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Ecological genomics in the Northern krill
uncovers loci for local adaptation across
ocean basins

Per Unneberg 1, Mårten Larsson 2,3, Anna Olsson2, Ola Wallerman2,
Anna Petri4, Ignas Bunikis4, Olga Vinnere Pettersson 4, Chiara Papetti 5,
Astthor Gislason6, Henrik Glenner7,8, Joan E. Cartes9,
Leocadio Blanco-Bercial 10, Elena Eriksen11, Bettina Meyer 12,13,14 &
Andreas Wallberg 2

Krill are vital as food for many marine animals but also impacted by global
warming. To learn how they and other zooplankton may adapt to a warmer
world we studied local adaptation in the widespread Northern krill (Mega-
nyctiphanes norvegica). We assemble and characterize its large genome and
compare genome-scale variation among74 specimens from the colder Atlantic
Ocean and warmer Mediterranean Sea. The 19Gb genome likely evolved
through proliferation of retrotransposons, now targeted for inactivation by
extensive DNA methylation, and contains many duplicated genes associated
with molting and vision. Analysis of 760 million SNPs indicates extensive
homogenizing gene-flow among populations. Nevertheless, we detect sig-
natures of adaptive divergence across hundreds of genes, implicated in pho-
toreception, circadian regulation, reproduction and thermal tolerance,
indicating polygenic adaptation to light and temperature. The top gene can-
didate for ecological adaptation was nrf-6, a lipid transporter with a Medi-
terranean variant that may contribute to early spring reproduction. Such
variation could become increasingly important for fitness in Atlantic stocks.
Our study underscores the widespread but uneven distribution of adaptive
variation, necessitating characterization of genetic variation among natural
zooplankton populations to understand their adaptive potential, predict risks
and support ocean conservation in the face of climate change.

Climate change is affecting all life on Earth and forcing species tomove
or adapt1. Ocean zooplankton are crucial tomaintaining foodwebs and
fisheries but face many challenges including increased temperatures
and acidification2–4. Many planktonic species are shifting toward
higher latitudes4,5, and continued warming is expected to impact
marine communities and ecosystem services6. The long-term respon-
ses to these changes are unclear, but evolutionary adaptation may be
important to sustain populations, particularly when physiological and

geographical limits have otherwise been reached7. This warrants
the need to better understand adaptation in key zooplankton that
strongly influence marine ecosystems. Krill (Euphausicea; 86 spp.), or
euphausiids, are macrozooplankton crustaceans inhabiting all world
oceans. Some species include trillions of individuals and are among the
most abundant animals on Earth8–10. As grazers of smaller plankton and
food for fish and mammals, krill are critical links between primary
production and higher trophic levels3. However, polar krill of both
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hemispheres have recently declined11,12, while boreal species such as
the Northern krill spread into new areas13, impacting native
biodiversity14,15.

The Northern krill is the largest andmost abundant North Atlantic
krill species, possibly structured into 3–4 basin-scale gene pools9,16.
While many krill species are stenothermal and have narrow latitudinal
ranges, the Northern krill has unusually broad thermal tolerance and
range17,18. It occurs across a 2–15 °C temperature gradient (Fig. 1a) and
breeds within 5–15 °C9, much wider thermal envelopes than for
example the Antarctic krill Euphausia superba, which is constrained
within −2.0 °C to +4.0 °C and reproductively challenged already at
+1.5 °C19. Northern krill from different climates vary in metabolism,
nutrition, maturation and timing of reproduction that track local sea-
sonal cycles17,20, ranging from spawning in late winter–early spring in
the Mediterranean Sea to summer in the Atlantic Ocean. These

phenotypic variations could have genetic bases, making M. norvegica
an attractive model for environmental adaptation.

Zooplankton generally have large populations with considerable
genetic variation, suggesting they have high potential to adapt to
changing environments through natural selection21. Many also exhibit
extensive larval dispersal and gene flow, which could either interfere
with local adaptation or help introduce adaptive variants21. Insights
into the genetic basis of adaptation are still scarce for zooplankton22. In
particular, we lack insight into adaptation in euphausiids, due to their
large and repetitive genomes ranging between 11 and 48Gb (4–16× the
human genome)23, which until recently have hindered genetic analysis.
The publication of the Antarctic krill genome marked a major step
forward but revealed extensive genetic homogeneity and limited
adaptive variation in this circumpolar and panmictic species24. A
comparative analysis of expressed genes in 20 krill species identified

Fig. 1 | Sampling, genome assembly and genome analyses of the Northern krill
Meganyctiphanes norvegica. a Photo: Adult specimen of a Northern krill from the
Swedish Gullmarsfjord (approximate scale). Photo by Andreas Wallberg. Map:
Atlantic andMediterranean sample locations indicated in circles (n = sample sizes).
Sea SurfaceTemperatures fromClimateReanalyzer75.bGenomeassembly statistics
in kilobases (kb), megabases (Mb) or gigabases (Gb). Top: completeness and
duplications of BUSCOv5 genes (n = 1013) across the genome assembly and protein
models. Bottom: sizes of genomic regions (UTR= untranslated exonic regions;
cds = coding). c The repeat landscape. (i) Proportions of repeat-masked and

unmasked bases (%). (ii) The divergence landscape of interspersed repeats. d The
coding and full sequence lengths of 7150 single-copy orthologs between M. nor-
vegica and the lobsterHomarus americanus. (gene = exons + introns; cds = coding).
e Time-calibrated species tree (inferred from 1011 single-copy orthologs; 100%
bootstrap support for all nodes) and gene family evolution. f The proportion of
methylated cytosines across 75M CpG-dinucleotides in the genome (>10× cover-
age). Number of interrogated CpG sites: all = 74,890,361; intergenic = 61,170,962;
genic = 13,719,271; repeats = 56,713,267; non-repeats = 18,176,966; 5′-UTR= 84,016;
cds = 478,953; intron = 13,067,764; 3′-UTR = 88,538.
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mechanisms of adaptation but could only reliably interrogate about 1/
3 of all genes and focused on cold-adaptation in polar species25.

Herewe used long-read sequencing to assemble the huge genome
of the widespread Northern krill. We then performed genome-scale
population resequencing with the aim to characterize genetic varia-
tion, demographic history, and genetic adaptations to both cold and
warm environments at the genome-scale. Insight into adaptive varia-
tion can help monitoring processes such as migration and adaptive
change, identify hot and cold spots of important functional diversity
and support forecasting resilience and risk under continued climate
change26.

Results
A highly repeated genome
The Northern krill is diploid and has 19 large metacentric
chromosome-pairs that are homomorphic between sexes27. We
assembled and scaffolded the nuclear and mitochondrial genomes
with Nanopore long-reads, Chromium linked-reads and RNA data from
mostly a single specimen (Supplementary Table 1, Supplementary
Data 1, 2, Supplementary Figs. 1–3). We tracked contiguity, complete-
ness and accuracy by mapping coding transcripts (Supplementary
Figs. 4, 5). The finished genome assembly spanned 19.2 Gb (n = 216,568
scaffolds/contigs) with ~90% of BUSCO genes present and ~0.5 base-
level errors/kb (Fig. 1b, Supplementary Table 2). The genome is GC-
poor (%GC= 29.9) and repeat-rich. Low-complexity sequences and
simple repeats spanned 15% of the genome (Supplementary Data 3).
Using a custom transposable element (TE) library, we found that 74%
of the genome is repetitive (Fig. 1c; Supplementary Data 3). While we
are unable to classify all TEs, retrotransposons (LINEs+LTRs) out-
weighedDNA-transposons 4:1, similar to the American lobster or black
tiger shrimp28,29. The repeatome in the Northern krill exhibits a unim-
odal pattern of TE divergence (Fig. 1c), whereas the Antarctic krill
repeatome is characterized by DNA-transposons and shows signs of
several bursts of transposable element proliferation24. These obser-
vations hint at divergent genome composition and lineage-specific
evolution of the gigantic genomes of euphausiids.

Expansion of cuticular and opsin gene families
We used RNA and comparative data to annotate 25,301 protein-coding
genes along with 2283 TEs (mostly expressed retrotransposons), and
detected another 14,643 potential yet unannotated genes or TEs
(Supplementary Tables 3, 4, Supplementary Data 4, Supplementary
Fig. 6). Gene bodies (introns+exons) span 50,276 bp on average and
occupy 10% of the genome, while coding sequences cover only 0.22%
(Fig. 1b). Orthologous genes between the Northern krill and crusta-
ceans with smaller genomes are 3–8× longer in krill, but have similar
amounts of coding sequence (Fig. 1d, Supplementary Fig. 7, Supple-
mentary Table 5, Supplementary Data 5). Compared to the Antarctic
krill24, genes are ~2.5× longer in the Northern krill, suggesting pro-
liferation of retrotransposable elements has produced long and
repeated introns (Supplementary Fig. 6). We estimated high synon-
ymous divergence (dS =0.46) between the two species (Supplemen-
tary Data 5). Using a decapod molecular clock30, this divergence
suggests they split from a common ancestor ~130 MYA, underscoring
separate evolution over long time-scales.

We built a crustacean species tree and analyzed gene family evo-
lution. We found 104 rapidly expanding gene families in the Northern
krill (p <0.05; Fig. 1e; Supplementary Fig. 8a, b; SupplementaryData 6),
including those related to chitin, cuticular metabolism, regulation of
the molting cycle, which are important processes for growth and
reproduction in crustaceans. This is notable as renewal of the exoske-
leton is unusually frequent and plastic in euphausiids9,31, and similar
expansions were independently detected in the Antarctic krill
genome24. Moreover, we detected expansions of the opsin gene
repertoire, which encodes the light-sensitive receptors in ommatidia.

Fourteen opsins have previously been identified from RNA in E.
superba32, which are thought to enable vision under the divergent light
conditions experienced throughout its life cycle and vertical
migrations33, while 16 opsins have recently been inferred from M.
norvegica RNA34. We queried our M. norvegica gene-set and the E.
superba RNAs32 against a curated crustacean opsin dataset. We detec-
ted 19 genes in the former species and 15 putative genes in the latter
(Supplementary Figs. 9, 10), including new visual middle wavelength-
sensitive (MWS) opsins and non-visual arthropsins. All E. superba
opsins have homologs in the M. norvegica genome and all but one
previously identified M. norvegica transcript can be anchored unam-
biguously 1:1 to our genemodels (Supplementary Fig. 10). Our findings
expand the known opsins in both species and suggest that opsin and
molting-gene duplications could be common to all euphausiids.

Ancient whole-genome duplication (WGD) may underlie both
genome and gene family expansions but is not commonly reported for
crustaceans. To test for WGD, we interrogated divergences between
gene-paralogs and searched for Hox-gene duplications, but found no
supporting evidence (Supplementary Note 1). Instead, the huge
Northern krill genome has likely evolved through TE proliferation and
numerous small-scale duplications.

An active DNA methylation system
Epigenetic regulation of the genome may contribute to genome evo-
lution, function andplastic responses to environmental change35. CpG-
methylation can silence the expression of harmful transposable ele-
ments (TEs), paradoxically allowing them to persist and contribute to
genome expansion36. DNA methylation (DNAm) of both TEs and
protein-coding genes is ancestral in Arthropoda, but has frequently
been lost37. Using DNA frommuscle, we characterize the DNAm toolkit
and genomic patterns in a euphausiid. The genome had low CpG
content (CpGO/E = 0.53), indicating DNAm. We found all genes
encoding the canonical methyltransferases and genes responsible for
repair or demethylation (dnmt1–3; alkB2; tet2; Supplementary
Figs. 12–16; Supplementary Data 7), hallmarks of functional DNAm37.
We scanned the Nanopore-reads for signals of CpG-methylation at 75
million CpG-sites. Overall, DNAm rates were higher in genes than
intergenic regions (75% vs. 62% of reads being methylated; Fig. 1f;
Supplementary Fig. 17) and positively associated with splice isoform
variation (n = 2.5 ± 0.05 isoforms/genewith > 95%methylation rates vs.
1.8 ± 0.03 isoforms/gene with <5% methylation rates; Supplementary
Fig. 17). In contrast, we observed a lack of methylation in the mito-
chondrial chromosome (4%). DNAm rates are higher across repeats vs.
nonrepeated DNA (69% vs. 50%), and appear to target young retro-
transposons with similar LTRs, that may have been recently active
(Supplementary Fig. 17f). Gene-body methylation is similar to obser-
vations in marbled crayfish38, while repeat-oriented methylation is
reminiscent of the myriapod Strigamia maritima37. The krill methy-
lome thus spans both genes and repeats, suggesting dual roles in gene
regulation and silencing TEs.

Genome-scale variation is shaped by linked selection and per-
vasive gene flow
Touncover patterns ofgenetic variation,wecollected 74Northern krill
specimens from eight geographical regions separated by up to
5800 km, covering a wide range of environmental conditions (Fig. 1a,
Supplementary Note 2). We resequenced whole genomes to ~3×/spe-
cimen (20–30×/population), mapped reads and called 760 million
quality-filtered SNPs across 8.4 billion accessible bases (determined
with similarfilters; Supplementary Fig. 18).We estimated genome-wide
nucleotide diversity (π; the average pairwise difference between
sequences) and thepopulationmutation rate (θw) to be 1.31% and 1.62%
per-base, respectively, similar to those inferred from RNA25 and low
compared to marine broadcast spawners such as oysters and sea-
squirts39. Levels of variation were similar among populations
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(Supplementary Fig. 19A). Assuming mutation-drift equilibrium and a
mutation rate from snapping shrimp30, we inferred the long-term
effective population size (NE) to be 1.53million, far below the expected
census population size (NC) of trillions9. However, Tajima’s D was
negative (−0.53), indicating an excess of low-frequency variants com-
pared to expectation under equilibrium, consistent with population
expansion shaping genetic variation. We applied the Sequentially
Markovian Coalescent to model demographic history from hetero-
zygous sites in the reference specimen40,41 (~5000 longest scaffolds),
suggesting populations expanded halfway through the last glacial
period42 (Fig. 2b). The rate of decay of linkage disequilibrium between
SNPs in turn suggested NE may recently have reached 4–5 million
(Supplementary Fig. 19B). We observed ~30% reduction in variation
over genes (π = 1.15%), and more so at coding and nonsynonymous
sites (Fig. 2a). This effect extended up to 50–100 kb around genes
(Fig. 2a), suggesting widespread impact of linked selection on genetic
variation.

Population structure was limited but recapitulated geography
(the fixation index FST was ≈0.06 on average; Fig. 2c) and previously

detected mitochondrial gene pools9. FST (relative divergence)
increased marginally with geographic distance (Supplementary
Figs. 19, 20, Supplementary Data 8). The Mediterranean Sea sample
was themost divergent, but the average dXY (absolute divergence) was
only 1.04× higher compared to distances among Atlantic populations
(1.71% vs. 1.64%). Net synonymous divergence (Da) between Medi-
terraneanandAtlantic stockswasvery low (<0.1%), reaffirming they are
not reproductively isolated43. Moreover, most non-singleton variants
were polymorphic in most populations (Supplementary Fig. 21), fur-
ther indicating extensive gene flow.

Signatures of ancient adaptive divergence across hundreds
of genes
To reveal genomic signatures of adaptation, wepartitioned the dataset
into two major contrasts: i) Atlantic vs. Mediterranean samples
(at/me); and ii) North-Eastern vs. South-Western North Atlantic sam-
ples (ea/we; Fig. 3a). For each contrast, we computed pairwise diver-
gence in allele frequencies. While most variation segregated at low
differences (FST(at/me)= 0.056; FST(ea/we)= 0.017; Fig. 3b; Supplementary
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Fig. 20), we also detected approximately 8× as many highly divergent
variants compared to expectations from simulations of neutral drift
(Supplementary Fig. 22). Divergent regions (FST > 0.4) spanned ~1% or
less of thegenomeandwereabout 2× enriched forgene sequences and
extended haplotypes, compared to undifferentiated regions (FST < 0.2;
Fig. 3b), consistent with gene-centered signatures of selective
sweeps44. We compared FST between genes and similarly sized 50kb
flanking regions 50–100 kb away from genes, which may more often
evolve neutrally. At high levels of divergence (the top 0.1% most
divergent flanking regions), genes outweighed flanking regions by 7×
(at/me) or 2× (ea/we), consistent with natural selection driving adap-
tive divergence across many genes (Fig. 3c; Supplementary Data 8;
Supplementary Fig. 23).

We analyzed the geographic distribution of putatively adaptive
variation by defining gene-level haplotypes (having at least four diag-
nostic SNPs with FST > 0.5). At many divergent genes (exon-wide
FST > 0.4), both haplotypes were often present in both groups
(nat/me = 319/660; nea/we = 34/34), indicating widespread standing var-
iation (Fig. 3d). Southern or Scandinavian populations were more

polymorphic than Barents Sea and Svalbard populations (Fig. 3d),
which could reflect genetic drift or ongoing selection at the margin of
the Arctic species range45. We found that Mediterranean haplotypes
were comparably common in the Norwegian sample (mean frequency
of 13%, Fig. 3d iii), while South-Western haplotypes were frequent in
the Swedish sample (mean frequency of 17%, Fig. 3d-vi), suggesting
these Scandinavian stocks in particular could contain genetic material
that is otherwise rare at high latitudes.We estimated the ages ofminor
alleles on the divergent haplotypes to learn for how long haplotypes
may have been segregating in the species. We first estimated a
genome-average recombination rate (r = 0.32 cM/Mb, n = 652 scaf-
folds) and then applied the Genealogical Estimation of Variant Age
(GEVA)46. This coalescent method infers the time to the most recent
common ancestor using mutation and recombination rates, without
requiring a priori assumptions about demographic history. Most var-
iation originated over 1 MYA, predating multiple glacial cycles,
and adaptive variation segregating between Atlantic and Mediterra-
nean populations may predate that segregating in the Atlantic
Ocean (Fig. 3e).
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Candidate genes for ecological adaptation associated with eco-
physiological functions
For each contrast, we ranked all genes by exon-wide FST. The top gene
between Atlantic and Mediterranean krill is nose resistant to fluoxetine
protein 6 (nrf-6) (Supplementary Data 8), encoding a membrane pro-
tein facilitating lipid transport. It is located within a high-divergence
region and the Mediterranean samples are fixed for a nrf-6 haplotype
with low frequency amongAtlantic samples (6%). Exon-wide FST is > 0.8
and high XP-nSL scores indicate loss of variation consistent with a
selective sweep amongMediterranean samples (Fig. 4a).We alsodetect
accelerated protein evolution on theMediterranean haplotype (dN/dS:
0.54 vs. 0.31; Supplementary Fig. 24), consistentwithpositive selection.
We predicted the protein topology and detected 1.7× enrichment of
missense variants in its extracellular part compared to synonymous
variants (9/16 vs. 5/15; Fig. 4a; Supplementary Fig. 24; Supplementary
Data 9), which may alter its function. This is noteworthy as nrf-6 is
important for yolk transport into eggs in worm47 and ovary develop-
ment and oogenesis in fly48, and is overexpressed in the ovaries of
sexually precocious crabs49. In theNorthern krill, Mediterranean stocks
depend on a short spring phytoplankton bloom to accumulate lipid

stores and trigger vitellogenesis and reproduction in early spring9,50.
The Mediterranean nrf-6 variant could contribute to advanced repro-
ductive timing, making it a strong candidate for local adaptation.

We next queried the ranked lists for enriched gene ontologies
using fly homologs. Atlantic-Mediterranean divergence was enriched
for genes involved in oogenesis, muscle function, phototransduction
and eye development, regulation of circadian rhythm and hetero-
chronic development (Supplementary Fig. 25; Supplementary
Data 10). These include homologs for ninaB that synthesize visual
pigment51, S that regulate sleep/wake cycles and the transcription
factor Kr-h1 that acts in the juvenile hormone signaling pathway to
govern vitellogenesis and reproduction in arthropods52 (Fig. 4b).
Overall, 30 genes in the 0.1%-percentile (FST = 0.55–0.72; n = 264) were
associated with vision-related ontologies, 1.5× more than expected by
chance (P =0.019), and 112 genes in the 1%-percentile (FST = 0.36–0.72;
n = 1024), including four MWS opsins (Supplementary Data 10). Pho-
toreception candidates often involved paralogs (Supplementary
Fig. 26) and belonged to rapidly expanded gene families, which were
otherwise underrepresented in the 1%-percentile (2.98× vs. 0.6×;
Supplementary Data 10).
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Fig. 4 | Adaptive divergence and candidates for local adaptation. a High
divergence between Atlantic and Mediterranean samples across the nrf-6 gene. (i)
Top: per-SNP FST along the locus (green line is the 0.1% FST-percentile for SNPs at
FST(0.1%) = 0.675; dark-blue line=FST for 1 kb windows; black=gene model). Bottom:
per-SNP XP-nSL (dark-gray bars=mean window-based XP-nSL). Positive values
imply a selective sweep in the Mediterranean sample; negative values mark the
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or NRF-6 protein topology. (iii) Modeled protein structure and topology (including
signaling peptide; boxes=N/C terminals; yellow circles=nonsynonymous/missense
variants). b Examples of highly differentiated genes between Atlantic and

Mediterranean samples (FST(0.1%) = 0.675). (i) Photoreception: retinal degeneration B
(rdgB), neither inactivation nor afterpotential B (ninaB) and cacophony (cac). (ii)
Heterochronic development: Kruppel homolog 1 (Kr-h1). (iii) Circadian regulation:
Star (S), clockwork orange (cwo), Angiotensin-converting enzyme-related (Acer) and
narrow (na). Statistics as in (a). c Examples of highly differentiated genes between
North-Eastern and South-Western North Atlantic samples (FST(0.1%) = 0.38). (i) The
top gene in the Atlantic comparisonwas Cuticular protein 49Ac (Cpr49Ac) (ii) Three
chaperon genes implied thermal tolerance: Chaperonin containing TCP1 subunit 8
(CCT8), Hsc/Hsp70-interacting protein related (HIP-R) and Heat shock protein
83 (Hsp83).
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Between the twoAtlantic basins, themost divergent gene encodes
a larval cuticular protein (homolog of Cpr49Ac; Fig. 4c), while this
contrast was enriched for signaling ontologies (Supplementary
Figs. 25). Among the top 20 genes we identified three heat-shock
chaperones/co-chaperones, includingCCT8 (Fig. 4c), that fold proteins
and promote proteostasis under thermal stress. Heat-shock proteins
contribute to protective thermal tolerance in krill and many other
species53. Chaperonins (CCT-n) influence cold shock response in
crustaceans and other eukaryotes54. Multiple CCT geneswere linked to
cold-adaptation in krill25 and CCT8 evolution was implicated in freeze-
tolerance in Amur sleeper fish55. North-Eastern krill have a sweep-like
signature of extended CCT8 haplotypes, suggesting selection for cold
tolerance in these stocks.

