

NCAR-CU Sea Ice Pool Heuristic 2008–2021 June P No

Unauthenticated | Downloaded 06/28/24 08:21 AM UTC



12
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0163.1.

b. Statistical and Dynamical Prediction Systems

The submitted predictions can be grouped into two main categories - dynamical and statistical

predictions. Dynamical predictions are based on numerical dynamical models that are initialized

from observationally constrained initial conditions and integrated forward in time. Statistical

predictions are based on empirical predictor-predictand relationships and are trained using past

observational or reanalysis data. It should also be noted that the distinction between dynamical

and statistical methods is not perfect - for example, many dynamical models use statistical post-

processing techniques to bias correct their predictions and many statistical models are trained on

reanalysis-based predictor data. There is also one submitted “heuristic” prediction from the NCAR

/ University of Colorado sea ice pool. This office pool collects September SIE predictions each

summer on June 1 from NCAR / CU scientists, and serves as a useful ‘human expert assessment’

baseline to compare against the skill of dynamical and statistical models (Hamilton et al. 2014).

Table 2 summarizes the dynamical prediction systems, which come in three main varieties:

fully-coupled global models, fully-coupled regional models driven by specified lateral boundary

conditions, and ice-ocean models driven by specified atmospheric forcing. Fully-coupled global

models are the most common model formulation, likely because many centers have carefully de-

veloped these models for climate modelling applications. Regional models offer the advantage

of substantial computational savings, allowing for Arctic simulations at higher resolution, but

come with the additional challenges of requiring high-quality boundary conditions and significant

research investment in model development. The ice-ocean models that use specified atmospheric

forcing are driven either using atmospheric fields from another prediction system or using reanalysis

atmospheric fields from previous years. The spatial ice-ocean resolution of the global dynamical

models range from 0.25◦ to 2.8◦ nominal horizontal resolution, whereas the two submitted regional

models have 0.08◦ and 0.3◦ nominal resolutions, respectively. The horizontal atmospheric reso-

lutions employed range from 0.4◦ to 2.8◦. Most of the dynamical prediction systems incorporate

observations of SIC (11 of 17 systems), sea-surface temperature (SST; 14 systems), ocean temper-

ature and salinity (T/S) profiles (13 systems), and reanalysis atmospheric data (15 systems) into

their initialization procedure. A number of systems also initialize their models using observed sea

level anomaly (SLA) data (4 systems), and SIT data (2 systems). A variety of different data assimi-

lation techniques are employed including 3DVAR, 4DVAR, strongly and weakly coupled ensemble
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b. Statistical and Dynamical Prediction Systems

The submitted predictions can be grouped into two main categories - dynamical and statistical

predictions. Dynamical predictions are based on numerical dynamical models that are initialized

from observationally constrained initial conditions and integrated forward in time. Statistical

predictions are based on empirical predictor-predictand relationships and are trained using past

observational or reanalysis data. It should also be noted that the distinction between dynamical

and statistical methods is not perfect - for example, many dynamical models use statistical post-

processing techniques to bias correct their predictions and many statistical models are trained on

reanalysis-based predictor data. There is also one submitted “heuristic” prediction from the NCAR

/ University of Colorado sea ice pool. This office pool collects September SIE predictions each

summer on June 1 from NCAR / CU scientists, and serves as a useful ‘human expert assessment’

baseline to compare against the skill of dynamical and statistical models (Hamilton et al. 2014).

Table 2 summarizes the dynamical prediction systems, which come in three main varieties:

fully-coupled global models, fully-coupled regional models driven by specified lateral boundary

conditions, and ice-ocean models driven by specified atmospheric forcing. Fully-coupled global

models are the most common model formulation, likely because many centers have carefully de-

veloped these models for climate modelling applications. Regional models offer the advantage

of substantial computational savings, allowing for Arctic simulations at higher resolution, but

come with the additional challenges of requiring high-quality boundary conditions and significant

research investment in model development. The ice-ocean models that use specified atmospheric

forcing are driven either using atmospheric fields from another prediction system or using reanalysis

atmospheric fields from previous years. The spatial ice-ocean resolution of the global dynamical

models range from 0.25◦ to 2.8◦ nominal horizontal resolution, whereas the two submitted regional

models have 0.08◦ and 0.3◦ nominal resolutions, respectively. The horizontal atmospheric reso-

lutions employed range from 0.4◦ to 2.8◦. Most of the dynamical prediction systems incorporate

observations of SIC (11 of 17 systems), sea-surface temperature (SST; 14 systems), ocean temper-

ature and salinity (T/S) profiles (13 systems), and reanalysis atmospheric data (15 systems) into

their initialization procedure. A number of systems also initialize their models using observed sea

level anomaly (SLA) data (4 systems), and SIT data (2 systems). A variety of different data assimi-

lation techniques are employed including 3DVAR, 4DVAR, strongly and weakly coupled ensemble

Kalman filters, nudging, optimal interpolation, and reanalysis-forced ice-ocean runs. Most of the

dynamical models are ensemble prediction systems, and their deterministic SIO prediction is taken

as the ensemble mean. Note that for SIE predictions, SIE is first computed for each ensemble

member and then averaged to form the ensemble mean.

The methodologies of each statistical prediction system are summarized in Table 3. A variety of

different methods are employed, including standard statistical techniques such as linear regression,

multiple regression, autoregressive models, and more complex methods including convolutional

neural networks, Gaussian process regression, multivariate linear Markov models, long short-term

memory networks, and harmonic decomposition. Most models include a sea ice predictor variable–

typically SIE or SIC–and some models also include thermodynamic ocean variables and dynamic

and thermodynamic atmospheric variables as predictors (see Table 3, column 2). The reader is

reminded that the predictand variables are provided in Table 1, column 5. All submitted statistical

models are trained using past data only. Some prediction systems choose to specify a designated

training period (e.g. 1979–2000) and use a fixed statistical model to predict all future years (e.g.

2001–2021). Other systems re-train their model each successive year using all available past data

(e.g. predict 2001 based on 1979–2000 data, predict 2002 based on 1979–2001 data, etc.). As such,

we are unable to disentangle the relative skill from the sophistication of the statistical approach

versus other aspects of the statistical forecast (e.g. the use of training data).

Many of the systems perform a post-processing of their predictions in order to correct system-

atic biases present in their retrospective predictions (see Table 1). The bias correction methods

employed are relatively simple, such as correction of the mean bias, correction of the trend, or a

linear regression adjustment. Some systems bias correct their SIE time series directly, whereas

others correct the SIC spatial fields. We note that some bias correction methods require comput-

ing anomalies relative to a climatology, which may implicitly incorporate future data. This is a

standard approach for retrospective prediction assessment, but may artificially increase prediction

skill (Risbey et al. 2021).
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Table 2. Summary of Dynamical Prediction Models. Acronyms used are: Sea ice concentration (SIC),

sea ice thickness (SIT), sea surface temperature (SST), subsurface temperature and salinity (T/S) profiles, sea

level anomaly (SLA), Ensemble Kalman Filter (EnKF), ECMWF Reanalysis (ERA), Integrated Forecasting

System (IFS), Ocean Reanalysis System (ORAS), National Centers for Environmental Prediction (NCEP),

Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective analysis for Research and Applications

(MERRA), Japanese Reanalysis (JRA), Climate Prediction Center (CPC), Numerical Weather Prediction (NWP),

Forecast Ocean Assimilation Model (FOAM), HadISST2 combined with Canadian Ice Service Charts (Had2CIS).

Name Initialization Data Brief Method Description and Reference

BCCR SIC, SST, T/S profiles Fully-coupled global with 1◦ ice-ocean, 2◦ atmosphere; initialized from
strongly coupled ice-ocean EnKF (Kimmritz et al. 2019)

CNRM SST, T/S profiles, ERA-Int/ERA5 Fully-coupled global with 0.25◦ ice-ocean, 0.5◦ atmosphere; initialized from
forced ice-ocean with T/S nudging, atmo. from ERA5 (http://www.umr-
cnrm.fr/IMG/pdf/system7-technical.pdf; Voldoire et al. (2019))

CPC CFSv2 SIC, SST, T/S profiles, CFSR Fully-coupled global with 0.5◦ ice-ocean, 1◦ atmosphere; initialized from
CFSR (Wang et al. 2013; Saha et al. 2014).

CPC CFSm5 SIC, SST, T/S profiles, CFSR Fully-coupled global with 0.5◦ ice-ocean, 1◦ atmosphere; initialized from
CFSR and CPC sea ice intialization system (Liu et al. 2019; Collow et al.
2019)

ECCC-CanSIPSv2 SIC, SST, T/S profiles, Era-Int Two fully-coupled global models: CanCM4i with 2.8◦ ice-atmosphere, 1◦
ocean; initialized from Had2CIS SIC, nudged run, and offline ocean T as-
similation from ORAP5; GEM-NEMO with 1◦ ice-ocean, 1.4◦ atmosphere;
initialized from Had2CIS SIC and ORAP5 (Lin et al. 2020).

EC-Earth SST, T/S profiles, Era-Int Fully-coupled global with 1◦ ice-ocean, 1◦ atmosphere; initialized from
ORAS4 in the ocean, atmo. from Era-Int (Hazeleger et al. 2012)

ECMWF SEAS5 SIC, SST, T/S profiles, SLA,
ERA5/IFS

Fully-coupled global with 0.25◦ ice-ocean, 0.4◦ atmosphere; initialized from
ERA5/IFS 4DVAR and ORAS5/OCEAN5 (Johnson et al. 2019; Zuo et al.
2019)

FGOALS-f2 T profiles, JRA55 Fully-coupled global with 1◦ ice-ocean, 1◦ atmosphere; initialized from
nudged run (Li et al. 2021)

FIO-ESM SIC, SIT, SST, SLA Fully-coupled global with 1◦ ice-ocean, 1◦ atmosphere; initialized from
weakly coupled EnKF (Qiao et al. 2013; Chen et al. 2016; Shu et al. 2021)

GFDL-FLOR SST, T/S profiles, NCEP-2 Fully-coupled global with 1◦ ice-ocean, 0.5◦ atmosphere; initialized from
weakly coupled EnKF (Msadek et al. 2014; Bushuk et al. 2017a)

GFDL-SPEAR SIC, SST, T/S profiles, CFSR Fully-coupled global with 1◦ ice-ocean, 0.5◦ atmosphere; initialized from
weakly coupled EnKF and nudged run (Bushuk et al. 2022)

GFDL-SPEAR-IDA SIC, SST, T/S profiles, CFSR Fully-coupled global with 1◦ ice-ocean, 1◦ atmosphere; initialized from
weakly coupled EnKF, sea ice EnKF, and nudged run (Zhang et al. 2022)

Met Office SIC, SST, T/S profiles, SLA, Met
Office NWP

Fully-coupled global with 0.25◦ ice-ocean, 0.6◦ atmosphere; initialized from
Met Office 4DVAR and FOAM/NEMOVAR (Blockley et al. 2014; MacLach-
lan et al. 2015)

