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A B S T R A C T

Anthropogenic low-frequency noise (ALFN) is a rising pollutant in the world oceans. Despite the ubiquity of
ALFN, its effect on marine invertebrates is still poorly understood. Here, we tested how continuous low-frequency
noise (CLFN), a substantial component of ALFN, affects the byssal thread production of Mytilus, a cosmopolitan
genus of mussels with high ecological and economic importance. The effects of acute CLFN exposure and
predator cues on byssogenesis by Mytilus spp. were explored in both the presence and absence of predator cues.
While predator effluents increased thread production, CLFN had seemingly no effect on thread counts. Further,
trends suggested a synergistic effect of CLFN and predator cues. The behavioral indifference of Mytilus spp. to-
ward CLFN could contribute to the observed prevalence of these animals in inherently disturbed habitats. This
would partly explain their success in colonizing and persisting on artificial substrata rife with disturbances.

1. Introduction

Anthropogenic low-frequency noise (ALFN), or man-made noise with
frequencies between 10 and 500 Hz (Carey and Evans, 2011), is a rising
pollutant in our oceans. Low-frequency noise levels in the open oceans
have increased approximately 3.3 dB, or doubled in power, every decade
since at least the year 1950 to at least 2007 (Frisk, 2012). Such rates of
increase have not been calculated for the years beyond, however ocean
noise has been shown to still be, concomitant with ship traffic, generally
on the rise (Jalkanen et al., 2022; Miksis-Olds et al., 2013; Possenti et al.,
2024). While commercial shipping (the noise emissions of which are
predicted to double every 11.5 years) has been the major contributor to
this steady increase (Hildebrand, 2004; Jalkanen et al., 2022; Mustonen
et al., 2019; Possenti et al., 2024; Ross, 1979), it is by no means the sole
significant source of ALFN; offshore construction, ocean exploration,
and energy production such as wind farms and oil rigs also contribute
substantially to the increasing noise levels in marine environments
(Duarte et al., 2021; Hildebrand, 2004). Offshore wind farms in partic-
ular have surged in prevalence internationally and are projected to

continue to do so to meet green energy goals (DeCastro et al., 2019; IEA,
2022; WindEurope, 2023; Wiser et al., 2015). The main noise-emitting
structure in wind turbines is the gearbox; the vibrations from its oper-
ation conduct down the pillar and radiate outward into the water and
can vary depending on wind-driven parameters (Lindell, 2003; Pangerc
et al., 2016). In spite of how much ALFN is being produced, research on
how such noise affects most marine life is still scarce and the potential
effects thus poorly understood.

Bivalves (and marine invertebrates as a whole) are one such group of
understudied organisms despite their economic and ecological signifi-
cance, sometimes as key species, in their respective marine ecosystems.
Commercially relevant mussels, oysters, and scallops have received
more attention, but knowledge of ALFN effects is still sporadic at best
(Carroll et al., 2017; Solé et al., 2023). Published studies to date docu-
mented some responses of bivalves to anthropogenic noise, reaching
from reduced bioirrigation behavior and anti-burrowing behaviors in
clams (Solan et al., 2016; Wang et al., 2022) to stunted growth and
increased mortality in oysters and scallops (Charifi et al., 2018; Day
et al., 2016; de Soto et al., 2013).
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Mytilus is a cosmopolitan genus of mussels that plays a large role in
many ecosystems and fisheries. The high biomass of their aggregations
combined with their suspension feeding make them a potent biofilter
and bioremediator (organism that removes environmental pollutants via
storage, burial, and recycling) for large volumes of water (Beaumont
et al., 2007; Birkbeck and McHenery, 1982; Broszeit et al., 2016;
Jørgensen, 1990; Lindahl et al., 2005). Their filter feeding activity also
facilitates the transfer of nutrients from the water column to the benthic
substrate: the fecal matter produced feeds deposit feeders while the
mussels themselves serve as important food sources for predators such as
crabs and sea stars (Bergström et al., 2019; Kotta et al., 2009; Zhou et al.,
2006). Thus,Mytilus play an important role in benthic-pelagic coupling.
Mussel beds also provide biogenic substrate and otherwise-limiting re-
sources for algae, invertebrates, and different life-stages of organisms
(Albrecht and Reise, 1994; Norling and Kautsky, 2007) and as such are
important hotspots of biodiversity (Craeymeersch and Jansen, 2019).
Their modification of the environment and influence on local commu-
nity composition thus deem them ecosystem engineers (Borthagaray and
Carranza, 2007; Dürr and Wahl, 2004; Norling and Kautsky, 2008;
Tsuchiya and Nishihira, 1986).