Discussion
Here, we provide insight into the evolutionary history of the Northern
krill. Our genome assembly reveals a highlymethylated repeatomeand
many expanded gene families. Paralogous genesmay have arisen from
ectopic recombination between nonhomologous repeated loci, which
is more likely to occur when genomes accumulate transposable
elements56. The krill genome appears to continuously have evolved
new genes, including those involved in molting and vision.

Molting is a crucial process in krill, being interlinked with growth
and reproduction and ameans to reduce load and drag from parasites
and epibionts57,58. It is controlled by environmental cues including
light9,59. Some of the top gene candidates for local adaptation belong
to expanded gene families, including two ninaB paralogs and four
ninaE paralogs that synthesize visual pigment or encode MWS opsins.
We detected elevated divergence in fifteen genes encoding cuticular
proteins. Expanded cuticular and opsin gene families and functionally
diverged paralogs may have enabled development and photorecep-
tion under diverse conditions in ancestral krill and provide substrates
for adaptation today60.

We characterized genome variation in M. norvegica and found
moderate levels of diversity, consistent with observations in other
krill24,25. This may partly be explained by linked selection and recent
population bottlenecks purging variation61. Likewise, our estimate of
long-term effective population size is much smaller than census
populations but assumes mutation-drift equilibrium, which krill may
rarely have time to reach before evolutionary and demographic pro-
cesses influence variation61. Euphausiid life history traits, including
mating where a single male can fertilize many eggs by plugging the
female’s genital opening with a spermatophore9,62, may additionally
contribute to skewed reproductive success and limit NE and genetic
variation61. Further research is needed to understand the size and
determinants of effective populations in krill.

We studied divergence among populations to identify genes that
may contribute to ecological adaptation. We detected small-to-
moderate shifts in allele frequencies in many functionally related
genes, consistent with signatures of polygenic adaptation63. Evolve-
and-resequence experiments in copepods have similarly found poly-
genic signals of adaptation to temperature and acidity in laboratory
conditions64. Genetic adaptation in zooplankton may commonly
involve numerous loci, warranting genome-scale assays to map adap-
tive variation. Many of our candidate genes have roles in photorecep-
tion, circadian rhythm, and oogenesis — ecophysiological functions
also implied in adaptation in other widespread pelagic species, such as
the Atlantic herring65. The variants may help krill respond to light,
temperature and resources in different environments and latitudes.

Photoreception varies amongM. norvegica populations: krill from
turbid waters around the Gulf of Maine are more light sensitive than
those from clearer waters66. Water clarity and light penetration influ-
ence behavior in M. norvegica. To avoid predators, stocks prefer dee-
per depths in clearer Norwegian fjords67, while the deepest daytime
depths (400–800m) are known from the oligotrophic Mediterranean

Sea9.Moreover, light sensitivities in theNorth Pacific krillE. pacifica are
tuned to local conditions. Individuals inhabiting shallow greenwater in
the Saanich Inlet are more sensitive to green light compared to those
from the deeper blue water of the San Diego Trough62. At least thirty
genes involved in eye function diverge strongly between Atlantic and
Mediterranean krill (including 4 ninaE/MWS paralogs), and another six
genes segregate across the Atlantic Ocean, suggesting heritable var-
iation could contribute to these phenotypes. Eye traits are generally
fast-evolving among krill species and are associated with ecological
niche68. Our candidates could help reconstruct the genomic archi-
tecture of vision and behavior in krill.

Seasonal and daily cycles of ambient light are central to zoo-
plankton and influence diapause, vertical migrations and entrainment
of endogenous circadian clocks that control the daily rhythm of phy-
siological processes69.M. norvegica, along with other krill species such
as E. superba and Thysanoessa inermis, exhibit endogenous circadian
rhythms (ECR) that cycle at rates faster than 24 hours in the absence of
light70,71, or respond to minute irradiance. This may reflect a shared
light-sensitive circadian toolkit common to all krill or adaptations to
photoperiodic variability at high-latitudeswhere the sun is either below
or above the horizon for extended periods71,72, although the genetic
mechanisms of these adaptations are unknown.M. norvegica expresses
circadian clock genes73 and we find that genes likely involved in reg-
ulating its circadian clock diverge across its geographic range, includ-
ing homologs of narrow abdomen, glass and clockwork orange. Using
M. norvegica as amodel, functional assessments of local variants could
illuminate how biological clocks are set in different environments.

Marine ecosystems are changing at unprecedented rates, driving
redistribution of organisms and impacting food webs5,15. Antarctic krill
is already declining, which could severely impact the Antarctic
ecosystem11,14. The Northern krill could be declining around Iceland74,
but increasing in the Barents Sea13. Where will krill thrive in the future?
We foundmany variants that could help krill adapt to new or changing
environments, many of which are widely but unevenly distributed, old
and possibly maintained by long-term balancing selection under
slowly fluctuating conditions. These adaptive variants could be
important for coping with rapid climate change, and Scandinavian
stocks in particularmay serve as sources of genetic diversity otherwise
associated with warmer locations. The next frontier for the Northern
krill is the Arctic Ocean13,15. Standing variants supporting physiological
processes under darker or colder conditions may help establish it
there. The Mediterranean Sea population is the most divergent, and
close to the species’ southern limit. This population appears to lack
variation at many adaptive loci, which might limit its evolutionary
potential, although our analysis is limited by a small sample size.

With the exception of the Antarctic krill8, long-termmonitoring of
krill abundance is typically performed or reported in aggregate12,
obscuring how individual species fare under climate change. Our
results suggest that krill may commonly be genetically fine-tuned to
their environments, while previous research underscore limited ther-
mal tolerances in many species18,19. Genetic adaptation could be the
major process determining whether krill will persist or perish. The
many candidate genes reported here can be used as biomarkers to
diagnose and monitor change of adaptive variation in response to
changing conditions, including CCT8,HIP-R andHsp83 associated with
thermal stress response and nrf-6, Kr-h1 and Hr3 involved in repro-
ductive physiology, as well as those potentially coordinating photo-
periodic regulation. These markers could also be used to monitor
other species, in order to better forecast the future distributions of
krill and estimate risks of the greatmany species that depend on them.

Methods
Biological materials
Adult specimens of the Northern krill (Meganyctiphanes norvegica)
were collected from eight geographical regions across the North
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Atlantic Ocean and the Mediterranean Sea by different collaborators
and co-authors (Supplementary Table 1; Fig. 1a; Supplementary
Fig. 19C). Environmental characteristics and sampling at each location
is provided in Supplementary Note 2, while Sea Surface Temperatures
in Fig. 1a are from Climate Reanalyzer using NOAA OI SST V2 High
Resolution Dataset data provided by the NOAA PSL, Boulder, Color-
ado, USA75,76. Sample details including sampling coordinates and
sequencing yields are given in Supplementary Data 1.

Processing of samples. Live specimens were either preserved in 95-
99% EtOH or in RNAlater™ (Invitrogen™) to facilitate DNA and RNA
recovery. Some specimens were split behind the carapace so that the
cephalothorax and abdomen could be stored separately in either
buffer. For most samples, the sex was determined by inspecting
petasma or thelycum for male or female characteristics using a stereo
microscope. This was either done at the time of collection or after
preservation in EtOH. Altogether, 36 samples were determined to be
males, 32 to be females. Seven samples were not sexed because the
relevant tissue had been removed or damaged in processing.

A single female specimen (Sample IDs “K20”or “swe_1”; ~3 cm long)
collected in the Gullmarsfjord in Sweden was used to produce all pri-
mary long-read and linked-readDNAdata for themain de novo genome
assembly, as well as most novel short-read and long-read RNA/cDNA
resources used for scaffolding and annotation of the genome sequence.
In order to reduce the risk of contamination from food-particles, this
specimen and others sampled at the same location were kept in aquaria
with filtered running deep water at ambient temperatures (10 °C) at the
Kristineberg Marine Research Station without access to food for
24–48h before they were preserved. Sequences from other specimens
were used to assist in specific tasks for the genome assembly (Supple-
mentary Table 1; Supplementary Fig. 2), as well as to produce a com-
prehensive population dataset to map genetic variation.

Overview of library preparation & sequencing
For the genomeassembly and annotation,weproducedDNA andRNA/
cDNA data using Oxford Nanopore Technologies (ONT) MinION
(hereafter: MinION) and PromethION long-read sequencing (hereafter:
PromethION). Linked-read DNA data was produced using 10x Geno-
mics Chromium sequencing (hereafter: 10x) (Cat#120257/58/61/62).
RNAwas also sequenced using Illumina RNA-seq. Low-coveragewhole-
genome population-scale resequencing (WGS) was carried out using
Nextera DNA Flex libraries (Illumina Cat#20018705) or Illumina DNA
PCR-Free libraries (Illumina Cat #20041795). All DNA/RNA extractions
and the MinION sequencing were performed at the Dept. of Medical
Biochemistry andMicrobiology at Uppsala University. All other library
preparation and sequencing was carried out by the National Genomics
Infrastructure (NGI) at Science for Life Laboratory (SciLifeLab), Swe-
den. Extractions were quantified for purity, yield and fragment lengths
using the Thermo Scientific NanoDrop andQubit systems, standard 1%
agarose gels, and Agilent TapeStation and Femto Pulse systems,
respectively. Summary reports with basic sequence statistics were
produced using PycoQC for long-reads77 andMultiQC for short-reads78

with the high-throughput FastQCbackend (SimonAndrews, Babraham
Institute in Cambridge), respectively, according to standard proce-
dure. See Supplementary Data 2 for additional kit catalog IDs.

High-molecular weight DNA extraction for long-read and linked-
read libraries. We produced DNA data using PromethION and 10x
sequencing of a single female specimen for the genome assembly. We
dissected five abdominal segments for all ethanol-preserved tail mus-
cle tissue and extracted each segment individually (K20-1 through
K20-5). Eachpiecewas snap frozen in liquid nitrogen andgrindedusing
a pestle andmortar. High-molecular weight (HMW) DNAwas extracted
using the Genomic-tip 100/G Midi kit (Qiagen) according to the man-
ufacturer’s protocol for tissues. Briefly, the pieces of tissue were lysed

in presence of Protease (Qiagen) and RNAse A (Qiagen) to degrade
proteins and RNA, respectively. The DNA was bound to the Genomic-
tip resin, purified from RNA, protein and other contaminants, eluted
and desalted using isopropanol precipitation. The DNA extractions
were finally eluted in 70μL of TE buffer (Qiagen AE buffer). The
extraction yielded approximately 30μg DNA (Qubit), with a peak of
DNA fragment lengths at about 130 to 180 kbp, and with similar yields
and qualities across the five abdominal segments (Supplementary
Fig. 1A, B).

PromethION long-read sequencing. The ONT SQK-LSK109 Ligation
Sequencing Kit was used by NGI to prepare DNA libraries using all five
extractions (K20 1–5; 90% of DNA was consumed), which were then
sequenced across ten PromethION FLO-PRO002 R9.4 flow cells. The
DNA was sheared to 20 or 30 kb fragments with a Diagenode Diag-
nostics Megaruptor before preparing most remaining libraries to find
an optimal balance and tradeoff between read lengths and yields
(Supplementary Fig. 1C). One HMW library was made with the Mega-
ruptor set to shear to 75 kb, followed by size selection for fragments
> 15 kb using the Sage Science BluePippin system. Library preparation
for nanopore sequencing was done using the LSK-109 kit, with the
following changes to the original protocol: i) End-prep / FFPE incuba-
tion times at 20 and 65 degrees were prolonged up to 10 or 15min, and
ii) adapter ligation time was prolonged to up to 55min. Sequencing
was performed on a PromethION beta machine, using R.9.4 flow cells.
In order to increase the overall yield, we reused the flow cells. We first
washed them using standard wash kit buffers and then performed
nuclease flushes to digest old libraries, before applying new DNA. Two
flushed flow cells were run with cDNA libraries instead of DNA
(see below).

Sequencing was performed using ONT MinKNOW v3.1.18. Initial
basecalls were carried out using MinKNOW/Albacore but were upda-
tedwith calls usingONTGuppy v2.3.7 and themore accurate “flip-flop”
algorithm (the dna_r9.4.1_450bps_flipflop_prommodel)79. The updated
basecalls produced 593.8 Gb of DNA data (13% produced on flushed
cells), representing 13% more data than the original basecalls. The
Guppy-recall took 10 days of GPU-compute time across four NVIDIA
1080GPUs.We sequenced 84.4M readswith overall N50 = 12 kb. About
57% of sequences had mean base qualities (Q-scores) above 10 using
flip-flop (Supplementary Data 2), compared to 16% in the original call.
Assuming a genome size of 18.6 Gbp23, the PromethION data corre-
sponded to 32× coverage across the genome, with ~20× coverage of
reads 10 kb or longer (Supplementary Data 2; Supplementary Fig. 1D).

10X linked-read sequencing. Four separate 10x GEM libraries were
made from the K20-5 HMW DNA extraction by NGI following the
manufacturer’s recommended protocol and had mean library frag-
ment lengths of 530–540 bp. Paired-end reads (2×150bp) were
sequenced on a single Illumina NovaSeq 6000 S4 lane, generating
897Gb of data across 2.97 B read-pairs ( ~ 46× coverage; 12.6%marked
as duplicates; %GC= 34.7). The standard LongRanger (v2.2.2; 10x
Genomics) “basic” command was used to extract the 16 bp barcodes
from the forward/R1 reads for each library individually. About 3.5M of
the 4.8M barcodes (4M-with-alts-february-2016.txt; 10x Genomics)
were found to be associated with at least one read in each library and
~96% of all sequences were barcoded. We rewrote the “BX:Z” style
barcodes of eachof the four libraries using aunique suffix (“_1” through
“_4”) in order to keep them separate in downstream analyses and to de-
interleave the FASTQ files.

RNA extraction from multiple tissues for long-read and short-read
RNA libraries. We produced RNA data using PromethION/minION
cDNA-sequencing and Illumina short-read RNA-seq using the
K20 specimen for gene and genome annotation. Six libraries were
prepared using RNA from small pieces of tissue preserved in RNAlater:
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i) head/brain; ii) dorsal/caudal muscle tissue on cephalothorax; iii)
thoracic exopodite legs (distal segments of the periopods); iv) ventral
soft tissue of cephalothorax including gills; v) hepatopancreas (the
crustacean digestive gland); and vi) soft-tissue surrounding it. RNAwas
extracted using the RNeasy Lipid TissueMini Kit (Qiagen) according to
the standard protocol, using ceramic beads and a BioSpec Products
Mini-Beadbeater for tissue homogenization, and eluted in 30μL
RNAse-free water. This yielded RNA extractions with concentrations
between 50 and 240ng/μL andwith RIN-values between 9.1 and 10.We
used both raw RNA-seq reads and Trinity assembled transcripts80 in
downstream analyses.

Short-read RNA sequencing. NGI produced six libraries from the six
K20 RNA extractions using Illumina TruSeq Stranded mRNA Library
Prep kit with polyA selection (Illumina Cat# 20020594/5, manu-
facturers’ protocol #1000000040498), which were sequenced as
2 × 150bp paired-end reads on one Illumina NovaSeq 6000 SP lane.
This generated 459M read-pairs that were demultiplexed by NGI
(Supplementary Data 2).

Long-read cDNA sequencing. One barcoded and amplifiedNanopore
cDNA library was produced from each of the six K20 RNA extractions,
using the PCR-based ONT Strand-switching protocol with poly-A
selection and the LSK109 ligation kit to add barcodes and adapters.We
performed cDNA sequencing on PromethION (ONTMinKNOWv3.1.18)
using twonucleaseflushedflowcells andonenewFLO-MIN106DR9.4.1
MinION flow cell (3M reads) and the standard loading kit and buffers
for each instrument. The data was basecalled using ONT Guppy v4.4.1
and HAC (high accuracy) model (dna_r9.4.1_450bps_hac_prom.cfg).
The two PromethION runs generated 8.99M and 3.91M reads
(10.1 + 5.2 Gb of cDNA data), withmedian Q-scores of 10.5 and 10.7 and
median lengths of 962 bp and 1060bp, respectively. The MinION run
produced 3.0M reads (3.5 Gb of cDNA data) with median Q-score of
12.6 and median lengths of 915 bp.

Salt-isopropanol DNA extraction of multiple specimens for
population-scale whole-genome resequencing. To produce the
population dataset, we extracted DNA from 75M. norvegica specimens
using a salt-isopropanol precipitation protocol. We extracted DNA
from abdominal muscle tissue from 1–2 muscle segments of krill
samples. Samples were selected based on geographic origin and
quality of preservation. We sequenced 6–10 specimens per popula-
tion. We used a column-free salt-isopropanol precipitation protocol to
extract DNA. Briefly, tissues were lysed over night in ATL Lysis buffer
(Qiagen) together with Proteinase K (Qiagen) over night, followed by
RNAse A (Qiagen) treatment, protein separation using Protein Pre-
cipitation Solution (Qiagen) and precipitation and washing of the DNA
using isopropanol and ethanol, respectively. The washed DNA pellet
was finally eluted in 70μL MilliQ-water. The extractions produced
about 7μg of DNA on average per specimen (Qubit). The protocol is
available as a separate document in this publication and at the online
platform protocols.io:

• https://www.protocols.io/workspaces/wallberg.lab.imbim.uu/
resources/isopropanol-hmw-dna-extraction-method

Short-read DNA libraries and resequencing. Barcoded Nextera DNA
Flex or Illumina DNA PCR-Free libraries (Illumina) were prepared from
75 DNA extractions (74 specimens for resequencing + the reference
specimen) by NGI/SciLifeLab according to the manufacturer’s
instructions. Both protocols use a bead-linked transposome to frag-
ment DNA and incorporate adapters in a single step. About 350ng of
DNA was used as input per Nextera library and 300ng per PCR-Free
library. We aimed for ~3× depth of coverage per specimen and
sequenced the libraries across six Illumina NovaSeq 6000 S4 lanes,
generating 15.1 B 2×150 bp read-pairs with valid library barcodes (18%

or 23% of reads marked as duplicates with Nextera or DNA PCR-Free,
respectively; %GC= 32.9; 88% of reads with Q-scores above 30). One
library (“sva_1” from the Svalbard area) failed to sequence (0.03×
coverage; Supplementary Data 1) and was discarded from population
genetic analyses (hence 74 samples were carried forward).

A preliminary mitochondrial assembly
AminION test runof specimenK4 from theGullmarsfjord produced 1.5
Gbp of long-read across 270,185 reads (N50= 8229 bp; < 0.1× across
the genome) ahead of the other sequencing runs. We downloaded
mitochondrial M. norvegica template accessions (16 S = AY744910;
COI = FJ581747; CYTB =AF149775; NADH=AF149775; tRNA_-
ser=AF149775; tRNA_leu_16S.AF149775) and used BLASTN 2.2.31+ to
identify 235 putatively mitochondrial reads shorter than 16 kbp that
aligned to any of the templates. These reads were assembled in Canu
v1.781 with “genomeSize=17k” that produced a 24.8 kbp contig. We
blasted the readpool against this contig and collected additional reads
(n = 520 in total) and performed a second round of assembly with
Canu, generating a new 24.802 bp contig from 83 aligned reads (37×
depth of coverage) that the assembler suggested was circular. Manual
inspection of the sequence indicated that it was the full mitochondrial
chromosome partly repeating itself and we circularized the sequence
by hand, producing a 17,360 bp long sequence. We next mapped the
long-reads to the mitochondrial sequence with minimap2 v2.17-r94182

(109× mean depth of coverage) and polished it with Nanopolish
v0.11.383 using the “variants” and “vcf2fasta” subcommands. We took
thehigh coverage as an indicator of highmitochondrial:nuclear ratio in
the extractedmuscle tissue. Finally, wemappedRNA-seq data from the
published TI787-MN-F specimen to the polished sequence using
Bowtie2 v2.3.4.184 and performed one round of polishing with Pilon
v1.2285 with the “--fix indels,gaps,local” setting. The resulting mito-
chondrial sequence was 17,508 bp with %GC= 28. Automated annota-
tion was performed with the online MITOS2 tool86. We used this
sequence to screen out potential mitochondrial long-reads from the
K20 reference datasets ahead of genome assembly and used a similar
approach to assemble the mitochondrial chromosome from this spe-
cimen (see mitochondrial re-assembly below).

