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Abstract17

Accurate Arctic sea-ice forecasting for the melt season is still a major challenge because of the18

lack of reliable pan-Arctic summer sea-ice thickness (SIT) data. A new summer CryoSat-19

2 SIT observation dataset based on an artificial intelligence algorithm may alleviate this20

situation. We assess the impact of this new dataset on the initialization of sea-ice forecasts21

in the melt seasons of 2015 and 2016 in a coupled sea ice-ocean model with data assimilation.22

We find that the assimilation of the summer CryoSat-2 SIT observations can reduce the23

summer ice-edge forecast error. Further, adding SIT observations to an established forecast24

system with sea-ice concentration assimilation leads to more realistic short-term summer25

ice-edge forecasts in the Arctic Pacific sector. The long-term Arctic-wide SIT prediction26

is also improved. In spite of remaining uncertainties, summer CryoSat-2 SIT observations27

have the potential to improve Arctic sea-ice forecast on multiple time scales.28

Plain Language Summary29

Arctic sea ice is rapidly declining due to global warming, especially in summer. Accu-30

rate sea-ice forecasting is important to understand the potential influence of these changes31

and devise effective responses. The performance of sea-ice forecasts highly depends on the32

accuracy of the initial sea-ice states. So refining the initial conditions of sea-ice forecasts33

with satellite observations is a common way to reduce forecast errors. However, obtain-34

ing reliable summer pan-Arctic satellite sea-ice thickness (SIT) data is challenging due to35

complex ice-surface conditions in summer. A new artificial-intelligence-based summer SIT36

satellite data product may improve initial SIT states. We integrate this dataset into a sea-ice37

forecast system to evaluate its impact on forecast skill. We find that the new summer satel-38

lite SIT data can reduce short-term ice-edge location forecast errors and benefit long-term39

SIT forecasts.40

1 Introduction41

Arctic sea ice is declining at unprecedented speed (Rothrock et al., 1999; Comiso et al.,42

2008; Kwok & Rothrock, 2009; Stroeve et al., 2012), which would pose challenges to climatic43

and ecological stakeholders (Landrum & Holland, 2020). The Arctic Passage, opening up44

with the gradually melting summer sea ice, calls for accurate Arctic sea-ice prediction from45

daily to seasonal scales for safe navigation (Jung et al., 2016).46

Accurate initialization of sea-ice state is vital for predicting Arctic sea ice (e.g., Blanchard-47

Wrigglesworth et al., 2011; Guemas et al., 2016; Xie et al., 2016; Dirkson et al., 2017; Bushuk48

et al., 2022). The assimilation of sea-ice concentration (SIC) has improved the short-term49

sea-ice forecasts greatly as documented in the literature, and is now widely used at forecast-50

ing centers (e.g., Hebert et al., 2015; Lemieux et al., 2015). Sea-ice thickness (SIT) persists51

longer, therefore assimilation of SIT raises long-term sea-ice forecast skills even higher (Day,52

Hawkins, & Tietsche, 2014; Shu et al., 2021; Mu et al., 2022).53

However, the potential impacts of summer SIT observations on sea-ice forecasts are54

not examined comprehensively yet due to a lack of data. An effective retrieval method for55

the remotely sensed SIT from May to September was desired (Laxon et al., 2013; Ricker et56

al., 2014). The complex summer ice-surface conditions restrict the application of classical57

algorithms designed for winter conditions. For instance, melt ponds which occupy a huge58

fraction of the sea-ice surface in the melt seasons (Maykut et al., 1992) complicate the clas-59

sification algorithms (Lee et al., 2018; Tilling et al., 2019) and introduce large uncertainties60

due to increased moisture in the snow (Drinkwater, 1991). On the other hand, in-situ Arctic61