NASA-GMAO SIC, SST, T/S profiles, SLA,
MERRA-2

Fully-coupled global with 0.5◦ ice-ocean, 0.5◦ atmosphere; initialized from
weakly coupled EnKF (Molod et al. 2020)

PIOMAS-CFS SIC, SIT, SST, CFSR/CFS Regional ice-ocean with 0.3◦ ice-ocean forced with atmospheric fields from
CFS forecasts; initialized via nudging and optimal interpolation (Zhang and
Rothrock 2003; Zhang et al. 2008)

RASM CFSR Fully-coupled regional with 0.08◦ ice-ocean and 0.5◦ atmosphere forced with
CFS operational forecasts; initialized from RASM hindcast run nudged to
CFSR (air temperature and winds) above 540 hPa (Cassano et al. 2017)

UCLouvain JRA55 Global sea ice-ocean NEMO3.6/LIM3 with 1◦ resolution forced with JRA55
atmospheric forcing from the ten previous years; initialized from forced ice-
ocean run (Rousset et al. 2015; Barthélemy et al. 2018)
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Table 2. Summary of Dynamical Prediction Models. Acronyms used are: Sea ice concentration (SIC),

sea ice thickness (SIT), sea surface temperature (SST), subsurface temperature and salinity (T/S) profiles, sea

level anomaly (SLA), Ensemble Kalman Filter (EnKF), ECMWF Reanalysis (ERA), Integrated Forecasting

System (IFS), Ocean Reanalysis System (ORAS), National Centers for Environmental Prediction (NCEP),

Climate Forecast System Reanalysis (CFSR), Modern-Era Retrospective analysis for Research and Applications

(MERRA), Japanese Reanalysis (JRA), Climate Prediction Center (CPC), Numerical Weather Prediction (NWP),

Forecast Ocean Assimilation Model (FOAM), HadISST2 combined with Canadian Ice Service Charts (Had2CIS).

Name Initialization Data Brief Method Description and Reference

BCCR SIC, SST, T/S profiles Fully-coupled global with 1◦ ice-ocean, 2◦ atmosphere; initialized from
strongly coupled ice-ocean EnKF (Kimmritz et al. 2019)

CNRM SST, T/S profiles, ERA-Int/ERA5 Fully-coupled global with 0.25◦ ice-ocean, 0.5◦ atmosphere; initialized from
forced ice-ocean with T/S nudging, atmo. from ERA5 (http://www.umr-
cnrm.fr/IMG/pdf/system7-technical.pdf; Voldoire et al. (2019))

CPC CFSv2 SIC, SST, T/S profiles, CFSR Fully-coupled global with 0.5◦ ice-ocean, 1◦ atmosphere; initialized from
CFSR (Wang et al. 2013; Saha et al. 2014).

CPC CFSm5 SIC, SST, T/S profiles, CFSR Fully-coupled global with 0.5◦ ice-ocean, 1◦ atmosphere; initialized from
CFSR and CPC sea ice intialization system (Liu et al. 2019; Collow et al.
2019)

ECCC-CanSIPSv2 SIC, SST, T/S profiles, Era-Int Two fully-coupled global models: CanCM4i with 2.8◦ ice-atmosphere, 1◦
ocean; initialized from Had2CIS SIC, nudged run, and offline ocean T as-
similation from ORAP5; GEM-NEMO with 1◦ ice-ocean, 1.4◦ atmosphere;
initialized from Had2CIS SIC and ORAP5 (Lin et al. 2020).

EC-Earth SST, T/S profiles, Era-Int Fully-coupled global with 1◦ ice-ocean, 1◦ atmosphere; initialized from
ORAS4 in the ocean, atmo. from Era-Int (Hazeleger et al. 2012)

ECMWF SEAS5 SIC, SST, T/S profiles, SLA,
ERA5/IFS

Fully-coupled global with 0.25◦ ice-ocean, 0.4◦ atmosphere; initialized from
ERA5/IFS 4DVAR and ORAS5/OCEAN5 (Johnson et al. 2019; Zuo et al.
2019)

FGOALS-f2 T profiles, JRA55 Fully-coupled global with 1◦ ice-ocean, 1◦ atmosphere; initialized from
nudged run (Li et al. 2021)

FIO-ESM SIC, SIT, SST, SLA Fully-coupled global with 1◦ ice-ocean, 1◦ atmosphere; initialized from
weakly coupled EnKF (Qiao et al. 2013; Chen et al. 2016; Shu et al. 2021)

GFDL-FLOR SST, T/S profiles, NCEP-2 Fully-coupled global with 1◦ ice-ocean, 0.5◦ atmosphere; initialized from
weakly coupled EnKF (Msadek et al. 2014; Bushuk et al. 2017a)

GFDL-SPEAR SIC, SST, T/S profiles, CFSR Fully-coupled global with 1◦ ice-ocean, 0.5◦ atmosphere; initialized from
weakly coupled EnKF and nudged run (Bushuk et al. 2022)

GFDL-SPEAR-IDA SIC, SST, T/S profiles, CFSR Fully-coupled global with 1◦ ice-ocean, 1◦ atmosphere; initialized from
weakly coupled EnKF, sea ice EnKF, and nudged run (Zhang et al. 2022)

Met Office SIC, SST, T/S profiles, SLA, Met
Office NWP

Fully-coupled global with 0.25◦ ice-ocean, 0.6◦ atmosphere; initialized from
Met Office 4DVAR and FOAM/NEMOVAR (Blockley et al. 2014; MacLach-
lan et al. 2015)

NASA-GMAO SIC, SST, T/S profiles, SLA,
MERRA-2

Fully-coupled global with 0.5◦ ice-ocean, 0.5◦ atmosphere; initialized from
weakly coupled EnKF (Molod et al. 2020)

PIOMAS-CFS SIC, SIT, SST, CFSR/CFS Regional ice-ocean with 0.3◦ ice-ocean forced with atmospheric fields from
CFS forecasts; initialized via nudging and optimal interpolation (Zhang and
Rothrock 2003; Zhang et al. 2008)

RASM CFSR Fully-coupled regional with 0.08◦ ice-ocean and 0.5◦ atmosphere forced with
CFS operational forecasts; initialized from RASM hindcast run nudged to
CFSR (air temperature and winds) above 540 hPa (Cassano et al. 2017)

UCLouvain JRA55 Global sea ice-ocean NEMO3.6/LIM3 with 1◦ resolution forced with JRA55
atmospheric forcing from the ten previous years; initialized from forced ice-
ocean run (Rousset et al. 2015; Barthélemy et al. 2018)

Table 3. Summary of Statistical Prediction Models. Acronyms used for training/intialization data are: Sea ice

concentration (SIC), sea ice extent (SIE), sea ice thickness (SIT), sea ice velocity (SIU), melt pond area (MPA),

sea surface temperature (SST), ocean heat content (OHC), ocean temperature (OT), 2m air temperature (SAT),

downwelling longwave radiation (LWDN), downwelling shortwave radiation (SWDN), net surface heat flux

(NSHF), sea level pressure (SLP), surface pressure (PS), geopotential height (Z), surface wind (USURF/VSURF),

winds at geopotential height level (UZ/VZ), specific humidity (q), rain rate (RR), snowfall rate (SR), precipitable

water content (PWC), Icelandic Low (IL), Arctic Oscillation (AO).

Name Training/Initialization Data Brief Method Description and Reference

AWI SIE, SAT, LWDN, USURF, VSURF, PWC, SLP, SST,
700m OHC, 100m OT

Stability maps and multiple regression (Ionita et al.
2019).

BDAL SIE, SST, PS, USURF, VSURF, qSURF, SAT, SWDN,
LWDN, RR, SR

Long Short Term Memory (LSTM) model (Ali et al.
2021)

Cawley SIE Gaussian process regression (Williams and Ras-
mussen 2006)

CPOM MPA Spatially-weighted linear regression model (Schröder
et al. 2014)

CPOM-UCL SIC, SST Complex networks and Gaussian process regression
(Gregory et al. 2020)

CSU SAT, SIC, SIT, SST, IL, AO Multiple regression

Damped Persistence SIE/SIC Damped anomaly persistence

GSFC Petty SIC/SIE Spatially-weighted linear regression model (Petty et al.
2017).

Horvath SIC, SIT, SAT, LWDN, SWDN, SIU Linear mixed effects regression (Horvath et al. 2021).

KOPRI SIC Convolutional LSTM model with perceptual loss func-
tion (Chi and Kim 2017; Chi et al. 2021).

Lamont SIC, SST, SAT, Z300, UZ300, VZ300 Multivariate linear Markov model (Yuan et al. 2016).

MetNo-sparse-st SIE Autoregressive model with adaptive order

Nico Sun SIC SIC persistence and past-year analogues

SYSU/SML-KNN SIC, NSHF K-nearest neighbor algorithm (Lin et al. 2023)

SYSU/SML-MLM SIC, SST, SAT, NSHF Multivariate linear Markov model (Zeng et al. 2023)

Trend Climatology SIE/SIC Linear trend

UCLA SIE Data-adaptive harmonic decomposition (Chekroun
and Kondrashov 2017; Kondrashov et al. 2018).

UMBC-REU SIC, SST, SP, USURF, VSURF, qSURF, SAT, SWDN,
LWDN, RR, SR

Convolutional Neural Network model (Kim et al.
2021)

UPenn SIE Feature-engineered linear regression (Diebold and
Göbel 2022; Diebold et al. 2023)
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c. Observational Verification

Consistent with the SIO evaluation, we verify Pan-Arctic SIE predictions against the NSIDC Sea

Ice Index, Version 3 (Fetterer et al. 2017), which is based on the NASA Team retrieval algorithm.

We also verify Pan-Arctic SIE predictions against the OSI SAF Sea Ice Index, Version 2.1 (OSI-

420), which uses the Bristol/Bootstrap retrieval algorithm (Lavergne et al. 2019). SIC predictions

are verified against the NOAA/NSIDC Climate Data Record (CDR) of SIC, version 4 (G02202;

Meier et al. (2021)) and the OSI SAF SIC CDR, release 3 (OSI-450a; EUMETSAT Ocean and

Sea Ice Satellite Application Facility (2022)). Both of these products use a spatial interpolation

to gap fill the polar observational hole. We also use the NSIDC and OSI SAF CDR SIC data to

compute regional SIE using the recently updated NSIDC Arctic region mask (Meier and Stewart

2023). We perform all SIC analysis on the 25km NSIDC polar stereographic north grid and regrid

each model’s SIC data to the NSIDC grid using bilinear interpolation and NSIDC’s CDR land-sea

mask. In cases where the model land-sea boundary lies within the NSIDC ocean domain, nearest

neighbor extrapolation to the NSIDC grid is used.

d. Skill Metrics

We quantify prediction skill using the anomaly correlation coefficient (ACC) and root mean

squared error (RMSE) between predicted and observed time series, which are commonly used

metrics in the sea ice prediction literature. The ACC is the temporal correlation between predicted

and observed time series and is defined as
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where 𝑝𝑝𝑖𝑖 is the model prediction for year 𝑖𝑖, 𝑜𝑜𝑖𝑖 is the observed value, 𝜏𝜏 is the forecast lead time, 𝑁𝑁

is the number of years, and the overbar indicates a temporal mean. The RMSE is given by
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In order to isolate trend-independent prediction skill, we compute detrended skill metrics, which

remove a linear trend from both predicted and observed time series prior to computing the skill
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c. Observational Verification

Consistent with the SIO evaluation, we verify Pan-Arctic SIE predictions against the NSIDC Sea

Ice Index, Version 3 (Fetterer et al. 2017), which is based on the NASA Team retrieval algorithm.