Pre-processing of long-read DNA data
We used Porechop v0.2.479 to trim the LSK109/NSK007 top and bot-
tom adapters from the PromethION long-reads. Reads with internal
adapters can be chimeras and either be split or removed. We first ran
the program without splitting potentially chimeric reads:

porechop -t 20 --no_split --adapter_threshold 60 --end_threshold
70 --end_size 200 --in fastq.gz --out fastq.trimmed.gz

We then repeated the scanwithout “--no_split” tonotewhich reads
had middle adapters (n = 50,368; 0.06% of all reads). We next mapped
all reads against our preliminary mitochondrial sequence with mini-
map2 v2.17-r941 and found that 382 K reads mapped to this chromo-
some for a mean depth coverage of 33,662× (vs about 32× across the
nuclear genome). We filtered out both the putative chimeric and
mitochondrial long-reads for the reference PromethION FASTQ read-
pool, to reduce the risk of downstream interference in the main gen-
ome assembly.

RNA processing and transcriptome assembly
Long-read cDNA processing. The barcoded ONT PromethION and
minION cDNA reads were de-multiplexed with ONT guppy_barcoder
v4.4.1 and then processed with ONT Pychopper v2.5.0 (https://github.
com/nanoporetech/pychopper) to find, orient and trim full-length
cDNA reads using the SSP/NVP primer sequences (cDNA_SSP_VNP.fas).
The resulting 8.7M readswere combined into a single archive and later
used for gene annotation (see below). We also produced a non-
redundant set of sequences to represent potential genes in the krill
genome. Here we extracted long and high-quality cDNA reads
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(length > 500 bp and Q> 12) from both runs and clustered them into
putative genes with isONclust287 using the “-x sahlin” mode. We then
error-corrected the clustered cDNA reads with isONcorrect v0.0.688.
Lastly, for each error-corrected cluster with four or more cDNA reads
we generated a consensus sequence with vsearch v2.14.189:

vsearch --cluster_fast <clusters.fa > --threads 40 --id 0.95 --cluster-
out_id --clusterout_sort --sizeorder --sizeout --consout <clusters.fa.cons>

This produced 24,632 consensus sequences with N50 = 1,810 bp.
These non-redundant transcript sequences were later used for RNA-
based scaffolding (see below).

Short-read RNA-seq processing and transcriptome assembly. The
Illumina RNA-seq data from the reference specimen and twopublished
RNA-seq archives, TI787-MN-M (adult male; SRR3657321) and TI787-
MN-F (adult female; SRR3657320), were trimmed for adapters and
base qualities using Trim Galore! v0.6.1 (https://github.com/
FelixKrueger/TrimGalore/) and Cutadapt v2.390:

trim_galore -j 8 --gzip --length 50 --trim-n --paired
All read pairs and 89–99% of bases were retained. The trimmed

reads were later used in genome assembly scaffolding and annotation
(see below). We used Trinity v2.5.180 to assemble a transcriptome from
all 459M trimmed read-pairs from the reference specimen, producing
573,869 with N50 = 900bp. Using BUSCO v3.0.2b91 with the Arthro-
poda odb9 lineage set, we detected almost all expected genes (C:97.2%
[S:42.4%,D:54.8%], F:1.6%,M:1.2%, n:1066). A subset of 500 bpor longer
transcripts were used in scaffolding (see below). We processed all
transcripts with Trinotate v3.1.192 and identified 60,677 possibly cod-
ing transcripts with best hits againstmetazoan templates from parsing
the “Trinotate.xls” output and used these transcripts for gene anno-
tation (see below). A subset of 16,509 non-redundant transcripts with
best hits against arthropods were used to measure assembly quality
scores (see below).

Mitochondrial re-assembly
We re–assembled the mitochondrial chromosome for the K20 refer-
ence specimen similarly as described above. PromethION reads iden-
tified during the screening process and that were also between 1–16 kb
long were used to assemble the chromosome in Canu v2.0-
development81 with “genomeSize=17k” that produced a 26.1 kb contig
that the assembler suggested was circular. We next mapped the
369,946 mitochondrial long-reads to the sequence with minimap2
v2.17-r94182 and polished it with Racon using the “variants” and
“vcf2fasta” subcommands. We circularized the sequence manually,
producing a mitochondrial sequence that was 17,840bp. We then
mapped a subset of the 10x Chromium data (656,771 read pairs) to the
chromosome with BWA and performed one round of polishing with
Pilon v1.23 with the “--fix all” setting, followed by a round of polishing
with K20 RNA-seq data. The final mitochondrial sequence was
17,944 bp with %GC= 28. Automated annotation was again carried out
with the online MITOS2 platform as before and features were visua-
lized with DNAPlotter93 (Supplementary Fig. 3).

Genome assembly
The hybrid genome assembly underwent multiple steps of polishing,
scaffolding and refinements, in which we prioritized achieving high
gene completeness and gene contiguity. We mainly used genetic
information from the reference specimen, but also included data from
other specimens for specific tasks (such as identifying redundant
haplotigs). Nanopore long-reads were used for assembly, polishing
(reducing base-level errors) and scaffolding, while 10x barcoded
linked-reads andRNAdatawereused for polishing (in highly expressed
regions) and scaffolding.

Genome assembly. Scaffolding was performed with top priority on
recovering gene bodies using RNA from the reference specimen and

additional RNA-libraries94, followed by genome-wide scaffolding using
Nanopore synthetic mate-pairs with FAST-SG95 and 10x Chromium
barcodes with Scaff10x. Some inadvertently removed contigs with
genes were manually re-inserted into the genome. Screens against the
SILVA ribosomal database96 were used to isolate contigs frombacterial
contaminants. The assembly was carried out in 13 steps and we used
BUSCO97 and genecovr (https://github.com/NBISweden/genecovr)
throughout the pipeline to assess gene detection, completeness and
sequence error.

Assessment of genome assembly quality and completeness. We
used BUSCO v3.0.2b with the Arthropoda odb9 lineage set or BUSCO
v5.0.097 with the Arthropoda odb10 lineage set, respectively, to track
improvements in gene detection rates between genome assembly
versions, and to assess the overall completeness and levels of dupli-
cation in the final genome. In addition, we assessed overall gene
completeness by mapping a set of 16,509 trinity transcripts to the
assemblies using gmap version 2020-06-3098. We parsed the psl out-
put and summarized various statistics related to mapping quality,
including number of insertions, number of mismatches, number of
distinct contig hits, alignment length and alignment depth, to obtain
“gene coverage” statistics for each transcript. Compilation of the sta-
tistical summaries and plots were implemented in a custom R package
genecovr:

• https://github.com/NBISweden/genecovr.

Assembly v1: Production of a preliminary assembly with the
wtdbg2 assemble. To assemble the krill genome, we used the wtdbg2
v2.5 assembler99 and 6–300 kbp long reads withQ-scores ≥ 10 selected
with NanoFilt v2.6.0100 and that had been pre-screened for internal
adapters or mitochondrial sequence, corresponding to ~16× depth of
coverage across the genome. We used a short kmer setting (“-p 17”; as
recommended for noisy data by the developers) and sparse kmer
subsampling (“-S 2”) for sensitive read analysis and binning. Assem-
bling the genome using these settings (“-A -p 17 -S 2 -s 0.05 -L 6000 -g
18 g -t 168”) took 16 days on a 168 core machine with 4.7 TB RAM.
Consensus contigswere exportedwithwtdbg-cns, resulting in genome
assembly v1, which spanned 21.8 Gbp across 797,490 contigs with
N50 = 41 kbp.

Assembly v2: Long-read polishing with Racon. The PromethION
long-reads weremapped in parallel chunks to the v1 genome assembly
using minimap2 v2.17-r941 set to use a split prefix and without sec-
ondary alignments (“-L -ax map-ont -y -t 16 --secondary=no --split-
prefix”). Data was first saved as gzipped SAM files and then sorted
according to coordinates into BAM files with samtools v1.10101, fol-
lowed by merging into a single BAM file with samtools. The genome
assembly was split into 248 100Mbp FASTA chunks with a custom Perl
script and themapped readswere partitioned into corresponding SAM
and FASTQ files using samtools. We used one round of Racon v1.4.11
with the average basequality threshold set to 8 (“-q 8”) to polish all 248
chunks in parallel. The polished contigs were concatenated into gen-
ome assembly v2.

Assembly v3: Long-read polishing with Medaka. We followed the
guidelines from the medaka source documentation (https://github.
com/nanoporetech/medaka#improving-parallelism) that suggests
running the medaka components independently and in parallel for
large genomes. Briefly, the PromethION long-reads were mapped in
250 parallel chunks to the v2 genome assembly using minimap2 v2.17-
r941 with parameters “-x map-ont --MD --secondary=no -t1”. This was
followed by the consensus algorithm medaka consensus with para-
meters “--model r941_flip235 --batch_size 100 --threads 1” to generate
models over each assembly chunk. Finally, consensus sequences were
generated with medaka stitch and merged to obtain assembly v3.
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Assembly v4: Short-read polishing with Pilon. The 10x Chromium
paired-end linked-reads were contained in 16 paired FASTQ libraries
that were mapped to the v3 genome assembly with BWA v0.7.17102,103.
First, the genome reference sequence was indexed (“bwa index -a
bwtsw”) and the datawas thenmappedwith the “bwamem” algorithm,
piping the output to samtools which sorted the data on the fly before
saving a BAM to disk. The 16 BAMs were merged with samtools. As in
the Racon step above, both the reference genome and the BAM were
split according to chunks of contigs spanning 100Mbp. Polishing was
performed in parallel with Pilon v1.23 set to polish putative base-level
errors and specifying a diploid dataset (“--fix snps,indels --diploid”).
The short-read polished contigs were concatenated into genome
assembly v4.

Assembly v5: Purging haplotigs with Purge_haplotigs. Since our
genome assembly was about 3 Gbp larger than the expected genome
size (21.8 Gbp vs ~19 Gbp), we next sought to identify and remove
potential haplotigs from the assembly using Purge_haplotigs v1.1.0104.
The tool uses sequence similarity among contigs as well as a bimodal
signature of read mapping depths to isolate and remove alternative
alleles of the same locus from highly heterozygous diploid genome
assemblies. It also identifies “junk” contigs with extreme mapping
depths (low or high) that may be assembly artifacts or otherwise
intractable in downstream analyses.

Wefirstmapped the ~32×PromethION long-reads usingMinimap2
to the v4 assembly, as in previous steps, and then used the “purge_-
haplotigs hist” command to generate a depth-of-coverage histogram
across the genome. However, this relatively low-coverage dataset did
not result in a clearly bimodal mapping profile with 1x and 0.5x map-
ping peaks on its own. We therefore also mapped the 10x Chromium
linked-reads and a preliminary set of ~140× population resequencing
data to the genome using BWA, in order to use all available data to
specify depth thresholds to flag offending contigs. The short-read
BAMs were marked for duplicates with Picard MarkDuplicates. We
then exported per-base depth-of-coverage data running “samtools
depth” across all positions in the genome assembly (“-a”) and gener-
ated a depth histogram with a discernable “1x” peak at ~150×, pre-
sumably corresponding to properly haplotype-fused contigs. The
expected position of the 0.5x peak at half of this depth was less clear
and possibly intermixed with genomic regions of low mappability.
Given thedepthprofile, we then configured Purge_haplotigs to use20×
and 240× as lower and upper cut-offs, respectively, and 125× as the
mid-point. We specified that contigs with 100% or less of their depths
at diploid level of coverage to be flagged as suspected haplotigs (i.e. to
comprehensively evaluate all contigs) and that those that had depths
outside of the upper/lower cut-offs across > 50% of their lengths to be
flagged as junk:

purge_haplotigs cov -l 20 -m 125 -h 240 -s 100 -j 50 -i <cover-
age_file > -l 20 -m 125 -h 240 -o <coverage_stats_output>

Purge_haplotigs infers contig similarities from the proportion of
sequence that can be aligned between two contigs using minimap2,
and can be set to disregard alignments across repeat sequence. We
therefore produced a preliminary catalog of repeat sequence intervals
in BED format using Red105, masking 11.7 Gb (54%) of the genome. We
used the default alignment score cut-off ( ≥ 70%) to mark contigs for
reassignment as haplotigs:

purge_haplotigs purge -align_cov 70 -repeats <repeats_file>
The purge subcommand executes the script “purge.pl”. We

modified this script to increase performance in the handling of our
large, repeated and relatively fragmented genome assembly by:
implementing faster parsing of tabular data; a string-based instead of
array based data structure for hit summaries; and faster internal
repeat-handling instead of executing the external tool bedtools from
within the script. This code is available at: https://github.com/
andreaswallberg/Ecological-Genomics-Northern-Krill.

Using these settings, we purged 168,316 contigs (N50 = 13,074 bp)
spanning 1.95 Gbp as potential haplotigs and 49,996 contigs
(N50 = 14,236 bp) spanning 565 Mbp as junk/artifact contigs, respec-
tively, removing 12% of the original genome assembly. The remaining
main assembly had 586,516 contigs (N50 = 46,208bp) spanning 19.18
Gbp and was taken as genome assembly v5.

Assembly v6: Mixed-read polishing with HyPo. We aimed to polish
the genome further after purging haplotigs and mapped both the
PromethION long-reads and 10x Chromium linked-reads from
the reference specimen back to the genomeas above.Wenext split the
genome assembly, BAMs and FASTQ reads (using samtools) into ten
chunks of contigs spanning 2 Gbp of the genome each and ran the
polisher HyPo v1.0.3106 separately on each chunk, which uses both
short and long reads to polish contigs in a single run. The polished
contigs were taken as genome assembly v6.

Assembly v7: Scaffolding the contigs with Trinity transcripts using
L_RNA_Scaffolder. At this stage, quality assessments indicated thatwe
had many broken gene models with exons distributed across more
than one contig. Preliminary trials suggested that scaffolding contigs
together based on information in RNA-mappings before long-read or
linked-read DNA scaffolding recovered more complete gene models
for this genome than vice-versa.We started by scaffolding contigswith
non-redundant full-length cDNA transcripts (n = 24,632; see section
above) and Trinity-assembled transcripts, i.e. contiguous RNA evi-
dence that was assembled independently from the genome assembly
itself, using L_RNA_Scaffolder107. We first filtered the Trinity transcripts
to only include the longest isoform of each gene and kept only the
longest isoforms that were > 500bp long (n = 73,422; N50 = 1,482 bp).
L_RNA_Scaffolder typically uses BLAT to infer query alignments, which
does not support genomes larger than 4 Gbp. We therefore instead
used NCBI BLAST v2.2.31 + 108 to build a database:

makeblastdb -dbtype nucl -in <reference>
We then queried both sets of transcripts using MEGABLAST:
blastn -query <transcripts.fa > -task megablast -db <reference > -

outfmt 5 -perc_identity 80 -max_target_seqs 100 -num_threads 36
We then converted the XML output into the expected PSL format

using UCSC blastXmlToPsl v412 (http://hgdownload.soe.ucsc.edu/
admin/exe/). L_RNA_Scaffolder joined contigs with shared transcripts
to generate 12,277 scaffolds. The scaffolds had N50 = 158,477 bp,
compared to N50 = 44,758bp among the unscaffolded contigs
(n = 553,073). Scaffolds and contigs were joined into genome
assembly v7.

Assembly v8: Scaffolding with short-read RNA-seq data with a first
pass of BESST_RNA. We next used BESST_RNA (https://github.com/
ksahlin/BESST_RNA) to perform additional RNA-based scaffolding
using paired-end RNA-seq data. We first mapped the 755M processed
Illumina short-read RNA-seq read-pairs derived from the reference
specimen itself and two published specimens (onemale with ID TI787-
MN-M; one female with ID TI787-MN-M; Supplementary Table 1; Sup-
plementary Fig. 2)94 against the assembly with HISAT2 v2.2.1109 (map-
ping rates 81–86%) and merge the data into a single BAM file using
samtools. We then performed scaffolding with BESST_RNA requiring
three or more witness links with a maximum of 200,000bp distance
(“-e 3 -T 200000 -k 500 -d 1 -z 10000 -g 1”), which resulted in a total of
15,519 RNA-based scaffolds (including those from the previous step)
and reduced the number of sequences to 557,087 in genome
assembly v8.

Assembly v9: Scaffolding with long-read DNA data using FAST-SG
+ScaffMatch. We hypothesized that there could be residual unre-
solved long-range contact information in the PromethION DNA data
and used the Fast-SG scaffolder95 with KMC v3.0.0110 for k-mer
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counting to accomplish further scaffolding. First, we extracted a sub-
set of long-reads ≥ 5 kbp and with average Q-scores above 10 from the
read pool. Next, we generated synthetic mate-pairs in Fast-SG with
insert lengths ranging from 4,000 to 40,000bp (n = 10) using 32 bp
kmer matches spaced along reads and the genome to enable down-
stream detection links between contigs. The mate-pair settings were
specified in a single-line read configuration file:

long ont <reads.fq> 4000,5000,6000,7000,8000,10000,15000,
20000,30000,40000 1

Fast-SG was run as:
FAST-SG.pl -k 32 -l <read_configuration.txt > -r <genome_assem-

bly.fa > -p results -c $KMC -t 40
This produced two SAM files per synthetic mate-pair group,

containing perfect forward/reversed kmer matches along reads and
contigs at the approximate insert lengths specified for each insert
group. The empirical mean and standard deviation of the insert
lengths was computed from the first 1M observations in each group as
per the FAST-SG manual (https://github.com/adigenova/fast-sg/wiki/
Hybrid-scaffolding-of-NA12878).

The statistics and SAM mappings were next processed in Scaff-
Match v0.9111 to generate and resolve a scaffolding graph in order to
scaffold the genome assembly:

python2.7 $PATH/scaffmatch.py -w ONT-K32 -c <genome_assem-
bly.fa> \

-s 1461,1734,1907,2137,2194,2646,3736,7711,10503,13425 \ # std-dev
-i 3957,4964,5965,6958,7938,9921,14634,16513,26175,34772\#mean
-p fr,fr,fr,fr,fr,fr,fr,fr,fr,fr \
-m1 <ont.I4000.fwd.sam> , <ont.I5000.fwd.sam> , … \
-m2 <ont.I4000.rev.sam> , <ont.I5000.rev.sam> , … \
2 >&1 | tee scaffmatch.log
Fast-SG+ScaffMatch produced a scaffolded genome assembly

spanning 247,751 sequences (N50 = 142,666 bp), out of which 131,888
were scaffolds and 115,863 were contigs, and was taken as genome
assembly v9.

Assembly v10: Scaffolding with linked-read DNA data using
Scaff10x. Having produced scaffolds with RNA data and long-reads
and reduced theoverall number of sequences in the genome assembly,
we next explored the possibility to scaffold sequences based on sig-
natures of shared 10x Chromium linked-read barcodes between the
outer edge regions of scaffolds and contigs. Scaffolding was per-
formed using Scaff10X v4.2 (https://github.com/wtsi-hpag/Scaff10X).

First, we mapped the linked-reads to the genome assembly using
BWA, as in previous steps. For performance and memory reasons, we
next pre-filtered the BAM file to only include reads mapping to the
outer 20 kbp regions of scaffolds or contigs using samtools and a
custom Perl script. To reduce the influence of ambiguousmappings to
highly repetitive sequences in the outer regions, we also filtered the
reads to only include read-pair mappings with MAPQ ≥ 20 in the same
script. We then ran one iteration of Scaff10x, and configured the pro-
gram to require at least six reads per barcode (“-reads 6”), eight shared
barcodes as evidence of links between sequences (“-link 8”), edge
length to match our estimated linked-read lengths (“-edge 20000”),
with other settings at their default values:

scaff10x -nodes 20 -gap 100 -longread 1 -reads 6 -link 8 -edge
20000 -plot <mappings.bam> .png -bam <mappings.bam>
<genome_assembly.fa>

This resulted in scaffolded genome assembly v10, spanning
219,207 sequences with N50 = 214,496 bp, including 108,310 scaffolds.

Assembly v11: Scaffolding with short-read RNA-seq data with a
second pass of BESST_RNA. After scaffolding the genome assembly
with long-read and linked-read DNA data, we applied a second round
of RNA scaffolding using BESST_RNA and RNA-seq data, as above, to
find gene-based links that were not resolved in previous steps.

BESST_RNA reported that 2,294 new scaffolds had been formed. This
round of scaffolding further reduced the number of sequences from
219,207 in v10 to 216,722 (N50 = 220,983bp) in genome assembly v11,
out of which 106,444 sequences were scaffolds.

Assembly v12: Short-read polishingwith Pilon using high-coverage
RNA-seq data. The Illumina RNA-seq data from the reference speci-
men was re-mapped to the genome assembly (88.3% mapping rate)
and one final round of base-level polishing Pilon (“--fix snps,indels”)
was applied across transcribed regions with at least 100× depth of
coverage (“--mindepth 100”), resulting in sequences with minor
adjustments that were taken as genome assembly v12.