SIT observations are rather scarce and localized, which can be hardly used for assimilation62

due to their limited spatial representation within a relatively large model grid cell.63
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In a recent study, Dawson et al. (2022) presented the first estimate of pan-Arctic summer64

sea-ice freeboard from radar altimeter by using a 1D convolutional neural network (CNN)65

to distinguish ice leads from melt ponds. Landy et al. (2022) converted summer CryoSat-266

radar freeboard to SIT and applied further corrections. The spring predictability barrier of67

the Arctic sea ice (e.g., Day, Tietsche, & Hawkins, 2014; Bushuk et al., 2017) suggests that68

sea-ice forecast should benefit from the initialization with SIT in the melt season (Bushuk et69

al., 2020). Therefore, it presents an opportunity to explore the extent to which the summer70

SIT observation could improve the real-time forecast skill. Min et al. (2023) demonstrated71

that assimilation of summer SIT corrects the overestimation in the Combined Model and72

Satellite Thickness (CMST; Mu et al., 2018b) product. Y.-F. Zhang et al. (2023) found73

that the assimilation of May to August CryoSat-2 SIT anomalies improves local SIC and74

sea-ice extent (SIE) forecasts in September. However, the influence of assimilating summer75

CryoSat-2 SIT observations on short-term sea-ice forecast in summer and on long-term76

forecast extending beyond September still needs further investigation.77

In this study, we focus on the impact of summer SIT observations on the daily and78

seasonal forecast skills of a sea-ice prediction modelling system. In particular, we perform79

a series of short- and long-term ensemble sea-ice forecasts where the sea ice-ocean initial80

state is constrained by the summer CryoSat-2 SIT or where these data are not used. The81

benefits and challenges of using these new SIT data are evaluated and critically discussed82

using independent sea-ice data.83

2 Data and Methods84

2.1 The coupled sea ice-ocean model85

We use a regional coupled sea ice-ocean model driven by atmospheric forecasts to con-86

figure the sea ice-ocean forecast system. The model is based on the Massachusetts Institute87

of Technology general circulation model (MITgcm; Marshall et al., 1997) and covers the88

pan-Arctic region with a horizontal resolution of around 18 km as in Losch et al. (2010).89

The sea-ice model uses a viscous-plastic rheology (Hibler III, 1979; J. Zhang & Hibler III,90

1997) and a zero-layer thermodynamic formulation without heat capacity (Semtner, 1976;91

Parkinson & Washington, 1979). The readers are referred to Losch et al. (2010) and Nguyen92

et al. (2011) for more details on the model.93

2.2 Data assimilation and forecast94

The summer data assimilation system is initialized from restart files generated by CMST95

(Mu et al., 2018b) simulation with 11 ensemble members. CMST combines model physics96

with information from remote-sensed SIT and SIC observations. It successfully reproduces97

the spatio-temporal sea-ice variations (Mu et al., 2018b). In this study, the summer data98

assimilation and forecast strategy follows Mu et al. (2019). All observations and corre-99

sponding uncertainties are interpolated onto the 18-km model grid for assimilation. After100

the assimilation of sea-ice observations using a Local Error Subspace Transform Kalman101

Filter (Nerger et al., 2012) coded within the Parallel Data Assimilation Framework (Nerger102

et al., 2005), the ensemble sea-ice forecasts start from the new analyses and are integrated103

forced by the atmospheric forecasts (cf. Section 2.3). More details on the data assimilation104

and forecast system are given in Supporting Information.105

The 80-km-resolution CryoSat-2 summer SIT data set is derived from local variations106

in the CryoSat-2 radar echo response using a deep learning method (Dawson et al., 2022;107

Landy et al., 2022). This is the first estimate of pan-Arctic summer SIT from satellite108

observations. The summer SIT is assimilated into the system on a daily basis using the109

observations linearly interpolated between two biweekly (twice per month) records. How-110

ever, the roughness-induced electromagnetic range bias on the heavily-deformed ice in the111

coast regions leads to significant SIT underestimate north of the CAA and Greenland in late112
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summer (Landy et al., 2022). Practically we set the observation uncertainties higher than113

the original values over thick ice regions, while still using the provided errors over thin ice114

regions (Supporting Information). The SIC data used in the assimilation are computed at115

the French Research Institute for Exploitation of the Sea (IFREMER) based on the 85-GHz116

