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Abstract This study characterized ocean biological carbon pump metrics in the second iteration of the
REgional Carbon Cycle Assessment and Processes (RECCAP2) project. The analysis here focused on
comparisons of global and biome‐scale regional patterns in particulate organic carbon (POC) production and
sinking flux from the RECCAP2 ocean biogeochemical model ensemble against observational products derived
from satellite remote sensing, sediment traps, and geochemical methods. There was generally good model‐data
agreement in mean large‐scale spatial patterns, but with substantial spread across the model ensemble and
observational products. The global‐integrated, model ensemble‐mean export production, taken as the sinking
POC flux at 100 m (6.08 ± 1.17 Pg C yr− 1), and export ratio defined as sinking flux divided by net primary
production (0.154± 0.026) both fell at the lower end of observational estimates. Comparison with observational
constraints also suggested that the model ensemble may have underestimated regional biological CO2

drawdown and air‐sea CO2 flux in high productivity regions. Reasonable model‐data agreement was found for
global‐integrated, ensemble‐mean sinking POC flux into the deep ocean at 1,000 m (0.65± 0.24 Pg C yr− 1) and
the transfer efficiency defined as flux at 1,000 m divided by flux at 100 m (0.122 ± 0.041), with both variables
exhibiting considerable regional variability. The RECCAP2 analysis presents standard ocean biological carbon
pump metrics for assessing biogeochemical model skill, metrics that are crucial for further modeling efforts to
resolve remaining uncertainties involving system‐level interactions between ocean physics and
biogeochemistry.

Plain Language Summary Phytoplankton in the surface ocean create each year an amount of
organic carbon approximately equivalent to all the annual photosynthesis by plants on land. A small fraction of
this newly formed organic carbon is exported below the surface layer, and an even smaller amount makes it all
the way to the deep ocean. The transport of organic carbon to the sub‐surface ocean, called the biological carbon
pump, influences the global‐scale distributions of ocean nutrients, oxygen, and inorganic carbon as well as the
amount of carbon dioxide in the atmosphere. The global rates and geographic patterns of photosynthesis and
carbon flux out of the surface ocean have previously been constructed from ship measurements and satellite
remote sensing. Here, we compare these observation‐based estimates to a suite of three‐dimensional numerical
ocean models and find broadly similar results. The model simulations also capture aspects of the biological
carbon pump deeper in the water column, where there are fewer direct constraints from field observations. Our
comparison of observations and simulations identifies some deficiencies in the models that should be corrected
in order to better simulate climate change impacts on the biological carbon pump.

1. Introduction
Marine biogeochemical processes play a central role in the global Earth System, modulating the distribution of
inorganic carbon, oxygen, and nutrients within the ocean and the partitioning of carbon between ocean and at-
mosphere reservoirs (Broecker & Peng, 1982; DeVries, 2022; Iversen, 2023; Sarmiento & Gruber, 2002; Siegel
et al., 2023). Because of the strong oceanic influence on atmospheric CO2 concentration and thus climate, there is
considerable scientific focus on quantifying both the baseline and trends in ocean carbon storage and fluxes
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arising from the uptake of anthropogenic CO2 and climate change impacts on marine biogeochemical and
physical dynamics (Canadell et al., 2021; Crisp et al., 2022; DeVries et al., 2019; Gruber et al., 2023; Hauck
et al., 2020; Henson et al., 2016; Wilson et al., 2022).

The REgional Carbon Cycle Assessment and Processes (RECCAP) project is a coordinated international effort to
constrain contemporary ocean carbon air‐sea fluxes and interior storage trends using a combination of
observation‐based estimates, inverse models, and global ocean biogeochemical models (GOBMs) (Khatiwala
et al., 2013; Wanninkhof et al., 2013). The second phase, RECCAP2, extends the original synthesis using
additional years of ocean observations and updated methodology and numerical results (DeVries et al., 2023;
Hauck et al., 2023) as well as expanding the scope of the analysis, in this case, into biological carbon pump
magnitude and efficiency.

In a simple 1‐D form, the marine biological carbon pump can be viewed as the net production of particulate
organic carbon (POC) and inorganic carbon (PIC) in the surface ocean, downward vertical transport of particulate
carbon into the thermocline and deep sea, and subsequent respiration and remineralization of particulate carbon
back into dissolved inorganic carbon (DIC) (Volk & Hoffert, 1985). The downward organic carbon transport, or
export flux, drives subsurface marine biogeochemistry, fuels deep‐ocean ecosystems, and influences ocean
carbon storage and atmospheric CO2. The biological pump accentuates the vertical gradient in DIC already
established from CO2 system thermal solubility and temperature gradients, and deep‐ocean carbon storage re-
flects a net balance between the biological carbon pump source and physical ocean circulation processes that
return elevated deep‐ocean DIC waters back to the surface ocean via upwelling and vertical mixing (Sarmiento &
Gruber, 2006).

The relationship between ocean carbon storage and the strength of the biological pump is not necessarily
straightforward because of physical‐biological interactions; for example, stronger overturning circulation can
enhance both biological export through increased nutrient supply and the physical return of high‐DIC deep‐ocean
waters to the surface (Doney et al., 2006). The vertical structure of the biological carbon pump is also important.
Sinking POC fluxes decline rapidly in the thermocline (~100–∼1,000 m depth), with only a fraction of surface
export flux reaching the deep ocean below 1,000 m (Dinauer et al., 2022; Lima et al., 2014; Lutz et al., 2007;
Martin et al., 1987). Deeper remineralization depths, that is the transport of a greater fraction of POC into the
lower thermocline or deep ocean prior to respiration, enhance ocean carbon storage because of generally reduced
physical return rates to the surface ocean for deeper waters, and therefore longer retention times for the remin-
eralized DIC, although with substantial regional variations associated with circulation pathways and rates (Kwon
et al., 2009; Siegel et al., 2021).

Net primary production (NPP) by surface ocean phytoplankton generates POC and dissolved organic carbon
(DOC), and most marine NPP is converted rapidly back to DIC through zooplankton grazing of living biomass
and detritus or through the microbial loop involving consumption of POC and DOC pools. Export fluxes require
an excess of community production of organic carbon over respiration that in turn must be supported by an
external supply of new nutrients over sufficient time and space scales (Ducklow & Doney, 2013). The fraction of
NPP that is exported (export ratio = export flux/NPP) is modulated by the magnitude and seasonality of NPP,
environmental conditions, and phytoplankton and zooplankton community composition (Laufkötter et al., 2016).
Export flux from the euphotic zone occurs through multiple pathways including gravitational sinking of POC
(e.g., living and dead cells; fecal pellets; marine snow), physical subduction and mixing of POC and DOC below
the surface layer, and active biological transport by vertically migrating organisms (Siegel et al., 2016).

Contemporary models capture, with varying levels of sophistication and skill, the biological processes involved in
NPP and export flux from the upper ocean (Fennel et al., 2022), though models tend to focus on gravitational
particle sinking and many do not incorporate all of the relevant export pathways (Boyd et al., 2019; Henson
et al., 2022) or dynamics governing vertical carbon fluxes from the surface to the deep sea (Burd, 2024). Most
current GOBMs build from a nutrient‐phytoplankton‐zooplankton‐detritus (NPZD) ecosystem framework
(Fennel et al., 2022). Advances from a simple NPZD model include incorporation of multiple dissolved nutrients
and micro‐nutrients, variable elemental stoichiometry in biomass and detrital pools, plankton functional types
spanning size class and taxonomic function, multiple trophic levels, and biomineralization of particulate silicon
and calcium carbonate (Hood et al., 2006; Le Quéré et al., 2005; Moore et al., 2004). Phytoplankton growth and
NPP rates are governed by nutrient limitation, irradiance, and temperature; growth in some models is also
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modulated by variable phytoplankton chlorophyll and cellular nutrient to carbon biomass ratios (Laufkötter
et al., 2015).

Models generate particulate detrital material from phytoplankton and zooplankton mortality, grazing, and ag-
gregation; sinking POC, often partitioned into size classes or into free versus mineral associated forms, is a key
component of overall export flux (Laufkötter et al., 2016). In many models, POC sinking and remineralization in
the mesopelagic is simulated with an explicit sinking velocity coupled with a first‐order remineralization rate
coefficient (Dinauer et al., 2022) while other models use an implicit treatment with specified empirical power‐law
or exponential vertical remineralization curves (e.g., Martin et al., 1987). Velocities, rate coefficients, and
remineralization curves may be further modulated by size class, depth, particulate mineral composition, or
subsurface temperature or oxygen concentration (Laufkötter et al., 2016; Lima et al., 2014).