Assembly v13: Finishing the assembly by removing contaminants
and re-inserting contigs. Some qualitative adjustments were carried
out to reassign sequences between the main genome assembly and
other classes of sequence inorder tomaximize gene completeness and
remove putative non-krill contaminations andmitochondrial artifacts.
We screened themain assembly (v12), aswell as the “artifact” (~565Mb)
and “haploid” (~1.95 Gb) sequences classified by purge haplotigs
(produced in genome assembly v5) to identify candidate sequence for
removal or inclusion.

Reintroduction of krill genes in to the main assembly. We identified
missing genes in the main assembly using both comparative and
experimental evidence. By running BUSCO on the artifacts and hap-
lotigs we identified two complete single-copy BUSCO genes that had
no corresponding BUSCO tblastn hit in themain assembly. In addition,
we used GMAP to identify ten contigs from the haplotig class that had
unique Trinity transcripts mapped with high quality (>90% identity
across >90% of the transcript) but with no hits in the main assembly.
We considered these 12 contigs to have been inadvertently mis-
classified and transferred them back into the main assembly.

Ribosomal gene sequences occur in high copy numbers in many
metazoans and may be difficult to target accurately with short-read
data. We therefore used the nucleotide-nucleotide BLAST (blastn) and
the extensive SILVA LSU and SSU ribosomal RNA databases (release
132)96,112 to identify artifact sequences with ribosomal loci from the
krill. In the majority of contigs where hits were detected, the top
scoring krill alignment was against the expected M. norvegica tem-
plates (LSU accession AY744900.1.2423 [2,423 bp]; SSU accessions
AY781434.1.1853 [1,853 bp] or DQ900731.1.1884 [1,884 bp], respec-
tively), although sometimes templates for other krill had better mat-
ches (typically from the Antarctic krill Euphausia superba), which
occurred in particular when matches were short and fragmented. For
example, without considering the quality and lengths of the reported
hits against the main assembly and the artifacts, theM. norvegica LSU
template had the best krill match in n = 70/96 [73%] of cases, while the
SSU templates were the best krill matches in 15/27 [56%] of cases.
Requiring hits to be at least 1,500bp with 98% identity against the
template raised the on-target M. norvegica best-hits to 91% (n = 10/11)
and 100% (n= 8/8) for LSU and SSU. We found that most sequences
with long motifs matching M. norvegica ribosomal templates
(>1,500bp; >90% identity) had been placed into the artifact class (LSU:
nartifacts = 14 vs nmain = 5; SSU: nartifacts = 10 vs nmain = 5), likely due to
aberrant mapping depths across thesemulti-copy loci. We transferred
these artifact contigs (n = 18) with long matches back into the
main assembly.

Detection of contaminants. We searched the SILVA LSU and SSU
ribosomal RNA databases to identify possible eukaryotic or bacterial
contaminants using blastn and considering the top-scoring alignment
for each assembly sequence. Among contigs flagged as artifacts, we
detected long and high-identity ribosomal matches (>1,500bp and
>90% identity) against Enterobacter ludwigii/cloacae, Lactobacillus
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reuteri and Delftia tsuruhatensis. Querying the Nanopore sequence
data itself against the SILVA database (see below), we re-classified the
Delftia matches as Delftia acidovorans. We also identified several
sequences in the main assembly with partial SSU low-identity hits
against Aphelidium desmodesmi (n = 204; average identity=81%), a
eukaryotic endoparasite of freshwater green algae. However, this SSU
accession (KY249641.1.3521 [3,521 bp]) also contains a partial LSU
sequence with relatively high identity towards euphausiids ( ~ 85%
identity across 550–650bp). A combined search using both SSU and
LSU simultaneously completely masked the hits against this accession
in favor of M. norvegica LSU hits.

We downloaded the corresponding bacterial genome sequences
from NCBI Genome Database (CP027618.1 for Enterobacter cloacae
[5.0 Mbp genome]; CP015408.2 Lactobacillus reuteri [2.0 Mbp] and
CP019171.1 for Delftia acidovorans [6.6 Mbp], respectively). We then
used blastn to screen the krill genome assembly for contigs and
scaffolds matching these sequences. Among artifact contigs, we
recovered multiple high-scoring alignments between assembly
sequences and the Enterobacter (n = 68; average alignment
length=48 kb; average identity=92.5%) and Delftia (n = 75; average
alignment length=44 kb; average identity=92.4%) genomes, respec-
tively. Among the sequences in the main assembly, we detected less
Enterobacter (n = 7; average alignment length=24 kb; average iden-
tity=99.2%; genome coverage=3%) and Delftia (n = 12; average align-
ment length=88 bp; average identity 96.2%; genome coverage=4%).
Matches against the Lactobacillus tended to score lower, covering
only 0.6% of the bacterial genome among artifact sequences (n = 7;
average alignment length=1.9 kbp; average identity 86%) and 2%
among main assembly sequences (n = 17; average alignment
length=2.1 kbp; average identity 97%).

We then queried up to 1M Nanopore reads produced by each
PromethION flow cell and sequencing-run (original or flushed) against
eachbacterial genome (in total, 14.8M reads out of 84.4M reads) using
blastn and estimated that we had sequenced about 73 k reads from
Enterobacter for a total of about 60Mb or 12× average coverage across
its genome, 66 k reads of Lactobacillus (~82Mb; 40× coverage) and 14 k
reads of Delftia (~180 Mbp; 27× coverage). Taken together (assuming
no overlap between the datasets) we estimate that about 0.02% of
reads and 0.05% of data was derived from these bacteria rather than
the krill, respectively. Because of the low frequencies and sporadic
appearanceof reads amongflowcells,wehypothesize that thebacteria
were technical contaminants rather than being naturally associated
with the krill itself. Delftia acidovorans has previously been associated
withbiofilm contamination of BluePippin size selectioncassettes113.We
used a basic blastn criterion to move main and artefact assembly
sequences with at least one top-scoring alignment with >90% identity
towards any of the bacteria across 500 bp into a “contamination” class
(Enterobacter n = 51; Lactobacillus n = 9;Delftia n = 54), spanning about
98–99% of aligned sequence.

Flagging residual mitochondrial sequence. We had already
screened the Nanopore dataset for mitochondrial reads against a
draft assembly of the mitochondrial chromosome. Nevertheless, we
probed the genome assembly for sequences matching the M. nor-
vegica mitochondrion with >90% identity across at least 2 kb (longer
than any individual mitochondrial gene) and detected 15 sequences
harboring either mitochondrial genes or fragments of the AT-rich
control region. Three of these were scaffolds, each of which with a
single contig containing the long match but with short matches on
one or more other contigs. We split these scaffolds and extracted
only the offending contig while transferring the remaining contigs
back into the assembly. We can not exclude that some of these
sequences are nuclear mitochondrial DNA (NUMTs) rather than
misassembled sequences and therefore put these sequences into
their own mitochondrial artifact class.

Genome annotation
We first appliedmultiple tools to find simple and interspersed repeats,
using structural signatures or protein domain homology for classifi-
cation of transposable elements, and then produced a non-redundant
repeat library to characterize the repeat landscape. To annotate genes,
we generated gene models using RNA-seq data and cDNA or Trinity
transcripts.We alsomapped transcripts or gene sequences from seven
other Malacostracans to find unexpressed genes and consolidated
overlapping gene models into common loci, from which high-scoring
non-redundant isoforms were selected as the canonical representa-
tives of genes.

Repeat annotation
We aimed to build a custom non-redundant repeat library for the
Northern krill and use it to estimate the distribution of repeats across
the genome. We applied several specialized or general standard repeat
detection pipelines to annotate simple, tandem and interspersed
repeats and transposable elements (TEs) in the krill genome, using
structural or homology-based searches against characteristic motifs, de
novo detection and de novo assembly of repeats from short-reads.
Intermediate repeat libraries were interrogated against the genome and/
or for TE domains and masked or clustered to remove redundancy,
before a final non-redundant interspersed repeat library was incre-
mentally produced and used to annotate the genome. Some inter-
mediate steps to filter or rename repeats based on the output from the
respective tools were facilitatedwith custom Perl scripts. The procedure
to detect interspersed repeats was inspired by two online protocols:
1. MAKER WIKI: http://weatherby.genetics.utah.edu/MAKER/wiki/

index.php/Repeat_Library_Construction-Advanced
2. Berriman Lab Group (Sanger Institute) protocol on Protocol

Exchange114: https://doi.org/10.1038/protex.2018.054

Detection of simple repeats and low complexity regions. We used
SciRoKo v3.4115 with default settings to estimate the degree of micro-
satellites in the genome assembly and identify commonmicrosatellite
motifs.We then used SDUST v0.1 (https://github.com/lh3/sdust), a fast
reimplementation of the symmetric DUST algorithm in NCBI
Dustmasker116, using defaults to estimate the proportion of simple
repeats and low-complexity regions in the genome. Lastly, we used
TideHunter v1.4.4117 to detect tandem repeats with a minimum period
of 6 bases that occurred in at least two copies (“-p 6 -c 2”) and estimate
the overall tandem repeat content in the genome assembly.

Detection and characterization of LTRs using structural searches
with LTR_Finder and LTRharvest. Characteristic structural features of
LTR (Long Terminal Repeat) retrotransposons were searched with
LTR_Finder v1.07118 using the LTR_FINDER_parallel wrapper v1.1119 and
LTRharvest120. The output of each tool was processed with
LTR_retriever v2.9.0121 to remove putative low-quality false positive
LTR hits. Internally, LTR_retriever used RepeatMasker v4.1.2-p1122 and
CD-HIT v4.8.1123 (“-cdhit [-c 0.80 -n 5 -M0 -aS0.80 -G0 -g 1]”).Weused a
mutation rate inferred from snapping shrimp in30 of 2.64e−9 substitu-
tions per site per year (“-u 2.64e-9”), “-missmax 10000” to allow LTRs
to span contig gaps, “-notrunc” to discard truncated LTRs and nested
LTRs and “-noanno” to skip whole-genome LTRs annotation at
this stage.

LTR_retriever filtering resulted in intermediate libraries with
10,740 LTRs from LTR_Finder (headers tagged “FIN”) and 4,235 LTRs
from LTR_Harvest (headers tagged “HAR”), respectively. We next
mapped these motifs back to the genome using MEGABLAST in
RepeatMasker RMBLAST v2.11.0 and carried forward only thosemotifs
that had two or more hits with >80% identity towards the genome
across >80% of the repeat motif (“80/80” rule)124. Many LTRs are
autonomous and contain several genes to facilitate their retro-
transposition. The LTRs in each library were therefore characterized
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through homology to known LTRs or LTR protein domains using
multiple tools:
1. RepeatClassifier in the RepeatModeler v2.0.2 suite125 to find mat-

ches against sequences in the RepBase RepeatMasker Edition or
Dfam DNA databases (version Dfam_3.5), respectively, using the
RMBLAST v2.11.0 search engine and default search thresholds.

2. TEsorter v1.3126 to detect matches against TE protein domains
using the REXdb-metazoa database (v3)127.

3. TransposonPSI v08222010 (http://transposonpsi.sourceforge.
net/) with the BLAST v2.2.26 search engine using the “PSI-
BLAST” task128,129 to query the LTRs against TE family profiles using
the default search parameters.

4. HMMER3 v3.3 (http://hmmer.org/) searches against Dfam LTR
profiles. Here we first generated a list of profiles matching LTRs
from the curated release Dfam_3.5 using the command:
grep -P “(\tLong\sterminal\srepeat|LTR|Gypsy|Copia|retro-
transposon)”Dfam_curatedonly.hmm.list.csv | grep -v -P “(L\d + |
LINE)” > Dfam_curatedonly.hmm.list.csv.LTR.csv
We then used hmmfetch to extract the actual profiles and
hmmsearch (“--notextw --cpu 40 -E 1e-5 --domE 1e-5”) to search a
version of the LTRs where we had first masked out simple
repeats with dust to reduce spurious hits driven by micro-
satellite motifs.

We next used a customPerl script to parse the output from the four
tools and only keep LTRs with a significant hit detected using at least
one of them. The LTRs were classified according to the detected LTR
type (superfamily or similar level) and tagged with the detection-tool in
the following order of priority: i) RepeatClassifier (“ReC”); ii) TEsorter
(“TEs”); iii) TransposonPSI (“PSI”); and iv) HMMER+Dfam (“DFA”).

LTR retrotransposons have two similar 5′ and 3′ LTR regions and
we divided the LTRs into a pool of repeats with highly identical LTR
regions (99–100% identities; putatively “young” motifs) and a pool of
repeats withmoredivergent regions (85–99% identities; possibly older
repeats). Sequences in each pool were then translated into peptides
by LTR_retriever’s Six-frame_translate.pl tool and then searched sepa-
ratelywith hmmsearch (--notextw --cpu40 -E0.01 --domE0.01) and the
GyDB2 database130 for complete Copia orGypsy LTRswith all expected
internal genes still present, i.e. those with simultaneous hits against all
five typical protein domains: Capsid “GAG”, Aspartic proteinase “AP”,
Integrase “INT”, Reverse transcriptase “RT” and RNaseH “RH”. We then
applied a step-wise procedure to reduce redundancy in the LTR
libraries, while putting top priority on complete LTRs with high LTR
region identities:
1. We combined the complete LTRs with 99% LTR region identities

from LTR_Finder and LTRharvest into a single set and removed
redundant 80/80-hitswithCD-hit (-c0.80 -n5 -M0 -aS0.80 -G0 -g
1 -T 40).

2. We then combined the complete LTRs with 85–99% identical LTR
regions fromLTR_Finder and LTRharvest andmasked this set with
RepeatMasker using theprecedingnon-redundant set from step 1.
LTRs with <80% sequence masked were kept and clustered to
remove redundancy with CD-hit as above. The representative
sequences were then concatenated to the set from step one to
create a non-redundant set of “complete” LTRs.

3. We next combined the incomplete LTRs with 99% LTR region
identities and repeat-masked them with the “complete” LTR
library, adding only <80% masked and CD-hit clustered non-
redundant LTRs to the library. This was followed by a final
iteration of masking and adding LTRs using the incomplete
85–99% LTR library as above.

Our final non-redundant and homology-based LTR library con-
tained 365 full-length or near full length retrotransposon sequences
(length N50= 6,421 bp) (Supplementary Data 3).

Detection of diverse transposon domains using TransposonPSI. We
carried out PSI-BLAST homology searches using the broad library of
transposon ORF profiles (including both LTRs, LINEs, DNA transpo-
sons and other elements) in TransposonPSI v08222010 (using BLAST
v2.2.26) across the whole krill genome assembly. For efficiency, the
genome assembly was first split in 100 chunks, and the chunks were
scanned in parallel in TransposonPSI. High divergence between query
and profile may result in fragmented HSP (High Scoring Pairs) hits
interspersed by non-matching sequence. We compiled a preliminary
repeat library from the “*.TPSI.allHits.chains” files, which contains
chains of one or more collinear HSPs hits against transposon profiles.
i.e. series of HSPs that align collinearly between a specific TE ORF and
the genome, that are not interrupted by ORFs of other TEs. As in the
LTR scans above, we then queried the library against the genome and
kept only repeats with two or more 80/80-hits against the genome
(n = 190,408). Based on the initial classification assigned by Trans-
posonPSI, we subdivided the repeats into broad groups: LTRs, LINEs,
DNA transposons and Rolling-Circle transposons (Helitrons). LTRs
were masked with the preliminary LTR library (see above) using
RepeatMasker and only sequences with <80% masked positions were
kept. The sequences of each groupwere then translated into peptides
using Six-frame_translate.pl and either the DNA or peptide sequence
was then used to re-classify the repeats using the programs and
databases also used to classify the LTRs in the previous section:
1. hmmsearch was run with both the GyDB2 database to detect

Copia or Gypsy domains and the REXdb-metazoa database to
detect other TE domains (--notextw --cpu 40 -E 0.01 --domE 0.01).
Putative LINEs, DNA transposons and helitrons were kept only if
they did not have significant matches against LTR domains. The
sets were concatenated and clustered with CD-HIT to remove
redundant sequences (-c 0.80 -n 5 -M 0 -aS 0.80 -G 0 -g 1 -d 0 -T
40) before proceeding to the next step.

2. RepeatClassifier was run using both RepBase RepeatMasker Edi-
tion and Dfam DNA databases, as above.

3. TEsorter was run (-st nucl -p 40 -tmp tmp -eval 0.01) with the
GyDB2, REXdb-metazoa and REXdb-tir dabases.

We used a custom Perl script to parse the output from the
classification tools. Putative LINEs, DNA transposons and helitrons
were kept only if they had at least one match against the expected
group (class/order) and did not have significantmatches against LTR
domains. The repeats were classified according to the detected type
(i.e. superfamily) and tagged with the detection-tool in the following
order of priority: i) RepeatClassifier (“ReC”); ii) TEsorter (“TEs”); iii)
TransposonPSI (“PSI”, the original classification of the repeat).
Compared to the refined structural LTR library, we detected more
but shorter LTR fragments using this approach (Supplemen-
tary Data 3).

Detection of transposable elements through de novo repeat
assembly with dnaPipeTE. Repeats and TEs that occur at high fre-
quency in the genome can be detected through de novo assembly of
low-coverage short-reads. This approach is implemented in
dnaPipeTE131, which uses Trinity to assemble repeats from short-reads
independently of a reference genome and BLASTN to classify them
against its own database. We extracted 16 independent batches of 10
million single short-reads from our 10x Chromium Illumina read
libraries and assembled repeats independently for each batch using
dnaPipeTE v1.3.1 (-genome_size 19000000000 -genome_coverage
0.079 -sample_number 2). We then parsed the “one_RM_hit_per_-
Trinity_contigs”output-file fromeach runwith a customPerl script and
kept only those Trinity-assembled repeat contigs where a reported
BLASTN match against a dnaPipeTE repeat template spanned >20% of
length of both the contig and the template. The repeats of each run
were concatenated into a single preliminary library (n = 4,799) and
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subdivided into major groups (DNA transposons, LTRs, LINEs and
SINEs). As in the preceding repeat scans, we queried each group
against the genome and kept only repeats with twoormore 80/80-hits
against the genome (n = 3,381). From manual inspection, we noticed
that candidate TEs frequently consisted nearly exclusively of simple
repeats / microsatellites. We therefore subjected also this preliminary
library to reclassification with the same tools used to process the
previous repeats:
1. The sequences of each group (DNA transposons, LTRs, LINEs and

SINEs) were masked with RepeatMasker using the two LTR and
TransposonPSI libraries from previous annotation steps, respec-
tively, and only sequences with <80% bases masked were kept.
Each group was clustered separately with CD-hit as above to
reduce redundancy.

2. Each group was re-classified using the same tools and procedures
outlined in the TransposonPSI pipeline above.

Our filtering and clustering resulted in 311 dnaPipeTE repeats
being added to the growing repeat library, most of which appeared to
be relatively short TE fragments (Supplementary Data 3).

Detection of transposable elements from high-frequency motifs
using RepeatModeler2. We ran RepeatModeler2125 across a random
subset of contigs corresponding to 10% of the krill genome assembly
anddetectedn = 3,799putative consensus repeat sequences occurring
at high copy numbers. We applied a similar approach as in preceding
steps to remove redundant repeats from this preliminary library:
1. The sequences were masked with RepeatMasker using the three

finalized LTR, TransposonPSI and dnaPipeTE libraries, respec-
tively, and kept only RepeatModeler sequences with <50% bases
masked. Thesewere then clusteredwithCD-hit as above to reduce
redundancy, generating n = 2,091 repeat sequences.

2. The sequences were re-classified using RepeatClassifier as above.
Only 156 could be annotated with RepeatClassifier, suggesting
that RepeatModeler2 tended to detect high-frequency repeats
with low homology to known transposable elementsmotifs in the
repeat databases, possibly due to excess uncorrected sequence
error or evolutionary degeneration or divergence among repeat
copies detected throughout the genome.

3. To improve the annotation rate of this library, we scanned indi-
vidual repeat copies detected by each consensus sequence. First,
we mapped consensus sequences to the genome assembly with
MEGABLAST and kept up to n = 1,000 hits against the genome
with >90% identity across 80% of the consensus sequence. We
then queried each copy against a curated protein database in
RepeatMasker using its utility RepeatProteinMask (which uses
BLASTX), registering alignment scores with p-values < 0.01. We
summed the alignment scores across copies and annotated the
consensus sequence with the order/superfamily classification of
the RepeatProteinMask template with highest total score (i.e. the
majority vote).We required that themajority votewas based on at
least 10 observations and otherwise left consensus sequences
unannotated. This approach added annotations to 644 consensus
repeats, more than double the annotation rate compared to
annotating the consensus sequences directly with RepeatPro-
teinMask (n = 254).

Our RepeatModeler library thus spanned 2,091 interspersed
repeat sequences, out of which 800 were annotated to class and
subfamily (Supplementary Data 3).