SSM/I and SSM/IS channels with a resolution of 12.5 km (Kaleschke et al., 2001; Spreen117

et al., 2008; Kern et al., 2010). The uncertainty of the SIC observation is set to a constant118

value of 0.25 following Yang, Losa, Losch, Jung, and Nerger (2015).119

The short-term ensemble assimilation and forecast experiments are driven by the 174-120

hour atmospheric ensemble forecasts from the United Kingdom Met Office (UKMO) En-121

semble Prediction System (EPS; Bowler et al., 2008). For the long-term prediction, the122

ensemble members are driven by deterministic atmospheric forcing (single member). The123

atmospheric forecasts from the NCEP Climate Forecast System Version 2 (CFSv2; Saha et124

al., 2014) are used for the 9-month long-term forecasts, while the ECMWF Reanalysis v5125

(ERA5; Hersbach et al., 2020) is used as the atmospheric forcing during the data assimila-126

tion to minimize the potential error caused by deviations of atmospheric forcing during this127

period.128

2.3 Experiment design129

In order to investigate the potential impact of the CryoSat-2 summer SIT on sea-ice130

forecasts, this study designs both short-term (7 days) and long-term (270 days) forecasts131

(Table. 1). These experiments are conducted over different months. The short-term experi-132

ments in 2015, which cover the melt season, start from the CMST restart files on May 1, May133

31, June 30, July 30, and August 29, respectively. Each forecast experiment lasts for 30 days134

and on each day a 7-day sea-ice forecast is run using the atmospheric forcing from the daily135

UKMO ensemble forecasts. No data assimilation is applied in the control run of the short-136

term forecasts (Short-CTRL). The Short-SIT experiments assimilate only the CryoSat-2137

summer SIT data, and the Short-SIC experiments assimilate only the SSMI/SSMIS SIC138

data, while both data sets are assimilated in the Short-SICSIT experiments. For the 2016139

experiments, only the start dates are changed to match the available restart files from CMST140

(Table. 1).141

The long-term forecast experiments are designed to diagnose the persistence of the142

assimilated CryoSat-2 summer SIT over the months from the melt season to the freezing143

season. The Long-SIT, Long-SIC and Long-SICSIT experiments with data assimilation144

start each summer month from CMST restart files. Unlike the incremental analysis update145

approach, the state vector is updated each day directly in the next 15 days to assimilate146

observations. Over that period, ERA5 atmospheric reanalysis forcing is used. Then, the147

270-day sea-ice forecasts start from the sea-ice analysis restart files and are forced by the148

CFSv2 operational atmospheric forecasts. No data assimilation is performed in the Long-149

CTRL experiments. The forecast start dates are listed in Table 1.150

2.4 Verification151

Airborne electromagnetic SIT observations north of Greenland from AWI IceBird cam-152

paigns in July and August 2016 are employed for comparison with the assimilation results.153

Locations of these observations are indicated in Figure S1. The integrated ice-edge error154

(IIEE; Goessling et al., 2016) is used to quantify the skill of the short-term ice-edge fore-155

casts. It measures the discrepancy between the forecasted and observed SIE. The reference156

observation used in this study is the 25-km-resolution NOAA/NSIDC Climate Data Record157

(CDR) of Passive Microwave Sea Ice Concentration Version 4 (Meier et al., 2021).158

To validate the skill of the long-term sea-ice forecast, we compute the IIEE and the159

RMSD of SIT against various other products and in-situ observations. The IIEE is still com-160

puted using the NOAA/NSIDC CDR data. The RMSDs of SIT are computed with respect161
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Table 1. Summary of forecast experiments design. The number in the parenthesis represents

the size of atmospheric forcing ensemble. Short: short-term forecast. Long: long-term forecast.

SIC: sea-ice concentration. SIT: sea-ice thickness.