Mytilus spp. are frequently associated with manmade structures such
as offshore wind farms where they can even dominate communities in
terms of abundance and/or biomass (e.g., Coolen et al., 2022; De Mesel
et al., 2015; Krone et al., 2017; Krone et al., 2013). Accordingly, the
effect of LFN onMytilus has been relatively more investigated than most
other bivalves and invertebrates in general, although the research is still
at an earlier stage and thus the documentation comprises largely of
scattered details and partly contrasting leads. Mytilus edulis, when
exposed to ship noise playback (continuous LFN, henceforth “CLFN”),
exhibited significantly more DNA damage and severely reduced algae
filtration rates compared to controls (Wale et al., 2019). However, boat
noise combined with food presence as settlement triggers yielded a large
increase in the settlement rate ofM. edulis larvae, whereas boat noise or
food alone resulted in much lower settlement rates (Jolivet et al., 2016).
Evidence is sometimes even contradictory: the clearance rates ofMytilus
spp. appeared unaffected by sound pulse trains (impulsive LFN, hence-
forth “ILFN”) at various pulse rates (Hubert et al., 2022b), but M. edulis
exposed to experimental pile-driving (also ILFN, match in pulse rate to
one treatment in Hubert et al. (2022b)) displayed higher clearance rates
compared to controls (Spiga et al., 2016).

It is important, however, to differentiate the noise sources used in
these studies and their purposes. Currently, most of the laboratory ex-
periments investigating the effects of noise on marine invertebrates use
noise sources that fall into one of two categories: recorded and generated
(Solé et al., 2023). Recorded noises are usually hydrophone recordings
featuring the treatment of interest (e.g., ships, pile-driving, natural
soundscape) played back using underwater speakers. Generated noises
are usually sounds with specific acoustic attributes created either digi-
tally and played back through underwater speakers (e.g., sound pulses,
sweeps, pure tones) or physically in real-time using a device (such as the
noise egg utilized in this study). The former category prioritizes a more
“realistic” representation of the treatment or soundscape in situ but be-
comes difficult to reproduce as a result. The latter category prioritizes
the establishment of basic cause-effect relationships using controlled,
reproducible sounds, however is less “realistic” as the sounds have no
true in situ equivalent. The choice of the experimental noise source ul-
timately depends on the research question and experimental design. A
direct comparison of results across noise categories must therefore be
done with caution.

Mytilus individuals secrete fibrous structures, so-called byssal
threads (a bundle of which is called a “byssus”), to tether themselves to
hard substrate and to one another. Through this, several individuals
form aggregates that resist wave action, offer protection against pre-
dation, and provide the aforementioned substrate for other organisms
(Bell and Gosline, 1997; Moeser et al., 2006; Reimer and Tedengren,
1997). The mussels’ byssal thread production can be stimulated by