Evaluation and validation of the repeat library. We concatenated all
libraries with interspersed repeats into a single library (n = 10,908;
13.8Mb). As a means to evaluate the annotation and characteristics of
the library with independent information, we queried the library

against a set of 1,000common transposon-associatedproteindomains
derived from the NCBI Conserved Domain Database (CDD). The
domain data was available in the TransposonProteinNCBICDD1000
tool in the TransposonUltimate annotation suite132. We used the
“ReversePosition-SpecificBLAST”RPSBLASTNtool to query the library
and detect significant hits against pre-calculated Position-Specific
Score Matrices (PSSMs) of these domains133,134, allowing for low-
identity hits with e-values < 1:

rpstblastn -query <library.fa > -db proteinNCBICDD1000/selec-
tion/Selection1000Library -outfmt “7 stitle evalue qstart qend” -evalue
1 -outlibrary.fa.txt

Annotation of repeats across the krill genome with RepeatMasker.
We split the genome assembly into 100 chunks and used RepeatMas-
ker v4.1.1 to annotate each chunk in parallel in the high-performance
Uppmax computing environment:

RepeatMasker -pa 14 -norna -e rmblast -a -u -gff -xsmall -gccalc -lib
<repeat_library.fa>

We used the RepeatMasker tools calcDivergenceFromAlign.pl to
calculate the Kimura 2-Parameter divergence metrics from repeat
alignments and createRepeatLandscape.pl to generate an overall
repeat landscape distribution. We also used a custom script to parse
the RepeatMasker.out file and estimate the amount of every TE
superfamily (or similar).

Statistics about the repeat library and repeat annotation is avail-
able in Supplementary Data 3.

Gene annotation
We used both RNA data and comparative data from other genome-
sequenced crustaceans to annotate genes in the krill genome, with the
ultimate aim to produce a non-redundant set of protein-coding genes
that could be used for genome and SNP annotation.

RNA-baseddata.Wemapped755M Illumina short-readRNA-seq read-
pairs derived from the reference specimen itself and two published
specimens (one male; one female)94 against the assembly with HISAT2
v2.2.1109 (mapping rate 88.2%). We then mapped 8.7M full-length
PromethION cDNA reads produced from the reference specimen
against the assembly usingminimap2 v2.17-r974 (mapping rate 95.8%).
StringTie v2.2.0135 was used in “mixed” mode to generate reference-
guided RNA transcript models in GTF-format from the short-read and
long-read mappings simultaneously.

Trinity transcripts that had been assembled independently from
the genome assembly (see above) were used as a second line of RNA-
based evidence of genes. Only putatively coding transcripts with long
open reading frames and domain hits against Metazoan templates
(n = 60,677) were carried forward in this analysis. SPALN v2.4.6136 was
used to build a DNA database of the assembly (-KD) and to produce
spliced alignments of the Trinity transcripts in GFF3 format (“-Q7 -LS
-d<genome database > -O0,1,3”).

Comparative data. We aligned peptide sequences from the KrillDB
reference transcriptome from the Antarctic krill E. superba137 and
published gene models from six genome-sequenced crustaceans
(n = 304,549; Supplementary Table 3) against the genome assembly
using SPALN, with the ambition to potentially recover additional gene
models not well-represented by our RNA data. A protein database was
built for the assemblywith SPALN (-KD) and splicedprotein alignments
were then produced in GFF3 format (“-Q7 -LS -d<genome database > -
O0,1,2,3,4”). For downstream compatibility, a custom Perl script was
used to ensure that start coordinates for all features were always
smaller than stop coordinates, regardless of strand orientation.
GFFCOMPARE v0.12.6138 was used to combine the protein-based GFFs
and assign the alignments to a set of common loci with different iso-
forms. We used TransDecoder v5.5.0 to only keep candidate
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alignments that retained significant protein domain homology by: i)
converting GTF to GFF3 (gtf_to_alignment_gff3.pl); ii) generating
matching sequences in FASTA format (gtf_genome_to_cdna_fasta.pl);
and iii) search for long open reading frames (TransDecoder.LongOrfs)
in strand specific mode (“-S”).

The candidate ORFs were searched for homology against known
proteins in theSwissprotdatabase (timestamp2021-06-16)withBLASTP
v2.9.0 + 108 and the Pfam database (release 34.0) using HMMER3
hmmscan v3.3 (http://hmmer.org/), respectively, according to standard
procedure (https://github.com/TransDecoder/TransDecoder/wiki).
TransDecoder.Predict was used to identify the peptide alignments with
significant hits, cdna_alignment_orf_to_genome_orf.pl to write a GFF3
file with the corresponding genome coordinates and GFFREAD138 to
convert in into GTF format. To reduce the risk of carrying forward low-
quality protein alignments and with the aim to generate a non-
redundant set of genemodels, we used custom Perl scripts to parse the
GFFCOMPARE locus *.tracking file in order to: i) discard loci labeled by
only one crustacean species; and ii) to select one representative align-
ment fromeach locuswith thehighest SwissprotBLASTP score fromthe
preceding step; and iii) generate an updated GTF file.

Consolidation of gene models. We combined the three sources of
potential gene models generated above (i=StringTie RNA-seq tran-
scripts; ii = SPALN-aligned Trinity transcripts; iii=non-redundant com-
parative crustaceanmodels) with GFFCOMPARE and predicted coding
transcripts with Transdecoder (as in the previous section). We next
queried all predicted peptide sequences against the full invertebrate
NCBI RefSeq database (timestamp 2021-03-05, release 204) using
DIAMOND v0.9.9139. From each gene locus identified with GFFCOM-
PARE, we selected the gene model/isoform with the maximum DIA-
MONDalignment score to aRefSeq sequence, in order to produce a set
of high-quality and non-redundant gene models across the krill gen-
ome assembly. The gene labels of both the non-redundant and
redundant gene sets were tagged to reflect the source of the evidence,
including the best model of each locus.

Gene set size and completeness. Altogether, 202,138 models were
generated from combining the datasets as above, out of which 118,528
models were found to be putatively protein-coding with TransDeco-
der. After removing redundancy by selecting the single best DIAMOND
+RefSeq model or isoform, 42,227 non-redundant gene models were
retained. Of these, 30,766 (73%)models were selected on the basis of a
highest-scoring reference specimen StringTie model (assigned
“REF_STRG” tag in the sequence header), 8,063 (19%) models from a
reference specimen Trinity transcript (“REF_TRIN” tag) and 3,398 (8%)
models from comparative peptide data from other crustaceans.
TransDecoder annotated genes as “complete”, “3prime_partial” (i.e.
missing terminal exons or stop codons), “5prime_partial” (missing start
codon) or “internal” (missing both start and stop codons). 26,448
models were annotated as “complete” or “3prime_partial” (63%), 7,379
were annotated as “5prime_partial” and 8,400 annotated as “internal”
(Supplementary Data 4). We used a custom Perl script to detect
missing in-frame stop codons directly downstream of models anno-
tated as “3prime_partial” or “internal”, restoring stop codons in 5,884
gene models, primarily derived from transcript or peptide data (Sup-
plementary Data 4).

We then used both BUSCO v3.0.2b91 with the Arthropoda odb9
lineage set and BUSCO v5.0.097 with the Arthropoda odb10 lineage set,
respectively, to assess the completeness of the gene models (Fig. 1b,
Supplementary Fig. 4).

Functional and evolutionary annotations. We applied several tools to
accomplish functional annotationsof thegene sets. First,weusedEnTAP
v0.10.7140 with the SwissProt and invertebrate RefSeq peptide databases
referred to above. To this base resource, we added gene models from

multiple genome-sequenced arthropod species not represented in our
release of RefSeq (Supplementary Table 4). We ran EnTAP in protein-
mode (“--runP”) with default settings, using the TransDecoder-predicted
peptide sequences derived from the krill gene models and EnTAP’s pre-
configured EggNOG framework resources141 to annotate genes. This
resulted in 27,584 of the 42,227 gene models being annotated, while
14,643 remained unannotated (Supplementary Data 4). Second, we
downloaded the Drosophila FlyBase database release FB2021_01142 and
used BLASTP v2.9.0 + 108 to find Drosophila melanogaster (dmel_r6.38;
n = 30,724 peptides) homologs of our krill peptides. For each krill pep-
tide sequence, the best scoringDrosophila homologue was retained as a
gene label for downstream annotation of genes or SNPs without further
resolvingbest reciprocal relationships. The “FBgn”Flybase IDswereused
to computeGeneOntology enrichments for gene family expansions and
for divergence signals between populations (see sections below).

Gene region masking. The non-redundant set of protein coding gene
was used to generate a mask across the whole genome with a custom
Perl script, in which every base was substituted for the type of gene
region it occurred in (1=intergenic; 2=intron; 3 = 3′-UTR; 4=exon; 5 = 5′-
UTR; 6=cds including start/stop codons). This was used to enumerate
the lengths of different gene regions and to classify specific positions
(e.g. in the subsequent DNA methylation analyses or assessments of
variation across the genome).

We then estimated repeat-content for each gene to test for cor-
relations with annotations (as a control) and expose potential trans-
poson models among unannotated gene models. We therefore used
the krill repeat library to mask the coding sequence (CDS) of all gene
models with RepeatMasker (using the same settings as the whole-
genome masking). We aimed to measure and contrast the repeat
content between “regular” gene models that had been annotated for
function and homology towards other invertebrate genes using EnTAP
against those matching transposable elements in other species or
those that were unannotated. To distinguish between regular gene
annotations and transposable element annotations, we applied key-
word searches against: i) each (per-gene) line in the EnTAP output; and
ii) the descriptionsmatching theCOG (Clusters of OrthologousGenes)
and eggNOG tags reported by EnTAP (field number 31 “EggNOG
Member OGs” in the EnTAP summary table). To match a putative
transposonannotation, either thewhole line itself or theCOG/eggNOG
ortho-group descriptions had to:
i. have a match to either of the keywords: “retrotrans” or “trans-

poson” or “transposable” or “transposase or “reverse tran-
scriptase” or “RVT_1”;

ii. but not a match to the keywords: “retrotranslocation” or “piRNA”
or “miRNA” or “prevent” or “repress”, since these keywords were
associated with genes responsible for inhibiting transposable
element activities.
This resulted in the identification of 25,301 regular protein-coding

gene models and 2,283 transposable element annotations and those
models that were unannotated in EnTAP (n = 14,643). Their respective
lengths, repeat content and other features are provided in Supple-
mentary Data 4 and Supplementary Fig. 6.

Evolutionary analyses of protein coding genes
We aimed to assess gene and gene family evolution in the krill by
comparing the set of coding genes in our annotation to orthologs of
nine other crustaceans (Supplementary Table 5).Weprepared the data
by removing redundant gene sequences from published gene models
of the other species, keeping only the isoformwith the longest peptide
sequence for every gene.

Inference and comparison of orthologs between krill and other
species. We performed a search for orthologs using ProteinOrtho
v6.0.14143 with DIAMOND v0.9.30. We used the 26,448 non-redundant
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Northern krill gene models that had been annotated as complete in
this analysis. We then enumerated all 1:1 single-copy ortholog pairs
between the krill and the other species. We used 1:1 orthologs between
the krill and those of H. americanus, P. monodon, H. azteca and E.
affinis, respectively, for direct comparative analysis of the lengths of
coding sequence and full gene bodies inR144. Gene length comparisons
areprovided in Fig. 1., Supplementary Fig. 7 and SupplementaryData 5.
For the Antarctic krill, comparisonswere done against themean length
reported in the Antarctic krill genome paper24 (no gene models were
available at the time of preparing these analyses).

Estimating divergence between the Northern krill and the
Antarctic krill. We estimated per-base divergence at synonymous sites
(dS) between the Northern krill and the Antarctic krill as a proxy for
nearly neutral divergence comparably unaffected by selection. We
then used this estimate to date when the two species split from their
most recent common ancestor.

To this end, we first used DIAMOND to detect 13,371 pairwise
Reciprocal Best Hits between 140K Antarctic krill transcriptome pro-
tein models from the KrillDB2 and 26,395 non-redundant Northern
krill protein coding gene models (see section below about the gene
models). RBH protein sequences were aligned with MAFFT v7.453145

using settings recommended to avoid over-aligning regions with poor
homology146:

mafft --globalpair --allowshift --unalignlevel 0.8 --leavegappyr-
egion --anysymbol seq.aa.fasta > seq.aa.fasta.ginsi.fasta

For each alignment, we fitted the corresponding nucleotide
sequences with PAL2NAL v14147 and then used KaKs_Calculator v1.2148

with the approximate “YN”method to estimate synonymous and non-
synonymous sites and substitutions and compute dN, dS and dN/dS,
while accounting for unequal base frequencies, transition/transversion
rates and multiple substitutions between sequences149. We summed
the total synonymous sites and substitutions to derive a single overall
dS estimate across all 13,371 genes.

In addition, we concatenated the genes and computed the
observed and Jukes-Cantor-corrected distances between the two spe-
cies across full sequences or 1st, 2nd and 3rd positions separately using
Seaview v5.0.5150.

Using the dS estimate of 0.46, we next estimated divergence time
assuming the mutation rate inferred from snapping shrimp in ref. 30
of 2.64e-9 substitutions per site per generation and a 1.5 year gen-
eration time (1 year in Northern krill and 2 years in the Antarctic
krill)9,151. We used a standard linear equation assuming a constant
molecular clock:

T =
D � g
2u

ð1Þ

Here, D=divergence per base (dS =0.46), g=generation time (1.5),
u=mutation rate (2.64e−9).

Results of these calculations are provided in Supplemen-
tary Data 5.

Inferences of phylogenetic interrelationships. We detected 1,011
single-copy orthologs (OGs) across all ten species and used these
genes to produce a time-calibrated phylogenomic crustacean species
tree. We first aligned the peptide sequences of each OG with MAFFT
and filtered the alignments with Gblocks152:

Gblocks <OG.fa > -t = p -b1 = 6 -b2 = 6 -b4 = 5 -b5 = h -b6 = y
-v = 10000 -d = y -e = .gb

We then inferred phylogenetic interrelationships with IQ-TREE
v2.1.0153, applying the best-fit LG + F + I +G4 model (Modelfinder+BIC)
across all filtered ortholog alignments as a supermatrix and running
1,000 ultrafast bootstrap replicates154. The crustacean phylogeny was
converted into an ultrametric chronogram using r8s v1.8.1155. Input for

r8swas generatedusing ahelper script from theCAFEv5.0156, wherewe
specified that the phylogeny had been inferred from 522,746 align-
ment sites. We used three calibration points, setting: i) the oldest split
in the tree (between D. magna and all others) to have occurred 530M
years ago157; ii) the split between the lobster H. americanus and the
crayfishC. quadricarinatus to be at least 372Myears old (i.e. older than
the radiation of lobsters) and the split between krill and decapods to
be at least 447M years (i.e. older than the radiation of decapods)
according to molecular dating in158. We ran r8s using the penalized
likelihood method:

divtime method=pl algorithm=tn cvStart=0 cvInc=0.5 cvNum=8
crossv=yes

Analysis of gene family evolution. We used SwiftOrtho (https://
github.com/Rinoahu/SwiftOrtho)159 to broadly cluster genes into
putative gene families and used CAFE to trace the expansion or con-
traction of these families along the time calibrated ultrametric tree
inferred in theprevious step.We thenusedwgd160 to test for signatures
of divergence between genes that could indicate a history of whole
genome duplication.

Preparing the krill gene set. The full krill gene set spanned n = 42,227
putative gene models, out of which n = 27,584 genes had been
annotated with EnTAP and 18,962 genes had been tagged as com-
plete using TransDecoder (Supplementary Data 4). Because not all
gene models were recognised for function or homology with EnTAP
or complete with TransDecoder, the full gene set could contain
spurious gene models (e.g. non-coding RNA, pseudogenes or trans-
posable elements) or incomplete gene models (e.g. fragments of the
same gene locus separated on unscaffolded contigs) that could
artificially inflate gene numbers and estimation of gene family
expansions.

From the set of annotated genes, we therefore first removed
2,283 potential transposable elements (TEs) that had been annotated
as TEs using EnTAP, leaving 25,301 models in this set. We then per-
formed a relaxed homology search between unannotated krill genes
and the nine crustaceans (Supplementary Table 5) with DIAMOND
using an e-value threshold of 1e-5 and detected significant hits for
1,934 hitherto unannotated genes. These genes were added to the
annotated set for a total of 27,235 genes. This set was then checked
for potentially fragmented models that may belong to the same
underlying gene locus through queries against two contiguous sets
of RNA sequences:
a. We mapped the gene sequences back to the Trinity transcripts

(using the longest isoform of each putative Trinity gene) to
identify genes that mapped to different parts of the transcripts.
For each gene, the RNA transcript with the longest total BLAST
hits was registered. If genemodelsmapped to the same transcript
and their respective alignments did not overlap at all or only
overlapped marginally (at most 10% of the length of the gene),
they were taken potential separate parts of the same gene body in
the genome. In these cases, the shorter and potentially redundant
gene fragment(s) were removed from the set, so that only one
representative gene model was kept.

b. We also mapped the gene models to the full length Nanopore
cDNA sequences that had previously been clustered with
VSEARCH (see above; n = 25,484), and detected short and
potentially redundant fragments of the same underlying gene
using the same approach.

This procedure identified and removed 839 gene fragments from
the gene set, the majority of which had beenmarked as incomplete by
TransDecoder, resulting in a final krill gene set spanning 26,395 non-
redundant gene models that were carried forward for gene family
analysis.
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Analyses with SwiftOrtho to cluster genes into families. SwiftOrtho
inference of gene families was performed in three steps for each
dataset:
i. find similar matches between sequences in the non-redundant

crustacean gene sets:
find_hit.py -p blastp -i <species.fa > -d all_proteins.fa -a 20 -e 1e-5
-s 111111 -o <species.fa.out>

ii. infer potential orthology relationships between genes using low
taxon coverage (“-c 0.3”) and identity thresholds (“-y 30”):
find_orth.py -i <all_matches.out > -a 16 -c 0.3 -y
30 > <all_matches.out.orth>

iii. cluster similar orthologs or paralogs into groups/gene families
using the Affinity Propagation Cluster (APC) algorithm:
find_cluster.py -i <all_matches.out.orth > -t 16 -a apc -I

1.5 > <all_matches.out.30_30.orth.apc>
The clustering resulted in a gene count spanning 17,119

gene families with sequences from two or more species. This set
included 11,259 families with at least one gene from the krill and 6,141
families where both the krill and the outgroup D. magna were
represented. For comparison, the lobster H. americanus and amphi-
pod H. azteca were represented in 12,274 and 9,149 gene families,
respectively.

Analyses with CAFE to trace gene family expansions or contrac-
tions. The SwiftOrtho gene family dataset was reformatted into the
expected input for CAFE using a custom Perl script and analyzed in
CAFE5. The software uses a maximum-likelihood framework to esti-
mate the rates and events of gene family evolution using a birth-death
process to model the gain or loss of genes along the branches of the
species tree156. These analyses are conditioned on there being at least
one gene present in the outgroup taxon for a gene family to be
included. Our analysis of gene family evolution was therefore restric-
ted to families with at least one representative in the D.
magna (n = 6,814).

Here we followed the steps outlined by the developers in https://
github.com/hahnlab/CAFE5/blob/master/docs/tutorial/tutorial.md:
1. Separating extremely large gene families from the rest to reduce

variance ingene copynumbers and improveparameter estimation:
python clade_and_size_filter.py -i <all_matches.out.30_30.orth.
apc.table.ALL.csv > -o all_matches.out.30_30.orth.apc.table.ALL.
csv.filtered -s
In total, 16 large families were separated from the rest in the first
size filter step, all of which indicated expansion in other species
than the krill. For this reason, those 16 families were not further
analyzed.

2. Infer the gene family evolutionary rates (the so-called lambda
parameter) and compute gene family evolution across the
species tree.

cafe5 -i all_matches.out.30_30.orth.apc.table.ALL.csv.filtered -t
filtered.iqtree.out.contree.rooted.nwk.r8s_ctl.txt.out.tre

We compiled distributions of gene family sizes for each species,
estimated the optimal lambda across the tree to be 0.0005932 and
inferred the patterns of expansion/contractions across the 6,814 gene
families. Results are provided in Fig. 1, Supplementary Fig. 7 and
Supplementary Data 6.

Gene ontology (GO) enrichment analysis of expanded gene famil-
ies. The subset of gene families with significant evidence of expansion
in the Northern krill was analyzed for function by assessing the cor-
responding D. melanogaster homologs using ontologies in the online
Flybase service. Using the same Drosophila homologs, we tested for
enrichment of Gene Ontology terms among the expanded families vs
the non-expanded ones using the online services GOrilla161 and Shi-
nyGO (v0.77)162 using False Discovery Rates (FDR) thresholds of 0.05

after correcting for multiple testing. Analyses of gene families were
carried out in two ways with regards to the Drosophila homologs: i)
using all homologs associated with a gene family (whichmay be highly
variable in the number of homologs between gene families); ii) using
only the most commonly detected homolog for every gene family
(only using more than one in case of ties; an approach to reduce var-
iance in the numbers of homologs used to characterize each gene
family).

The results of these analyses are presented in Fig. 1 and Supple-
mentary Data 6.