Here we focus on simulated export via gravitational particle sinking, which is incorporated in virtually all
GOBMs in some form. Observation‐based estimates of the global export flux have a large range (5–12 Pg C yr− 1;
Siegel et al., 2016), which is almost identical to the range in export estimates for the modern‐day era simulated by
coupled climate models (4.5–12 Pg C yr− 1; Henson et al., 2022); that is, the observation‐based estimates of export
flux provide a poor constraint for biogeochemical models. Because of differences in model climate responses and
parameterizations of the ocean biological carbon pump, substantial uncertainties also plague projections of future
changes in export flux in response to climate change. For example, Henson et al. (2022) found a large inter‐model
spread in projected changes in export flux by 2100 between+0.16 and − 1.98 Pg C yr− 1 (+1.8 to − 41%) under the
high‐emission SSP5‐8.5 scenario.

Much of the export flux of organic carbon from the euphotic zone, taken here as the downward flux through 100 m
(F100), is consumed by respiration in the mesopelagic zone (100–1,000 m). The diverse mechanisms for vertical
transport and remineralization of organic matter in the mesopelagic are only partially captured in models (Fennel
et al., 2022). A steep decline with depth in the gravitational sinking flux of particles is well documented frommid‐
depth sediment traps (e.g., Dinauer et al., 2022; Lima et al., 2014; Lutz et al., 2007), but the exact processes
involved are less well quantified and may include physical and biological particle fragmentation (Briggs
et al., 2020) as well as particle consumption and repackaging by zooplankton (Stukel et al., 2019). Particle fluxes
and the depth‐scale of remineralization are affected by particle composition, size, density, and sinking speeds.
Particles can vary widely from small, slowly sinking dead cells and detrital material, to large marine snow ag-
gregates with enhanced sinking speeds from captured ballast material, to large rapidly sinking fecal pellets (Lam
et al., 2011; Omand et al., 2020). Vertical migrators transport organic carbon downward from the euphotic zone
into the mesopelagic zone, respiring CO2 and releasing fecal pellets at depth (Archibald et al., 2019). Sinking
particle fluxes and mesopelagic biological processes are typically not modeled in great mechanistic detail in
contemporary GOBMs, and often relatively simplistic empirical relationships such as variants of the Martin
power‐law flux curve (Martin et al., 1987) are used in place of explicit representation of the processes controlling
mesopelagic flux attenuation.

The proportion of sinking exported POC that survives remineralization in the mesopelagic zone to reach depths
>1,000 m is referred to as the transfer efficiency, given here as the ratio of sinking fluxes at 100 and 1,000 m
(E1000/100). POC reaching 1,000 m depth is remineralized below the main thermocline, and the remineralized CO2

is likely sequestered on timescales of >100 years from the atmosphere (Siegel et al., 2021). There is currently
little consensus on the global magnitude or spatial patterns of transfer efficiency, with some approaches sug-
gesting that E1000/100 is high at high latitudes and low at low latitudes (DeVries & Weber, 2017; Marsay
et al., 2015; Weber et al., 2016), whilst others imply the opposite pattern (Dinauer et al., 2022; Guidi et al., 2015;
Henson et al., 2012; Lam et al., 2011; Mouw et al., 2016b). A variety of approaches have been used to generate
these estimates, including paired in situ observations of 234Th‐derived export flux and deep sediment trap flux
(Henson et al., 2012), vertical profiles of flux from drifting sediment traps (Marsay et al., 2015), or inverting the
observed nutrient and/or oxygen distributions using an inverse model (Cram et al., 2018; DeVries &
Weber, 2017; Weber et al., 2016). The differing approaches and the time and space scales that they integrate are
likely significant sources of the uncertainty in global E1000/100 patterns. In CMIP6 models, there are substantial
differences in both the pre‐industrial mean E1000/100 (varying from 3% to 25% across models) and its response to
21st century climate change, with projections showing both increases and decreases in E1000/100 over time (Wilson
et al., 2022).
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Early model skill assessments relied heavily on model‐data comparisons to transient tracers, ocean physics, and
sub‐surface nutrient and oxygen fields that reflect the imprint of biological pump fluxes and ocean circulation
(e.g., Doney et al., 2004; Matsumoto et al., 2004; Najjar et al., 2007). However, observational constraints on the
ocean biological carbon pump have advanced considerably since the early global 3‐D ocean biogeochemical
modeling efforts (e.g., Bacastow&Maier‐Reimer, 1990; Maier‐Reimer, 1993). Global‐scale data compilations of
primary production, surface export and mesopelagic sinking carbon fluxes are now available based on a wealth of
satellite remote sensing, sediment traps, and geochemical methods (e.g., Henson et al., 2012; Mouw et al., 2016a).
Past model‐data skill assessments using multi‐model ensembles have highlighted differences in simulated ocean
biological carbon pump patterns, magnitudes, and mechanisms and identified model biases relative to admittedly
imperfect observational estimates (Laufkötter et al., 2015, 2016). This study expands on these past assessment
efforts of the ocean biological carbon pump to include the current generation of GOBMs compiled for RECCAP2
(DeVries et al., 2023).

The objective of this study is to characterize a global‐scale biological carbon pump from RECCAP2 models and
compare the simulation results with observation‐based metrics. The focus is on the spatial patterns and global‐
integrated rates from the multi‐model ensemble mean taking into consideration inter‐model spread. Key met-
rics include export of sinking POC from the surface euphotic zone and the efficiency of POC transfer through the
mesopelagic ocean, both of which are central to ocean carbon storage. Based on identified model‐observation and
inter‐model differences, we also provide guidance for future GOBM evaluations and development that could
include targeted, more detailed analyses of dynamics and biases within individual RECCAP2 models.

2. Methods and Data
2.1. RECCAP2 Model Simulations and Observational Data Products

This study leveraged a collection of ocean simulation and observational data sets, outlined in Table 1, assembled
for RECCAP2 following standardized protocols and data reporting for numerical and observation‐based pCO2

products (DeVries et al., 2023; Müller, 2023; RECCAP2 Ocean Science Team, 2022). The RECCAP2 ocean data
sets included monthly surface and annual ocean interior output for the contemporary period from more than a
dozen GOBM hindcast simulations, including both forward and data‐assimilated models, along with observation‐
based surface ocean pCO2 interpolation products. Many of the models included in the RECCAP2 suite have been
used in the Global Carbon Project to assess the ocean carbon sink (Friedlingstein et al., 2022; Hauck et al., 2020).
Table 2 presents a summary of the ecosystem components and parameterizations used in the RECCAP2 ocean
biogeochemical models. Here, we present model results for 1985 to 2018 from RECCAP2 simulation A, which
was forced with historical atmospheric reanalysis data and increasing atmospheric CO2, and hence represents both
steady‐state and variable climate processes and both natural, pre‐industrial carbon fluxes and anthropogenic
carbon fluxes caused by rising atmospheric CO2 (DeVries et al., 2023).

Spatial 2D model output and pCO2 interpolation products were provided to RECCAP2 with 1° × 1° resolution at
monthly time steps, and 3D model output was resolved at annual time steps. All estimates derived in this study
were computed on a 1° × 1° grid. Global multi‐model ensembles, spatial integrals and averages were computed as
needed from the gridded results of the GOBMs in Table 1 averaged over 1995–2018 using the RECCAP2 model
simulation A outputs; the data assimilation models (ECCO‐Darwin and SIMPLE‐TRIM) were excluded from the
multi‐mean ensembles. For the aggregation to sub‐basin ocean regions, ocean biomes based on Fay and
McKinley (2014) were used in most instances to facilitate consistent regional intercomparison across RECCAP2
studies (e.g., Hauck et al., 2023). Longhurst provinces (Figure S1 in Supporting Information S1; Reygondeau
et al., 2013) were additionally used in some of the biological pump model‐observational comparisons to be
consistent with one of the key observational data synthesis products (Mouw et al., 2016a). The notation and units
for the biological, chemical and physical variables used in this study are described in Table 3. More details on the
RECCAP2 ocean data sets can be found in DeVries et al. (2023).