We also verify Pan-Arctic SIE predictions against the OSI SAF Sea Ice Index, Version 2.1 (OSI-

420), which uses the Bristol/Bootstrap retrieval algorithm (Lavergne et al. 2019). SIC predictions

are verified against the NOAA/NSIDC Climate Data Record (CDR) of SIC, version 4 (G02202;

Meier et al. (2021)) and the OSI SAF SIC CDR, release 3 (OSI-450a; EUMETSAT Ocean and

Sea Ice Satellite Application Facility (2022)). Both of these products use a spatial interpolation

to gap fill the polar observational hole. We also use the NSIDC and OSI SAF CDR SIC data to

compute regional SIE using the recently updated NSIDC Arctic region mask (Meier and Stewart

2023). We perform all SIC analysis on the 25km NSIDC polar stereographic north grid and regrid

each model’s SIC data to the NSIDC grid using bilinear interpolation and NSIDC’s CDR land-sea

mask. In cases where the model land-sea boundary lies within the NSIDC ocean domain, nearest

neighbor extrapolation to the NSIDC grid is used.

d. Skill Metrics

We quantify prediction skill using the anomaly correlation coefficient (ACC) and root mean

squared error (RMSE) between predicted and observed time series, which are commonly used

metrics in the sea ice prediction literature. The ACC is the temporal correlation between predicted

and observed time series and is defined as
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where 𝑝𝑝𝑖𝑖 is the model prediction for year 𝑖𝑖, 𝑜𝑜𝑖𝑖 is the observed value, 𝜏𝜏 is the forecast lead time, 𝑁𝑁

is the number of years, and the overbar indicates a temporal mean. The RMSE is given by
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In order to isolate trend-independent prediction skill, we compute detrended skill metrics, which

remove a linear trend from both predicted and observed time series prior to computing the skill

metrics. The detrended ACC is defined as

ACCdetrend(𝜏𝜏) =
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are linear trend fits to the predicted and observed time series. Note that 𝑝𝑝𝐿𝐿

𝑖𝑖
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is a function of lead time 𝜏𝜏, since each lead time will have its own linear trend prediction. Similarly,

the detrended RMSE is defined as
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�
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Note that, unlike RMSE, the detrended RMSE has no contribution from mean bias, since this bias

is subtracted off during the detrending procedure, but it does have contributions from conditional

biases (predicting the incorrect amplitude of anomalies). Another commonly used metric in the

sea ice prediction literature is the mean-squared error skill score (MSSS), which is connected to

the ACC and RMSE via the decomposition of Murphy (1988). In particular, the squared ACC

skill provides an upper bound on the MSSS and can be interpreted as the variance explained by a

regression-adjusted forecast that is free of conditional and mean biases.

In order to facilitate an “apples-to-apples” skill comparison, we focus most of our analysis on

the 2001–2020 time period, which is the period with the most submitted predictions (see Table 1).

Note that some models were only able to submit predictions for a portion of this time period,

which may bias their skill results. Specifically, 24 models submitted predictions for the full 2001-

2020 period and 31 models submitted at least 14 years of predictions. We also include figures in

the Supplementary Material showing prediction skill metrics computed over the full time period

submitted by each model (Figs. S5, S6). We emphasize that the overall conclusions of the study

are unchanged if the full time period is used for computing skill.

e. Reference and Multi-Model Predictions

We compare model prediction skill to two reference predictions; a linear trend climatology and

a damped anomaly persistence forecast. The linear trend climatology prediction, 𝑜𝑜𝐿𝐿
𝑖𝑖
, is computed

for a given year 𝑖𝑖 by computing a linear fit to September SIE using all available past data (i.e.
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1979 to year 𝑖𝑖−1) and evaluating the linear function for year 𝑖𝑖. The damped anomaly persistence

forecast uses the linear trend climatology prediction and adds a scaled observed anomaly at the

initialization time. The damped anomaly persistence forecast is given by

𝐷𝐷𝐷𝐷𝑖𝑖 (𝜏𝜏) = 𝑜𝑜𝐿𝐿𝑖𝑖 + 𝑟𝑟 (𝑜𝑜′Sep, 𝑜𝑜
′
𝜏𝜏)
𝜎𝜎Sep

𝜎𝜎
𝜏𝜏

𝑜𝑜′𝑖𝑖 (𝜏𝜏), (5)

where 𝑜𝑜′
𝑖𝑖
(𝜏𝜏) is the observed anomaly in year 𝑖𝑖 at lead time 𝜏𝜏, 𝑟𝑟 (𝑜𝑜′Sep, 𝑜𝑜

′
𝜏𝜏) is the correlation between

September anomalies and anomalies at lead time 𝜏𝜏, and 𝜎𝜎Sep and 𝜎𝜎
𝜏𝜏

are the standard deviations of

these respective anomalies (Van den Dool 2007). “Anomalies” here are detrended anomalies (i.e.

they are computed relative to the linear trend climatology). The observed anomaly is computed

using the daily observation immediately prior to the initialization date (for example, the June 1

observed anomaly is taken as the May 31 anomaly). The linear trend climatology, lagged correlation

and standard deviation values are updated each year using all available past data. Henceforth, we

refer to the damped anomaly persistence forecast as damped persistence.

We also compute a multi-model median prediction, which is the median predicted value across

all models for each year and each lead time. The multi-model median prediction is only computed

for years with at least 10 models available (years 1993–2021), in order to reduce the impact of

sampling bias.

3. Pan-Arctic Predictions

a. September Pan-Arctic SIE Prediction Skill

We begin by assessing the ability of models to predict September Pan-Arctic SIE, which is the

flagship prediction target of the SIO. Figure 2 shows time series of NSIDC observed September SIE

(black) and multi-model median predictions (red) from initialization dates of June 1–September 1.

The red shading indicates the interquartile range (middle 50%) of individual model ensemble-mean

predictions. We find that the multi-model median prediction has high skill across SIO lead times,

capturing both the observed SIE trend and interannual variations over the period 1993–2021. The

ACC values, which include a substantial trend contribution, are greater than 0.9 for all lead times,

whereas the detrended ACC values range from 0.66–0.97. The RMSE values of the multi-model

median prediction are substantially smaller than the observed detrended standard deviation (0.54
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are the standard deviations of

these respective anomalies (Van den Dool 2007). “Anomalies” here are detrended anomalies (i.e.

they are computed relative to the linear trend climatology). The observed anomaly is computed

using the daily observation immediately prior to the initialization date (for example, the June 1

observed anomaly is taken as the May 31 anomaly). The linear trend climatology, lagged correlation

and standard deviation values are updated each year using all available past data. Henceforth, we

refer to the damped anomaly persistence forecast as damped persistence.

We also compute a multi-model median prediction, which is the median predicted value across

all models for each year and each lead time. The multi-model median prediction is only computed

for years with at least 10 models available (years 1993–2021), in order to reduce the impact of

sampling bias.

3. Pan-Arctic Predictions

a. September Pan-Arctic SIE Prediction Skill

We begin by assessing the ability of models to predict September Pan-Arctic SIE, which is the

flagship prediction target of the SIO. Figure 2 shows time series of NSIDC observed September SIE

(black) and multi-model median predictions (red) from initialization dates of June 1–September 1.

The red shading indicates the interquartile range (middle 50%) of individual model ensemble-mean

predictions. We find that the multi-model median prediction has high skill across SIO lead times,

capturing both the observed SIE trend and interannual variations over the period 1993–2021. The

ACC values, which include a substantial trend contribution, are greater than 0.9 for all lead times,

whereas the detrended ACC values range from 0.66–0.97. The RMSE values of the multi-model

median prediction are substantially smaller than the observed detrended standard deviation (0.54

Fig. 2. Multi-model predictions of Pan-Arctic SIE initialized on (a) June 1, (b) July 1, (c) August 1, and (d)

September 1. The multi-model predictions are based on a multi-model median (red). Red shading indicates the

interquartile range (middle 50%) of individual model predictions. Skill metrics computed over 1993–2021 are

shown in red text, with detrended skill in parentheses. The number of models available for each year is indicated

by the grey bars at the bottom of each plot and grey text on the right y-axis. Multi-model predictions are only

plotted for years with at least 10 models available.

million km2), indicating prediction skill relative to the trend climatology prediction. We find that

the multi-model predictions become more confident (decreased inter-model spread) as the lead
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time decreases, and also capture SIE anomalies with greater skill. For example, better predictions

of the extreme 1996, 2007, and 2012 SIE anomalies are made from July 1 than June 1, and similar

improvements are seen in the forecasts from August 1 and September 1, respectively. We note that

the retrospective skill of the multi-model median prediction is considerably higher than the skill of

multi-model median real-time predictions submitted to the SIO (see supplementary Fig. S1). We

return to this point in the discussion section (section 6b). Versions of Fig. 2 for each individual

model submitted can be viewed on github (https://github.com/MitchBushuk/SIO review paper).

Next, we take a more granular view and explore the prediction skill of individual models. Fig-

ures 3 and 4 show the prediction skill of the dynamical and statistical models, respectively. We find

that the majority of dynamical and statistical models are skillful at SIO lead times, outperform-

ing the trend climatology prediction (dashed grey line). The models also generally outperform

damped persistence (solid grey line) from June 1 and July 1, whereas damped persistence provides

a more challenging benchmark from August 1 and September 1, with about half the models beating

damped persistence from August 1 and most models losing to damped persistence from September

1. While there is a large spread in skill across models, we find that the majority of models have

detrended ACC values that exceed 0.4 from June 1, and 0.5 from July 1 onward, the latter of which

is a commonly used practical threshold for useful forecast skill. The fact that this broad set of

models, which employ diverse prediction methodologies and input datasets, are generally skillful

at SIO lead times shows that useful real-time multi-month predictions of September sea ice should

be achievable.

