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• Tibetan Plateau pristine environment
has been affected by atmospheric pol-
lutants through long range transport.

• Microplastics have been detected from
glacier surface snow in Tibetan Plateau.

• Atmospheric transport played an im-
portant role on microplastics into the
plateau.

• Ice core may provide an opportunity to
study history variations ofmicroplastics.
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Microplastics are globally prevalent on a large scale in various marine and terrestrial environments, including
Arctic snow and precipitation in protected areas of the United Sates. However, reports of microplastics from gla-
ciers are rare, especially for the Tibetan Plateau (TP), which is widely known as the world's Third Pole and Asian
Water Tower. Adjacent to human settlements in South Asia, East China, and Central Asia, the TP features regular
cross-border air pollution (e.g., black carbon and mercury), which can affect its vulnerable and pristine environ-
ments. In previous studies, abundant microplastics have been reported from Tibetan rivers/lakes water and sed-
iments, and surface soils. We detectedmicroplastics in glacier surface snow on the TP, which were isolated from
the impact of human activities, indicating that microplastics can be transported over long distances. This evi-
dence is expected to be significant for understanding the atmospheric transport of microplastics to the TP, and
provides a global perspective on the microplastic cycle.

© 2020 Published by Elsevier B.V.
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Microplastics (MPs) have been acknowledged internationally as pol-
lutants and a significant environmental hazard since the 1960s (Kenyon
and Kridler, 1969; Revel et al., 2018; Zeng, 2018; Zhang Q. et al., 2020).
To date, studies on MPs from atmospheric deposition and glaciers re-
main limited, and the magnitude of their environmental effects is yet
to be assessed (Hale et al., 2020; Wright et al., 2020; Zhang Y. et al.,
2020). Recently, abundant MPs have been detected from the
laciers of the Tibetan Plateau: Evidence for the long-range transport of
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supraglacial debris of the Forni Glacier (Italian Alps) (Ambrosini et al.,
2019), European and Arctic snow (Bergmann et al., 2019), and precipi-
tation in the protected areas of the United States (Brahney et al., 2020).
These results suggest that atmospheric long-range transport (or air-
borne pathways) and deposition can be a significant and non-
negligible pathway for MPs in the environment (Evangeliou et al.,
2020; Hale et al., 2020; Wright et al., 2020).

The Tibetan Plateau (TP), known as the world's Third Pole with lim-
ited anthropogenic activities, is extremely sensitive to global environ-
mental changes because of its unique topography (Yao et al., 2012). It
is surrounded by regions dominated by the production of plastics
(China and other Asian countries) and the dismantling of commercial
ships (South Asia, India, Bangladesh, and Pakistan) (PlasticEurope,
2019). The recognition of MP pollution in the remote area of the TP
might be an important scientific issue and a relevant topic in addressing
the global plastic cycle (Allen et al., 2019; Evangeliou et al., 2020; Bank
and Hansson, 2019). However, studies on MPs in high-altitude glaciers
of this remote area have not been reported yet.

In this work, snow samples from two glaciers are studied. Laohugou
glacier No.12 is located in the Qilian Mountains of the northern Tibetan
Plateau. It is a large valley glacier with an area of 21.9 km2. Qiangyong
glacier is located between the Himalayan ranges and the Yarlung
Zangbo River in the southern Tibetan Plateau, with a length of 4.6 km
and a total area of 7.7 km2. In snow samples collected from the
Qiangyong glacier (QY) in the southern TP and Laohugou glacier No.
12 (LHG) in the northern TP (Text S1, Table S1, and Fig. S1 in the supple-
mentary information (SI)), three shapes of MPs were detected (fiber,
fragment, and film) using FTIR and Raman spectroscopy (Fig. 1a). For
themeasured MPs in snow, most fibers were black, similar to those de-
tected from urban atmospheric deposition (Zhang Q. et al., 2020),
whereas the films were of different colors (red, green, and blue). The
polymers identified from the glacier snow samples included polyamide
(PA), rubber, polypropylene (PP), polyethylene terephthalate (PET),
polycarbonate (PC), polytetrafluoroethylene (PTFE), and polyethylene
(PE) (Fig. 2a and Table S2 in SI). To date, fibers are the most common
shape of MPs found in Tibetan glaciers. The latest studies on atmo-
spheric MP indicate that the main shape of suspected MPs in urban
areaswasfiber (Liu K. et al., 2019; Liu C. et al., 2019). In rural and remote
areas of Europe, fragment was the dominant shape from wet and dry
deposition (Klein and Fischer, 2019; Allen et al., 2019). No spherical or
pellet-shapedMPs, which are commonly found in seawater or freshwa-
ter, were found from the TP glaciers (Lambert andWagner, 2017). From
Alps glacier snow samples, it's reported that fibers represented 65.2%
and fragments 34.8% of items in all samples pooled; both microplastic
fragments and fibers were of diverse colour (Ambrosini et al., 2019).
As to the snow samples from Andes glacier, transparent, blue, white
and red mcroplastics were the morest abundant colors (Cabrera et al.,
2020).