Analyses with wgd to test for signatures of whole-genome dupli-
cation (WGD). The amount of divergence at neutral sites between two
homologous sequences can serve as a proxy for the time that has
passed since they originated through duplication. In the case of genes,
such divergence can be measured as synonymous substitutions per
synonymous site in pairwise alignments between two sequences (KS),
assuming that such sites evolve neutrally. Genes can be added to the
genome through small-scale duplication events at different points in
time or through large-scale duplications including whole-genome
duplications, in which many genes originate at the same time. In each
scenario, gene duplicates are often lost after some time. The former
process can be expected to produce an L-shaped exponential KS-dis-
tribution among surviving paralogues in the paranome, suggesting
many observed paralogues are young, while the latter process can
produce one or more characteristic secondary peaks along the KS-
distribution, indicating that those paralogues originated at a particular
event and age163. To study these patterns, we analyzed the gene set of
the krill and, for comparison, those of five other crustaceans that have
not been associated with whole-genome duplications (H. americanus;
P. monodon; H. azteca; E. affinis; D. magna) with wgd160. The tool
internally uses DIAMOND to detect similarity among sequences,
MCL164 to cluster them intoputative gene families, FastTree to produce
per-family gene trees165, PAML166 to perform model-based estimation
of synonymous divergence between paralogs and Scikit-learn167 to fit
mixtures of components to the overall KS-distribution in order to find
evidence for mixed distributions that could indicate WGD. For each
species, we:
1. Performed clustering of the genes:

singularity exec wgd.sif wgd dmd --nostrictcds <cds.fasta>
2. Computed and visualized the respective KS-distribution:

singularity exec wgd.sif wgd ksd -n 16 --preserve --max_pairwise
250000 wgd_dmd/<cds.fasta.mcl > <cds.fasta>

singularity exec wgd.sif wgd viz -ht barstacked -r 0 5 -b 50
--weighted -ks <cds.fasta.ks.tsv > -o <cds.fasta.ks.tsv.viz.svg>

For the krill, we then performed additional analyses using Gaus-
sian MixtureModels and applying models with 1 to 4 components and
applying the Bayesian Information Criterion to test which model best
explained the data:

singularity exec wgd.sif wgd mix --method gmm -n 1 4 -o
wgd_mix_gmm <cds.fasta.ks.tsv>

The results of these analyses are presented in Supplementary
Fig. 8 and Supplementary Data 6.

Characterization of the opsin repertoire. We used BLASTP to query
the full protein-coding gene set of the Northern krill (n = 42,227) and
the Antarctic krill E. superba transcript set from Urso et al.32.
(n = 151,585) against the crustacean opsin gene family sequences from
Palecanda et al34. (n = 631). Sequences with hits spanning ≥50 amino
acids and that had ≥50% identity were taken forward for analysis.
We reduced redundancy among the Antarctic krill sequences by
running CD-HIT (“-c 0.85 -n 5 -M 0 -T 40”). We used MAFFT with the
“--add” parameter to align the sequences (19 fromM. norvegica and 15
from E. superba) to the Palecanda alignment and FastTree was used
with the WAG model to produce a gene family tree spanning
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663 sequences (Supplementary Fig. 9). A tree containing only krill
sequences (n = 65) was produced by pruning all other sequences
(Supplementary Fig. 10).

Characterization of the Hox gene complement. The presence and
number of duplicate Hox genes can indicate ancestral whole genome
duplication in a lineage, as these genes are often retained in duplicate
copies even after diploidization168. To test for duplicated Hox genes in
the krill, we used curated Hox homeodomain sequences from a pre-
vious analysis169, HomeoDB2170 or NCBI. We searched the krill genes
against 10 core homeodomain sets from crustaceans and selected
insects, spanning 60–80 amino acids and 3–6 species per set, to
annotate Hox genes and detect Hox gene duplication. Eight well-
curated homeodomain sets were used unchanged fromanalyses of the
amphipod P. hawaiensis169 (lab=labial, pb=proboscipedia; Hox3;
Dfd=Deformed; Scr=Sex combs reduced; Antp=Antennapedia; abd-
A=abdominal-A; Abd-B=Abdominal-B), one set was downloaded from
HomeoDB2170 (ftz=Fushi Tarazu; HomeoDB2 species: D. melanogaster
[Dm]; Apis mellifera [Am]; Tribolium castaneum [Tc]) and the final set
was derived from both HomeoDB2 and NCBI sequences (Ubx/Utx=Ul-
trabithorax; HomeoDB2 species: D. melanogaster [Dm]; A. mellifera
[Am]; T. castaneum [Tc]; NCBI species: P. hawaiensis [Ph] FJ628448; D.
magna [Dmag] BAE96992.1). Supplementary Data 7 lists all homeobox
reference sequences used.

We queried the krill gene against the 10 homeodomain sets using
BLASTP.We kept the longestmatching peptide substring (the putative
homeodomain) for sequences that had at least one hit to a home-
odomain template which spanned ≥50 amino acids and had ≥50%
identity (n = 119 sequences). Because the homeodomain is relatively
similar across the different genes, we then combined all 10 sets and
krill substrings into a single FASTA sequence file and aligned all data at
once with MAFFT. We then inferred a homeodomain gene family tree
with Fasttree v2.1.11165 and inspected the phylogenetic positions of the
candidate krill genes.

The Hox gene family tree is shown in Supplementary Fig. 11.

Characterization of genes involved in DNA methylation. The pre-
sence or absence of genes that encode enzymes involved in DNA
methylation (i.e. DNMT1orDNMT3), DNAdemethylation or associated
damage repair (e.g. TET family; ALKB2) vary among arthropods and
may indicate whether the DNA methylation pathway is operational37.
Since we had detected DNA evidence of genome-wide DNA methyla-
tion through Nanopore signal analysis (see below), we searched the
krill gene-set for homologs encoding the DNMT1/2/3, TET2 and ALKB2
enzymes.Wefirst identifiedpotential candidates using the gene names
of best-matching genes from the EnTAP gene annotation. We then
combined arthropod sequences from multiple sources with estab-
lished or likely orthology, including OrthoDB v10.1171, EggNOG v5.0172

and NCBI (mostly crustacean sequences) (Supplementary Data 7) and
performed phylogenetic analyses of the position the candidate krill
genes in each gene tree. For each gene, we aligned the peptide
sequences with MAFFT, trimmed poorly aligned regions with trimAl
v1.2rev59173, inferred a gene tree with FastTree and inspected the
position and the length of the branch at which the krill sequence(s)
grouped in the tree. For further validation, we performed analyses
using the online NCBI Conserved Domain Search133,134 and SWISS-
MODEL174 for homology-based inference of structure and domains in
each candidate sequence. SWISS-MODEL uses a comprehensive search
strategy to detect significant matches, including the composite Qua-
litative Model Energy ANalysis (QMEAN) scoring method to analyze
and score protein structures.

Predicting protein structures. To further assess the accuracy of these
candidate proteins possibly involved in the DNA methylation system,
we predicted their three-dimensional protein structure. The protein

sequences were added to the ColabFold server175, where the input
multiple sequence alignment is built by a homology search by
MMseq2176 before modeling by AlphaFold2177. No PDB templates were
added, and 3 recycles were used. Five models were generated per
protein.

Analysis of DNA methylation levels
Nanopore signals are altered by DNA base-level modifications,
including 5-methylcytosine (5-mC) at CpG sites, that can be detected
in silico using Nanopore data178. We scanned the Nanopore reads for
evidence of methylated cytosines across all well-covered CpG sites
in the nuclear and mitochondrial genomes (i.e. DNA methylation in
the somatic muscle tissue that the sequences were derived from),
and cross-referenced methylation frequencies with genomic
features.

We first mapped the PromethION long-reads back to the finished
krill genome assembly using minimap2 as above and then used the
GPU-accelerated program f5c v0.6179 to scan for evidence of methy-
lated cytosines across all CpG sites in the genome with 10× or higher
read coverage. We used three f5c subcommands:
1. “index” to index the rawFAST5 PromethION signal data and reads;
2. “call-methylation” to call the likelihoods for CpGs to be methy-

lated or not;
3. “meth-freq” to compute the frequency of reads with sufficient

evidence of methylation at every CpG.

We then used a custom Perl script to group the reported
methylation frequencies according to genomic regions using a gen-
ome mask (see above). Depending on how closely spaced CpG sites
are, f5c sometimes outputs joint methylation frequencies across a
short subsequence with more than one CpG site. In such cases, we
split the observation into separate data points with identical
methylation frequencies and queried each position against its cor-
responding genomic region. We then compiled a second round of
summary statistics removing potential source of error by: i) masking
all CpG sites at which we had observed heterozygous genotypes in
the reference specimen; ii) excluding all regions that were marked
inaccessible due to high or low depths in the population genomic
dataset (see below). We visualized the results in R and computed
mean, median and 95% confidence intervals (200 bootstrap repli-
cates; two-tailed comparisons).

We cross-referenced the DNA methylation data with information
about reads and repeats. First, for every gene model we counted the
number of RNA splice isoforms inferred from RNA-seq data and
StringTie (see above), keeping genes supportedby at least one isoform
(n = 21,031). We partitioned genes into 5%-bins of average DNA-
methylation level and computed the mean number of isoforms in
each bin, along with 95% confidence intervals (1,000 bootstrap repli-
cates; two-tailed comparisons). We then extracted 1,706 putative LTR
retrotransposons originally reported by LTR_Retriever and verified to
contain at least one expected LTR domain when queried against the
GyDB2 database (as above). Identities between 5’-LTR and 3’-LTR
regions estimated by LTR_Retriever were used to partition the LTRs in
bins of 5% divergence (here 0 to low divergence between LTR regions
is taken as a proxy for being an evolutionarily young and recently
inserted repeat).

Results are summarized in Fig. 1 and Supplementary Fig. 17.

Population genetic data processing and analyses
Processing resequencing data. The population-scale data was
mapped to the genome, read-group tagged and marked for optical
duplicates using standard NGStools. We made a per-base depth
profile across the genome to mark positions beyond ±50% of an
observed putative diploid peak (Supplementary Fig. 18A) as inac-
cessible for measuring variation. SNPs and short structural variants
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were then called, decomposed and quality-filtered for annotation
and analyses.

Mapping, read-group tagging and duplicate marking datasets. The
barcoded short-read resequencing data was demultiplexed by NGI,
resulting in oneormorepaired FASTQarchives per specimen (onepair
per lane). The genome assembly was indexed using BWA as above. For
each sample, we mapped and readgroup-tagged the data using BWA
v0.7.17 with the “mem” algorithm and sorted the output on the fly
using samtools v1.12:

bwa mem -t 18 -R <read_group > <reference > <fwd.fastq.gz > <
rev.fastq.gz> | samtools sort -@4 -Obam -m4G -o <mapped_sample > .
bwa.bam -

BAM files for samples sequenced on multiple lanes were merged
with samtools. The merged data of each sample was then sorted by
read name, marked for duplicates using samblaster v0.1.24180 and
again re-sorted by genome coordinates:

samtools sort -@ 10 -n -O SAM <mapped_sample.bam> | sam-
blaster | samtools sort -@ 10 -OBAM -o<mapped_marked_sorted.bam>

For the reference specimen, both the high-coverage linked-reads
and low-coverage data were used. We mapped the high-coverage
linked-reads and processed it in the same way. All BAMs were indexed
with samtools.

Mapping-depth profiles and masking of inaccessible sites. Our
analyses of repeats had indicated that the krill genome assembly was
highly repeated (see above) and that short-read mappings tended to
result in uneven coverage across the genome, suggesting that many
genomic regions could be problematic for SNP-calling. We therefore
produced depth of coverage profiles across the genome with the aim
to mark regions deemed to be accessible or inaccessible for SNP dis-
covery. To this end, we compiled a per-base depth-track across the
whole genome for each specimen, counting reads that mapped with a
minimum quality of 10:

samtools view -q 10 -b <sample.bam> -b ‘cat contig.list‘ | samtools
depth -a --reference <genome_assembly.fa>

Using custom Perl scripts, we merged these depth tracks into
per-population tracks, as well as one overall depth-track for the
whole dataset. We compiled a depth distribution across the whole
genome and identified a peak of coverage at ~188× and set lower and
upper thresholds to be ±50% (94×) around this peak (Supplementary
Fig. 16). Positions where less than 50% of samples were mapped
(n < 37) were masked as inaccessible. Downstream, we only con-
sidered SNPs and estimated patterns of genetic variation from
genomic regions with 94–281× depths of coverage (8.43 Gbp) and for
which data had been mapped in at least 50% of samples (n = 37).
We produced a per-base genome mask marking sites as either
accessible (“1”) or inaccessible (“0”) and used this mask to correct
estimates of the levels of genetic variation in the genome. The
accessibility mask was cross-referenced against the mask of genome
regions (see above).

Calling and phasing single-nucleotide polymorphisms (SNPs)
across the genome
Calling and processing variants. We subdivided the genome
sequences (scaffolds and unscaffolded contigs) into 160 approxi-
mately equally sized chunks specified GTF files to enable SNP-calling
different parts of the genome in parallel. We then used FreeBayes
v1.3.4181 to call variants with a theta prior set to “-T 0.01”, “--use-best-n-
alleles 5” to limit memory usage, “-m 10” to limit analysis to read
alignments with mapping scores above 10 (matching depth estimates
in a previous step), “-q 20” as a minimum base quality filter for alleles
and “-E 0” to limit the generation of complex haplotype variants. We
also used inclusive depth filters outside mapping depth thresholds:
“--min-coverage 80” as a lower threshold and “-g 474” as an upper

threshold andpiped the output to the Vcflib v1.0.1182 vcffilter tool set to
only keep variants with QUAL > 20:

freebayes -T 0.01 -E 0 -m 10 -q 20 --min-coverage 80 -g 474 --use-
best-n-alleles 5 -t <genome_part_${NUM}.gtf > -f <reference.fasta > <
bam files> | vcffilter -f \“QUAL > 20\“ > <variants_${NUM}.vcf>

We processed the called variants to decompose complex haplo-
types and only keep biallelic SNPs. First, we used bcftools v1.12101 with
the “norm -d all -a” parameters to left-align and normalize indels,
decompose complex variants and only keep one record per position.
The output was piped to vt v0.5772183 to split multiallelic variants while
correcting for read counts (“-s”):

cat variants_${NUM}.vcf | bcftools norm -d all -a -f <refer-
ence.fasta> | vt decompose -s - > <variants_${NUM}.decomposed.vcf>

We then used two custom Perl scripts to:
i. remove variants that fell outside accessible regions

vcf2filtered_vcf_by_coverage.pl --vcf <variants_${NUM}.de-
composed.vcf > --coverage <depth_mask.fasta > --seqs <geno-
me_part_${NUM}.gtf > --verbose

ii. keep only biallelic SNPs in which at least 50% of samples had been
genotyped and while also ensuring that these SNPs occurred
within the desired thresholds:
vcf_biallelic2fasta.pl --input variants_${NUM}.decompose-

d.accessible.vcf --output variants_${NUM}.decomposed.accessi-
ble.finished.vcf --min_fill_position 0.5 --min_depth 94 --max_depth 281

Imputing and phasing SNPs. Each chunk of SNPs (n = 160) was
imputed and phased with BEAGLE v4.0 r1399184 in a two-step process.
We first imputed missing genotypes using genotype likelihoods:

java -Xmx48g -jar beagle.27Jan18.7e1.jar nthreads=10 gl=variants_
${NUM}.decomposed.accessible.finished.vcf out=variants_
${NUM}.decomposed.accessible.finished.imputed.vcf

We then phased the data using the inferred genotypes:
java -Xmx48g -jar beagle.27Jan18.7e1.jar nthreads=10 gt=variants_

${NUM}.decomposed.accessible.finished.imputed.vcf.gz out=variants_
${NUM}.decomposed.accessible.finished.imputed.phased.vcf.gz

This resulted in a dataset spanning ~760 million biallelic SNPs.

Annotating SNPs. We used GFFREAD to extract the CDS DNA
sequences of the non-redundant protein-coding genes (see gene
annotation above):

gffread -g <genome.fasta > -x <cds.fasta > <genes.gff>
TheGFFgene coordinatefile and genomeand cds sequenceswere

then used to build a custom database with SnpEff 5.0e185:
java -Xmx96G -jar snpEff.jar build -gff3 -v mnor 2 >&1 | tee

build.log
Each of the 160 phased VCF files was then annotated with SnpEff,

generating a new compressed VCF:
java -Xmx16g -jar snpEff.jar -v mnor <phased.vcf.gz > -csvStats

<phased.annotated.vcf.gz.summary.tsv > -htmlStats <phased.annota-
ted.vcf.gz.summary.html> | pigz -p 4 -c - > <phased.annotated.vcf.gz>

Estimating patterns of variation
Levels of variation. From the SNPs, we computed the per-base pair
population mutation parameter Watterson’s theta (θW; the number of
segregating sites) and nucleotide diversity (π; the average number of
pairwise nucleotide differences between a pair of chromosomes sam-
pled from a population) as estimates of genetic variation across the
whole population dataset and for each of the eight populations sepa-
rately. These statistics were computed across non-overlapping win-
dows of 1,000bp or 100,000bp, or across whole sequences. The
effective length of eachwindowwas corrected for the number of actual
accessible bases according to sequence depth (see above) and SNPs
and accessible bases were further subdivided according to intergenic,
UTRs, cds, synonymous/non-synonymous coding positions or intronic
sequence to enable estimation of variation across different kinds of
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genomic regions. The 1 kb window estimates were used to map varia-
tion stepping away fromgenes,while the 100 kbestimateswereused to
compile genome-average statistics. In addition, we re-used code from
BioPerl186 to compute Tajima’s D187 by comparing θW and π, to char-
acterize the degree to which the genome overall appeared to evolve
neutrally (DT ≈0) or depart from neutrality (DT ≠0), which may indi-
cate effects of population bottlenecks or selection.

Synonymous and non-synonymous variants were enumerated
from the SnpEff annotations while the number of synonymous and
non-synonymous sites across gene bodies were estimated using
KaKs_Calculator v1.2148. As in the window-based analyses, a correction
was made for the per-base diversity estimate to take into account the
number of accessible sites in the coding sequences.

Effective population size (NE) and its historical demographic trends.
We inferred long-term NE under mutation-drift equilibrium for an
idealized population, assuming a snapping shrimp mutation rate of
2.64e-9 substitutions per site and generation30. This is to the best of our
knowledge, the closest malacostracan species with a robust estimate
of the mutation rate. We then used the standard equation to compute
NE using the genome-wide average value for θW:

NE =θW=4μ ð2Þ

We inferred past changes in NE by estimating haplotype coales-
cent times using patterns of heterozygous genotypes in the reference
specimen alone using two implementations of the Pairwise Sequen-
tially Markovian Coalescent. In each case, we restricted analyses to
span the distribution of heterozygosity across scaffolds or contigs
longer than 500 kb, reusing the same SNP calls andmasks of accessible
sites (see above) as used for the full dataset.
I. PSMC40: we first applied the Pairwise Sequentially Markovian

Coalescent (PSMC) as implemented in psmc v0.6.5-r67 https://
github.com/lh3/psmc (n = 4,911 scaffolds; 3.48 Gbp). Using a
custom Perl script, we converted our depth of coverage genome
mask to thewindow-based FASTA-like input format used in PSMC.
To accommodate the high levels of variation in the krill, we used a
window size of 10 bp instead of the default of 100bp.We encoded
eachwindowwith at least one accessible base with the symbol “T”
(n = 156,739,078), while fully inaccessible windows were encoded
as “N” (n = 169,545,821), andused the VCF files to re-codewindows
with heterozygous genotypes as “K” (n = 21,271,007). We then
applied the PSMC splitfa tool to split long sequences into
fragments and ran 100 bootstrap replicates of PSMC, randomly
resampling fragments in each replicate. We used a set of time
segments with 12 free segments close to the present and ran each
replicate for 25 iterations (“-N25”):
for NUM in {1..100}; do psmc -N25 -t15 -r5 -b -p
“1 + 1 + 10*1 + 15*2 + 4 + 6” -o round-${NUM} <psmcfa.split> done

II. MSMC188: we then applied the Multiple Sequentially Markovian
Coalescent (MSMC) algorithm for one sample as implemented in
mcmc2 v2.1.1 (https://github.com/stschiff/msmc2) (n = 5,176
scaffolds; 3.63 Gb). For a single diploid sample, this method is
similar to the original PSMC method above41. First, we used a
custom Perl script to scan the VCF files and our depth of coverage
genome mask to generate the expected genotype input format
while correcting for inaccessible sites between SNPs. We then ran
MSMC2 with a fine-grained set of time segments:
msmc2 -t 40 -o <out > -p “10*2 + 100*1 + 1*2 + 1*3” <datasets/

*.500kbp>
Alternative time series yielded similar profiles for NE.
In both analyses, NE and the number of generations are re-scaled

post-analysis by the per-generationmutation rate μ, which is unknown
for this species. We therefore again applied the mutation rate inferred
from snapping shrimp in30 of 2.64e-9 substitutions per site per

generation to scale the statistics, assuming a generation time of one
year. For PSMC, we concatenated the results as per the online
instructions and plotted the variation among the replicates with the
PSMC tool psmc_plot.pl, allowing the program to auto-select the best-
fitting iteration for each replicate

psmc_plot.pl -Y 300 -X 5000000 -p -s 10 -u 2.64e-09 -g 1 round-
ALL.plot round-ALL

We combined the output fromboth PSMCandMSMC into a single
figure. In this figure we also incorporated the “LR04” benthic δ18O
foraminiferal calcite isotope stack, a record of data that indicates
changes in global ice volume and deep ocean temperature across 5.3
million years42. This data was downloaded from: https://lorraine-
lisiecki.com/stack.html

In addition to these long-term and historical estimates of NE, we
interrogated the patterns of linkage disequilibrium (LD) among SNPs
to infer effective population size in themore recent past. The spectrum
of LD between SNPs at different genetic distances is influenced by
recent variation in NE. We therefore analyzed patterns of LD between
SNPs along the 199 longest scaffolds using GONE189, which implements
a genetic algorithm to estimate the recent demographic history andNE

that best fits the observed data. We configured the program to treat
SNPs as phased (“PHASE = 1”) and to use a fixed recombination rate of
0.32 cM/Mb (“cMMb=0.32”) (see iSMCestimation below).We analyzed
all data together (74 samples), as well as Northern, Eastern and Wes-
tern subsets of the Atlantic dataset separately, in order to test for
variation among different geographic regions.