The very high skill of damped persistence from September 1 (detrended ACC of 0.98) indicates

that interannual fluctuations of September-mean SIE are essentially “locked in” by September

1. This high skill demonstrates that the key source of predictability from September 1 is the

multi-week persistence of SIE anomalies, which have particularly high persistence values at the

time of the summer minimum (Blanchard-Wrigglesworth et al. 2011a). Since these SIE anomalies

are observable in near-real time, dynamical prediction systems should, in principle, be able to

initialize predictions using these data and capture this source of predictability. However, we find

that the majority of dynamical models are less skillful than damped persistence from September

1, which indicates that they are making errors in their sea ice initial conditions and/or have

substantial short term forecast drift that is not adequately post-processed in the forecasts. The most
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time decreases, and also capture SIE anomalies with greater skill. For example, better predictions

of the extreme 1996, 2007, and 2012 SIE anomalies are made from July 1 than June 1, and similar

improvements are seen in the forecasts from August 1 and September 1, respectively. We note that

the retrospective skill of the multi-model median prediction is considerably higher than the skill of

multi-model median real-time predictions submitted to the SIO (see supplementary Fig. S1). We

return to this point in the discussion section (section 6b). Versions of Fig. 2 for each individual
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Next, we take a more granular view and explore the prediction skill of individual models. Fig-

ures 3 and 4 show the prediction skill of the dynamical and statistical models, respectively. We find

that the majority of dynamical and statistical models are skillful at SIO lead times, outperform-

ing the trend climatology prediction (dashed grey line). The models also generally outperform

damped persistence (solid grey line) from June 1 and July 1, whereas damped persistence provides

a more challenging benchmark from August 1 and September 1, with about half the models beating

damped persistence from August 1 and most models losing to damped persistence from September

1. While there is a large spread in skill across models, we find that the majority of models have

detrended ACC values that exceed 0.4 from June 1, and 0.5 from July 1 onward, the latter of which

is a commonly used practical threshold for useful forecast skill. The fact that this broad set of

models, which employ diverse prediction methodologies and input datasets, are generally skillful

at SIO lead times shows that useful real-time multi-month predictions of September sea ice should

be achievable.

The very high skill of damped persistence from September 1 (detrended ACC of 0.98) indicates

that interannual fluctuations of September-mean SIE are essentially “locked in” by September

1. This high skill demonstrates that the key source of predictability from September 1 is the

multi-week persistence of SIE anomalies, which have particularly high persistence values at the

time of the summer minimum (Blanchard-Wrigglesworth et al. 2011a). Since these SIE anomalies

are observable in near-real time, dynamical prediction systems should, in principle, be able to

initialize predictions using these data and capture this source of predictability. However, we find

that the majority of dynamical models are less skillful than damped persistence from September

1, which indicates that they are making errors in their sea ice initial conditions and/or have

substantial short term forecast drift that is not adequately post-processed in the forecasts. The most

Fig. 3. Dynamical model prediction skill for September Pan-Arctic SIE computed over the period 2001–2020.

Individual models are shown in colors, multi-model predictions are shown in black, and reference predictions

are shown in grey. Skill metrics are plotted for each available initialization time (June 1–September 1) and are

computed for both full (a,c) and detrended (b,d) time series. The numbers in parentheses in the legend indicate

the number of years available from each model over the 2001-2020 time period. Note that the isolated markers

in the plots correspond to models that submitted a single initialization month.

skillful dynamical models from September 1 are comparable to the damped persistence benchmark,

suggesting that these systems are successfully assimilating sea ice concentration or other related

observations. Similarly, the most skillful statistical models are similar to damped persistence

from September 1 and most statistical models have lower skill than this benchmark despite, in

principle, having access to the same SIE observations as used by the damped persistence forecast.

This lower skill likely results from a combination of factors, such as some models using monthly

rather than daily data and some models including other predictor variables besides SIE which may

negatively impact September 1 skill in favor of higher skill at longer lead times. We also note that

training and verifying the damped persistence forecast on different datasets can provide a useful
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Fig. 4. Statistical model prediction skill for September Pan-Arctic SIE computed over the period 2001–2020.

Individual models are shown in colors, multi-model predictions are shown in black, and reference predictions

are shown in grey. Skill metrics are plotted for each available initialization time (June 1–September 1) and are

computed for both full (a,c) and detrended (b,d) time series. The numbers in parentheses in the legend indicate

the number of years available from each model over the 2001-2020 time period.

measure of observational uncertainty. We find detrended ACC values of 0.96, 0.95, and 0.95

based on training/verification pairs of NSIDC/OSI SAF, OSI SAF/NSIDC, and OSI SAF/OSI SAF,

respectively, which are slightly lower than the value of 0.98 for NSIDC/NSIDC reported above.

Moving to longer lead times, we find that slightly more than half the models outperform damped

persistence from August 1, and nearly all the models outperform damped persistence from June 1

and July 1. This indicates that the models are successfully capturing other sources of predictability

at these lead times, potentially including SIT anomaly persistence, surface albedo anomalies and

ice-albedo feedback, surface air temperature anomalies, and atmospheric circulation patterns.

Taken as a whole, the Pan-Arctic skill of the dynamical and statistical models are broadly similar,
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Fig. 4. Statistical model prediction skill for September Pan-Arctic SIE computed over the period 2001–2020.

Individual models are shown in colors, multi-model predictions are shown in black, and reference predictions

are shown in grey. Skill metrics are plotted for each available initialization time (June 1–September 1) and are

computed for both full (a,c) and detrended (b,d) time series. The numbers in parentheses in the legend indicate

the number of years available from each model over the 2001-2020 time period.

measure of observational uncertainty. We find detrended ACC values of 0.96, 0.95, and 0.95

based on training/verification pairs of NSIDC/OSI SAF, OSI SAF/NSIDC, and OSI SAF/OSI SAF,

respectively, which are slightly lower than the value of 0.98 for NSIDC/NSIDC reported above.

Moving to longer lead times, we find that slightly more than half the models outperform damped

persistence from August 1, and nearly all the models outperform damped persistence from June 1

and July 1. This indicates that the models are successfully capturing other sources of predictability

at these lead times, potentially including SIT anomaly persistence, surface albedo anomalies and

ice-albedo feedback, surface air temperature anomalies, and atmospheric circulation patterns.

Taken as a whole, the Pan-Arctic skill of the dynamical and statistical models are broadly similar,

however, the model spread precludes definitive statements on which class of method is preferable

for Pan-Arctic predictions.

The multi-model median prediction has high skill, with detrended ACC values exceeding 0.75

for all SIO lead times. The multi-model median skill is higher than nearly all individual mod-

els, suggesting that this prediction benefits from cancellation of random errors across prediction

systems, which is a common finding across a variety of prediction applications including the SIO

(e.g., Hagedorn et al. (2005); DelSole et al. (2014); Harnos et al. (2019); Blanchard-Wrigglesworth

et al. (2023)) as well as the Southern Ocean counterpart of the SIO, the SIPN South ensemble

(Massonnet et al. 2023). We also note that the skill of a multi-model median prediction based

only on dynamical models is similar to the skill of the multi-model median based on all models,

whereas the median prediction based only on statistical models has lower skill.

Of the dynamical models, ECMWF SEAS5 stands out as having particularly high Pan-Arctic

prediction skill, achieving comparable skill to the multi-model median. There are also two statistical

models that are high-skill outliers: the AWI model, which employs a multiple regression based on

stability maps, and the KOPRI model, which uses a convolutional long-short term memory model.

We note that the skill levels of the AWI and KOPRI models are roughly equal to the upper limit

of Pan-Arctic SIE predictability as estimated by perfect model GCM experiments (compare with

the July 1 initialized forecast skill in Fig. 1 of Tietsche et al. (2014)). We return to the possible

sources of prediction skill across the individual systems in Section 6a.

We also verify the predictions using the OSI SAF sea ice index (see supplementary Figs. S3,S4).

The OSI SAF sea ice index has a higher mean value than the NSIDC sea ice index (see Fig. 1a),

but the indices otherwise have a close agreement, with ACC of 1.00, detrended ACC of 0.98, and

detrended RMSE of 0.10 million km2. Consistent with this close agreement, we find that the skill

values are not sensitive to the choice of verification product, and that the choice of verification

product does not affect the qualitative conclusions regarding Pan-Arctic skill. The main difference

between the NSIDC and OSI SAF-verified skill metrics occurs for the RMSE skill, since this metric

is affected by the mean offset between the products, whereas the other skill metrics are not.

The heuristic prediction submitted from the NCAR / CU sea ice pool provides a useful ‘human

expert assessment’ baseline for Pan-Arctic SIE prediction skill. We find that this June 1 heuristic

prediction has no skill (ACC=-0.18; detrended ACC=-0.39) over their submission period of 2008–
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2021 (see Hamilton et al. (2014), and more recent figure here: https://bit.ly/3MscjmL), emphasizing

the inherent challenges in human-based assessments.

b. Is Prediction Skill Changing Over Time?

Earlier theoretical work has shown that Arctic sea ice predictability is dependent on the mean

climate state (Holland et al. 2011; Holland and Stroeve 2011; Cheng et al. 2016; Holland et al.

2019). While some have argued that the recent observed trends towards a thinner and more mobile

ice pack may reduce inherent summer sea ice predictability, Holland et al. (2019) show that changes

in sea ice predictability characteristics are highly non-monotonic under climate change and sea ice

predictability actually reaches a local maximum in the CESM1 model in the 2010s decade. We

can use the retrospective prediction dataset to investigate this question by analyzing the evolution

of prediction errors over time across the multi-model dataset.

Figure 5a shows the multi-model mean of single-model detrended Pan-Arctic SIE absolute errors

plotted as a function of time (horizontal axis) and initialization date (colors). We find that the

error time series do not display clearly identifiable trends, but are punctuated by large errors in the

extreme sea ice years of 1996, 2007, and 2012, which respectively had high, low, and low sea ice

extents (Serreze and Stroeve 2015; Kay et al. 2008; Zhang et al. 2013). The trends in prediction

errors are not significantly different from zero (at the 95% confidence level) for any initialization

month. This finding suggests that there has not been a detectable change in sea ice predictability

since 1990.

As expected, we find that the SIE errors increase with lead time, but the error reduction between

lead times changes from year to year. For example, 2005 has similar errors across lead times, 2007

shows a similar reduction for each successive initialization month, and 2012 shows large reductions

from June to July and from August to September, but little change from July to August. These

differences are likely related to the particular synoptic conditions of each summer - for example

the August 1 error is particularly large in 2012, likely because the great Arctic cyclone, which

peaked on August 6 (Simmonds and Rudeva 2012) and led to rapid sea ice loss in August, was not

predicted (or its impact on sea ice) by seasonal prediction systems (Yamagami et al. 2018).

Earlier work has shown that sea ice predictions typically struggle in “hard to predict years” with

large SIE anomalies (Stroeve et al. 2014), sometimes related to atmospheric conditions such as
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2021 (see Hamilton et al. (2014), and more recent figure here: https://bit.ly/3MscjmL), emphasizing

the inherent challenges in human-based assessments.

b. Is Prediction Skill Changing Over Time?

Earlier theoretical work has shown that Arctic sea ice predictability is dependent on the mean

climate state (Holland et al. 2011; Holland and Stroeve 2011; Cheng et al. 2016; Holland et al.

2019). While some have argued that the recent observed trends towards a thinner and more mobile

ice pack may reduce inherent summer sea ice predictability, Holland et al. (2019) show that changes

in sea ice predictability characteristics are highly non-monotonic under climate change and sea ice

predictability actually reaches a local maximum in the CESM1 model in the 2010s decade. We

can use the retrospective prediction dataset to investigate this question by analyzing the evolution

of prediction errors over time across the multi-model dataset.