MPs in the environment vary in shape, size, and polymer composi-
tion depending on the sources, degradation and erosion processes,
and residence time. For example, atmospheric MPs from different re-
gions (urban, suburban, and remote locations) show large differences
in size distributions and chemical compositions (Allen et al., 2019; Cai
et al., 2017; Zhang Y. et al., 2020). Most fragment particles were usually
less than 50 μm in size, but fibers were predominantly 100–300 μm in
length (Hale et al., 2020). In this study, MP sizes less than 100 μm
were predominant in the TP snow (Fig. S2 in SI). It was expected that
the MP abundance increased as the fragment size decreased (Hale
et al., 2020). Thiswould correspondwith the results of studies in the re-
mote areas of Europe, where MP fibers were found to be larger than
2600 μm, whereas MPs with sizes of 50–150 μm contributed to more
Fig. 1.Microplastics measured from glacier snow in the Tibetan Plateau (a), and (b) atmospher
Glacier and Qiangyong Glacier. In part (a), the abbreviations for the measured polymers can b
density of 1 g/cm3, and settling velocities were calculated using the Stokes law (0.3, 0.003, an
GDAS 1 degree archived global meteorology and run in the backward mode with a continuous
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than 50% of the total detected MPs (Allen et al., 2019). Approximately
60% of the MP particles in sea ice samples were approximately 11 μm
in size, with approximately 30% of MP particles in the range of
11–25 μm (Peeken et al., 2018). The size distribution of MPs in
European and Arctic snow (11–500 μm, with 60% in the range of
11 μm) was unexpectedly similar to that found in Arctic sea ice and
deep-sea sediments (Bergmann et al., 2017, 2019; Peeken et al.,
2018), indicating the presence of numerous particles below the detec-
tion limit of 11 μm. For Alps glacier snow, about 39% of plastic items
could not be characterized because their size was below the limit of de-
tectability (~100 mm) due to the limitation od measurements
(Ambrosini et al., 2019). In the TP, the smallest MPs in glacier snow
were less than 10 μm in diameter, although MPs up to 500 μm long
were also detected (Fig. 1a). As the MP particles found in European
and Arctic snow were quite small (60% were ~11 μm) (Bergmann
et al., 2019), MPs in Tibetan glaciers may be similar due to the snow de-
position of MPs onto glacier surfaces. Due to the limited data in this
study, we cannot provide comprehensive MP size distributions.

According to data released from PlasticsEurope (2019), plastic pro-
duction reached 359 million metric tons in 2018 with an annual in-
crease of 3%. Plastic production in Asia accounts for approximately
51% of global production (PlasticsEurope, 2019). Once these plastics
have been released into the environment, the transportation of MPs
through air andwater flow is practically impossible to mitigate through
regulatory measures. It has been estimated that long-range transport
accounted for more than 1000 metric tons of plastic deposition on
protected areas in the Western United States annually (Brahney et al.,
2020). Wind transfer could deposit 7–34% of primary or waste MPs
into the oceans (Boucher and Friot, 2017; Evangeliou et al., 2020), and
a proportion of oceanic MPs can also be transported as atmospheric
MPs (Allen et al., 2020). These findings further highlight the importance
of atmospheric transport for MP deposition (Zhang et al., 2019). Atmo-
spheric transport ofMPswas also considered to be amajor pathway into
remote regions (Brahney et al., 2020; Evangeliou et al., 2020).

The potential sources and routes by which engineered MPs entered
the TP have been discussed in previous studies (Zhang et al., 2019). I n
the northeast part of the TP, MPs in water bodies mainly came from
tourism. Activities such as agriculture and previous secondary indus-
tries were also found to be the major contributors to soil MPs (Feng
et al., 2020; Xiong et al., 2018). Studies in riverwater and lakeshore sed-
iments in the TP indicated the impact of human activities (e.g., solid
waste and wastewater) (Jiang et al., 2019; Zhang et al., 2016). Atmo-
spheric MP deposition should also be considered in remote areas
(Hale et al., 2020). In this study, tentative atmospheric particle model-
ing for 100 μmMP particles suggested local input of MPs in the studied
areas (Fig. 1b). However, particle dispersion modeling, undertaken to
consider 10 and 1 μm MP particles, suggested that the atmospheric
transportation of MPs deposited on the studied glaciers mainly origi-
nated from Central Asia, Northern Africa (autumn), across Central
Europe and as far as the Atlantic Ocean (winter and spring), down
over the northern Indian Ocean and up toward Russia (summer)
(Fig. 1b). The simulation results may indicate that MPs arriving at the
TP could have been transported from both, short- and long-range dis-
tances, because human activities at higher elevations of the plateau is
minimal.