We also used an observational compilation of surface ocean export production and sinking POC flux combined
with satellite ocean color data products for primary production synthesized by Mouw et al. (2016a) and as
aggregated to Longhurst regional provinces by Mouw et al. (2016b). The full data set includes over 15,000 in-
dividual sediment trap and 234Th POC flux measurements at 673 locations, combined with satellite‐derived es-
timates of NPP. Chlorophyll measurements collected from the SeaWiFS sensor on the OrbView‐2 ocean color
satellite, spanning from August 1997 to December 2010, were used to derive NPP using the vertically generalized
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production model (Behrenfeld & Falkowski, 1997) on an equal‐area grid with 9‐km resolution. The climatology
in Mouw et al. (2016a) used an interpolation approach to combine the satellite timeseries and short‐deployment
(<30 days trap cup intervals) sediment trap POC flux measurements at overlapping locations. Over 43% of the
POC flux measurements were collected after 1997, overlapping with the satellite record. For each POC flux
location, median monthly values are computed and binned into biogeochemical Longhurst provinces for the
climatology. The POC flux climatology also has a depth dimension, with depth bins centered at 20 m for a near‐
surface layer, in 50 m intervals in the upper thermocline, and in 200 m intervals from 500 to 5,000 m.

2.2. Ocean Biological Pump and Biogeochemical Metrics

Our analysis utilized biogeochemical model estimates of vertically integrated NPP and export fluxes of sinking
POC across a shallow surface at the approximate base of the euphotic zone (100 m, F100) and at the base of the
main thermocline (1,000 m, F1000). Note that the 1,000 m fluxes were not provided for all models (see Figure 2c),
and therefore the ensemble means for F100 and F1000 were constructed from different subsets of RECCAP2
simulations. The export ratio, E100/NPP, was computed as the ratio of POC sinking flux at 100 m divided by
vertically integrated net primary production:

Table 1
Description of RECCAP2 Global Ocean Biogeochemical Models, Global Data‐Assimilated Models, and Observation‐Based Products Used in This Study

Biogeochemical models Data range References

CCSM‐WHOI 1958–2017 Doney et al. (2009)

CESM‐ETHZ 1980–2018 Lindsay et al. (2014) and Yang and Gruber (2016)

CNRM‐ESM2‐1 1980–2018 Séférian et al. (2019, 2020) and Berthet et al. (2019)

EC‐Earth3 1980–2018 Aumont et al. (2015) and Döscher et al. (2022)

FESOM‐REcoM‐LR 1980–2018 Hauck et al. (2013, 2020)

MPIOM‐HAMOCC 1980–2018 Ilyina et al. (2013) and Mauritsen et al. (2019)

MOM6‐Princeton 1980–2018 Liao et al. (2020) and Stock et al. (2020)

MRI‐ESM2‐1 1980–2018 Urakawa et al. (2020) and Tsujino et al. (2017)

NorESM‐OC1.2 1980–2018 Schwinger et al. (2016)

NEMO‐PlankTOM12.1 1980–2018 Le Quéré et al. (2016) and Wright et al. (2021)

ORCA1‐LIM3‐PISCES 1980–2018 Aumont et al. (2015)

Data‐assimilated models

ECCO‐Darwin 1995–2018 Carroll et al. (2020, 2022)

SIMPLE‐TRIM Climatology DeVries and Weber (2017)

pCO2 interpolation products

CMEMS‐LSCE‐FFNN 1985–2018 Chau et al. (2022)

JenaMLS 1985–2018 Rödenbeck et al. (2013, 2022)

MPI‐SOMFFN 1982–2018 Landschützer et al. (2016)

NIES‐ML3 1980–2020 Zeng et al. (2022)

OceanSODA‐ETHZ 1985–2018 Gregor and Gruber (2021)

LDEO_HPD 1985–2018 Gloege et al. (2022)

UOEX_Wat20 1985–2019 Watson et al. (2020)

World Ocean Atlas

Oxygen and AOU Climatology Garcia et al. (2019)

Biological carbon pump metrics

Net primary production, export production, and sinking POC flux Climatology Mouw et al. (2016a, 2016b)

Note. For more details see Tables S1 and S2 in Supporting Information S1 in DeVries et al. (2023). The World Ocean Atlas (WOA) data set was also used in the
model‐data evaluation.
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E100/NPP =
F100
NPP

(1)

The transfer efficiency across the 1,000 m depth horizon, E1000/100, was similarly computed as the ratio of sinking
POC fluxes at 100 and 1,000 m:

E1000/100 =
F1000
F100

(2)

A depth of 1,000 m is taken as an approximate boundary between the main thermocline with ventilation time-
scales of years to decades and the deep ocean with time‐scales of a century and longer (Siegel et al., 2021).

The relationship between the biological pump and the inorganic CO2 system was examined by partitioning the
seasonal variability in surface seawater pCO2 into thermal and non‐thermal components following Takahashi
et al. (2002). We refer readers interested in a thorough analysis of RECCAP2 CO2 system seasonality to Rodgers
et al. (2023). The temperature effect on pCO2 was calculated for isochemical seawater using the approximation
∂(ln(pCO2))

∂T = 0.0423 (°C− 1) from the experimental value from Takahashi et al. (1993). The seasonal cycle in
monthly surface temperature anomalies relative to the annual mean surface temperature generated a corre-
sponding seasonal variation in the thermal (temperature‐dependent) pCO2 component about the pCO2 annual
mean:

pCOthermal
2 = (pCO2)mean × exp[0.0423(Tmonthly − Tmean)] (3)

Ocean hindcast simulations are typically forced by satellite‐derived radiative fluxes, precipitation estimates, and
atmospheric reanalysis surface winds, air temperatures, and humidity values that are used in the turbulent bulk
flux formula to compute air‐sea momentum flux, sensible and latent heat fluxes, and evaporation (Large &
Yeager, 2009; Large et al., 1997). Hindcasts typically capture quite well the seasonal cycle of sea surface tem-
perature because the atmospheric reanalysis products used in the bulk flux formula effectively contain infor-
mation on the observed ocean surface temperature record (Doney et al., 2007); the same model‐data agreement
transfers to the thermal pCO2 seasonal component. The non‐thermal pCO2 component was computed by

Table 3
Glossary and Description of Modeled, Observed, and Derived Variables Including Notation and Units

Variable name Units Output frequency Description

2D or surface ocean properties

pCO2 μatm Monthly Surface ocean pCO2

NPP mol C m− 2 yr− 1 Monthly Vertically integrated net primary production of organic carbon

F100 mol C m− 2 yr− 1 Monthly POC sinking flux at 100 m

F1000 mol C m− 2 yr− 1 Monthly POC sinking flux at 1,000 m

3D or Interior ocean properties

T °C Annual Seawater potential temperature

S – Annual Salinity (PSS‐78)

F3D mol C m− 2 yr− 1 Annual 3D field of POC sinking flux

O2 mol O2 m
− 3 Annual Dissolved oxygen concentration

Derived variables

E100/NPP = F100/NPP – Monthly Surface Export Ratio

E1000/100 = F1000/F100 – Monthly Mesopelagic Transfer Efficiency

E1000/NPP = F1000/NPP – Monthly Surface to Deep‐sea Export Efficiency

AOU μmol kg− 1 Monthly Apparent oxygen utilization
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subtracting the thermal component from the monthly pCO2 values, and the seasonal amplitude ΔpCO2,non‐thermal

was calculated as the seasonal peak‐to‐trough difference. The non‐thermal pCO2 component reflects seasonal
variations in DIC and alkalinity from biological organic and inorganic carbon production and remineralization,
air‐sea CO2 gas exchange, and physical transport and mixing. Note that the seasonal phasing of the non‐thermal
pCO2 component can be distinct from the phasing of the total pCO2 cycle. This is especially the case in the low
latitudes, where the thermal component dominates the seasonal cycle (Landschützer et al., 2018; Rodgers
et al., 2023; Takahashi et al., 1993).

We also computed apparent oxygen utilization (AOU) using modeled dissolved oxygen, salinity, and potential
temperature fields. Modeled average AOU at 100 m (AOU100) and 1,000 m depth (AOU1000) were found using
nearest depth bins in model products (bins centered within 50 m of depths). The simulated AOU fields are
compared against the World Ocean Atlas (WOA) data product (Garcia et al., 2019).