Figure 5a shows the multi-model mean of single-model detrended Pan-Arctic SIE absolute errors

plotted as a function of time (horizontal axis) and initialization date (colors). We find that the

error time series do not display clearly identifiable trends, but are punctuated by large errors in the

extreme sea ice years of 1996, 2007, and 2012, which respectively had high, low, and low sea ice

extents (Serreze and Stroeve 2015; Kay et al. 2008; Zhang et al. 2013). The trends in prediction

errors are not significantly different from zero (at the 95% confidence level) for any initialization

month. This finding suggests that there has not been a detectable change in sea ice predictability

since 1990.

As expected, we find that the SIE errors increase with lead time, but the error reduction between

lead times changes from year to year. For example, 2005 has similar errors across lead times, 2007

shows a similar reduction for each successive initialization month, and 2012 shows large reductions

from June to July and from August to September, but little change from July to August. These

differences are likely related to the particular synoptic conditions of each summer - for example

the August 1 error is particularly large in 2012, likely because the great Arctic cyclone, which

peaked on August 6 (Simmonds and Rudeva 2012) and led to rapid sea ice loss in August, was not

predicted (or its impact on sea ice) by seasonal prediction systems (Yamagami et al. 2018).

Earlier work has shown that sea ice predictions typically struggle in “hard to predict years” with

large SIE anomalies (Stroeve et al. 2014), sometimes related to atmospheric conditions such as

Fig. 5. Pan-Arctic SIE prediction errors versus time. Panel (a) shows the multi-model mean of single-

model absolute detrended SIE errors for different years (horizontal axis) and initialization dates (colors). The

absolute SIE error of the trend climatology reference prediction is shown in grey. Panels (b) and (c) show the

improvement in absolute error relative to the trend climatology and damped persistence predictions, respectively

(positive values indicate improvement, negative values indicate degradation).
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Fig. 6. Relation between detrended prediction errors and observed detrended SIE anomalies. Each dot in panel

(a) shows the error for a particular model and target year (errors are plotted over all available years 1980–2021).

The dots are colored according to lead time and the colored lines are linear fits. The grey line indicates the error

of the linear trend fit to the observations. Panel (b) shows the distribution of errors for different lead times, with

the black curve showing the distribution of observed detrended anomalies.

late-summer cyclones (Lukovich et al. 2021; Finocchio et al. 2022). Theoretically, however, some

extreme years exhibit seasonal predictability (Tietsche et al. 2013). These large errors in extreme

SIE years have been characterized as a major shortcoming of sea ice prediction systems. However,

Fig. 5a shows that the linear trend prediction makes much larger errors in these years compared

with the prediction systems (compare dashed grey line to colored lines). Figures 5b and 5c show

the skill improvement of the model-based predictions relative to the trend climatology and damped

persistence predictions, respectively, with positive values indicating error reductions. We find

that the time-mean error reductions are generally positive, indicating that the prediction systems

typically provide better skill than the reference forecasts, with the exception of the September 1

damped persistence forecast. Moreover, the extreme SIE years of 1996, 2007, and 2012 stand

out as years in which the prediction systems provide the largest skill improvements over the linear

trend prediction. This challenges the typical interpretation that prediction systems “failed” in these

extreme SIE years. Rather, it is precisely these extreme years that the prediction systems provide

the most value added relative to basic reference forecasts.
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Fig. 6. Relation between detrended prediction errors and observed detrended SIE anomalies. Each dot in panel

(a) shows the error for a particular model and target year (errors are plotted over all available years 1980–2021).

The dots are colored according to lead time and the colored lines are linear fits. The grey line indicates the error

of the linear trend fit to the observations. Panel (b) shows the distribution of errors for different lead times, with

the black curve showing the distribution of observed detrended anomalies.

late-summer cyclones (Lukovich et al. 2021; Finocchio et al. 2022). Theoretically, however, some

extreme years exhibit seasonal predictability (Tietsche et al. 2013). These large errors in extreme

SIE years have been characterized as a major shortcoming of sea ice prediction systems. However,

Fig. 5a shows that the linear trend prediction makes much larger errors in these years compared

with the prediction systems (compare dashed grey line to colored lines). Figures 5b and 5c show

the skill improvement of the model-based predictions relative to the trend climatology and damped

persistence predictions, respectively, with positive values indicating error reductions. We find

that the time-mean error reductions are generally positive, indicating that the prediction systems

typically provide better skill than the reference forecasts, with the exception of the September 1

damped persistence forecast. Moreover, the extreme SIE years of 1996, 2007, and 2012 stand

out as years in which the prediction systems provide the largest skill improvements over the linear

trend prediction. This challenges the typical interpretation that prediction systems “failed” in these

extreme SIE years. Rather, it is precisely these extreme years that the prediction systems provide

the most value added relative to basic reference forecasts.

We next investigate the error characteristics of individual model predictions in Fig. 6. Figure 6a

shows prediction errors from individual models and target years plotted against the observed

detrended SIE anomalies in those years. In low SIE years, the models generally overpredict the

observed SIE (positive errors), and the models generally underpredict in high SIE years (negative

errors). The distribution of errors (Fig. 6b) is relatively symmetric about zero for all initialization

times, suggesting that high and low SIE anomalies are similarly difficult to predict. Q-Q plots

reveal that the error distributions for all initialization times have symmetric heavy tails compared

with a Gaussian distribution, suggestive of outlier models with large errors (not shown). The linear

fits to the prediction errors in Fig. 6a (colored lines) have decreasing slopes as the initialization

date approaches September, and are bracketed by the 1:1 line (a no skill prediction) and the y=0

line (a perfect prediction). If September SIE were entirely unpredictable, we would expect the

errors to lie on the 1:1 line, whereas if it were perfectly predicable, we would expect the errors to

lie on the y=0 line. Thus, the decreasing slopes as the initialization date approaches September

shows that inherent SIE predictability increases as the lead time decreases. We also find that

the prediction error distributions become progressively more peaked around zero as the lead time

decreases (Fig. 6b).

4. Regional Predictions

a. September Regional SIE Prediction Skill

The prediction systems skillfully predict Pan-Arctic SIE, but how do they perform on the regional

and local scales that users ultimately require? In Figs. 7 and 8, we plot detrended regional SIE

skill for the dynamical and statistical models, respectively, in the five regional domains shown in

Fig. 1d. The skill metrics for full regional SIE time series are shown in Figs. S9 and S10.
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Fig. 7. Dynamical model prediction skill for September regional SIE computed over the period 2001–2020

in the Alaskan (a,b), Siberian (c,d), Atlantic (e,f), Canadian (g,h), and Central (i,j) regions (shown in Fig. 1d).

Individual models are shown in colors, multi-model predictions are shown in black, and reference predictions

are shown in grey. Skill metrics are plotted for each available initialization time (June 1–September 1) and are

computed for detrended time series. The numbers in parentheses in the legend indicate the number of years

available from each model over the 2001–2020 time period.
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Fig. 7. Dynamical model prediction skill for September regional SIE computed over the period 2001–2020

in the Alaskan (a,b), Siberian (c,d), Atlantic (e,f), Canadian (g,h), and Central (i,j) regions (shown in Fig. 1d).

Individual models are shown in colors, multi-model predictions are shown in black, and reference predictions

are shown in grey. Skill metrics are plotted for each available initialization time (June 1–September 1) and are

computed for detrended time series. The numbers in parentheses in the legend indicate the number of years

available from each model over the 2001–2020 time period. Fig. 8. As in Fig. 7 but for statistical models.
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We find that both dynamical and statistical models have detrended regional skill, but the level of

skill is regionally variable. The highest skill is found in the Alaskan and Siberian sectors, in which

the multi-model median detrended ACC exceeds 0.75 at SIO lead times. Unlike the Pan-Arctic skill

results, there is a notable difference between dynamical and statistical model performance in these

regions (compare panels a–d of Figs. 7 and 8). Taken as a whole, the dynamical models outperform

the statistical models in the Alaskan and Siberian regions, however the KOPRI statistical model

has high skill in both regions at a level comparable to the most skillful dynamical models. The

dynamical models also outperform the statistical models in the Central Arctic domain (compare

panels i–j), whereas the skill differences are more modest in the Canadian and Atlantic regions

(panels e–h). Interestingly, the superior regional SIE skill of dynamical models does not clearly

translate into better Pan-Arctic skill relative to statistical models.

The model skill is lowest in the Atlantic region for both dynamical and statistical models. This

is likely because Atlantic September SIE variations result from SIE variability occurring in the

northern portions of the Greenland, Barents, and Kara Seas, which are driven by anomalies in

sea ice export that are challenging to predict (Kwok 2008). The Canadian Archipelago is also

well known as a difficult to predict region due to its complex network of channels and straits.

Encouragingly, the majority of statistical and dynamical models show detrended prediction skill in

this region, albeit at a generally lower skill level than dynamical models in the Alaskan and Siberian

sector. Of the dynamical models, RASM has high skill in the Canadian region, potentially related to

its relatively high horizontal resolution compared to other systems. This higher resolution provides

both a more accurate representation of complex land geometry and a more realistic representation

of sea ice dynamical and thermodynamical processes. The skill in the Central Arctic domain is

the second lowest next to the Atlantic. The Central Arctic SIE time series is dominated by large

anomalies in 2007, 2012, and 2020 (Fig. 1b), which suggests that the models generally struggled

to capture the Central Arctic anomalies in these years.

Relative to the damped persistence benchmark, the models perform quite skillfully for regional

SIE. Analogous to Pan-Arctic SIE, regional SIE damped persistence is highly skillful for September

1 forecasts and provides a stringent benchmark that most dynamical and statistical models fail to

beat. The models perform more favorably at longer lead times. In the Alaskan, Siberian and

Canadian regions, the majority of models outperform damped persistence from June 1, July 1, and
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We find that both dynamical and statistical models have detrended regional skill, but the level of

skill is regionally variable. The highest skill is found in the Alaskan and Siberian sectors, in which

the multi-model median detrended ACC exceeds 0.75 at SIO lead times. Unlike the Pan-Arctic skill

results, there is a notable difference between dynamical and statistical model performance in these

regions (compare panels a–d of Figs. 7 and 8). Taken as a whole, the dynamical models outperform

the statistical models in the Alaskan and Siberian regions, however the KOPRI statistical model

has high skill in both regions at a level comparable to the most skillful dynamical models. The

dynamical models also outperform the statistical models in the Central Arctic domain (compare

panels i–j), whereas the skill differences are more modest in the Canadian and Atlantic regions

(panels e–h). Interestingly, the superior regional SIE skill of dynamical models does not clearly

translate into better Pan-Arctic skill relative to statistical models.