The TP has ensured a permanent flow to Asia's major rivers, signifi-
cantly influencing the socio-economic development of surrounding
countries, which account for a fifth of the global population (Yao et al.,
2012; Immerzeel et al., 2019). The population density and gross domes-
tic product were intensively distributed around the TP (Fig. 2a and b),
suggesting that more plastic production, use, waste, and leakage
ic particle dispersion modeling of 100, 10, and 1 μmMP particles arriving at the Laohugou
e referred from Table S2 in SI. In part (b), MP particles were modeled as spherical with a
d 0.00003 m/s, respectively). Modeling was completed using HYSPLIT version 5 using the
tracer plume emission for 168 h at 50, 100, and 500 m above ground level.
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Fig. 2. Distributions of (a) population and (b) gross domestic product around the Tibetan Plateau, and simulated ERA-Interim annual wind (c) and spring wind (d) in the Tibetan Plateau
and its surroundings. Population and GDP data shown in (a) and (b) were downloaded from Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, https://esg.pik-potsdam.de/
projects/isimip/) (Murakami and Yamagata, 2016). These data were then obtained using PANOPLY (a Java application that allows users to make plots of data from netCDF, HDF, and
GRIB dataset). ERA-Interim data of wind for (c) and (d) were prepared on the lines of https://climatereanalyzer.org/.
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occurred in these regionsdue to extensive human activities. Simulations
of annual ERA-Interim mean wind indicated that one branch of the
westerly was forced from a high terrain into a northwesterly path
(along the Himalayas) (Fig. 2c). Particularly in the spring season,
when atmospheric brown clouds occur over South Asia (Ramanathan
et al., 2005), the polluted airmasses could reach the southernHimalayas
and are further carried by the mountain-valley breeze circulation into
the TP (Fig. 2d). Glaciers and lakes in the TP are usually distant from
major sources of pollutants. Previous studies also indicated that air pol-
lutants from South Asia could be transported into the complex topogra-
phy of the Himalayan-TP by local meteorological conditions and
regional atmospheric flows (Kang et al., 2019). For instance, a majority
of anthropogenic black carbon over the TP was transported from South
Asia, which contributed to 40–80% of surface BC in the monsoon season
(Yang et al., 2018; Zhang et al., 2018). Stable isotopes ofmercury in sed-
iments of Lake Gokyo at high elevations of the Himalayas suggested that
transboundary mercury transport from anthropogenic emissions in
South Asia was the dominant source (Huang et al., 2020). Based on
this understanding and as an important air pollutant, MPs can be
transported by atmospheric circulation and deposited on glaciers and
lakes far from their source regions because of their buoyant and persis-
tent properties, indicating that the long-range atmospheric transport of
MPs is a significant source of their deposition on the TP. As shown in
Figs. 1b and 2c, especially in the summer season, the southern TP was
mainly influenced by the South Asian monsoon, which brought excess
precipitation to the plateau (Yao et al., 2012). “Plastic rains” (wet depo-
sition), as mentioned by Brahney et al. (2020), may bring a large
amount of MPs to the glacier surface.
4

The TP contains the largest volume of glaciers outside the polar re-
gions,most ofwhich are undergoing rapid retreat (Yao et al., 2012). Gla-
ciers can provide insight into the long-range (or global-scale)
atmospheric transport of air pollutants (including MPs, or black car-
bon), owing to their extremely high elevation, meteorological (wind)
conditions, and unique dry and wet (snow) deposition processes
(Kang et al., 2019; Zhang Y. et al., 2020). MP deposition, accumulation
in glaciers, or release from melting glaciers may provide important in-
formation that has so far been neglected, such as high-altitude MP
transport dynamics (shape, size, ubiquity, and historical variations),
and possible atmospheric source identification. As glaciers are currently
retreating, these small particles will be released into aquatic ecosys-
tems. The possible contamination and impacts of MPs on the ecosys-
tems in the TP and other remote areas are increasingly concerning,
andmay pose a future climatic risk due to their ability to absorb solar ra-
diation and accelerate melting (Bergmann et al., 2019; Brahney et al.,
2020; Evangeliou et al., 2020). Technological developments will en-
hance the study of MPs in the cryospheric environment in the future,
and provide inroads into nanoplastic analysis (Materic et al., 2020;
Sun et al., 2020). Mitigating the emissions of polymers into the air and
aquatic ecosystems should be a universal responsibility to avoid exceed-
ing critical environmental threshold concentrations.
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