Experiment Assimilated data Forecast
duration
(days)

Atmospheric
forcing during
assimilation

Atmospheric
forcing during
forecast

Forecast start
date

Short-CTRL / 7 UKMO (11) UKMO (11) Daily forecast
starting from
01 May 2015,

Short-SIT CryoSat-2 SIT 7 UKMO (11) UKMO (11) 31 May 2015,
30 Jun 2015,
30 Jul 2015,

Short-SIC SSMI/SSMIS
SIC

7 UKMO (11) UKMO (11) 29 Aug 2015,
25 Apr 2016,
25 May 2016,

Short-SICSIT SSMI/SSMIS
SIC and
CryoSat-2 SIT

7 UKMO (11) UKMO (11) 24 Jun 2016,
24 Jul 2016,
23 Aug 2016.

Long-CTRL / 270 ERA5 (1) CFSv2 (1) 16 May 2015,
15 Jun 2015,

Long-SIT CryoSat-2 SIT 270 ERA5 (1) CFSv2 (1) 15 Jul 2015,
14 Aug 2015,
13 Sep 2015,

Long-SIC SSMI/SSMIS
SIC

270 ERA5 (1) CFSv2 (1) 10 May 2016,
09 Jun 2016,

Long-SICSIT SSMI/SSMIS
SIC and
CryoSat-2 SIT

270 ERA5 (1) CFSv2 (1) 09 Jul 2016,
08 Aug 2016,
07 Sep 2016.
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to the 25-km-resolution CS2SMOS products (Ricker et al., 2017) when they are available be-162

tween October and the following April. Both NOAA/NSIDC CDR and CS2SMOS data are163

interpolated onto the 18-km grid to calculate the IIEE and RMSD. Note that CS2SMOS is a164

merged product using winter Cryosat-2 and Soil Moisture Ocean Salinity (SMOS) SIT. The165

SIT observations derived from upward-looking sonar moorings maintained by the Beaufort166

Gyre Exploration Program (BGEP) are used for the forecast evaluation. The three moorings167

BGEP-A, BGEP-B, and BGEP-D, which provide year-round sea-ice draft observations, are168

located at (75.0°N, 150.0°W), (78.0°N, 150.0°W) and (74.0°N, 140.0°W), respectively (Figure169

S1). The draft is converted to SIT by multiplying it by a constant factor of 1.1 as in Nguyen170

et al. (2011).171

3 Result172

3.1 Short-term ice-edge forecast173

SIT from CryoSat-2 and the short-term experiments in 2015 is shown in Figure 1.174

The spatially averaged SIT differences between Short-SIT and Short-CTRL from May to175

September 2015 are 0.10m, -0.06m, -0.37m, -0.37m and -0.39m, respectively. Overall,176

the SIT differences are smallest in May and June, when the assimilation of the summer177

CryoSat-2 observations reduces the SIT in the Pacific sector and increases it in the Atlantic178

sector (regions shown in Figure S1). Along with higher uncertainties in the CryoSat-2 SIT179

observations due to strong ice melting in July, August and September, a remarkable SIT180

reduction over the multi-year ice regions (regions shown in Figure S2) is found. SIT is also181

reduced in most of the marginal ice zones, especially in the Beaufort Sea and the Chukchi182

Sea. In our experiment, SIC assimilation, however, has only limited impact on SIT near183

the ice edge due to reliable restart states from CMST system that already has assimilated184

SIC observations. The absolute spatially averaged SIT differences between Short-SIC and185

Short-CTRL are minor, within 0.04m. In the sea ice interior region with SIC close to 1.0186

far from the ice edge, SIC assimilation can hardly further improve the SIT there by means187

of the covariance matrix, due to a narrow SIC ensemble spread. Similar results are also188

found in 2016 (Figure S3).189

Assimilating summer CryoSat-2 SIT in Short-SIT gives rise to a more reasonable SIT190

probability density distribution along the trajectories of the IceBird campaigns north of191

Greenland (Figure S4), particularly for the modal SIT. Overestimation in CMST as indi-192

cated by Short-CTRL is significantly reduced. The median SIT difference against IceBird193

observations is mitigated in Short-SIT (-0.42m), while it is -0.71m and 0.98m for CryoSat-2194

and Short-SIC, respectively. Short-SIT removes ice thicker than 3m, resulting in a lower195

median than IceBird observations. Compared to observations from BGEP moorings (Fig-196

ure S5), the assimilation of summer CryoSat-2 SIT leads to a further underestimated SIT197

particularly in May, but corrects the SIT overestimation in late summer.198

SIT assimilation has an important impact on SIC simulations through the physical199