Counting alleles and estimating allele frequency divergence,
population structure and selection. Our SNP dataset spanned
Northern krill samples collected from eight geographical regions
across its natural range (Fig. 1; Supplementary Data 1). We used a
custom Perl script to compute allele frequencies at each SNP for each
population and across the whole dataset using the genotypes in the
VCF GT field in the phased VCF files. The allele counts and frequencies
were saved in tabular TSV textfiles to enable fast access in downstream
analyses and used to compute the folded allele frequency spectrum
across the whole dataset. We then estimated the pairwise genetic
distances and interrelationships between all samples and populations
(i.e. the dXY statistic), while correcting for accessible sites. Pairwise
distances were converted into a neighbor-joining tree using
SplitsTree190. We used all detected synonymous polymorphisms (1.3M
SNPs across 7M sites) to estimate the net synonymous divergence (Da)
between the Atlantic (at) andMediterranean (me) population samples.
Here:

Da = dxy � πSðatÞ +πSðmeÞ
� �

=2 ð3Þ

The statistic measures residual divergence after correcting for
within-group diversity and can be used to determine where along the
speciation continuum two populations or presumptive speciesmay be
positioned. Generally, Da > 2% is likely to indicate reproductive isola-
tion with strong barriers to gene flow43.

Population structure and ancestry was inferred from the variation
among samples using unsupervised PCA and admixture tools, without
prior partitioning of samples. We first employed a custom script to
subsample one percent of the variant sites, and then pruned remaining
variants based on linkage disequilibrium to remove correlation
between variant sites in windows of 500 sites. Pruning was done with
the function sgkit.ld_prune (https://pystatgen.github.io/sgkit, version
0.5.1) that generates a maximally independent set of variants. We used
an R2 threshold of 0.1, whereby no variant pairs below the threshold
were retained. PLINK v1.90b4.9191 was used to perform a PCA on the
filtered variants with options ‘--pca var-wts --double-id --chr-set 46’
whose output was used in a custom plotting function in python to
generate plots. The filtered variant set was converted to PLINK binary
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biallelic genotype table (bed) format to use as input to ADMIXTURE
v1.3.0192.We varied the number of populations K from2 to 8 and ran 50
repetitions using different seeds to control initial conditions. We col-
lected the output files (suffix.Q) and uploaded zip archives to the
CLUMPAK server (http://clumpak.tau.ac.il/)193 to summarize the out-
put from the 50 runs.

Specimens were next grouped according to their regions of ori-
gin.Weused the FST estimator by Reynolds et al.194 to estimate pairwise
allelic divergence across whole scaffolds or contigs and infer the
genome-wide levels of divergence among all of the eight populations.
The pairwise distances were converted into a NeighborNet network
using SplitsTree.Wenext partitioned the data into twomajor contrasts
representing krill from different regions:
1. The Atlantic Ocean (n = 67 samples) vs. the Mediterranean Sea

(Catalan Sea; n = 7 samples).
2. The North Eastern North Atlantic Ocean (samples from waters

around Iceland, the Barents Sea, Svalbard and Scandinavia;
n = 47 samples) vs. the South Western North Atlantic Ocean
(samples from the Gulf St. Lawrence, Canada; and the Gulf of
Maine, USA; n = 20 samples)

For each contrast, Reynolds FST was used to estimate divergence
across non-overlapping windows of 100bp, 1,000 bp or 100,000 bp,
whole contigs/scaffolds or at the genome-scale, using a custom Perl
script. We used the 1 kbp window-based FST-estimates to compare
divergence between genes and flanking regions, and test for associa-
tion with gene-sequence or selective sweep signals (see below).

The Weir-Cockerham estimator195 was used to calculate the per-
SNP FST, in order to visualize data and outlier loci and SNPs with
unusually high levels of divergence. Outlier SNPs were also used to
identify gene-level haplotypes of putatively selected gene-variants that
segregated between ocean basins. For every contrast or population,
the frequency of each haplotype was computed.

Weperformed a test for isolation by distance, correlating pairwise
genetic and physical distance between populations. We first down-
sampled all populations to the same sample size (n = 7, i.e. limited by
the Spanish sample), in order to avoid effects of sample size variation
among comparisons and re-estimated genome-wide Reynolds FST
among all populations. We then linearized the genome-wide Reynolds
FST using Eq. (4)196:

FST = FST=ð1� FSTÞ ð4Þ

For physical distances, we generated linear vectors in Google
Earth and traced the shortest path between populations along them
but did not consider other oceanographic conditions such as sea
currents. We then performed a linear regression to test the relation-
ship between genetic and physical distances using the lm()
function in R.

Results of these analyses are given in Figs. 3–4 and Supplementary
Figs. 19–23 and 12–26.

Simulations of divergence. We performed coalescent simulations of
neutral divergence under a simple population-split model using ms197

to determine the probability of observing high levels of allelic diver-
gence between basin-scale population samples from neutrality alone,
in the absence of natural selection. In this Wright-Fisher model,
populations would split without any subsequent exchange of alleles
through gene flow and diverge over time assuming constant popula-
tion size and no recombination.

For each of the two major contrasts (see previous section), we
parameterized the simulation with the observed genome-wide esti-
mates of divergence and variation. We first inferred the scaled time T
by applying Eq. (5)194 and inserted the value of T into Eq. (6) together
with our genome-wide estimation of NE (1.53 million) to obtain the

number of generations t since the population split:

T =
�ln 1� FST

� �
2

ð5Þ

t =T � 4Ne ð6Þ
The downsampling of data (see previous section) resulted in

7.35M SNPs sampled across 8.43Gb accessible sites across the gen-
ome, for an average block length of 1,146 bp per SNP. We therefore
aimed to simulate the coalescent process in about 7.35M 1.1 kbp loci
per contrast (makingminor adjustments in the caseof invariant sites in
any of the two contrasts) and export one SNP per locus. Our estimate
of population mutation parameter Watterson’s theta (θW) was 1.62%
per base, resulting in a θw estimate of 18.57 per 1,146 bp long locus.
Using these conditions, we generated 7.3M unlinked SNPs (the same
number as the subsampled, unlinked empirical SNPs).

• The Atlantic Ocean vs. the Mediterranean Sea contrast (n = 67 vs
n = 7 diploid samples)

Genome-wide FST had been estimated to be 0.056, resulting in
estimates of T =0.02885 and t = 176,572 generations. Taking T/2 as the
measure of time since the split, we simulated 7,349,210 SNPs:

ms 148 7349210 -t 18.57 -I 2 134 14 -ej 0.01443 2 1 -s 1 >
simulated.out

We here specified to sample 148 chromosomes from the popu-
lation (two times the n = 74 sample size), repeat the simulation
7,349,210 times, use the scaled population mutation rate (“-t 18.57”),
sample two populations of 134 and 14 chromosomes each (“-I 2 134
14”), model a join between the two populations at generation time
0.01443 (“-ej 0.01443”) and export one SNPper simulated locus (“-s 1”).

• The North Eastern North Atlantic Ocean vs. the South Western
North Atlantic Ocean (n = 47 vs. n = 20 diploid samples)

Genome-wide FST had been estimated to be 0.0168 in this con-
trast, resulting in estimates of T =0.00825 and t = 51,752 generations.
We adjusted the number simulations to match the number of segre-
gating sites in this sample and ran the matching simulation using the
same approach as above:

ms 134 7211757 -t 18.57 -I 2 94 40 -ej $VAL 2 1 -s 1 > simulated.out
We converted the output from the ms simulations into allele

counts and computed per-SNP FST using the Weir-Cockerham esti-
mator as above. We then compared the simulated FST-spectra to the
observed (binning the SNPs in FST-bins of 0.1), in order to test for
excess divergence compared to expectation under neutrality, which
could be taken as evidence for natural selection.

Signatures of selective sweeps. For our twomajor pairwise contrasts
(i: SW vs NE North Atlantic Ocean; ii: Atlantic Ocean vs Mediterranean
Sea), we used the cross-population XP-nSL test in selscan v1.3.0198 to
scan for signatures of extended haplotypes in one group relative to the
other. Such patterns could result from local selective sweeps through
natural selection on an adaptive variant that reduces linked variation
only in the focal population but not in the other,which is not subject to
the selection pressure. XP-nSL can detect signatures of both hard and
soft sweeps and help pinpoint candidate loci for ecological adaptation.
It is conceptually similar to the XP-EHH test but does not require a
genetic map or insight into recombination rates.

For each contrast, we first converted the VCF files to compressed
TPED files. To limit the number of files on disk at a time, we then
implemented a small daemon that generated one TPED subset per
population and scaffold/contig and executed selscan:

selscan --xpnsl --threads 20 --trunc-ok --tped-ref <seq_$N.ref_po-
pulation.tped > --tped <seq_$N.other_population.tped > --out <results_-
out/seq_$N.out>
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For the first contrast, the NE North Atlantic Ocean sample
(n = 47) was taken as the reference population and the SW North
Atlantic Ocean sample as the other population (n = 20). For the sec-
ond contrast, the Atlantic Ocean population (n = 67) was taken as the
reference population and the Mediterranean sample as the other
population (n = 7). In this scenario, negative XP-nSL scores for SNPs
indicate extended haplotypes in the reference population, while
positive scores are associated with the other population. We nor-
malized the results with the selscan command “norm” against the
genome-wide empirical background, such that extreme XP-nSL
scores would be those less than -2 (indicating sweeps in the refer-
ence population) or more than 2 (indicating sweeps in the other
population). We kept per-SNP XP-nSL scores and also computed the
average across windows 1,000bp.

Enrichment analyses. Genes were ranked from high to low exon-wide
FST and analyzed for enriched Biological Process gene ontologies using
Flybase Drosophila homologues in GOrilla161. Enrichments, p-values
and FDR-corrected q-values correcting multiple testing were com-
puted by GOrilla. We retained all reported GO:s, which had FDRs
q-values of about 0.1 or less.

The frequencies and enrichment of genes with ontologies
associated with eye function were compared between FST -outliers
and non-outliers. First, a standard two-tailed χ2-test was performed
to test for a statistically significant difference between the observed
and expected frequencies of such genes between outliers (0.1% FST-
percentile) and non-outliers. We then assessed genes linked to
expanded gene families. Among expanded genes, we compared
outlier genes associated with eye function against those not asso-
ciated with eye function (1% FST -percentile) vs. their frequencies in
non-outlier genes. Conversely, among eye function genes, we com-
pared genes associated with gene family expansion against those not
associated with expansion. These tests were performed using the
online GraphPad Software tool: https://www.graphpad.com/
quickcalcs/contingency2/.

Tests and results are provided in Supplementary Data 10.

Estimation of haplotype ages. We estimated the ages of minor alleles
on the divergent and putatively selected haplotypes to learn how long
theymay have been segregating in the Northern krill. For this, we used
the nonparametric Genealogical Estimation of Variant Age (GEVA)
coalescent method to estimate the time to the most recent common
ancestor (TMRCA) between alleles46. GEVA uses both information
about mutation and recombination rates to model TMRCA between
ancestral and derived alleles, but does require a priori assumptions
about demographic history.

Recombination rates were not known in krill from before. We
therefore used iSMC v0.0.23199 to estimate a genome-average recom-
bination rate from the reference specimen alone, as this tool has been
shown to provide robust estimates even from single diploid samples.
iSMC uses the coalescent with recombination to infer both recombi-
nation rates and aspects of demographic history from heterozygous
genotypes.

For estimation of recombination rate, we used genotypes from
the reference specimen along 650 scaffolds longer than 500 kb and
that had 60% or more accessible bases. We provided a VCF and a
matching genomemask file.We leftmost settings at the defaults in the
parameter file and used five rho categories for spatially heterogeneous
recombination along sequences (“number_rho_categories = 5”), toler-
ance for numerical optimisation at 1e-4 (“function_tolerance = 1e-4”), a
window size for decoding of 1Mb (instead of the default 3Mb, “frag-
ment_size = 1000000”) and 40 threads (“number_threads = 40”). The
program was run:

ismc params=1.merged_contigs.bpp 2 >&1 | tee 1.merged_contigs.
run.log

It infers the population recombination rate ρ, where:

ρ=4 � Ne � r ð7Þ

Ne is the effective population size and r is the recombination rate per
base pair. Our analyses gave a ρ of 0.013. For the reference specimen
and set of 652 sequences, we estimated θW to 1.1% and Ne accordingly
to 1.02M. We thus computed r to be 3.2e−09 per bp or 0.32 cM/Mb
across the 652 scaffolds, which we took as the genome-wide average.

We next prepared data for analysis in GEVA.We sought to analyze
the age of variants on gene-haplotypes that diverge between Atlantic
andMediterranean (“at vs.me”; n = 660genes) samples or between SW
and NE Atlantic samples (“we vs. ea”; n = 34 genes) (our two major
contrasts in these analyses). GEVA is designed to compute ages of
derived alleles, which should be set as the ALT allele in re-coded VCF
files. In our case, the ancestral and derived alleles were not known as
we had not aligned outgroup sequences to the krill genome. We
therefore instead re-coded the data assuming that theminor allele was
derived (i.e. ALT) and the major allele was ancestral (i.e. REF) using a
custom Perl script. For each contrast, we generated two sets of data,
one set with the ALT allele taken as the minor allele in the first group
(e.g. “at”) and the other set with the ALT allele taken as theminor allele
in the second group (e.g. “me”), respectively.

We converted the re-coded VCFs into GEVAs binary format (one
file per contig/scaffold containing a gene of interest), specifying the
recombination rate:

geva_v1beta -t 2 --vcf <data.vcf > --out <data.out > --rec 3.2e-09
We then executed the program, specifying Ne and mutation rates

and using the program-provided Hidden-Markov files:
geva_v1beta -t 2 --Ne 1530000 --mut 2.64e-09 --hmm hmm_ini-

tial_probs.txt hmm_emission_probs.txt
Allele ages of focal variants are estimated from a composite

posterior distribution and saved in *.sites.txt output files. Each variant
has an age based on a mutation clock (M), recombination clock (R) or
joint clock (J). For all variants inside the gene coordinates of eachgene,
we collected the joint clock estimate and computed age distributions
across all variants.

Results of these analyses are provided in Fig. 3.

Assessment of molecular evolution in nrf-6 and the topology of
its encoded protein
In our scans for signatures of selection in the Northern krill, a homo-
logue of the nose resistant to fluoxetine protein 6 (nrf-6) gene encoding
the NRF-6 protein was top-ranked for high FST across its exons. To
further learn about how selection may have acted on its gene and
corresponding protein, we performed a comparative scan for positive
selection between haplotypes. We overlaid the SNP variants detected
in the Mediterranean samples on the reference (Atlantic) nrf-6 CDS
sequence and aligned them together with the homologous
KrillDB2 sequence for the Antarctic krill E. superba (accession:
ESS142994) and the decapod P. vannamei sequence (NCBI accession:
QCYY01000544) using MAFFT. We then produced a 4-way phyloge-
netic tree with FastTree and analysed the dataset (alignment+tree) in
PAML under a free-ratio codon model to infer per-branch dN/dS
ratios200 and test for elevated dN/dS on the Mediterranean haplotype
of the gene.

We predicted its protein structure with Alphafold2, using the
same approach as implemented for the DNA methylation genes (see
above). The nrf-6 gene encodes a transmembrane acyltransferase that
assists in lipid transportation47. To predict the intracellular, trans-
membrane and extracellular regions of the protein and map the dis-
tribution of non-synonymous and synonymous variants along the
regions, we used the TOPCONS server201 and PPM v3.0 (positioning of
proteins in membranes)202. We used SignalP v6.0203 to predict the
signal peptide. Protein figures were rendered using PyMOL204 and
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ChimeraX205. The coordinates reported by TOPCONS were then used
to annotate the corresponding exons and locations of the
detected SNPs.

Results of these analyses are provided in Fig. 4 and Supplemen-
tary Fig. 24.

Inclusion & Ethics
This research was carried out collaboratively by an international and
diverse team of researchers at different career-stages from local
academic institutes located around the North Atlantic Ocean to
Mediterranean Sea study area. The research was conceived by A.W.,
who had the leading role and built a network of collaborators to
collect materials, sequence and analyze data and report results. As
this biodiversity research neither involved CITES species, “higher
invertebrates”, animal testing or biorisks, no local ethics review
committees, animal welfare, environmental protection and biorisk-
related regulations were consulted (other than regulations regarding
shipping and imports of samples into Sweden). Where relevant, our
manuscript cites peer-review research of regional biodiversity pat-
terns of krill or other animals. The research did not involve eco-
nomical, cultural or social aspects or benefit sharing that would
warrant review and engagement of local legal or stakeholder orga-
nizations. Biological reference material is deposited in the LIB Bio-
bank at Museum Koenig Bonn, genetic sequence data is made
publically available in the European Nucleotide Archive and SciLife-
Lab Data Repository and open source code is available on Github, to
the benefit of all.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequence data generated in this study have been deposited in the
public European Nucleotide Archive (ENA) database under accession
code PRJEB61785. The processed data and results are available at the
SciLifeLab Data Repository at https://doi.org/10.17044/scilifelab.c.
6626216. The genome assembly is available in ENA and NCBI under
accession codeGCA_964058975.1 and SNPdatasets are availableunder
accession code PRJEB77093 in the European Variation Archive (EVA).
Subsets of the data are provided in the Supplementary Information.
Source data is provided as a Source Data file. This studymade use data
from the following public databases: AlphaFold Protein Structure
Database https://alphafold.ebi.ac.uk/; Climate Reanalyzer https://
climatereanalyzer.org/; Dfam (Dfam_3.5) https://dfam.org/home; Egg-
NOG (v5.0) http://eggnog5.embl.de/; FlyBase database (release
FB2021_01) https://flybase.org/; GOrilla https://cbl-gorilla.cs.technion.
ac.il/; GyDB2 https://gydb.org; HomeoDB https://homeodb.zoo.ox.ac.
uk/; KrillDB2 https://krilldb2.bio.unipd.it/; MITOS2 http://mitos.bioinf.
uni-leipzig.de/; NCBI Conserved Domain Database (CDD) https://www.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi; NCBI Genome Database
https://www.ncbi.nlm.nih.gov/genome/; NCBI RefSeq database
(release 204) https://www.ncbi.nlm.nih.gov/refseq/; OrthoDB (v10.1)
https://www.orthodb.org/; Pfam (release 34.0) http://pfam.xfam.org/;
Repbase (RepBaseRepeatMaskerEdition 20181026) https://www.
girinst.org/server/RepBase/; REXdb http://repeatexplorer.org/?page_
id=918; ShinyGO 0.77 http://bioinformatics.sdstate.edu/go77/; SILVA
rRNA database project (release 132) https://www.arb-silva.de/; The
SWISS-MODEL Repository https://swissmodel.expasy.org/; TOPCONS
https://topcons.cbr.su.se/; UniProtKB/Swiss-Prot https://www.uniprot.
org/. Biological tissue from the reference specimen tissue is available
in the LIB Biobank atMuseumKoenig Bonnunder accessionZFMK-TIS-
82493. Three additional specimens are deposited under accessions
ZFMK-TIS-82494 through ZFMK-TIS-82496. Source data are provided
with this paper.

Code availability
Public code is available at https://github.com/NBISweden/genecovr and
https://github.com/andreaswallberg/Ecological-Genomics-Northern-
Krill. A copy of the Github repositories is available on Zenodo: https://
zenodo.org/doi/10.5281/zenodo.10827407.

References
1. Pecl, G. T. et al. Biodiversity redistribution under climate change:

Impacts on ecosystems and human well-being. Science 355,
eaai9214 (2017).

2. IPCC, 2019: IPCCSpecial Report on theOcean andCryosphere in a
Changing Climate [H.-O. Pörtner, et al. Eds.)].

3. McBride, M. M. et al. Krill, climate, and contrasting future sce-
narios for Arctic and Antarctic fisheries. ICES J. Mar. Sci. 71,
1934–1955 (2014).

4. Richardson, A. J. In hot water: zooplankton and climate change.
ICES J. Mar. Sci. 65, 279–295 (2008).

5. Poloczanska, E. S. et al. Global imprint of climate change on
marine life. Nat. Clim. Change 3, 919–925 (2013).

6. Benedetti, F. et al. Major restructuring of marine plankton
assemblages under global warming. Nat. Commun. 12, 5226
(2021).

7. Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary
adaptation. Nature 470, 479–485 (2011).

8. Atkinson, A., Siegel, V., Pakhomov,E. A., Jessopp,M. J. & Loeb,V.A
re-appraisal of the total biomass and annual production of Ant-
arctic krill. Deep Sea Res. Part Oceanogr. Res. Pap. 56, 727–740
(2009).

9. Tarling, G. Biology of Northern Krill. (Academic Press, 2010).
10. Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on

Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).
11. Atkinson, A. et al. Krill (Euphausia superba) distribution contracts

southward during rapid regional warming. Nat. Clim. Change 9,
142 (2019).

12. Edwards, M. et al. North Atlantic warming over six decades drives
decreases in krill abundance with no associated range shift.
Commun. Biol. 4, 1–10 (2021).