The model skill is lowest in the Atlantic region for both dynamical and statistical models. This

is likely because Atlantic September SIE variations result from SIE variability occurring in the

northern portions of the Greenland, Barents, and Kara Seas, which are driven by anomalies in

sea ice export that are challenging to predict (Kwok 2008). The Canadian Archipelago is also

well known as a difficult to predict region due to its complex network of channels and straits.

Encouragingly, the majority of statistical and dynamical models show detrended prediction skill in

this region, albeit at a generally lower skill level than dynamical models in the Alaskan and Siberian

sector. Of the dynamical models, RASM has high skill in the Canadian region, potentially related to

its relatively high horizontal resolution compared to other systems. This higher resolution provides

both a more accurate representation of complex land geometry and a more realistic representation

of sea ice dynamical and thermodynamical processes. The skill in the Central Arctic domain is

the second lowest next to the Atlantic. The Central Arctic SIE time series is dominated by large

anomalies in 2007, 2012, and 2020 (Fig. 1b), which suggests that the models generally struggled

to capture the Central Arctic anomalies in these years.

Relative to the damped persistence benchmark, the models perform quite skillfully for regional

SIE. Analogous to Pan-Arctic SIE, regional SIE damped persistence is highly skillful for September

1 forecasts and provides a stringent benchmark that most dynamical and statistical models fail to

beat. The models perform more favorably at longer lead times. In the Alaskan, Siberian and

Canadian regions, the majority of models outperform damped persistence from June 1, July 1, and

August 1 initialization dates. In the Central Arctic, most models beat damped persistence from June

1 and July 1. In the Atlantic sector, the models are notably less skillful than damped persistence

from August 1, suggesting a deficiency in the models in representing summertime Atlantic SIE.

These regional skill results are insensitive to the verification product–the same conclusions hold if

OSI SAF observations are used for verification (see Figs. S11 and S12).

b. Relation Between Pan-Arctic and Regional Skill

Are models more skillful at predicting Pan-Arctic or regional SIE? Do models with high Pan-

Arctic skill also have high regional skill? We investigate these questions in Fig. 9, which plots

regional vs Pan-Arctic detrended ACC for each model, colored by lead time. In most regions, the

majority of predictions lie below the 1:1 line, indicating that regional SIE skill is generally lower

than Pan-Arctic skill. The Alaskan region is the most skillfully predicted region, with 46% of

predictions lying above the 1:1 line. The damped persistence prediction also lies above the 1:1 line

(square markers) indicating that the Alaskan region may have high inherent predictability. The

Siberian and Canadian regions are also predicted fairly well, with 37% and 32% of predictions

exceeding Pan-Arctic skill, respectively. The performance is notably worse in the Atlantic and

Central sectors, as each of these regions only has 12% of predictions that exceed Pan-Arctic skill.

We also find that the regional skill differences across models are related to their Pan-Arctic skill

differences. For example, the R2 values between regional and Pan-Arctic detrended ACC are 0.59,

0.48, and 0.49 in the Alaskan, Siberian, and Central regions. Regional skill is more decoupled from

Pan-Arctic skill in the Canadian and Atlantic regions, with R2 values of 0.25 and 0.05, respectively.
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Fig. 9. Relationship between regional and pan-Arctic prediction skill in the Alaskan (a), Siberian (b), Atlantic

(c), Canadian (d), and Central (e) regions over the 2001–2020 period. Each dot shows detrended ACC values for

an individual model, colored by lead time. Square markers indicate the damped persistence forecast skill, and

the 1:1 line is shown in black.
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Fig. 9. Relationship between regional and pan-Arctic prediction skill in the Alaskan (a), Siberian (b), Atlantic

(c), Canadian (d), and Central (e) regions over the 2001–2020 period. Each dot shows detrended ACC values for

an individual model, colored by lead time. Square markers indicate the damped persistence forecast skill, and

the 1:1 line is shown in black.

5. Sea Ice Concentration Predictions

a. September SIC Prediction Skill

Finally, we consider the ability of models to predict September sea ice variations on the local

scale. Figures 10 and 11 show SIC skill metrics for the dynamical and statistical models that

submitted SIC predictions, respectively. These metrics are first computed locally and then area-

averaged over the zone of September SIC variability, defined as all grid points where the September

SIC standard deviation exceeds 10% (see Fig. 1c). The gap between full and detrended SIC skill

is quite small, consistent with the fact that observed SIC variability is dominated by interannual

rather than trend-based variance (84% and 16% of the total variance, respectively). Compared to

the skill levels for Pan-Arctic and regional SIE, the SIC skill scores are lower, consistent with a

larger role for unpredictable local-scale dynamics and the fact that, unlike SIE, SIC predictions do

not benefit from error compensation (i.e., the cancellation of over and under-estimations). This

lower predictability is also reflected by the damped persistence forecast, which is skillful from

September 1 but drops off quite rapidly for earlier initialization dates. Interestingly, a handful

of models (ECMWF SEAS5, CPC CFSv2, ECCC-CanSIPSv2, FIO-ESM, GFDL-SPEAR-IDA,

PIOMAS-CFS, Nico Sun) outperform damped persistence from September 1, which was not the

case for Pan-Arctic or regional SIE. This suggests that some models are extracting additional

skill from their ability to skillfully predict the atmospheric state over early September and the

corresponding local SIC response.

The multi-model median SIC prediction has detrended ACC values above 0.5 for initialization

dates of July 1 and later, and falls off for predictions made on June 1. Most individual models

exceed the 0.5 detrended ACC threshold from September 1, a handful exceed it from August 1, and

all models lie below 0.5 from July 1 and June 1. While the relatively small number of statistical

models (7) precludes definitive statements, the dynamical models generally have higher SIC skill

than the statistical models. The SIC skill scores are very similar when predictions are verified

against OSI SAF SIC observations (see Figs. S13 and S14). Again, we find that the ECMWF

SEAS5 model stands out amongst the dynamical models (see solid gold line in Fig. 10) and the

KOPRI model stands out amongst the statistical models (see solid orange line in Fig. 11). The fact

that these models also perform well at the local scale increases our confidence in their strong Pan-

Unauthenticated | Downloaded 06/28/24 08:21 AM UTC



34
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0163.1.

Fig. 10. Dynamical model prediction skill for September SIC computed over the period 2001–2020. Skill

values are averaged over the region in which observed SIC standard deviation is greater than 10%. Individual

models are shown in colors, multi-model predictions are shown in black, and reference predictions are shown

in grey. Skill metrics are plotted for each available initialization time (June 1–September 1). The numbers

in parentheses in the legend indicate the number of years available from each model over the 2001–2020 time

period.

Arctic and regional performance. It is notable that the ECMWF system also stood out as the best

performing system for subseasonal (0–45 day) sea ice predictions in the multi-model comparison

study of Zampieri et al. (2018). Interestingly, the ECMWF model has a notable bias from June 1

resulting in SIC RMSE values that are larger than the trend climatology and most other models (see

Fig. 10c). Nevertheless, ECMWF maintains detrended prediction skill at this lead time for SIC,

regional SIE, and Pan-Arctic SIE, suggesting that this is mostly a linear bias that can be removed.

We also consider the integrated ice-edge error (IIEE), which is the areal integral of local sea

ice extent errors (Goessling et al. 2016). The IIEE has contributions from both absolute extent

errors (Pan-Arctic SIE errors) and ice edge misplacement errors. Note that we do not consider
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Fig. 10. Dynamical model prediction skill for September SIC computed over the period 2001–2020. Skill

values are averaged over the region in which observed SIC standard deviation is greater than 10%. Individual

models are shown in colors, multi-model predictions are shown in black, and reference predictions are shown

in grey. Skill metrics are plotted for each available initialization time (June 1–September 1). The numbers

in parentheses in the legend indicate the number of years available from each model over the 2001–2020 time

period.

Arctic and regional performance. It is notable that the ECMWF system also stood out as the best

performing system for subseasonal (0–45 day) sea ice predictions in the multi-model comparison

study of Zampieri et al. (2018). Interestingly, the ECMWF model has a notable bias from June 1

resulting in SIC RMSE values that are larger than the trend climatology and most other models (see

Fig. 10c). Nevertheless, ECMWF maintains detrended prediction skill at this lead time for SIC,

regional SIE, and Pan-Arctic SIE, suggesting that this is mostly a linear bias that can be removed.

We also consider the integrated ice-edge error (IIEE), which is the areal integral of local sea

ice extent errors (Goessling et al. 2016). The IIEE has contributions from both absolute extent

errors (Pan-Arctic SIE errors) and ice edge misplacement errors. Note that we do not consider

Fig. 11. As in Fig. 10 but for statistical models.

the probabilistic version of the IIEE, i.e. the spatial probability score of Goessling and Jung

(2018)), since this study focuses on deterministic (non-ensemble) sea ice predictions. The IIEE

for dynamical and statistical models is shown in Fig. 12. Note that no detrending or additional

bias correction has been applied in computing the IIEE metrics. Relative to the trend climatology

prediction, we find that most models are skillful when initialized on August 1 and September 1.

Approximately half of the models outperform the trend climatology from July 1, and most models

lose to this benchmark from June 1. The multi-model median ice edge prediction is skillful at SIO

lead times relative to both damped persistence and the trend climatology prediction. The median

prediction is more skillful than the individual model predictions, with the exception of the KOPRI

model which maintains low IIEE at June 1 and July 1 initialization dates.
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Fig. 12. Integrated ice edge error for September SIC predictions for dynamical and statistical models over

the period 2001–2020. Individual models are shown in colors, multi-model predictions are shown in black, and

reference predictions are shown in grey. Skill metrics are plotted for each available initialization time (June

1–September 1). The numbers in parentheses in the legend indicate the number of years available from each

model over the 2001–2020 time period.
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Fig. 12. Integrated ice edge error for September SIC predictions for dynamical and statistical models over

the period 2001–2020. Individual models are shown in colors, multi-model predictions are shown in black, and

reference predictions are shown in grey. Skill metrics are plotted for each available initialization time (June

1–September 1). The numbers in parentheses in the legend indicate the number of years available from each

model over the 2001–2020 time period.

6. Discussion

a. Elements of Successful Sea Ice Prediction Systems

In addition to quantifying and comparing prediction skill across models, the retrospective pre-

diction dataset can also be used to understand the key system design choices that underpin skillful

sea ice predictions. This “meta-analysis” can allow members of the sea ice prediction community

to learn from one another, and incorporate these lessons into development of their own prediction

systems. We consider the average pan-Arctic SIE prediction skill of models grouped according

to various system design choices. These results should be viewed with some caution, given the

relatively small number of models available for each group and the possibility of other confounding

factors contributing to skill differences. Nevertheless, this unique dataset can offer insights into

the key factors that determine skill differences between models. We first discuss aspects of the

dynamical prediction systems and follow with a discussion of the statistical systems.

Figure 13 shows the averaged pan-Arctic SIE prediction skill of dynamical models grouped

according to their initialization data and their ice-ocean and atmospheric horizontal resolution.