Figure 1. Multi‐model ensemble averages of biological pump metrics from RECCAP2 model simulations. Maps of annual mean (a) integrated net primary productivity
NPP, (b) particulate organic carbon export fluxes at 100m (F100), and (c) 1,000m (F1000), all inmolCm− 2 yr− 1. Ensemblemean (d) export efficiency ratioE100/NPP=F100/
NPP (Equation 1), (e)mesopelagic transfer efficiency at 1,000mE1000/100=F1000/F100 (Equation 2), and (f) export efficiency to the deep oceanE1000/NPP=F1000/NPP, all
ratios unitless.
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3. Results
3.1. Simulated Ocean Biological Carbon Pump Metrics

Global spatial fields of present‐day biological carbon pump variables are displayed in Figure 1 for the RECCAP2
model ensemble mean with the corresponding ensemble standard deviation in Figure 2. Biome‐scale ensemble‐
mean averages and within‐ensemble standard deviation values for the biological pump metrics are reported in
Table 4 using the standard RECCAP2 biomes by ocean basin (Figure S1 in Supporting Information S1; Fay &
McKinley, 2014).

The simulated annual mean NPP and export flux from sinking POC (F100) (Figures 1a and 1b) exhibited large
geographic variations, with annual‐mean NPP ranging on biome scales (Table 4) from 8 to 21 mol C m− 2 yr− 1 and
F100 ranging from 1.0 to 2.9 mol C m− 2 yr− 1. The simulated spatial patterns reflect euphotic zone temperature,

Figure 2. Maps of within‐ensemble standard deviation of biological pump metrics. Standard deviations across model ensemble members are computed relative to the
average model ensemble presented in Figure 1 for: (a) vertically integrated primary productivity σNPP, (b) particulate organic carbon export fluxes at 100 m σF100, and
(c) 1,000 m σF1000, all in mol C m− 2 yr− 1, and (d) surface export efficiency ratio E100/NPP = F100/NPP, (e) mesopelagic transfer efficiency at 1,000 m E1000/100 = F1000/
F100, and (f) export efficiency to the deep ocean E1000/NPP = F1000/NPP, all ratios unitless.
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nutrient supply, and grazing and loss rates that govern phytoplankton standing stock in the models (Falkowski
et al., 1998; Laufkötter et al., 2015, 2016). The imprint of nutrient supply was particularly evident in the elevated
NPP and export fluxes found in equatorial and coastal upwelling regions, western boundary currents, and mid‐
latitude bands of deep seasonal mixing (Figures 1a and 1b). Within‐ensemble standard deviations (σ) of NPP
and F100 were elevated in the equatorial band, and high σNPP values were also found in the Southern Ocean,
indicating substantial model disagreement within the ensemble (Figures 2a and 2b). Biome‐scale σNPP values
ranged from 2.0 to 6.6 mol C m− 2 yr− 1. The lowest relative spread (σNPP/NPP) was 0.22 in the permanently
stratified subtropical South Atlantic, while the highest relative spread was 0.72 in the subpolar Southern Ocean.
The biome‐scale σF100 values varied from 0.4 to >1.0 mol C m− 2 yr− 1 with the largest within‐ensemble variation
occurring in the western equatorial Pacific.

The local POC sinking flux at the base of the mesopelagic (F1000) ranged at the biome scale from 0.09 to
0.54 mol C m− 2 yr− 1 with broadly similar patterns to F100, though with some notable exceptions such as the high
F1000 values in tropical low‐oxygen zones in the eastern tropical Pacific and Arabian Sea (Figure 1c). Note the
roughly half to full order of magnitude decline in scale in Figure 1 from NPP to F100 and then F100 to F1000. This
indicates first that the bulk of simulated NPP is recycled within the euphotic zone above 100 m, rather than
exported as sinking POC flux, and second that most of the sinking POC flux at 100 m is remineralized in the
mesopelagic, rather than reaching the deep ocean below 1,000 m. As for NPP and F100, some correspondence was
found for the spatial patterns of ensemble‐means F1000 and σF1000. The highest biome‐scale σF1000 values of 0.26–
0.29 mol C m− 2 yr− 1 occurred in the North Pacific and eastern equatorial Pacific (Figure 2; Table 4).

The fraction of NPP exported across 100 m or export ratio (E100/NPP, Figure 1d; Table 4) varies at the biome scale
in the ensemble mean from 0.12 to 0.21 with elevated values in high latitudes. The spatial patterns for within‐

Table 4
Model Ensemble Averages and Standard Deviations of Biological Pump Parameters by RECCAP2 Regional Biomes (Figure
S1 in Supporting Information S1) (See Also Figure 1) Grouped as Sub‐Polar Seasonally Stratified (SPSS), Sub‐Tropical
Seasonally Stratified (STSS), Sub‐Tropical Permanently Stratified (STPS), Equatorial (EQU), and Mediterranean (MED)

NPP F100 F1000 E100/NPP E1000/100 E1000/NPP

SPSS

N. Pacific 11.89 ± 4.81 2.21 ± 0.65 0.307 ± 0.263 0.206 ± 0.076 0.124 ± 0.071 0.018 ± 0.012

N. Atlantic 9.30 ± 3.00 1.77 ± 0.65 0.177 ± 0.156 0.211 ± 0.075 0.116 ± 0.060 0.014 ± 0.009

Southern 9.24 ± 6.64 1.59 ± 0.60 0.197 ± 0.119 0.213 ± 0.091 0.132 ± 0.071 0.023 ± 0.025

STSS

N. Pacific 13.53 ± 3.68 2.04 ± 0.70 0.206 ± 0.117 0.161 ± 0.040 0.114 ± 0.049 0.014 ± 0.006

N. Atlantic 12.98 ± 3.28 1.93 ± 0.54 0.165 ± 0.069 0.162 ± 0.049 0.099 ± 0.036 0.014 ± 0.006

Southern 13.91 ± 5.02 2.12 ± 0.39 0.222 ± 0.087 0.173 ± 0.053 0.109 ± 0.040 0.016 ± 0.009

STPS

N. Pacific 8.92 ± 3.24 1.18 ± 0.61 0.177 ± 0.102 0.131 ± 0.047 0.132 ± 0.049 0.017 ± 0.010

N. Atlantic 7.70 ± 2.37 0.97 ± 0.44 0.092 ± 0.057 0.121 ± 0.051 0.140 ± 0.097 0.013 ± 0.008

S. Atlantic 9.78 ± 2.16 1.33 ± 0.41 0.138 ± 0.090 0.130 ± 0.043 0.104 ± 0.040 0.012 ± 0.008

Indian 16.67 ± 4.75 2.25 ± 0.85 0.284 ± 0.162 0.143 ± 0.035 0.130 ± 0.063 0.016 ± 0.008

EQU

W. Pacific 11.03 ± 5.31 1.44 ± 1.06 0.10 ± 0.078 0.134 ± 0.059 0.089 ± 0.050 0.013 ± 0.011

E. Pacific 21.16 ± 5.16 2.91 ± 0.74 0.542 ± 0.288 0.151 ± 0.043 0.178 ± 0.086 0.027 ± 0.015

Atlantic 14.33 ± 4.71 1.94 ± 0.65 0.272 ± 0.137 0.145 ± 0.039 0.140 ± 0.043 0.019 ± 0.010

MED 9.21 ± 3.71 1.34 ± 0.79 0.074 ± 0.062 0.141 ± 0.060 0.119 ± 0.107 0.011 ± 0.008

Note. Table includes annual means and standard deviations for vertically integrated net primary productivity NPP, particulate
organic carbon export fluxes at 100 m F100, and 1,000 m depth F1000, all in mol C m− 2 yr− 1, and average surface export
efficiency ratio E100/NPP= F100/NPP, mesopelagic transfer efficiency at 1,000 m E1000/100= F1000/F100, and export efficiency
to the deep ocean E1000/NPP= F1000/NPP, all ratios unitless. Ensemble were not computed for the small, high‐latitude polar ice
biomes due to noisy and/or missing data across the full ensemble.
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ensemble E100/NPP standard deviation (Figure 2d) mirror that of the mean E100/NPP with biome‐mean standard
deviations of 0.035–0.060 in most biomes and up to 0.091 in the sub‐polar Southern Ocean biome where there is
more within‐ensemble model spread.