external drivers such as the presence of predators (Côté, 1995; Garner
and Litvaitis, 2013; Li et al., 2015; Rickaby and Sinclair, 2018), while
anthropogenic disturbance such as pile-driving playback (ILFN) can lead
to a reduced production of byssal threads and threads with lower me-
chanical strength, reducing overall mussel attachment strength (Zhao
et al., 2021). Many studies used Mytilus individuals collected from
anthropogenic environments, which are typically subjected to ALFN.
However,Mytilus seems to be tolerant of these noisy environments as the
mussels typically thrive on artificial substrata in areas with human ac-
tivity and have been shown to habituate to ILFN (Hubert et al., 2022a;
Krone et al., 2013). Here, we tested how the exposure to acute CLFN
affects the byssus production of Mytilus spp. in response to predator
presence. For this purpose, we tested for interactive and potentially
cumulative effects between the CLFN and predator presence, using
Mytilus individuals sampled from a small harbor, typically characterized
by intermittent ALFN.

2. Methods

2.1. Animal collection and general experimental settings

Individuals of Mytilus spp. were collected in September 2022 from a
pontoon inside the South Harbor of the island of Helgoland (German
Bight, North Sea; 54◦10′36.8″N, 7◦53′36.1″E). The site is fully protected
from waves by the walls of the harbor complex and shows only weak
tidal currents of up to 0.1 m s− 1 (Beermann, 2014). The mussels were
immediately sorted in the laboratory of the Biologische Anstalt Helgo-
land (BAH) then placed into a bivalve cage suspended in a 5800 L
flow-through outdoor tank for a minimum of one week before being
used in the experimental setups. Fresh, local seawater for the
flow-through was continuously provided via the seawater pumping
system of the BAH. The sampled population likely consisted of pure
Mytilus edulis Linnaeus, 1758 and hybrids of M. edulis with Mytilus gal-
loprovincialis Lamarck, 1819, while pureM. galloprovincialis were absent
(Coolen et al., 2020); determining the exact species requires molecular
techniques that were not feasible to perform here as part of a behavioral
experiment with live individuals. For predator presence and preparation
of waterborne cues, a brown crab (Cancer pagurus Linnaeus, 1758, 10.65
cm carapace width) was caught in the Kringel rocky intertidal zone of
Helgoland (54◦10′37.65″N, 7◦53′06.95″E) during high tide using a
fish-baited trap.

The experiment was conducted in clear 1 L glass jars (105 mm× 105
mm× 145 mm; L×W×H) placed in a temperature-controlled chamber
providing constant conditions (17 ◦C average to simulate temperature at
time of sampling, 12 h light: 12 h dark). Each jar was filled with 1 L of
filtered seawater or seawater with waterborne predator cue treatment.
Squares of vibration-reducing rubber pads (110 mm × 110 mm × 20
mm) were placed under each jar to reduce the conduction of ambient
room vibrations directly to the jar. Water temperature and noise were
monitored daily to confirm identical conditions across the different
treatments. A single Mytilus individual was placed in each jar for the
duration of the experiment.

2.2. Low-frequency noise treatment and monitoring

So-called “noise eggs” were used to produce continuous low-
frequency noise (CLFN) treatment (see de Jong et al. (2017)). Iden-
tical to the setup of Wang et al. (2022), the noise eggs employed
diverged from the original design by using two nickel-metal hydride
(NiMH) rechargeable batteries in parallel. Two batteries extended the
noise egg uptime and the NiMH nature of the batteries supplied power at
astable 1.2 V for most of each discharge cycle; as the frequency of the
motor is modulated by the voltage provided, a flat discharge curve is
desired. Differing from Wang et al. (2022), coin motors were used to
drive the eggs instead of pager motors for slightly lower dominant fre-
quencies (90–100 Hz). There was a peak at approximately 50 Hz present
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in all treatments likely due to ambient climate room and machinery
noise; as the control was not truly silent in the low-frequency range, the
terms “noise” and “control” will henceforth imply “added noise” and “no
added noise,” respectively, for the current study. The noise eggs were
half-submerged in each jar using racks.