Consistent with earlier work assessing the impact of SIC data assimilation on seasonal prediction

skill (e.g., Zhang et al. (2022)), we find that the models that assimilate SIC have superior skill

from September 1, and that SIC assimilation has less of an impact from June 1, July 1, and

August 1 (Fig. 13a). Similarly, the models that assimilate SST have superior September 1 skill,

likely because SST assimilation provides a strong constraint on the sea ice edge position and also

provides predictability for the ice growth that occurs during the latter half of September (Fig. 13b).

The SST-assimilating models do not show a clear difference for July and August predictions, and

have insignificant differences from June 1. Only two models assimilate SIT information, which

precludes us from analyzing the impact of SIT data assimilation on seasonal prediction skill.

It is commonly suggested that high-resolution dynamical models should be more skillful than

their low-resolution counterparts (e.g. Vecchi et al. (2014); Prodhomme et al. (2016); Kirtman et al.

(2017)), but this has not been carefully demonstrated for sea ice prediction applications before.

We find that the models with higher ice-ocean resolution (defined here as ice-ocean grid spacing

less than 0.4◦) have higher skill than the low-resolution models at all SIO lead times (Fig. 13c),

suggesting that there is indeed value to using higher-resolution prediction systems. It is important
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Fig. 13. Average detrended Pan-Arctic ACC for dynamical models grouped according to various system design

choices: models that include SIC data assimilation (a), SST data assimilation (b), high versus low ice-ocean

horizontal resolution (c), and high versus low atmospheric horizontal resolution (d). The numbers in parentheses

indicate the number of models in each group. Shading indicates 68% confidence intervals based on bootstrapped

distributions of 1000 realizations.

to note that this finding is based on a small set of models and there could be other confounding

factors at play; for example, modeling groups capable of running high-resolution predictions tend to

be better resourced and may have also placed additional focus on other aspects of their prediction

systems. The impact of higher horizontal atmospheric resolution (defined here as atmospheric

grid spacing less than 0.6◦) is smaller than that of ice-ocean resolution (Fig. 13d). The higher

atmospheric resolution models have higher skill from July 1 and August 1, but the differences are

not significant, and they show similar skill to the lower resolution models at other initialization

times.

In terms of sea ice physics, the majority of models use an (elastic) viscous plastic rheology (Hibler

1979; Hunke and Dukowicz 1997) and include a prognostic ice-thickness distribution (Bitz et al.
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Fig. 13. Average detrended Pan-Arctic ACC for dynamical models grouped according to various system design

choices: models that include SIC data assimilation (a), SST data assimilation (b), high versus low ice-ocean

horizontal resolution (c), and high versus low atmospheric horizontal resolution (d). The numbers in parentheses

indicate the number of models in each group. Shading indicates 68% confidence intervals based on bootstrapped

distributions of 1000 realizations.

to note that this finding is based on a small set of models and there could be other confounding

factors at play; for example, modeling groups capable of running high-resolution predictions tend to

be better resourced and may have also placed additional focus on other aspects of their prediction

systems. The impact of higher horizontal atmospheric resolution (defined here as atmospheric

grid spacing less than 0.6◦) is smaller than that of ice-ocean resolution (Fig. 13d). The higher

atmospheric resolution models have higher skill from July 1 and August 1, but the differences are

not significant, and they show similar skill to the lower resolution models at other initialization

times.

In terms of sea ice physics, the majority of models use an (elastic) viscous plastic rheology (Hibler

1979; Hunke and Dukowicz 1997) and include a prognostic ice-thickness distribution (Bitz et al.

2001). Interestingly, the most skillful dynamical model–ECMWF SEAS5–uses a relatively simple

sea ice physics formulation based on the Louvain-la-Neuve sea-ice model version 2 (LIM2; Fichefet

and Maqueda (1997)), which uses a single thickness category and does not include prognostic melt

ponds. The strong performance of ECMWF SEAS5 suggests that sea ice physics complexity may

not be of leading-order importance for seasonal sea ice predictions.

Fig. 14. Average detrended Pan-Arctic ACC for statistical models grouped according to various system design

choices: models that include ocean predictors (a), atmosphere predictors (b), and machine learning versus

non-machine learning methods (c). The numbers in parentheses indicate the number of models in each group.

Shading indicates 68% confidence intervals based on bootstrapped distributions of 1000 realizations.

Figure 14 shows the prediction skill of statistical models grouped according to their predic-

tor/input data and their prediction methodology. All statistical models include a sea ice predictor

variable (see Table 3) and a number of models also include predictors from the ocean and atmo-

sphere. Figure 14a–b examines the impact of these oceanic and atmospheric predictors. Unexpect-

edly, we find that the models that withhold ocean and atmosphere predictors tend to outperform

the models that include these predictors. The statistical models without ocean predictors show
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higher skill at all SIO lead times, and the models without atmospheric predictors have higher skill

from July 1 and September 1. We note that a handful of the statistical models that include ocean

and atmosphere predictors have quite low skill generally. This affects the average skill shown in

Fig. 14, thus this result should be viewed with some caution.

While these findings are somewhat contrary to our understanding of seasonal sea ice predictabil-

ity, the inclusion of additional physically-relevant predictor variables within a given statistical

model may actually degrade predictions due to the ‘curse of dimensionality’ problem (e.g., Bell-

man and Kalaba (1959)), which can lead to overfitting. Indeed, although it is possible to mitigate

these effects with regularization techniques and/or sufficient training data samples, the former op-

tion may not be available to many of the statistical models submitted to this inter-comparison, and

overcoming the limitations of typically fewer than 43 years (samples) of training data is potentially

only achievable with more sophisticated data augmentation approaches, such as transfer learning

(e.g., Andersson et al. (2021)).

There has been a recent proliferation of machine learning (ML) methods applied to seasonal

prediction problems, including for Arctic sea ice. How do the skill of these ML methods compare

to other statistical techniques? Figure 14c shows this comparison, and we find that there is no clear

skill advantage for ML-based prediction techniques. The skill of ML and Non-ML methods is

similar for August and September initialization dates, whereas the Non-ML methods have slightly

higher skill for June and July initializations, but the differences are not significant. We note that the

classification of “ML methods” is somewhat equivocal. Here, our classification of ML methods is

based on self-identification by seven models, and includes methods based on convolutional neural

networks, Gaussian process regression, long short-term memory networks, the k-nearest neighbors

algorithm, and data adaptive harmonic decomposition. Of the top five performing statistical models

at each SIO lead time, there is a roughly equal split between ML and non-ML models, suggesting

that one class of methods is not clearly superior to the other.

b. Differences between Real-Time and Retrospective Prediction Skill

Consistent with the tension in the sea ice prediction literature discussed in the Introduction, the

retrospective predictions analyzed in this paper have higher skill than the real-time predictions

submitted to the SIO. Why is this? This skill difference could potentially result from a number

Unauthenticated | Downloaded 06/28/24 08:21 AM UTC



41
Accepted for publication in Bulletin of the American Meteorological Society. DOI 10.1175/BAMS-D-23-0163.1.

higher skill at all SIO lead times, and the models without atmospheric predictors have higher skill

from July 1 and September 1. We note that a handful of the statistical models that include ocean
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While these findings are somewhat contrary to our understanding of seasonal sea ice predictabil-

ity, the inclusion of additional physically-relevant predictor variables within a given statistical

model may actually degrade predictions due to the ‘curse of dimensionality’ problem (e.g., Bell-

man and Kalaba (1959)), which can lead to overfitting. Indeed, although it is possible to mitigate

these effects with regularization techniques and/or sufficient training data samples, the former op-

tion may not be available to many of the statistical models submitted to this inter-comparison, and

overcoming the limitations of typically fewer than 43 years (samples) of training data is potentially

only achievable with more sophisticated data augmentation approaches, such as transfer learning

(e.g., Andersson et al. (2021)).

There has been a recent proliferation of machine learning (ML) methods applied to seasonal

prediction problems, including for Arctic sea ice. How do the skill of these ML methods compare

to other statistical techniques? Figure 14c shows this comparison, and we find that there is no clear

skill advantage for ML-based prediction techniques. The skill of ML and Non-ML methods is

similar for August and September initialization dates, whereas the Non-ML methods have slightly

higher skill for June and July initializations, but the differences are not significant. We note that the

classification of “ML methods” is somewhat equivocal. Here, our classification of ML methods is

based on self-identification by seven models, and includes methods based on convolutional neural

networks, Gaussian process regression, long short-term memory networks, the k-nearest neighbors

algorithm, and data adaptive harmonic decomposition. Of the top five performing statistical models

at each SIO lead time, there is a roughly equal split between ML and non-ML models, suggesting

that one class of methods is not clearly superior to the other.

b. Differences between Real-Time and Retrospective Prediction Skill

Consistent with the tension in the sea ice prediction literature discussed in the Introduction, the

retrospective predictions analyzed in this paper have higher skill than the real-time predictions

submitted to the SIO. Why is this? This skill difference could potentially result from a number

of interacting factors, which we describe in more detail below: i) Different evaluation periods; ii)

Non-stationarity of prediction systems; iii) Model selection bias; iv) Bias correction; v) Systematic

differences between real-time and retrospective prediction methodologies; vi) Implicit or erroneous

use of future data; and vii) Changes in inherent predictability.

Regarding the different evaluation periods (factor i), we confirm that the multi-model median skill

difference is still present when skill is evaluated over the period of 2008–2021, which is common

to both the retrospective and real-time SIO predictions (see Figs. S1, S7, S8). A natural question

is: Can one directly compare retrospective and real-time SIO forecasts submitted from the same

system? Such a comparison is difficult to make due to the non-stationarity of prediction systems

(factor ii). In particular, many groups have updated and improved their systems during the SIO

period. These groups have submitted their best-performing system to the SIO retrospective skill

comparison, which in some cases differ from the SIO predictions that were submitted in real-time.

Also, while many of the groups have submitted predictions to the real-time SIO at some point, few

groups have submitted predictions using a “frozen” system over a sustained period of more than 5

years. These factors complicate the comparison between real time and retrospective predictions.

Selection bias (factor iii) may also play a role in the skill difference. Given that submission

to the retrospective comparison is voluntary, the skill scores in this paper may be biased towards

better performing models. Also, models with retrospective prediction suites have likely used this

retrospective skill information to assess and improve their prediction systems. Knowing the skill of

one’s method is not a requirement to submit to the real-time SIO, which may contribute to poorer

performance of real-time SIO predictions. Access to a retrospective prediction suite also allows for

a quantification of a model’s lead-dependent prediction bias, which allows for more effective bias

correction. This may contribute to the higher skill found in models that submitted retrospective

forecasts (factor iv). Figure S1 shows that the main differences in multi-model median prediction

errors occur over the early portion of the SIO period (from 2008–2014). The SIO received fewer

annual submissions over this period, including a notable fraction from heuristic methods (see

Fig. S2), which may have degraded the skill of the real-time SIO median prediction relative to the

more recent SIO period (2015–2021).