The ensemble‐mean transfer efficiency through the mesopelagic, E1000/100 (Figure 1e; Table 4), exhibited
background levels at the biome‐scale of 0.09–0.14 for most biomes and ranged as high as 0.18 in the eastern
equatorial Pacific biome; sub‐biome regional values up to 0.3 occurred in the eastern tropical Pacific, western and
eastern tropical Atlantic, and Arabian Sea and Bay of Bengal. Some ocean biogeochemical models reduce sub‐
surface POC remineralization in low‐oxygen zones, using a parameterization based on local oxygen concen-
trations, driving higher E1000/100 values in low‐oxygen regions such as the eastern tropical Pacific, Arabian Sea
and Bay of Bengal. Furthermore, POC flux mineral ballasting from Saharan dust deposition, prescribed as an
external forcing, is likely an important contributor in at least some models (CCSM‐WHOI and CESM‐ETHZ) to
high E1000/100 in the western tropical Atlantic (Lima et al., 2014). The ensemble E1000/100 standard deviation
(Figure 2e) generally followed E1000/100 with particularly large σE1000/100 values up to 0.3 in the western tropical
Atlantic reflecting differences across models in the parameterization of POC sinking in the presence of desert
dust. The metric E1000/NPP (Figure 1f), combining surface export and mesopelagic transfer efficiencies, had
generally similar spatial patterns to E1000/100 but with lower values, reflecting the small fraction of NPP that sinks
below 1,000 m and is sequestered in the deep ocean. More than a factor of two variation was found for metric
E1000/NPP across biomes (0.012–0.027) with large within‐ensemble variation for some biomes where the standard
deviation approached or exceeded the ensemble mean.

To illustrate differences among the models making up the RECCAP2 multi‐model ensemble, global in-
tegrals of the annual average biological pump metrics are displayed in Figure 3. A box‐whisker plot is
shown for each model ensemble member quantifying the interannual variability for each model for the
RECCAP2 reporting period (1985–2018). Note that some RECCAP2 models did not report F1000, resulting
in missing estimates for E1000/100 and E1000/NPP. Some models stood out as either anomalously low (e.g.,
FESOM‐REcoM‐LR for NPP) or high (e.g., NEMO‐PlankTOM12.1 for F100) relative to the other REC-
CAP2 ensemble members, though inter‐model agreement alone is not necessarily a robust indicator of
model skill (see Section 3.2). For global E100/NPP, the models were roughly split into low (0.10–0.12) and
high (0.16–0.19) groups (Figure 3d). Global F1000, E1000/100, and E1000/NPP varied widely for the smaller
number of available models (Figures 3c, 3e, and 3f).

3.2. Model‐Observational Comparisons

The global ocean biological carbon pump metrics from the RECCAP2 multi‐model ensemble were compared
against corresponding literature values in Table 5 and Figure 4. The RECCAP2 multi‐model ensemble global‐
integrated NPP value, 41.5 ± 9.0 Pg C yr− 1, was at the lower end of literature estimates (43.5–68 Pg C yr− 1),
and the inter‐quartiles have limited overlap. Similarly, global‐integrated F100 from the multi‐model ensemble of
6.08 ± 1.17 Pg C yr− 1 was lower than the mean of the literature estimates of sinking POC flux (∼8 Pg C yr− 1,
range 4–13 Pg C yr− 1), though the inter‐quartiles overlapped substantially because of the large range in
observation‐based estimates. The global‐integrated model ensemble F1000 value of 0.65± 0.24 Pg C yr− 1 fell near
one low estimate of 0.66 Pg C yr− 1 (Henson et al., 2012) and below two other literature estimates of 1.1 Pg C yr− 1.
The global multi‐model ensemble‐mean export and transfer efficiencies, E100/NPP (0.154 ± 0.026) and E1000/100

(0.122 ± 0.041), were within the range of literature values after removing the high E100/NPP values (0.3 and 0.38)
from Laws et al. (2000) and acknowledging one low outlier model for global E1000/100 (∼0.05; CCSM‐WHOI;
Figure 3e).

Thewide range of literature estimates reflects differences inmeasurementmethodologies, biases, and uncertainties
in the data sets used for biological carbon pump metric estimation, as well as uncertainties introduced by data
sampling biases, aggregation, time/space interpolation and modeling approaches. At global scales, in situ obser-
vational sampling for some variables remains sparse and regionally patchy, and satellites, empirical relationships,
and numerical models have been used to gap‐fill for global‐scale product generation. For example, even with field
data sets available for oceanNPP based on 14C uptake incubation studies, satellite remote sensing has been required
to create uniform global NPP products, which have been calibrated/validated against 14C NPP field data.

A variety of in situ methods have been used to estimate surface ocean export flux estimates (∼F100) including
drifting sediment traps and 234Th deficits. To derive global‐scale fields of export, extrapolation from the limited in
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Figure 3.

Global Biogeochemical Cycles 10.1029/2024GB008156

DONEY ET AL. 12 of 26

 19449224, 2024, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

B
008156 by Schw

eizerische A
kadem

ie D
er, W

iley O
nline L

ibrary on [04/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



situ data is required, which generates uncertainties in the derived estimates due to the underlying data sparsity
(Henson et al., 2024). Typically, satellite data are used to build an empirical relationship between flux and readily
derived variables, such as sea surface temperature or chlorophyll concentration. Other approaches include
merging satellite data with food‐web models (e.g., Siegel et al., 2014). Observation‐based global F1000 estimates
have been generated from sediment trap data (Mouw et al., 2016a), and estimates of both global F100 and F1000

have been derived from inverse and data‐assimilation ocean models (e.g., DeVries & Weber, 2017; Nowicki
et al., 2022).

The biological carbon pump model comparison to observation‐based estimates was extended in Figure 5 to a
regional level using the POC flux estimates from sediment trap and 234Th deficit observations from Mouw
et al. (2016a) as aggregated by Mouw et al. (2016b) into monthly climatological values for Longhurst biogeo-
graphic provinces (Figure 5). The Mouw et al. (2016a) date set aggregates the limited available field data that is
often spatially sparse and locally high frequency with considerable mesoscale variability, some of which may be
aliased into monthly and province scale averages. Therefore, robust uncertainty estimates are not available for the
Mouw et al. (2016b) observational climatology. The variations across the RECCAP2 models are displayed as
box‐whisker plots. The members of the model ensemble exhibited a wide range of NPP, F100 and F1000 values for
many provinces, but the multi‐model ensemble interquartiles still overlapped the observational climatology for
only about half of the provinces. The substantial model‐observational offsets indicate recurring regional dif-
ferences consistent across multiple models in the RECCAP2 ensemble; these disagreements could be targets for
future ocean biogeochemical model development and analyses of observational sampling biases.

The model ensemble members also exhibited extreme model‐data differences in some provinces where the
observational climatology value falls outside the simulated range, including model outliers. The RECCAP2
models underestimated the strength of some biological carbon pump metrics, relative to the observational
climatology, in polar and sub‐polar provinces in the North Pacific (BERS, low NPP and F100) and North Atlantic
(NADR, low NPP); and in equatorial upwelling provinces in the Arabian Sea (ARAB, low NPP), Eastern
Equatorial Pacific (PEQD, low F100) and Guianas coast (GUIA, low F1000; note that this is a small, productive
region that may not be well represented in global‐scale models). The model ensemble overestimated the bio-
logical pump in the South Pacific gyre (SPSG, high NPP and F100), Indian monsoon gyre (MONS, high NPP and
F100), and Western Pacific subarctic gyres (PSAW, high F1000).

3.3. Biological Pump Imprint on Ocean CO2 System and Biogeochemistry

The ocean biological carbon pump imprints on surface and sub‐surface biogeochemistry (see Section 1), and these
effects were simulated in the RECCAP2 models. A strong positive mesopelagic AOU signal is generated by
cumulative biological O2 consumption along the ventilation paths of subsurface waters (Najjar et al., 2007). AOU
fields thus integrate non‐local, large‐scale biogeochemical dynamics and physical resupply of O2 from the sur-
face. A key contributor to AOU is the remineralization of sinking POC flux in the mesopelagic, quantified by the
large decline between F100 and F1000 and low transfer efficiency through the mesopelagic E1000/100 (Figures 1 and
3; Tables 4 and 5). For the RECCAP2 model ensemble, there was generally good model‐data agreement in the
geographic pattern in AOU averaged over the mesopelagic (100–1,000 m) (Figure 6).