Frequencies in each jar were monitored via an Aquarian Scientific
AS-1 hydrophone suspended in the center of the jar. The hydrophone,
coupled with a PA-6 preamplifier (+26 dB), was plugged into an audio
interface (ZOOM UAC-2). The interface was then connected to and
powered by a laptop via USB. Thirty-second recordings of each jar were
taken once per experimental trial and analyzed in R (3.5.1) (R Core
Team, 2022) with PAMGuide code (Merchant et al., 2015) to generate
aggregate power spectral density (PSD) graphs (Fig. 1). The following
settings were used: Fs(Hz) = 44,100, Window = Han 50% for SPL; Fs
(Hz) = 44,100, Window = Hann 50%, and Average = 1 s for PSD. The
calibration correction factor was calculated using manufacturer tech-
nical specifications for the AS-1 hydrophone, gain values from the PA-6
preamplifier and UAC-2 audio interface, and the zero-to-peak voltage of
the UAC-2.

2.3. Experimental setup and data collection

The byssal thread production of Mytilus was tested in two different
seawater treatments: untreated filtered seawater and filtered seawater
that contained waterborne predator cues. The two seawater treatments
were run under both added noise and control conditions. For the pred-
ator cue treatment, a single male C. pagurus was placed in a bucket with
16 L of filtered seawater and two individuals ofMytilus spp. as feed (both
of which were always successfully consumed). An air stone was inserted
for oxygenation, then the bucket was covered and left overnight. After
24 h, the crab was removed and the water was mixed, filtered through a
20 μm mesh, then poured into the respective treatment jars. The crab
was held in a separate tank until the process was repeated for subsequent
experimental trials. Five replicate jars for each treatment combination
(four combinations: cues/noise, cues/control, no cues/noise, no cues/
control) were implemented and the experimental trial was repeated five
times in succession, resulting in a total of 25 replicates per treatment
combination (4 combinations× 25 replicates= 100 individuals tested in
total).

After filling the jars with their respective water treatments, batteries
were inserted into the noise eggs of noise treatments. The water in each
jar was constantly bubbled via pipette tips connected to air tubing for
finer (and thus quieter) bubbles. Twenty Mytilus spp. of similar size
(means: 24.85 ± 1.64 (SD) mm length, 13.76 ± 1.04 mm width, 8.53 ±

0.68 mm height) were randomly selected from the holding cage,
measured, then randomly distributed across all jars. Each experimental

trial was run for 24 h. Predator presence effects on byssogenesis has been
reported to be (or become) apparent at approximately 6 h (e.g., Côté,
1995; Rickaby and Sinclair, 2018) while effects were also observed at
24 h in a preliminary experiment (unpublished observation). Therefore,
byssal thread and byssus counts were registered after 6 h and 24 h by
counting all thread attachment points on the glass.

2.4. Statistical analyses

2.4.1. Thread production after 6 h
As many individuals had not yet initiated thread-building activities

after 6 h, zeros were abundant in the data and barred meaningful
quantitative analyses of the raw 6 h thread counts. To describe the in-
fluence of each predictor on the probability that a mussel produced at
least one thread at 6 h, a mixed effect logistic regression (MELR) was
performed after transforming byssal thread counts into binary “Activity”
data. Counts with no byssal threads at all were treated as “0″s while
counts of one or more byssal threads were treated as “1″s. “Activity” was
designated as the response variable (reference level = 0, or no activity)
and “Noise” (2 levels: added noise, no added noise) and “Predator cues”
(2 levels: present, absent) as the predictors. “Block” (5 levels, one for
every trial) was included as a random effect to account for the possible
random effects of different experimental runs. An additive MELR and an
interactive MELRwere performed at a 95% confidence level. Odds ratios
for significant predictors were calculated by taking the exponential of
their beta coefficient, and 95% confidence intervals were calculated
using the following equation (Hailpern and Visintainer, 2003):

Odds ratio 95% CI= eβ ± (1.96∗Std. error)

For every predictor, a likelihood ratio test (LRT) was performed
between its null model (model without predictor in question) and the
respective full model at a 95% confidence level. The resulting P-value
indicated the significance of the relationship between the predictor and
byssal thread production. Likelihood ratio tests were also performed for
the interaction between “Noise” and “Predator cues” as well as for
“Block.”

