

X-ray comuputer tomography of polar firn

How snow transforms to ice

Johannes Freitag

EastGripS6 Greenland 2018 Drill and firn-air pumping site

Universität Bremen

- Surface mass balance/ satellite altimetry
 - Temporal evolution of firn column heights (firn densification models, firn microstructure)
- Ice as climate archive
 - Ice core dating:
 - Gas chronology: gas-ice delta age estimates (Parrenin et al. Xxx) (firn densification models, firn microstructure)
 - Ice chronology: orbital tuning (Kawamura et al. Xxx) (firn microstructure)
 - Temperature reconstruction for Glacial periods (Buizert et al. 2022) (firn densification models)

Firnification: isothermal hot pressure sintering

Firn Density $\rho = (1 - porosity) * \rho_{ice}$

Firn densification: driving factors

Sensitivity study using empirical Herron-Langway-Model

Data set: Firn core EGRIPS6 density 1m avg, Nord-East-Greenland

@AN/

 Accumulation rate:

 A=0.13m weq/a+- 0.03m weq/a

 △depth(0.83g/cm³): -+4m

 Temperature:

 T=-30°C+-2°C

 △depth(0.83g/cm³): -+4m

 Surface density:

 D=0.320g/cm³ +-0.02g/cm³

 △depth(0.83g/cm³): -+1m

 HELMHOLTZ

What is the impact of **impurities** and **microstructure** on densification ?

Impurity / microstructure effects – some hints

Synchronisation between Density and [Ca++] with depth

Impurity-controlled firn densification: exHL-model

What is the role of **microstructure** during densification?

Continuous high-resolution profiles of structure parameters along firn columns (+ impurity and firn air profiles)

Bridging scales from 100 µm to 100 meter (6 orders of magnitude)

Approach

- fast and efficient X-ray computer tomography
- applicable to (archived) ice cores

AWI-IceCT

Schematic of helical x-rayCT

AWI-ice storage facility

1m core segment (Ø=10cm):

Resolution of 3d-volume reconstruction	Measurement time	Storage consumption of reconstructed volume
120µm	120 min	8 GB
60µm	>=1200 min (>=1day)	64 GB
30µm	>=12000 min (>=8days)	512 GB

Prediction for 140m firn core:

120µm	16800 min (~47 days (3m/day))	800 GB
60µm	>=168000 min (~280 days (1m/2days)	6.4 TB
30µm	>=1680000 min (>=4 years)	51.2 TB

continuous movement of axes and rotation table during scaning

1m core segment (\emptyset =10cm):

Resolution of 3d-volume reconstruction	Measurement time	Storage consumption of reconstructed volume
120µm	25 min! (<<120min)	8 GB
60µm	>=1200 min (>=1day)	64 GB
30µm	>=12000 min (>=8days)	512 GB

Prediction for 140m firn core:

120µm	3500 min (~14 d)	800 GB
60µm	>=120000 min (>=100days)	6.4 TB
30µm	Helical flyby X-Ray-0	CT

Sample selection

EGRIP-S6 (75.6°N, 36°W) $T_{annual} \approx -30^{\circ}C$ A = 138 mm weq/a $\rho_{surface} = 0.335 \text{ g/cm3}$

B51 (75.1°S, 15.4°E) T_{annual} ≈ -50°C A ≈ 40 mm weq/a $\rho_{surface} = 0.372$ g/cm3

- Porosity, **density**: n, ρ
- Intercept lengths: I_x, I_y, I_z : averaged dimension of ice phase in x,y,z
- Anisotropy $a := (l_x + l_y)/2 l_z$ a == 1 (isotrop), a < 1 (vertically aligned) a > 1 (horizontally aligned)
- Euler number E:= B-R: number of isolated objects B minus number of redundant connections R (measure of connectivity and bubble numbers) E<<0: highly connected pore space, fine grained structures E==0 (Coordination number = 2, independent of B!) E>>0 dominance of isolated objects
- **Spherical cluster size** := volume weighted diameter of spherical elements that maximal fit into the structure (iteratively derived from erosion/dilation-filter applications with increasing element size)

Reconstructed cross sections

~1 million reconstructed slices per core HELMHOLTZ

1m profile of structure parameters

EGRIPS6 NE-Greenland

Ice cluster size

Connectivity

Euler number $E := B \cdot R$: number of isolated objects *B* minus number of redundant connections *R* (measure of connectivity and bubble numbers)

Evolving density correlations with depth

@AN/

Correlation coefficient

1.0 -

0.5

0.0

-0.5

-1.0

20

10

Structural anisotropy

a==1 (isotrop),
a<1 (vertically aligned)
a>1 (horizontally aligned)

Connectivity vs density

Coordination number Z = 2R/B = 2(E-B)/B R: redundant connections B: isolated objects

If E==0 -> Z=2 independent of B

Both curves intersect at E ≈ 0 ! ⇒ Close-off at similar densities for different microstructures

- First data sets of microstructure evolution over firn columns
- Several fundamental relationships:
 - Non-uniform increase of ice cluster size with depth (EGRIP-S6, associated with stage I to stage II transition)
 - Distinct correlation of microstructure and density in shallow firn (stage I)
 - Density-correlation shifts of anisotropy, euler number and ice cluster size with depth
 - Layers of larger cluster sizes show higher densities in deep firn (stage II)
 - Disappearing vertical anisotropy with depth

OM

 Invitation of the audience to visit the CT-Lab @ AWI-Bremerhaven

- Compilation of further data sets from further ice cores
- Comparison study with impurity records
- Improvements in CT-segmentation (super resolution)
- Investigation of bubble formation and number in context of initial microstructure