The model ensemble captured the regional AOU variation of <50 to >250 μmol kg− 1 relative to WOA (grid‐scale
R2 = 0.942; RMSE = 21.3 μmol kg− 1; mean model bias = +1.34 μmol kg− 1), with good agreement also on the
scale of Longhurst provinces where the model‐ensemble interquartile spans the observational data (Figure 5) for
most of the subset of provinces (Figure 5) shown in Figure 6c. The RECCAP2 models did not exhibit a strong
inter‐model relationship between global mean AOU and F100 (not shown). A weak relationship between AOU and
F100 across models arises because AOU is strongly influenced by the strength of model thermocline ventilation
rates (e.g., Dutay et al., 2002; Matsumoto et al., 2004), which vary substantially across models (Terhaar et al.,

Figure 3. Boxplots showing median values, interannual interquartile ranges, and outliers (+ symbols when present) of biological pump metrics across the individual
models in RECCAP2 (Table 1). Globally integrated, annual (a) net primary productivity NPP, (b) particulate organic carbon export fluxes at 100 m F100, and (c) 1,000 m
depth F1000, all in Pg C yr− 1. Global and annual average (d) surface export efficiency ratio E100/NPP = F100/NPP (Equation 1), (e) mesopelagic transfer efficiency at
1,000 m E1000/100= F1000/F100 (Equation 2), and (f) export efficiency to the deep ocean E1000/NPP= F1000/NPP, all ratios unitless. CCSM‐WHOI output does not include
the year 2018 and SIMPLE‐TRIM does not simulate interannual variability. Transfer efficiency ratios are not given in panels e and f for models lacking the
corresponding F1000 in the RECCAP2 database (PlankTOM12, MOM6‐Princeton, ORCA1‐LIM3‐PICES, CNRM‐ESM2, and EC‐Earth3).
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Table 5
Comparison of Literature‐Based, Global Observation‐Based Ocean Biological Carbon Pump Metrics With the RECCAP2
Model Ensemble Means and Within‐Ensemble Standard Deviations

Net primary production NPP (Pg C yr− 1) References

43.5 VGPM Behrenfeld and Falkowski (1997)

52 CAFÉ Silsbe et al. (2016)

68 Carr (2002) and Carr et al. (2006)

49 Marra et al. (2003)

52 CbPM2 Behrenfeld et al. (2005)

52.9 ± 9.1 Observational mean and STD

41.5 ± 9.0 RECCAP2 model ensemble mean and STD

POC Export ∼F100 (Pg C yr− 1)

4 Henson et al. (2012)

9.6 Dunne et al. (2007)

11.1–12.9 Laws et al. (2000)

5.7 Siegel et al. (2014)

9.6 Schlitzer (2000); inversion

9–13 Laws et al. (2011)

8.8 (7.3 at 100 m) DeVries and Weber (2017); data assimilating

7.3 (6.4 at 100 m) Nowicki et al. (2022)

8.20 ± 2.78 Observational mean and STD

6.08 ± 1.17 RECCAP2 model ensemble‐mean and STD

POC Flux 1,000 m F1000 (Pg C yr− 1)

0.66 Henson et al. (2012)

1.1 DeVries and Weber (2017)

1.1 Nowicki et al. (2022)

0.95 ± 0.25 Observational mean and STD

0.65 ± 0.24 RECCAP2 model ensemble mean and STD

Export Ratio ∼E100/NPP = F100/NPP

0.1 Henson et al. (2012)

0.19 Dunne et al. (2007)

0.3 Laws et al. (2000); food web

0.38 Laws et al. (2000); empirical

0.103 Siegel et al. (2014)

0.17 DeVries and Weber (2017)

0.13 (for POC only) Nowicki et al. (2022)

0.18 (for POC + DOC + vertical migration) Nowicki et al. (2022)

0.196 ± 0.106 Observational mean and STD

0.154 ± 0.026 RECCAP2 model ensemble mean and STD

Transfer flux efficiency E1000/100 = F1000/F100

0.19 Henson et al. (2012)

0.13 DeVries and Weber (2017)

0.15 Nowicki et al. (2022)

0.157 ± 0.031 Observational mean and STD

0.122 ± 0.041 RECCAP2 model ensemble mean and STD
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2024). Model deep‐ocean AOU was not evaluated because model spin‐up time scales were too short for the
simulations to reach steady‐state (Séférian et al., 2019), an issue that also would affect simulated deep‐ocean pre‐
industrial DIC (Mikaloff Fletcher et al., 2007). Some imprint of the observational fields used for model initial
conditions could also be retained in the simulated mesopelagic AOU depending on the model spin‐up procedure.

The simulated regional patterns and global integrated surface POC export F100 (Figures 1–3; Tables 4 and 5) must
be balanced on appropriate time and space scales by new production and external nutrient supply, largely from
physical upwelling and mixing for most ocean regions (Ducklow & Doney, 2013). As an indicator of physical
controls on export associated with nutrient supply in the individual RECCAP2 model, global‐integrated F100

values exhibited a positive correlation with global‐ocean anthropogenic CO2 uptake (Figure 7) (DeVries
et al., 2023). This is consistent with findings from previous model intercomparison exercises where models with
stronger thermocline ventilation had both larger export flux and anthropogenic CO2 uptake (Najjar et al., 2007).
This correlation is due to a common underlying physical mechanism whereby stronger ventilation enhances both
the downward transport of anthropogenic CO2 and the upward transport of nutrients and thus carbon export.

Figure 4. Box‐whisker plots showing median values, interquartile ranges, and outliers (red plus symbol when present) of
biological pump parameters from the RECCAP2 global ocean biogeochemical model (GOBM) ensemble (left) and
observational estimates (right; Table 5). Global integrated, annual (a) net primary productivity NPP, (b) particulate organic
carbon export fluxes at 100 m F100, and (c) 1,000 m depth F1000, all in Pg C yr− 1 (note that the median line for F1000 is also the
upper interquartile because two of the three observational estimates match). Global and annual average surface export
efficiency ratio (d) E100/NPP = F100/NPP (Equation 1), and (e) mesopelagic transfer efficiency at 1,000 m E1000/100 = F1000/
F100 (Equation 2), all ratios unitless.
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The physical‐chemical solubility mechanisms controlling ocean anthropogenic CO2 uptake are well documented.
While many Earth System model studies project substantial climate‐driven changes in future ocean primary
production and other biological carbon pump metrics, with potentially important climate change‐biogeochemical
feedbacks, contemporary observations and previous model studies (Canadell et al., 2021) as well as the REC-
CAP2 biogeochemical models reported here suggest relatively weak historical climate‐driven trends in the
biological carbon pump. As physical climate change signals continue to grow, future modeling and observational
studies should continue to evaluate the capabilities to detect and attribute long‐term climate‐driven trends in
marine biopump metrics.

Seasonal variations in upper‐ocean biogeochemistry were used as a metric of the physical controls associated
with seasonal mixing and nutrient supply, which are reflected in simulated POC export. By correcting for
seasonal thermal variations in pCO2 (Equation 3), we used model monthly pCO2 fields to quantify the com-
bined effects of seasonal biogeochemical, gas‐exchange and physical processes through the seasonal amplitude
of non‐thermal pCO2, ΔpCO2,non‐thermal (Takahashi et al., 2002). The geographic pattern of ΔpCO2,non‐thermal

from the RECCAP2 model ensemble was similar to the pattern from the mean of the pCO2 observational
products (Figures 8a and 8b).