2.4.2. Thread production after 24 h
Five replicates lost their noise treatment overnight due to malfunc-

tions of their respective noise eggs and were thus excluded from the
dataset of counts after 24 h. “Threads” was designated as the response
variable and like with the 6 h data, “Noise” and “Predator cues” were
designated as predictors and “Block” as the random effect. An additive
negative binomial generalized linear mixed-effects model (NBGLMM)
and an interactive NBGLMM were performed at a 95% confidence level.

Fig. 1. Power spectral density (PSD) comparison of the control (left) and noise (right) treatment conditions. The pink line represents the root mean square level
(RMS) while the other lines depict five different percentiles (1%, 5%, 50%, 95%, 99%), all measured in decibels (dB). Higher decibel numbers mean higher
sound intensity.

S.V. Wang et al.



Marine Environmental Research 200 (2024) 106661

4

Likelihood ratio tests were then performed at a 95% confidence level
between the full and null model for each predictor, interaction, and
random effect to test the significance of their relationship with byssal
thread production.

Negative binomial GLMMs were chosen for quantitative analysis as
the thread counts exhibited right-skewedness and heavy overdispersion,
the former of which was evident through histograms of the raw data.
Overdispersion was detected in the Poisson GLMMs (interactive model:
χ2(90) = 1211.62, p = 8.53e-196; additive model: χ2(91) = 1257.14, p
= 2.11e-204) by comparing the sum of squared Pearson residuals with
the residual degrees of freedom (Bolker et al., 2009; Venables and
Ripley, 2013). The standardized residuals for each GLMM were also
plotted and visually assessed; nearly all residuals of the NBGLMMs fell
within two standard deviations of the mean while those of the Poisson
GLMMs lay mostly outside this range. To confirm that NBGLMMs fit the
data significantly better than Poisson GLMMs, LRTs were run between
each NBGLMM and its respective Poisson counterpart (interactive
model: χ2(1)= 828.90, p= 2.2e-16; additive model: χ2(1)= 853.99, p=

2.2e-16).
An estimated marginal means (EMMs) post-hoc analysis using the

Tukey method was performed on the interactive NBGLMM using the R
package emmeans (Lenth, 2023). Descriptive statistics and graphical
figures were calculated and produced using GraphPad Prism (8.0.2).

All statistical analyses were performed in RStudio (2022.07.1+ 554)
with R (4.2.1) using the packages stats (R Core Team, 2022) and lme4
(Bates et al., 2015) unless otherwise specified.

3. Results

The interaction between noise and predator cues tested non-
significant and did not seem to affect the probability of Mytilus spp.
producing at least one byssal thread after 6 h (interactive model: χ2(1)=
0.8412, p = 0.3591). Noise as a main effect, holding predator treatment
constant, also did not seem to affect this probability (additive model:
χ2(1) = 0.1809, p = 0.6706). However, Mytilus spp. in predator cue
water, holding noise treatment constant, were 2.85 times (95% CI =
1.23, 6.62 times) more likely to have produced at least one byssal thread
in 6 h than those in filtered seawater (additive model: χ2(1) = 6.2035, p
= 0.01275) (Fig. 2).

Similar to the 6 h data, the interaction between noise and predator
cues tested non-significant and did not seem to affect byssal thread
counts at 24 h (interactive model: χ2(1) = 1.7918, p = 0.1807). Noise as
a main effect also did not seem to significantly affect thread counts
(additive model: χ2(1) = 0.5791, p = 0.4467) while predator cues as a
main effect did (additive model: χ2(1) = 3.9863, p = 0.04587) (Fig. 3).
Mytilus spp. in predator cue water, noise effect held constant, produced a

mean of 24.32 ± 18.76 (SD) byssal threads while those in water without
predator cues produced a mean of 17.04 ± 15.86 threads.