connection between thickness and concentration over thin ice areas (Xie et al., 2016; Mignac200

et al., 2022). Short-term forecast of ice edge, defined as the 15% SIC isoline, can be strongly201

influenced by SIT assimilation. Figure 2 shows the IIEE difference in the Pacific sector202

and Atlantic sector (regions shown in Figure S1). IIEE in each forecast experiment is203

given in Figure S6. The observed SIC used as the reference for the IIEE calculation is204

the NOAA/NSIDC SIC CDR. The difference in the ice-edge position between forecasts and205

observations in 2015 and 2016 is displayed in Figure S7 and Figure S8.206

The impact of CryoSat-2 SIT assimilation on ice-edge forecasts varies with time and207

region. Compared to Short-CTRL, IIEE in Short-SIT is strongly reduced in most times and208

both sectors (Figure 2). The ice-edge position in the forecasts is consistently overestimated209

in Short-CTRL. Assimilation of the summer SIT reduces the SIT of the forecasts near the210
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Figure 1. CryoSat-2 SIT (m) used for assimilation, SIT analysis from short-term experiments,

and their differences between experiments on the 15th day from the model start date in 2015.

ice edge, resulting in a better agreement between the ice-edge forecasts and the ice-edge211

observations from the satellite compared with Short-CTRL (Figure S7 and Figure S8).212

In the Pacific sector, only a slight improvement in IIEE is observed in May and June213

for Short-SIT compared to Short-CTRL (Figure 2). However, in July, especially in 2015,214

IIEE increases and the forecast skill degrades. This can be attributed to the fact that the215

melt-pond fraction starts to increase in June and reaches its maximum in July (Feng et al.,216

2022). In particular, 2015 was the peak year for observed melt-pond fraction in the Beaufort217

Sea between 2000-2021 (Xiong & Ren, 2023). The presence of excessive melt-pond fraction218

in this region may lead to more misclassification of ice leads and melt ponds in the CryoSat-2219

sea-ice freeboard retrieval using the CNN model, which affects the SIT analysis in the Pacific220

sector. Therefore, the underestimated SIT erroneously leads to a large ice-edge error in July221

of the Short-SIT experiments. This warrants further refinement of the artificial intelligence222

algorithm used for summer CryoSat-2 SIT retrieval. In late summer, the assimilation of223

CryoSat-2 SIT observations in Short-SIT leads to more skillful ice-edge forecasts, resulting224
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in a statistically significant average reduction in IIEE of about 2.1×105 km2. For example,225

the assimilation of SIT allows the model to predict an ice-free ”cave” inside the Beaufort226

Sea in August 2015, while it is completely covered by sea ice in Short-CTRL and still with227

a connected strip of ice in Short-SIC (Figure S7). Furthermore, the ice-edge forecasts in228

the Atlantic sector are also improved for Short-SIT compared to Short-CTRL, especially in229

June (about 0.8×105 km2) and July (more than 0.9×105 km2).230

We further investigate the influences of SIC assimilation together with summer SIT231

assimilation on the ice-edge forecasts, considering the more important role of SIC observa-232

tions on summer sea-ice forecasts as documented in the literature (e.g., Posey et al., 2015;233

Yang, Losa, Losch, Liu, et al., 2015). Forecasts from the Short-SICSIT experiments are also234

compared to the Short-SIC experiments, which performs SIC assimilation only.235

In the Pacific sector, the additional SIT assimilation tends to yield more favorable ice-236

edge forecasts compared to Short-SIC (Figure 2). Similar to the IIEE differences between237

Short-SIT and Short-CTRL, the improvement in May and June between Short-SICSIT and238

Short-SIC is relatively small (only 3.0×103 km2 on average). In July, IIEE becomes smaller239

in 2015 but larger in 2016 relative to Short-SIC. In late summer, the analysis of summer240

SIT observations significantly reduces the IIEE, bringing the ice-edge forecasts closer to241

the observations. In the Atlantic Sector, Short-SICSIT tends to give rise to larger IIEE,242

resulting in more detrimental effects, particularly noticeable in May and June (Figure 2).243