Both the model ensemble and observational products exhibited regional variations of ΔpCO2,non‐thermal that
ranged from 30 to >150 μatm with elevated values in mid‐to high latitudes as well as equatorial and eastern
boundary current upwelling regions; relative to the pCO2 observational products, the grid‐scale R

2= 0.626 with a
mean model bias = − 17.7 μatm. The magnitude of ΔpCO2,non‐thermal in the model ensemble was considerably
lower than the ensemble of observational products in the mid‐to high latitude northern hemisphere, eastern

Figure 5. Biological pump metrics aggregated into Longhurst provinces (left column; Reygondeau et al., 2013) for comparison of model results with province‐level
observational estimates from Mouw et al. (2016b). Box‐whisker plots (right column) of RECCAP2 multi‐model ensemble medians, interquartile ranges, and outliers
(red plus symbol when present) as well as observational estimates (blue asterisks) for annual‐mean (a) vertical integrated primary production (NPPint), (b) sinking
particulate organic carbon (POC) fluxes at 100 m (F100), and (c) sinking POC flux at 1,000 m (F1000), all in mol C m− 2 yr− 1, pooled into biogeochemical Longhurst
ocean provinces. Robust uncertainty estimates are not available for the observational climatology, which averages available data that is often spatially sparse and/or
concentrated in brief time intervals. Note that only the provinces reported in Mouw et al. (2016b) (listed in inset table and highlighted in color in map in left column) are
plotted in the right column box‐whisker plots.
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tropical Pacific, and Brazil‐Malvinas convergence region, suggesting a generally weaker modeled seasonal
cycling of DIC. The same low bias in the RECCAP2 models was evident on the scale of Longhurst provinces
where the values from many of the observational products fell at the top end or well above the model‐ensemble
interquartile (Figure 8c), though note the substantial disagreement across the observational products. In many
ocean regions, strong seasonality in mixed layer depth modulates vertical nutrient supply and annual‐mean
biological productivity. The weaker model ensemble ΔpCO2,non‐thermal values (Figure 8), therefore, may be
linked to the generally lower NPP and F100 values relative to observations in several polar and sub‐polar prov-
inces (Figure 5).

4. Discussion
Our analysis of the ocean biological carbon pump fields from the RECCAP2 multi‐model ensemble revealed
generally encouraging agreement with many aspects of observed patterns. Global‐integrated NPP and surface
export flux (F100) from the RECCAP2 models tended to fall at the lower end of observational estimates (Figure 3
and Table 5), and geographic patterns in NPP were generally consistent with observational data products
(Figures 1 and 5). Similar to previous model intercomparison studies (Laufkötter et al., 2015, 2016), we found
substantial within‐ensemble variation in global biological carbon pump metrics, including the presence of model
outliers (Figure 3), indicating that these aspects of biogeochemical models have not necessarily converged with
time.

Figure 6. Analysis of apparent oxygen utilization (AOU, μmol kg− 1) vertically averaged over the mesopelagic zone (100–
1,000 m): (a) spatial map of RECCAP2 multi‐model ensemble average, and (b) spatial map from World Ocean Atlas
observational data set, and (c) box‐whisker plot of RECCAP2 multi‐model ensemble medians, interquartile ranges, and
outliers (red plus symbol when present) as well as observational estimate (blue asterisk) pooled into biogeochemical
Longhurst ocean provinces (Figure 5; Reygondeau et al., 2013); note that the figure displays the same subset of provinces as
in Figure 5.
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Regional patterns in the RECCAP2 model‐mean ensemble included elevated NPP, surface export flux (F100) and
export efficiency (E100) in high‐latitudes and coastal and equatorial upwelling regions, with lower values in more
oligotrophic regions. These results are in line with previous studies that found that a substantial proportion of NPP
in nutrient‐rich regions is driven by large phytoplankton such as diatoms and, combined with an active
zooplankton population, this can generate a significant export flux in the form of both dense aggregates and fecal
pellets. High‐latitude elevated biomass, colder temperatures (Dunne et al., 2005), and strong seasonality have also
been implicated in observations of higher POC export fluxes in spring and/or summer months contributing to the
annual mean (Bol et al., 2018; Buesseler et al., 2001; Henson et al., 2023; Lampitt et al., 2001). In low nutrient
regimes, such as the lower latitude oligotrophic gyres, previous studies report export flux to be low (Henson
et al., 2012) but relatively constant throughout the year with small seasonal increases in fluxes (Karl et al., 2012).
Future studies of the RECCAP2 ensemble could investigate in more detail the seasonality in NPP, F100, and E100,
exploring, for example, the seasonal variability in export ratio that can be substantial due in part to the time lag
between NPP and export flux (Giering et al., 2014, 2017; Henson et al., 2015; Laws & Maiti, 2019).

The sinking POC flux into the deep ocean (F1000) and mesopelagic transfer efficiency across the mesopelagic
zone (E1000/100) in the RECCAP2multi‐model ensemble (Figures 1 and 5) exhibited different spatial patterns than
those found for surface export, similar to findings of previous studies (e.g., Henson et al., 2012). Simulated F1000

and E1000/100 were greater in the tropical eastern Pacific, eastern Atlantic, and Arabian Sea, and E1000/100 was also
elevated in the western tropical North Atlantic and, to a lesser extent, Southern Ocean. Previous model studies
have also found substantial regional variations due to particle size and composition effects (Lima et al., 2014) that
modify empirical power curves used for modeling POC sinking and remineralization (Martin et al., 1987). Model
parameterizations tend to increase the effective remineralization length scales and thus transfer to depth in regions
with high mineral fluxes (e.g., dust, CaCO3, silica) (Armstrong et al., 2001) or in tropical oxygen minimum zones
(Dinauer et al., 2022; Laufkötter et al., 2017). The RECCAP2 regional variations in mesopelagic transfer effi-
ciency, modulated with basin‐scale variations in physical circulation‐driven sequestration time‐scale (Siegel
et al., 2021), influence the effect of the biological pump on ocean carbon storage (Kwon et al., 2009).

While we focused primarily on long‐term mean NPP and export fluxes, the RECCAP2 models also exhibited
some year‐to‐year variability (Table S1 in Supporting Information S1) and small long‐term temporal trends
(Table S2 in Supporting Information S1). However, the interannual variability and trends of these metrics are
quite small and typically much lower than within‐ensemble model differences (Figure S2 in Supporting Infor-
mation S1). No consistent positive or negative trend was observed across the models in simulated NPP and

Figure 7. Scatter plot of global‐integrated ocean anthropogenic CO2 uptake (mean of 1985–2018) (Pg C yr− 1) versus
particulate organic carbon export flux (F100, Pg C yr− 1) for individual RECCAP2 models. Anthropogenic CO2 uptake for the
same RECCAP2models was taken fromDeVries et al. (2023). A linear regression and confidence intervals for the regression
are overlain (Glover et al., 2011). The F100–anthropogenic CO2 uptake correlation was indirect through a common
underlying physical mechanism whereby stronger ventilation enhances both the downward transport of anthropogenic CO2
correlation and the upward transport of nutrients and thus F100.
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sinking POC fluxes at 100 and 1,000 m, with NPP trends of order ±0.01 Pg C yr− 1/year over the 33 years of the
time series (1985–2018). Although these trends could contain a signal from climate change, this signal is not
evident due to interannual variability. Previous modeling studies indicate that chlorophyll and NPP time series of
30–40 years length are needed to distinguish climate change trends from natural variability (Henson et al., 2010),
though a recent study suggests that climate‐change trends can emerge more rapidly in ocean color remote‐sensing
reflectance not reported for RECCAP2 models (Cael et al., 2023). Hence, the RECCAP2 analysis period may
indeed not be long enough to separate trends from interannual variability. Furthermore, any actual climate change
signal in models may be masked by temporal biases associated with incomplete model spin‐up and resulting
temporal drift (Séférian et al., 2016).

Our analysis of the biological carbon pump is relevant in several ways to the primary focus of the RECCAP2
ocean project on air‐sea CO2 fluxes and ocean uptake of anthropogenic CO2 (DeVries et al., 2023). Biological net
CO2 uptake and carbon export modulate the pre‐industrial and contemporary spatial and seasonal patterns of
surface ocean pCO2 and sea‐air CO2 flux that must be accounted for to determine anthropogenic CO2 pertur-
bations. The low model F100 values globally (Figure 3) and for mid‐to high‐latitude Northern Hemisphere and
eastern equatorial Pacific provinces (Figure 5), relative to observations, suggested that the RECCAP2 model
ensemble may have underestimated biological CO2 drawdown in high productivity regions. A weak regional
biological pump (Figure 5) could also contribute to the weaker ΔpCO2,non‐thermal values found at mid‐to high‐
latitudes and in the eastern equatorial Pacific in the model ensemble relative to observations (Figure 8). Future
work with more detailed model diagnostics could explore the connections between regional biases in simulated

Figure 8. Analysis characterizing the combined effects of seasonal biogeochemical, gas‐exchange and physical processes
using the seasonal amplitude of non‐thermal ∆pCO2non‑thermal (a) spatial map of RECCAP2 multi‐model ensemble average,
(b) spatial map from pCO2 observational data products, and (c) box‐whisker plot of RECCAP2 multi‐model ensemble medians,
interquartile ranges, and outliers pooled into biogeochemical Longhurst ocean provinces (Figure 5; Reygondeau et al., 2013).
Note that the figure displays the same subset of provinces as in Figure 5. The province means from each observational product
are plotted in panel (c) as individual points rather than as box‐whiskers because of the limited number of observational products.
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annual‐mean and seasonal export production and biases in air‐sea CO2 flux as observed in other RECCAP2
studies (DeVries et al., 2023; Hauck et al., 2023).