While the overall interaction between noise and predator cues on
byssal thread production at 24 h tested non-significant, there was a
noticeable (albeit non-significant) disparity between the cue and cue-
free mean thread count differences as well as variability under noisy
and control conditions. In the presence of noise,Mytilus spp. in predator
cue water and in cue-free water produced means of 25.64 ± 17.64 (SD)
and 13.70 ± 9.67 threads, respectively (mean difference of 11.94
threads; coefficient of variation = 68.79% and 70.57%, respectively).
However, in the absence of noise, Mytilus spp. in cue water and in cue-
free water produced means of 23.16 ± 19.98 and 20.12 ± 19.66
threads, respectively (mean difference of 3.04 threads, coefficient of
variation = 86.28% and 97.72%, respectively). The same pattern was
also reflected in the median thread counts (Fig. 3).

4. Discussion

The presence of waterborne predator cues increased the probability
of Mytilus spp. building byssal threads within the first 6 h, suggesting
that mussels that sensed predators were in an alerted state and produced
threads more readily than those in the absence of predators. Corre-
spondingly, mussels that were exposed to predator cues also produced
more threads in 24 h than mussels in cue-free water. Mytilus species are
known to increase their byssus production in the presence of predators,
especially in response to crabs (Côté, 1995; Garner and Litvaitis, 2013;
Leonard et al., 1999). This allows the mussels to fasten themselves more
tightly to substrate as well as congregate into larger aggregates where
individuals are less easily isolated by predators, thereby increasing their
chances of defense and survival (Côté and Jelnikar, 1999; Elner, 1978;
Reimer and Tedengren, 1997). The results observed here were thus ex-
pected and are in line with existing literature. Surprisingly, however,
predator cues appeared to only slightly affect byssal thread production
at 24 h in the absence of added noise. This may have been because the
standardized waterborne cues gradually weakened over time without
replenishment. Côté (1995) and Rickaby and Sinclair (2018) observed
similar phenomena: predator cue effects on byssal thread production are
evident after just a few hours, but may become much weaker or
non-significant altogether by 24 h.

The exposure to continuous low-frequency noise (CLFN) did not
seem to affect the byssal thread-building activity of Mytilus spp.
although there was a trend toward higher probabilities of thread pro-
duction at 6 h in the noisy predator cue treatment compared to the no-
noise predator cue treatment. In addition, both the lowest and highest
mean thread counts (as well as a much larger mean difference between
cue and cue-free thread counts) were observed under noise conditions at
24 h. This suggests that noise possibly synergizes with predator cues to a

Fig. 2. Mean probabilities of Mytilus spp. activity after 6 h of exposure to
continuous low-frequency noise and waterborne predator cues (Cancer pagurus
effluents). The production of at least one thread by an individual signifies ac-
tivity. The error bars depict the 95% confidence intervals for probability of
activity under each treatment.

Fig. 3. Number of byssal threads produced by Mytilus spp. individuals after 24
h of exposure to continuous low-frequency noise and waterborne predator cues
(Cancer pagurus effluents). The median, first and third quartile, and 1.5 IQR
Tukey fences are shown. Outliers are represented by circles.
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small extent detectable when compared to no-cue noise treatments.
Although speculative, predator cues may have chemically triggered the
anti-predator response while the vibrations from ALFN added an addi-
tional mechanical stimulus simulating predator or threat presence,
reinforcing the initial response. A study by Zhao et al. (2021) found that
after individuals of Mytilus coruscus were exposed to ten days of
pile-driving playback, the average number of newly secreted threads in
24 h was reduced by 6.83–12.02% depending on playback sound pres-
sure level, although this effect was ultimately not significant. Impulsive
LFN (ILFN; in this case, from pile-driving playback) potentially affects
Mytilus spp. more than CLFN does. For example, impulsive noises have
been shown to be more hazardous than continuous noises at comparable
sound pressure levels for marine mammals (Gordon et al., 2003; Madsen
et al., 2006; Southall et al., 2019), but such comparisons have rarely
been investigated or made for marine invertebrates (Carroll et al., 2017;
Solé et al., 2023). Our findings suggest that the effects of CLFN might
manifest in ways and circumstances different from those of ILFN, which
should be considered when designing future experiments.