It is well known that retrospective skill of seasonal-to-interannual climate predictions tends to

be higher than real-time skill (e.g., Goddard et al. (2013); Risbey et al. (2021)), and this is likely
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a contributor to the real-time/retrospective SIO skill differences (factor v). These skill differences

can arise due to certain observations being available for retrospective forecasts but not in real-time

(e.g. subsurface T/S ocean profiles collected from ships) or due to real-time predictions relying

on real-time reanalyses and satellite data that has not been rigorously quality controlled. Skill

differences can also arise due to the implicit use of future data in retrospective predictions, which

may unrealistically inflate their skill scores (factor vi). For example, dynamical models are often

tuned to match the climatology and trends of the observational record. Statistical models need to

take care to not include future data in their training procedure (e.g., computing EOFs using only

past data), which is often called the “data leakage” problem in machine learning methods (Kapoor

and Narayanan 2023). Also, both dynamical and statistical prediction systems are constructed

based on their performance predicting past anomalies, which may result in an “overfitting” to

the observational record. Additionally, standard bias correction approaches (e.g., Manzanas et al.

(2019)) require computing anomalies relative to a climatology which is typically computed using

the full record. This approach implicitly uses future data and may artificially increase skill (Risbey

et al. 2021).

Finally, skill differences between real-time and retrospective predictions could arise due to

changes in inherent sea ice predictability if the real-time SIO period had inherently lower pre-

dictability (factor vii). The earlier analysis shown in Fig. 5a suggests that prediction errors have

not changed substantially over the SIO period, thus factor vii is unlikely a dominant contributor

to the skill differences. In summation, our analysis suggests that the most likely contributors

to the real-time versus retrospective skill differences are a combination of model selection bias,

bias correction differences, and systematic differences between real-time and retrospective predic-

tions. The skill gaps associated with model selection and bias correction could be addressed fairly

straightforwardly, by using only the subset of prediction systems with proven skill and by ensuring

that these systems utilize retrospective predictions to bias correct their forecasts. The skill gaps

associated with systematic differences between real-time and retrospective predictions are more

challenging to address, as these require modifications to the observing network and may also be

influenced by inherent biases present in the prediction system development process.
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differences can also arise due to the implicit use of future data in retrospective predictions, which

may unrealistically inflate their skill scores (factor vi). For example, dynamical models are often

tuned to match the climatology and trends of the observational record. Statistical models need to

take care to not include future data in their training procedure (e.g., computing EOFs using only

past data), which is often called the “data leakage” problem in machine learning methods (Kapoor

and Narayanan 2023). Also, both dynamical and statistical prediction systems are constructed

based on their performance predicting past anomalies, which may result in an “overfitting” to

the observational record. Additionally, standard bias correction approaches (e.g., Manzanas et al.

(2019)) require computing anomalies relative to a climatology which is typically computed using

the full record. This approach implicitly uses future data and may artificially increase skill (Risbey

et al. 2021).

Finally, skill differences between real-time and retrospective predictions could arise due to

changes in inherent sea ice predictability if the real-time SIO period had inherently lower pre-

dictability (factor vii). The earlier analysis shown in Fig. 5a suggests that prediction errors have

not changed substantially over the SIO period, thus factor vii is unlikely a dominant contributor

to the skill differences. In summation, our analysis suggests that the most likely contributors

to the real-time versus retrospective skill differences are a combination of model selection bias,

bias correction differences, and systematic differences between real-time and retrospective predic-

tions. The skill gaps associated with model selection and bias correction could be addressed fairly

straightforwardly, by using only the subset of prediction systems with proven skill and by ensuring

that these systems utilize retrospective predictions to bias correct their forecasts. The skill gaps

associated with systematic differences between real-time and retrospective predictions are more

challenging to address, as these require modifications to the observing network and may also be

influenced by inherent biases present in the prediction system development process.

7. Conclusions and Future Outlook

This work has produced and analyzed a novel multi-model retrospective seasonal sea ice pre-

diction dataset, consisting of community contributions from 17 statistical models, 17 dynamical

models, and 1 heuristic prediction. The majority of contributing models provided retrospective

predictions of September Arctic sea ice initialized on the Sea Ice Outlook (SIO) initialization dates

of June 1, July 1, August 1, and September 1, spanning a minimum period of 2001–2020 (see

Table 1). The statistical and dynamical model submissions employ a wide range of prediction

methodologies ranging from linear regression, to Markov models, to deep learning techniques, to

coupled regional and global models with data assimilation (see Tables 2 and 3).

Our overarching key finding is that this diverse set of seasonal prediction models can skillfully

predict September Arctic sea ice at SIO lead times on Pan-Arctic, regional, and local scales. These

results demonstrate that useful real-time multi-month predictions of September sea ice are likely

within reach in the coming years. We have shown that the majority of models have detrended

ACC values for Pan-Arctic sea ice extent (SIE) which exceed 0.5 at SIO lead times, and that the

multi-model median prediction exceeds 0.75 at SIO lead times. Regional SIE skill is similar to

Pan-Arctic SIE skill in the Alaskan and Siberian regions, whereas skill is lower in the Atlantic,

Canadian, and Central Arctic regions. The multi-model median detrended ACC exceeds 0.75 at

all SIO lead times in the Alaskan and Siberian regions, exceeds 0.6 in the Canadian sector, and

falls below 0.5 for certain lead times in the Atlantic and Central Arctic. We have found that the

regional skill differences across models are related to their Pan-Arctic skill differences, especially

in the Alaskan, Siberian, and Central Arctic regions. The models also have skill in predicting local

sea ice concentration (SIC), however this local quantity is much more challenging to predict than

Pan-Arctic or regional SIE. The multi-model median SIC prediction has detrended ACC values

above 0.5 from July 1–September 1 and below 0.4 from June 1. The high skill of the Pan-Arctic

and regional multi-model median predictions is slightly lower than lead 0–3 month predictions of

the winter El Nino Southern Oscillation index, which have ACC skill above 0.9 for a number of

individual models (see Fig. 7 of Barnston et al. (2012)).

We have investigated whether sea ice prediction errors have changed over time, and determined

that there are no statistically significant trends in prediction errors over the period since 1990. This

suggests, but does not prove, that there has been minimal change in inherent sea ice predictability
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over this period. We have found that models generally exhibit their largest errors in extreme sea ice

years (i.e., 1996, 2007, 2012), however they also provide the most “added value” over baseline trend

climatology and damped anomaly persistence forecasts in these years. This finding challenges the

interpretation of earlier studies which stated that prediction systems perform particularly poorly in

extreme SIE years (e.g., Stroeve et al. (2014)).

We have found that the skill of dynamical and statistical models is generally comparable for

Pan-Arctic SIE, whereas dynamical models tend to outperform their statistical counterparts when

evaluated on the regional and local scale. It is important to note that there are individual statistical

models that have high levels of skill for both regional SIE and local SIC, which are competitive

with the most skillful dynamical models. Analysis of the design aspects of the dynamical pre-

diction systems revealed higher skill in models that i) assimilate SIC; ii) assimilate sea surface

temperature; iii) use higher ice-ocean horizontal resolution (finer that 0.4◦), and iv) use higher

atmospheric horizontal resolution. A similar analysis of the statistical prediction systems revealed

skill degradation in models that i) include ocean predictors and ii) include atmospheric predictors,

potentially associated with overfitting. We also found that statistical models based on machine

learning methods had no clear skill advantage over other statistical techniques. The retrospective

predictions evaluated in this study have higher prediction skill than real-time predictions submitted

to the SIO. We speculate that these skill differences result from a number of interacting factors, with

the most likely contributors being model selection bias, bias correction techniques, and systematic

differences between real-time and retrospective prediction methodologies.

This study demonstrates that there are bright prospects for skillful seasonal predictions of Arc-

tic sea ice made using both dynamical and statistical prediction models. We anticipate that the

multi-model retrospective prediction dataset produced by this study will motivate additional future

research by the sea ice prediction community. Natural future directions include assessment of prob-

abilistic forecast skill using the submitted ensemble predictions, comparison of initial conditions

across prediction systems and their relation to prediction skill, analysis of the mechanisms of pre-

dictability being captured by different systems, exploration of the role of subseasonal-to-seasonal

atmospheric prediction skill in determining sea ice skill, analysis of forecast errors, understanding

the importance of prediction system design choices, and the construction of a “consensus” real-time

SIO prediction based on a skill-weighted multi-model mean. We also hope that the findings of
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climatology and damped anomaly persistence forecasts in these years. This finding challenges the

interpretation of earlier studies which stated that prediction systems perform particularly poorly in

extreme SIE years (e.g., Stroeve et al. (2014)).

We have found that the skill of dynamical and statistical models is generally comparable for

Pan-Arctic SIE, whereas dynamical models tend to outperform their statistical counterparts when

evaluated on the regional and local scale. It is important to note that there are individual statistical

models that have high levels of skill for both regional SIE and local SIC, which are competitive

with the most skillful dynamical models. Analysis of the design aspects of the dynamical pre-

diction systems revealed higher skill in models that i) assimilate SIC; ii) assimilate sea surface

temperature; iii) use higher ice-ocean horizontal resolution (finer that 0.4◦), and iv) use higher

atmospheric horizontal resolution. A similar analysis of the statistical prediction systems revealed

skill degradation in models that i) include ocean predictors and ii) include atmospheric predictors,

potentially associated with overfitting. We also found that statistical models based on machine

learning methods had no clear skill advantage over other statistical techniques. The retrospective

predictions evaluated in this study have higher prediction skill than real-time predictions submitted

to the SIO. We speculate that these skill differences result from a number of interacting factors, with

the most likely contributors being model selection bias, bias correction techniques, and systematic

differences between real-time and retrospective prediction methodologies.

This study demonstrates that there are bright prospects for skillful seasonal predictions of Arc-

tic sea ice made using both dynamical and statistical prediction models. We anticipate that the

multi-model retrospective prediction dataset produced by this study will motivate additional future

research by the sea ice prediction community. Natural future directions include assessment of prob-

abilistic forecast skill using the submitted ensemble predictions, comparison of initial conditions

across prediction systems and their relation to prediction skill, analysis of the mechanisms of pre-

dictability being captured by different systems, exploration of the role of subseasonal-to-seasonal

atmospheric prediction skill in determining sea ice skill, analysis of forecast errors, understanding

the importance of prediction system design choices, and the construction of a “consensus” real-time

SIO prediction based on a skill-weighted multi-model mean. We also hope that the findings of

this study motivate new targeted experiments and development efforts within individual sea ice

prediction systems. This study has focused on September sea ice predictions, but similar skill

intercomparisons are required for other months of the year, particularly winter freeze-up months

which are characterized by very different predictability mechanisms. Another route for future

investigation is a comparison of Arctic and Antarctic sea ice prediction skill, making use of the

multi-model SIPN-South seasonal prediction dataset (Massonnet et al. 2023). The past 15 years

have featured many breakthroughs in the field of sea ice prediction and predictability. Community

intercomparison of sea ice prediction systems, combined with new observations, improved coupled

models, new statistical techniques, deepened stakeholder input, improved dissemination of forecast

products, and theoretical predictability research, provide key pathways for continuing to advance

this field over the coming decade.
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