Nevertheless, these mean IIEE differences are still in the range of ±0.5×105 km2, which is244

much smaller than the changes between Short-SIT and Short-CTRL. In the Atlantic sector,245

Short-SIC is already close to the observations due to a reasonable CMST SIT estimate north246

of the Svalbard and Novaya Zemlya, so further improvements are rather limited.247

Note that, as illustrated by the solid lines representing the mean IIEE differences in248

Figure 2, the impact of the summer CryoSat-2 SIT assimilation becomes more obvious with249

increasing lead time in Short-SICSIT. The improvements of Short-SICSIT relative to Short-250

SIC increase as forecast progressing, while the deteriorations of IIEE become smaller, with251

the exception of the June 2016 forecasts.252

3.2 Long-term sea-ice forecast253

The Long-SIT experiments with summer CryoSat-2 SIT assimilation provides signifi-254

cant benefits for ice-edge and thickness forecasts against Long-CTRL. Reductions in IIEE255

are found for the first 30 days in May, June and August of 2015 and 2016 (Figure S9a, b).256

For experiments also initialized with SIC constraints, the IIEEs are reduced for most of the257

time during these three months, but not overall (Figure 3a, b). For the forecast initialized258

in July, the CryoSat-2 SIT assimilation is generally detrimental and only effective for a few259

days due to the underestimated thickness uncertainties caused by melt ponds. In Septem-260

ber, improvements in ice-edge forecasts without SIC assimilation are seen for the first three261

weeks in 2015, and two weeks in 2016 (Figure S9a, b). The assimilation of SIC reduces such262

benefit (Figure 3a, b), which is not surprised.263

With respect to the CS2SMOS SIT product, the predicted Arctic-wide thickness is also264

improved (Figure 3c, d; Figure S9c, d), except for the forecast starting in July 2016, which265

degrades after 140 days. The summer CryoSat-2 SIT mitigates the SIT overestimation in266

the Beaufort Sea in Long-CTRL and Long-SIC (not shown). The improvements are most267

pronounced in October, when the freezing season begins, and decrease exponentially with268

time until the forecast system falls into the control of the internal variability. This superior269

skill may even persist throughout the freezing season, similar to the previous findings on an270

optimal winter SIT initialization improving the predictive skill of summer sea ice (Blockley271

& Peterson, 2018). Consistent with the performance of the short-term forecasts in section272

3.1, the reduction of SIT RMSD in 2015 is more significant than that in 2016. When SIC273

assimilation is absent, the effect of SIT initialization on ice-edge forecasts is more pronounced274
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Figure 2. Box plot of the IIEE difference (105 km2) between Short-SIT and Short-CTRL (left),

together with that between Short-SICSIT and Short-SIC (right) in the 7-day sea-ice forecasts. The

IIEE in the box plot is calculated after 7 days of assimilation when the summer CryoSat-2 SIT is

fully assimilated. Box colors indicate different months. Box sizes indicate IIEE difference between
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(cross) and decreases (circle) in IIEE that pass the Student’s T-test at the 95% confidence level.

Negative values indicate better forecast skills. Note that different subfigures use different y-axis
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(Figure S9). However, the skill of the long-term SIT forecasts remains nearly unchanged275

regardless of whether SIC assimilation is included.276

We also examine the performance of the long-term SIT forecasts at the BGEP sites277

(Figure S5). In general, significant improvements in the SIT forecasts are found in Long-278

SICSIT initialized in July, August and September of 2015. The differences between Long-279

SICSIT and Long-SIC in 2016 are limited, not exceeding 30 cm most of the time. The280

forecasts tend to overestimate SIT in the early freezing season in the Beaufort Sea. To check281

–9–



manuscript submitted to Geophysical Research Letters

if these biases are caused by the growing errors in the long-term atmospheric forecasts, we282

performed additional forecast experiments in 2015 with the same configuration as Long-283

CTRL, except that the CFSv2 atmospheric forecast is replaced by the ERA5 reanalysis for284

the atmospheric forcing. The ERA5 driven simulations show a similar overestimation of285