There are a few potential reasons why theMytilus spp. in the present
study were not clearly affected by CLFN. The possible mix of Mytilus
species could have added interspecific variability (e.g., differing sensi-
tivities to noise, slightly differing responses) to the experimental trials.
In addition, the mussels were harvested from a pontoon complex that is
seasonally frequented by commercial and recreational vessels. These
mussels could have, therefore, been acclimated to a certain level of
acoustic disturbance. Hubert et al. (2022a) demonstrated that Mytilus
spp. (also collected from a disturbed habitat) reduced their responsive-
ness to repeated sound exposures, albeit using periodic LFN instead of
CLFN. These findings suggests that Mytilus spp. may be, at least on a
behavioral level, actually robust against or adaptable to ALFN. This
would explain how they successfully foul and thrive on surfaces that
continuously conduct operational noise such as ship hulls, oil rigs, and
offshore wind farm pillars (Coolen et al., 2022; Degraer et al., 2020;
Krone et al., 2013; Wilhelmsson and Malm, 2008).

Mytilus spp. appear to be indifferent to LFN or even be attracted to
CLFN. When exposed to CLFN from ships alone, pediveliger larvae of
M. edulis exhibited a 27% increase in settlement rate. However, exposure
to both CLFN and Nannochloropsis oculata (microalgae; food cue) pro-
duced a synergistic 50.7% increase in settlement rate (Jolivet et al.,
2016). A similar trend was also observed for Perna canaliculus, the New
Zealand mussel (Stanley et al., 2016; Wilkens et al., 2012). Conversely,
Cervello et al. (2023) found that boat noise playback did not enhance
larval settlement whereas pile-driving playback did in a setup with
much smaller settlement chambers. The navigation and promotion of
settlement by acoustic cues have also been observed in oyster larvae and
are hypothesized to be methods of scouting optimal settlement sites with
conspecifics (Lillis et al., 2013, 2014, 2015; Schmidlin et al., 2024;
Williams et al., 2022). A similar mechanism may be at play withMytilus
spp. as they are also gregarious settlers (animals that settle next to their
own kind) and their conspecifics often colonize structures characterized
by environmental disturbance such as anthropogenic noise.

Interestingly, this indifference to or even potential preference for
CLFN does not seem to be limited to bivalve larval stages. Wilhelmsson
and Malm (2008) observed that many mussels on sampled monopiles
were several years older than the monopiles themselves, suggesting
active adult migration toward the turbines and many meters upward.
This inter-habitat movement is likely spurred by better feeding condi-
tions and relief from benthic predators. While structures such as offshore
wind farms appear auspicious for Mytilus spp., the potential combined
effects of CLFN and additional vertical substrate on local ecosystems are
still unknown.

5. Conclusion

Mytilus spp. seemed to be behaviorally indifferent toward acute
continuous low-frequency noise exposure regardless of waterborne

predator cue presence. This insensitivity to certain types of anthropo-
genic disturbance may contribute to their colonization success in
anthropogenically disturbed habitats such as offshore wind turbines and
ship hulls (Carlton and Vlasic, 2005; Dannheim et al., 2020). Thus,
despite the ongoing and ever-expanding anthropogenic modification of
marine habitats, Mytilus can be expected to persist in these disturbed
habitats, if not profit from the additional substrate provided by
man-made structures.
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Côté, I.M., 1995. Effects of predatory crab effluent on byssus production in mussels.
J. Exp. Mar. Biol. Ecol. 188, 233–241.
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