Ocean circulation modulates biological export flux on basin to global scales (Najjar et al., 2007), and the range in
RECCAP2 global‐integrated F100 values indicated that substantial differences exist in simulated ocean physics
within the RECCAP2 marine biogeochemical models (Doney et al., 2004). The same ocean circulation variations
also likely influenced the anthropogenic CO2 uptake estimates from DeVries et al. (2023), as indicated by the
positive correlation between anthropogenic CO2 uptake and F100 across individual RECCAP2 models (Figure 7).
This is supported by further analysis of the RECCAP2 models demonstrating that the rate of ocean overturning
circulation is strongly correlated with anthropogenic CO2 uptake in themodels (Terhaar et al., 2024). Variations in
model export could also be compared against metrics of physical stratification (Fu et al., 2022) and subsurface
oxygen fields that integrate both biological respiration and physical ventilation (Takano et al., 2023). The sub-
stantial inter‐model spread in both physical and biogeochemical metrics likely reflects common factors resulting
from differences in simulated thermocline ventilation and exchange between the surface and mid‐depth ocean.
There may also be utility in comparing ocean physical‐biogeochemical model results from historical and
contemporary periods from forced ocean‐only hindcast simulations and full coupled climate simulations using
standardized protocols such as those from the OceanModel Intercomparison Project (OMIP) (Griffies et al., 2016;
Orr et al., 2017).

A set of additional model development recommendations emerged from our analyses. One path forward would
leverage independent model skill evaluation for inert chemical tracers (e.g., CFC‐11, CFC‐12, SF6) using
standard ocean model intercomparison protocols (e.g., CMIP6 OMIP; Orr et al., 2017). The transient tracer
simulations would help decipher the physical‐biological factors controlling the simulated AOU (Figure 6).
Remineralization of sinking biological organic matter structures sub‐surface ocean DIC, O2, and nutrient fields, a
signal that must be addressed in observational estimates of anthropogenic CO2. While the predominant pathway
for ocean anthropogenic CO2 uptake involves physical‐chemical dynamics, rather than biological dynamics, the
same physical circulation and mixing processes influence biogeochemical rates such as nutrient supply. There-
fore, evaluation and improvement of the simulated ocean biological pump may also improve the model repre-
sentation of anthropogenic carbon uptake.

The substantial variation in biological pump metrics shown here highlights the need to reconcile inter‐model and
model‐observational differences. Challenges arise for model improvement because there is limited agreement on
the appropriate parameterizations for many key processes of biological carbon export (Henson et al., 2022),
subsurface particle sinking, and remineralization. Many global models include detailed representation of euphotic
zone processes but rather a more simplistic representation of mesopelagic processes. Thus, the simulated global‐
scale biological carbon pump responses to interannual variability, let alone decadal climate change, remain poorly
constrained (Henson et al., 2016). Following the mechanistic approach reported in previous model intercom-
parison studies for primary production (Laufkötter et al., 2015) and export production (Laufkötter et al., 2016),
future studies could emphasize how overall model behavior reflects differences in model parameterizations,
functional equations, and parameter values in both the euphotic and mesopelagic zones. The hyperspectral ca-
pabilities from NASA's recently launched Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission also
offer new opportunities for evaluating simulated phytoplankton community composition fields and developing
new model parameterizations (Cetinić et al., 2024).

Opportunities exist to leverage process‐level information from lab and field studies to improve model treatment of
POC production, sinking POC flux and extension of export pathways beyond POC gravitational sinking, for
example, physical subduction and active migration by organisms (Boyd et al., 2019; Henson et al., 2022; Siegel
et al., 2016, 2023). Phytoplankton community structure, captured to some degree in many models (Table 2), in-
fluences the magnitude and composition of export flux from the euphotic zone, the heterotrophic consumers of
sinking POC and zooplankton community structure (Boyd&Newton, 1995; Cavan et al., 2019).Model treatments
could be improved for grazers such as zooplankton that decrease particle flux by consuming phytoplankton and
sinking POC, while also increasing flux by packaging POC into fecal pellets with a wide range of sinking speeds
(Steinberg & Landry, 2017; Turner, 2015). Grazer diel vertical migration may also need to be incorporated as a
carbon shunt below the depth horizons of most intense heterotrophic activity (i.e., upper mesopelagic zone),
consuming POC in the surface ocean and respiring it at grazer resident daytime depth (Bianchi et al., 2013).
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More mechanistic treatment of particle dynamics may also be feasible. Particle disaggregation, physically
through shear or biologically through fragmentation by grazers, likely contributes substantially to the decline in
POC flux with depth while also providing a POC source for mesopelagic microbes (Briggs et al., 2020;
Laurenceau‐Cornec et al., 2020). Microbes can also directly reduce POC flux, as they constantly attach and detach
from sinking POC (Kiørboe et al., 2002, 2003), hydrolyzing and respiring the POC. While variable particle
sinking speed is included in some model parameterizations, large meta‐analyses of empirical data have struggled
to find a strong link between sinking rate and size of particles because of the vast variability in particle type,
methods used to measure sinking rate, and environment from which the particles were collected (Cael
et al., 2021).

5. Conclusions
The analysis of the RECCAP2 ocean biogeochemical model ensemble identified generally encouraging model‐
data agreement in large‐scale spatial patterns of particulate organic carbon production and sinking flux, though
with substantial spread in biopump metrics across the model ensemble and observational products. Model
ensemble export flux at 100 m F100 and export ratio F100/NPP fell at the lower end of observational estimates, and
there is some indication that the model ensemble may have underestimated regional biological CO2 drawdown
and air‐sea CO2 flux in high productivity regions. Recognizing the more limited observational constraints, the
analysis found approximate model‐data agreement for the particulate organic carbon flux at 1,000 m F1000 and
mesopelagic transfer efficiency F1000/F100. Substantial model‐data biases were identified for all the biological
carbon pump metrics in some ocean regions.

The RECCAP2 analysis presented standard ocean biological carbon pump metrics for accessing biogeochemical
model skill, and the identified model biases should be used to guide directions for future model development.
Many of new process‐level insights from ocean field and remote sensing studies (Osborne et al., 2023) are already
driving progress on improved mechanistic parameterizations for sinking particle flux (e.g., Dinauer et al., 2022),
vertical migration (e.g., Archibald et al., 2019), and other key factors in the marine biological pump. Together
with global‐scale ocean biogeochemical data compilations and syntheses (e.g., Clements et al., 2023; Mouw
et al., 2016a; Mouw et al., 2016b), there are now promising new opportunities to evaluate, constrain, and improve
ocean biological carbon pump simulations.

Despite decades of research on GOBMs, the RECCAP2 analysis demonstrated that there remain large spreads
in the simulated biological pump metrics across the suite of RECCAP2 models. For example, the within‐
ensemble standard deviation for export flux at the base of the euphotic zone F100 is of the order of 20% of
the ensemble mean, and the fractional standard deviation is even larger at about 35% for POC flux at 1,000 m
F1000. Even acknowledging limitations in observational constraints, the large spread in these key simulated
carbon cycle metrics suggests that there is no simple resolution by adjusting a single parameterization or
parameter value. Nutrient supply to the upper ocean, biological export, remineralization profiles, and nutrient
fields involve coupled and complex biophysical dynamics, and resolution of remaining ocean biological pump
uncertainties will likely involve careful and thoughtful analysis of system‐level interactions between ocean
physics and biogeochemistry. In future studies, we recommend that biogeochemical models should be further
refined to better represent physical and biological processes affecting carbon export, and that increasing the
number and quality of carbon export observations is critical for improving our understanding of the ocean's
biological carbon pump.

Data Availability Statement
The RECCAP2 ocean data collection can be found in Müller (2023).
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