SIT in the Beaufort Sea (not shown). The anticyclonic wind in the Beaufort Gyre pushes286

excessively thick ice from the multi-year ice region north of the CAA into the Beaufort Sea.287

This suggests that the overestimation is not mainly due to biases in the atmospheric forcing288

but imperfect model parameterizations and initial ice-ocean conditions.289
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Figure 3. The difference of the IIEE (105 km2) in 2015 (a) and in 2016 (b), and the difference

of the SIT RMSD (m) in 2015 (c) and in 2016 (d) between Long-SICSIT and Long-SIC forecasts

initialized from May to September (Long-SICSIT minus Long-SIC). The RMSD of the SIT is

computed with respect to the CS2SMOS product available from October to April for (c) and (d).

Negative values indicate better forecast skill. Note that different subfigures use different y-axis

scales.

4 Summary290

This study examines the impact of summer CryoSat-2 SIT assimilation on short- and291

long-term sea-ice forecasts in 2015 and in 2016. Compared to the experiments without292

any data assimilation, the ice-edge forecasts with summer CryoSat-2 SIT assimilation are293

improved. When the summer CryoSat-2 SIT data are assimilated together with SIC data,294

the effects on the ice-edge forecast skill are rather dependent on the time when the forecast is295

initialized and are spatially highly variable. In the Pacific sector, the combined assimilation296

of summer SIT and SIC observations leads to more realistic summer ice-edge forecasts with297

a one-week lead time.298

The long-term sea-ice forecasts show significant reductions in both IIEE and RMSD299

of the SIT, except for those initialized in July, when the summer CryoSat-2 SIT has large300

uncertainties. The improvement in ice-edge forecasts can last up to about 30 days, while for301
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the SIT forecasts the benefits can last for more than 3 months. This result demonstrates302

that, although the atmospheric forecasts used to drive the model can evolve freely after303

about one month, the SIT initialization in summer remains a primary factor in predicting304

long-term SIT variations. An extended study covering all available years of the CryoSat-2305

dataset may concrete the conclusion.306

However, limitations of the summer CryoSat-2 SIT data product still remain. The307

deep learning algorithm used has a certain degree of uncertainty in classifying ice leads and308

melt ponds, especially when the melt-pond fraction is large. The underestimation in the309

summer CryoSat-2 SIT from July to September in the coastal regions north of the CAA and310

Greenland requires further work on the sea-ice freeboard and thickness retrieval algorithm311

or exploration of new correction schemes to improve their reliability and accuracy. Further-312

more, it is still an open question how this product should be used for real-time Arctic sea-ice313

forecasting, since its uncertainty currently does not account for all the algorithm errors, and314

possible representation errors (Janjić et al., 2018) should be considered accurately.315

5 Open Research316

The ensemble mean Arctic sea-ice thickness (SIT) and sea-ice concentration (SIC) fore-317

cast data used in the study can be downloaded at Song et al. (2024). The file size of318

the forecast results with all ensemble members exceeds 50GB and can be made available319

upon request through contact. The CMST SIT estimate is available at Mu et al. (2018a).320

The summer CryoSat-2 SIT observations can be downloaded from Landy and Dawson321

(2022). The SSMI/SSMIS SIC data is avaliable from Kern et al. (2024). The UKMO322

atmospheric ensemble forecasts are avaliable in the THORPEX Interactive Grand Global323

Ensemble (TIGGE; Bougeault et al., 2010) archive (https://apps.ecmwf.int/datasets/324

data/tigge). The hourly ERA5 reanalysis is avaliable at Hersbach et al. (2023). The CFSv2325

atmospheric forecasts are avaliable at https://www.ncei.noaa.gov/products/weather326

-climate-models/climate-forecast-system. The NOAA/NSIDC SIC CDR data is avali-327

able at Meier et al. (2021). The CS2SMOS data is avaliable at https://www.meereisportal328

.de. Mooring observations from BGEP are downloaded from https://www2.whoi.edu/329

site/beaufortgyre. The EASE-Grid Sea Ice Age, Version 4 (Tschudi et al., 2019) is330

avaliable at https://nsidc.org/data/nsidc-0611/versions/4.331
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