13. Eriksen, E., Rune Skjoldal, H., Gjøsæter, H. & Primicerio, R. Spatial
and temporal changes in the Barents Sea pelagic compartment
during the recent warming. Prog. Oceanogr. https://doi.org/10.
1016/j.pocean.2016.12.009.

14. Flores, H. et al. Impact of climate change on Antarctic krill. Mar.
Ecol. Prog. Ser. 458, 1–19 (2012).

15. Ingvaldsen, R. B. et al. Physical manifestations and ecological
implications of Arctic Atlantification. Nat. Rev. Earth Environ. 2,
874–889 (2021).

16. Papetti, C., Zane, L., Bortolotto, E., Bucklin, A. & Patarnello, T.
Genetic differentiation and local temporal stability of population
structure in the euphausiid Meganyctiphanes norvegica. Mar.
Ecol. Prog. Ser. 289, 225–235 (2005).

17. Saborowski, R. & Buchholz, F. Metabolic properties of Northern
krill, Meganyctiphanes norvegica, from different climatic zones:
Enzyme characteristics and activities. Mar. Biol. 140, 557–565
(2002).

18. Hünerlage, K. & Buchholz, F. Thermal limits of krill species from
the high-Arctic Kongsfjord (Spitsbergen).Mar. Ecol. Prog. Ser.
535, 89–98 (2015).

19. Perry, F. A. et al. Temperature–Induced Hatch Failure and Nauplii
Malformation in Antarctic Krill. Front. Mar. Sci. 7 1–13, (2020).

20. Albessard, E. & Mayzaud, P. Influence of tropho-climatic environ-
ment and reproduction on lipid composition of the euphausiid
Meganyctiphanes norvegica in the Ligurian Sea, the Clyde Sea
and the Kattegat. Mar. Ecol. Prog. Ser. 253, 217–232 (2003).

21. Peijnenburg, K. T. C. A. & Goetze, E. High evolutionary potential of
marine zooplankton. Ecol. Evol. 3, 2765–2781 (2013).

Article https://doi.org/10.1038/s41467-024-50239-7

Nature Communications |         (2024) 15:6297 24

https://doi.org/10.17044/scilifelab.c.6626216
https://doi.org/10.17044/scilifelab.c.6626216
https://alphafold.ebi.ac.uk/
https://climatereanalyzer.org/
https://climatereanalyzer.org/
https://dfam.org/home
http://eggnog5.embl.de/
https://flybase.org/
https://cbl-gorilla.cs.technion.ac.il/
https://cbl-gorilla.cs.technion.ac.il/
https://gydb.org
https://homeodb.zoo.ox.ac.uk/
https://homeodb.zoo.ox.ac.uk/
https://krilldb2.bio.unipd.it/
http://mitos.bioinf.uni-leipzig.de/
http://mitos.bioinf.uni-leipzig.de/
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
https://www.ncbi.nlm.nih.gov/genome/
https://www.ncbi.nlm.nih.gov/refseq/
https://www.orthodb.org/
http://pfam.xfam.org/
https://www.girinst.org/server/RepBase/
https://www.girinst.org/server/RepBase/
http://repeatexplorer.org/?page_id=918
http://repeatexplorer.org/?page_id=918
http://bioinformatics.sdstate.edu/go77/
https://www.arb-silva.de/
https://swissmodel.expasy.org/
https://topcons.cbr.su.se/
https://www.uniprot.org/
https://www.uniprot.org/
https://github.com/NBISweden/genecovr
https://github.com/andreaswallberg/Ecological-Genomics-Northern-Krill
https://github.com/andreaswallberg/Ecological-Genomics-Northern-Krill
https://zenodo.org/doi/10.5281/zenodo.10827407
https://zenodo.org/doi/10.5281/zenodo.10827407
https://doi.org/10.1016/j.pocean.2016.12.009
https://doi.org/10.1016/j.pocean.2016.12.009


22. Bucklin, A. et al. Population Genomics of Marine Zooplankton. in
Population Genomics: Marine Organisms (eds. Oleksiak, M. F. &
Rajora, O. P.) 61–102 (Springer International Publishing, Cham).
https://doi.org/10.1007/13836_2017_9 (2018).

23. Jeffery, N.W. Thefirst genome size estimates for six species of krill
(Malacostraca, Euphausiidae): large genomes at the north and
south poles. Polar Biol. 35, 959–962 (2012).

24. Shao, C. et al. The enormous repetitive Antarctic krill genome
reveals environmental adaptations and population insights. Cell
:https://doi.org/10.1016/j.cell.2023.02.005 (2023).

25. Choquet, M. et al. Comparative population transcriptomics pro-
vide new insight into the evolutionary history and adaptive
potential ofWorldOcean krill.Mol. Biol. Evol.msad225https://doi.
org/10.1093/molbev/msad225 (2023).

26. Teixeira, J. C. & Huber, C. D. The inflated significance of neutral
genetic diversity in conservation genetics. Proc. Natl Acad. Sci.
118, e2015096118 (2021).

27. Thiriot-Quiévreux, C. & Cuzin-Roudy, J. Karyological Study of the
Mediterranean Krill Meganyctiphanes norvegica (Euphausiacea).
J. Crustac. Biol. 15, 79–85 (1995).

28. Polinski, J. M. et al. The American lobster genome reveals insights
on longevity, neural, and immune adaptations. Sci. Adv. 7,
eabe8290 (2021).

29. Uengwetwanit, T. et al. A chromosome-level assemblyof theblack
tiger shrimp (Penaeus monodon) genome facilitates the identifi-
cation of growth-associated genes. Mol. Ecol. Resour. 21,
1620–1640 (2021).

30. Silliman, K., Indorf, J. L., Knowlton, N., Browne, W. E. & Hurt, C.
Base-substitution mutation rate across the nuclear genome of
Alpheus snapping shrimp and the timing of isolation by the Isth-
mus of Panama. BMC Ecol. Evol. 21, 104 (2021).

31. Seear, P. J. et al. Differential gene expression during the moult
cycle of Antarctic krill (Euphausia superba). BMC Genomics 11,
582 (2010).

32. Urso, I. et al. A thorough annotation of the krill transcriptome
offers new insights for the study of physiological processes. Sci.
Rep. 12, 11415 (2022).

33. Biscontin, A. et al. The opsin repertoire of the Antarctic krill
Euphausia superba. Mar. Genomics 29, 61–68 (2016).

34. Palecanda, S., Iwanicki, T., Steck, M. & Porter, M. L. Crustacean
conundrums: a review of opsin diversity and evolution. Philos.
Trans. R. Soc. B Biol. Sci. 377, 20210289 (2022).

35. Ashe,A., Colot, V.&Oldroyd,B. P.Howdoesepigenetics influence
the course of evolution? Philos. Trans. R. Soc. B Biol. Sci. 376,
20200111 (2021).

36. Zhou, W., Liang, G., Molloy, P. L. & Jones, P. A. DNA methylation
enables transposable element-driven genome expansion. Proc.
Natl Acad. Sci. 117, 19359–19366 (2020).

37. Lewis, S. H. et al. Widespread conservation and lineage-specific
diversification of genome-wide DNA methylation patterns across
arthropods. PLOS Genet 16, e1008864 (2020).

38. Gatzmann, F. et al. The methylome of the marbled crayfish links
gene body methylation to stable expression of poorly accessible
genes. Epigenetics Chromatin 11, 57 (2018).

39. Leffler, E. M. et al. Revisiting an Old Riddle: What Determines
Genetic Diversity Levels within Species? PLOS Biol. 10,
e1001388 (2012).

40. Li, H. & Durbin, R. Inference of human population history from
individualwhole-genome sequences.Nature475, 493–496 (2011).

41. Schiffels, S. & Durbin, R. Inferring human population size and
separation history from multiple genome sequences. Nat. Genet.
46, 919–925 (2014).

42. Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57
globally distributed benthic δ18O records. Paleoceanography 20,
PA1003 https://doi.org/10.1029/2004PA001071 (2005).

43. Roux, C. et al. Shedding Light on the Grey Zone of Speciation
along a Continuum of Genomic Divergence. PLOS Biol. 14,
e2000234 (2016).

44. Szpiech, Z. A., Novak, T. E., Bailey, N. P. & Stevison, L. S. Appli-
cation of a novel haplotype-based scan for local adaptation to
study high-altitude adaptation in rhesus macaques. Evol. Lett. 5,
408–421 (2021).

45. Eckert, C. G., Samis, K. E. & Lougheed, S. C. Genetic variation
across species’ geographical ranges: the central–marginal
hypothesis and beyond. Mol. Ecol. 17, 1170–1188 (2008).

46. Albers, P. K. & McVean, G. Dating genomic variants and shared
ancestry in population-scale sequencing data. PLOS Biol. 18,
e3000586 (2020).

47. Choy, R. K. M. & Thomas, J. H. Fluoxetine-Resistant Mutants in C.
elegans Define a Novel Family of Transmembrane Proteins. Mol.
Cell 4, 143–152 (1999).

48. Dzitoyeva, S., Dimitrijevic, N. & Manev, H. Identification of a novel
Drosophila gene, beltless, using injectable embryonic and adult
RNA interference (RNAi). BMC Genomics 4, 33 (2003).

49. Chen, X. et al. Tissue expression profiles unveil the gene interac-
tion of hepatopancreas, eyestalk, and ovary in the precocious
female Chinese mitten crab, Eriocheir sinensis. BMC Genet 20,
12 (2019).

50. Mayzaud, P., Virtue, P. & Albessard, E. Seasonal variations in the
lipid and fatty acid composition of the euphausiid Mega-
nyctiphanes norvegica from the Ligurian Sea.Mar. Ecol. Prog. Ser.
186, 199–210 (1999).

51. Voolstra, O. et al. NinaB is essential for Drosophila vision but
induces retinal degeneration in opsin-deficient photoreceptors. J.
Biol. Chem. 285, 2130–2139 (2010).

52. Xie, X. et al. Role of Kruppel homolog 1 (Kr-h1) in methyl
farnesoate-mediated vitellogenesis in the swimming crab Portu-
nus trituberculatus. Gene 679, 260–265 (2018).

53. Yusof, N. A. et al. Can heat shock protein 70 (HSP70) serve as
biomarkers in Antarctica for future ocean acidification, warming
and salinity stress? Polar Biol. 45, 371–394 (2022).

54. Yu, K. et al. Characterization ofCCTα and evaluating its expression
in the mud crab Scylla paramamosain when challenged by low
temperatures alone and in combinationwith high and low salinity.
Cell Stress Chaperones 20, 853–864 (2015).

55. Jiang, H. et al. Multi-omics Investigation of Freeze Tolerance in the
Amur Sleeper, an Aquatic Ectothermic Vertebrate.Mol. Biol. Evol.
40, msad040 https://doi.org/10.1093/molbev/msad040 (2023).

56. Arkhipova, I. R. Neutral Theory, Transposable Elements, and
Eukaryotic Genome Evolution. Mol. Biol. Evol. 35, 1332–1337
(2018).

57. Tarling, G. A. & Cuzin-Roudy, J. External parasite infestation
depends onmoult-frequency and age in Antarctic krill (Euphausia
superba). Polar Biol. 31, 121–130 (2008).

58. Gómez-Gutiérrez, J. & Morales-Ávila, J. R. Parasites and Diseases.
in Biology and Ecology of Antarctic Krill (ed. Siegel, V.) 351–386
(Springer International Publishing, Cham, 2016). https://doi.org/
10.1007/978-3-319-29279-3_10.

59. Seear, P. et al. Effects of simulated light regimes on gene
expression in Antarctic krill (Euphausia superba Dana). J. Exp. Mar.
Biol. Ecol. 381, 57–64 (2009).

60. Qian, W. & Zhang, J. Genomic evidence for adaptation by gene
duplication. Genome Res. 24, 1356–1362 (2014).

61. Charlesworth, B. & Jensen, J. D. How Can We Resolve Lewontin’s
Paradox? Genome Biol. Evol. 14, evac096 (2022).

62. Mauchline, J. & Fisher, L. R. The Biology of Euphausiids. in
Advances in Marine Biology vol. 7 v (Elsevier, 1969).

63. Pritchard, J. K., Pickrell, J. K. & Coop, G. The genetics of human
adaptation: hard sweeps, soft sweeps, and polygenic adaptation.
Curr. Biol. CB 20, R208–R215 (2010).

Article https://doi.org/10.1038/s41467-024-50239-7

Nature Communications |         (2024) 15:6297 25

https://doi.org/10.1007/13836_2017_9
https://doi.org/10.1016/j.cell.2023.02.005
https://doi.org/10.1093/molbev/msad225
https://doi.org/10.1093/molbev/msad225
https://doi.org/10.1029/2004PA001071
https://doi.org/10.1093/molbev/msad040
https://doi.org/10.1007/978-3-319-29279-3_10
https://doi.org/10.1007/978-3-319-29279-3_10


64. Brennan, R. S. et al. Experimental evolution reveals the syner-
gistic genomicmechanisms of adaptation to oceanwarming and
acidification in a marine copepod. Proc. Natl Acad. Sci. 119,
e2201521119 (2022).

65. Han, F. et al. Ecological adaptation in Atlantic herring is associated
with large shifts in allele frequencies at hundreds of loci. eLife 9,
e61076 (2020).

66. Myslinski, T. J., Frank, T. M. & Widder, E. A. Correlation between
photosensitivity and downwelling irradiance in mesopelagic
crustaceans. Mar. Biol. 147, 619–629 (2005).

67. Onsrud, M. S. R. & Kaartvedt, S. Diel vertical migration of the krill
Meganyctiphanes norvegica in relation to physical environment,
food and predators. Mar. Ecol. Prog. Ser. 171, 209–219 (1998).

68. Vereshchaka, A. L., Kulagin, D. N. & Lunina, A. A. A phylogenetic
study of krill (Crustacea: Euphausiacea) reveals new taxa and co-
evolution of morphological characters. Cladistics 35, 150–172
(2019).

69. Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V. & Eiane, K.
Two hundred years of zooplankton vertical migration research.
Biol. Rev. 96, 1547–1589 (2021).

70. Velsch, J.-P. & Champalbert, G. Rythmes d’activité natatoire chez
Meganyctiphanes norvegica (Crustacea, Euphausiacea).Comptes
Rendus Acad.émie Sci. 317, 857–862 (1994).

71. Biscontin, A. et al. Analysis of the circadian transcriptome of the
Antarctic krill Euphausia superba. Sci. Rep. 9, 13894 (2019).

72. Cohen, J. H. et al. Photophysiological cycles in Arctic krill are
entrained by weak midday twilight during the Polar Night. PLOS
Biol. 19, e3001413 (2021).

73. Christie, A. E., Yu, A. & Pascual, M. G. Circadian signaling in the
Northern krill Meganyctiphanes norvegica: In silico prediction of
the protein components of a putative clock system using a
publicly accessible transcriptome. Mar. Genomics 37, 97–113
(2018).

74. Silva, T. et al. Long-term changes of euphausiids in shelf and
oceanic habitats southwest, south and southeast of Iceland. J.
Plankton Res. 36, 1262–1278 (2014).

75. Climate Reanalyzer. Monthly Reanalysis Maps Climate Change
Institute, University of Maine, USA. Retrieved February 28th, 2017,
from https://climatereanalyzer.org/ ((n.d.)).

76. Huang, B. et al. Improvements of the Daily Optimum Interpolation
Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 34,
2923–2939 (2021).

77. Leger, A. & Leonardi, T. pycoQC, interactive quality control for
Oxford Nanopore Sequencing. J. Open Source Softw. 4, 1236
(2019).

78. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: sum-
marize analysis results for multiple tools and samples in a single
report. Bioinformatics 32, 3047–3048 (2016).

79. Wick, R. R., Judd, L. M. & Holt, K. E. Performance of neural network
basecalling tools for Oxford Nanopore sequencing. Genome Biol.
20, 129 (2019).

80. Grabherr, M. G. et al. Full-length transcriptome assembly from
RNA-Seq data without a reference genome. Nat. Biotechnol. 29,
644–652 (2011).

81. Koren, S. et al. Canu: scalable and accurate long-read assembly
via adaptive k-mer weighting and repeat separation. Genome Res
27, 722–736 (2017).

82. Li, H. Minimap2: pairwise alignment for nucleotide sequences.
Bioinformatics 34, 3094–3100 (2018).

83. Loman, N. J., Quick, J. & Simpson, J. T. A complete bacterial
genome assembled de novo using only nanopore sequencing
data. Nat. Methods 12, 733–735 (2015).

84. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with
Bowtie 2. Nat. Methods 9, 357–359 (2012).

85. Walker, B. J. et al. Pilon: An Integrated Tool for Comprehensive
Microbial Variant Detection andGenomeAssembly Improvement.
PLOS ONE 9, e112963 (2014).

86. Donath, A. et al. Improved annotation of protein-coding genes
boundaries in metazoan mitochondrial genomes. Nucleic Acids
Res 47, 10543–10552 (2019).

87. Sahlin, K. & Medvedev, P. De Novo Clustering of Long-Read
Transcriptome Data Using a Greedy, Quality-Value Based Algo-
rithm. in Research in Computational Molecular Biology (ed.
Cowen, L. J.) 227–242 (Springer International Publishing, 2019).

88. Sahlin, K. & Medvedev, P. Error correction enables use of Oxford
Nanopore technology for reference-free transcriptome analysis.
Nat. Commun. 12, 2 (2021).

89. Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH:
a versatile open source tool for metagenomics. PeerJ 4,
e2584 (2016).

90. Martin, M. Cutadapt removes adapter sequences from high-
throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

91. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. &
Zdobnov, E. M. BUSCO: assessing genome assembly and anno-
tation completeness with single-copy orthologs. Bioinformatics
31, 3210–3212 (2015).

92. Bryant, D. M. et al. A Tissue-Mapped Axolotl De Novo Tran-
scriptome Enables Identification of Limb Regeneration Factors.
Cell Rep. 18, 762–776 (2017).

93. Carver, T., Thomson, N., Bleasby, A., Berriman, M. & Parkhill, J.
DNAPlotter: circular and linear interactive genome visualization.
Bioinformatics 25, 119–120 (2009).

94. Blanco-Bercial, L. & Maas, A. E. A transcriptomic resource for the
northern krill Meganyctiphanes norvegica based on a short-term
temperature exposure experiment.Mar. Genomics https://doi.
org/10.1016/j.margen.2017.05.013 (2017).

95. Di Genova, A., Ruz, G. A., Sagot, M.-F. & Maass, A. Fast-SG: an
alignment-free algorithm for hybrid assembly. GigaScience 7,
giy048 (2018).

96. Quast, C. et al. The SILVA ribosomal RNA gene database project:
improved data processing and web-based tools. Nucleic Acids
Res 41, D590–D596 (2013).

97. Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A. & Zdobnov, E.
M. BUSCO Update: Novel and Streamlined Workflows along with
Broader and Deeper Phylogenetic Coverage for Scoring of
Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 38,
4647–4654 (2021).

98. Wu, T. D., Reeder, J., Lawrence,M., Becker,G.&Brauer,M. J.GMAP
and GSNAP for Genomic Sequence Alignment: Enhancements to
Speed, Accuracy, and Functionality.Methods Mol. Biol. Clifton NJ
1418, 283–334 (2016).

99. Ruan, J. & Li, H. Fast and accurate long-read assembly with
wtdbg2. Nat. Methods 17, 155–158 (2020).

100. De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M. & Van Broec-
khoven, C. NanoPack: visualizing and processing long-read
sequencing data. Bioinformatics 34, 2666–2669 (2018).

101. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Giga-
Science 10, giab008 (2021).

102. Li, H. & Durbin, R. Fast and accurate short read alignment with
Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

103. Li, H. Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. ArXiv13033997 Q-Bio (2013).

104. Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs:
allelic contig reassignment for third-gen diploid genome assem-
blies. BMC Bioinforma. 19, 460 (2018).

105. Girgis, H. Z. Red: an intelligent, rapid, accurate tool for detecting
repeats de-novo on the genomic scale. BMC Bioinforma. 16,
227 (2015).

Article https://doi.org/10.1038/s41467-024-50239-7

Nature Communications |         (2024) 15:6297 26

https://climatereanalyzer.org/
https://doi.org/10.1016/j.margen.2017.05.013
https://doi.org/10.1016/j.margen.2017.05.013


106. Kundu, R., Casey, J. & Sung, W.-K. HyPo: Super Fast & Accurate
Polisher for Long Read Genome Assemblies. bioRxiv
2019.12.19.882506 https://doi.org/10.1101/2019.12.19.
882506 (2019).

107. Xue, W. et al. L_RNA_scaffolder: scaffolding genomes with tran-
scripts. BMC Genomics 14, 604 (2013).

108. Camacho, C. et al. BLAST+: architecture and applications. BMC
Bioinforma. 10, 421 (2009).

109. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-
based genome alignment and genotyping with HISAT2 and
HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

110. Kokot, M., Długosz, M. & Deorowicz, S. KMC 3: counting and
manipulating k-mer statistics. Bioinformatics 33, 2759–2761
(2017).

111. Mandric, I. & Zelikovsky, A. ScaffMatch: scaffolding algorithm
based on maximum weight matching. Bioinformatics 31,
2632–2638 (2015).

112. Yilmaz, P. et al. The SILVA and “All-species Living Tree Project
(LTP)” taxonomic frameworks. Nucleic Acids Res 42, D643–D648
(2014).

113. Olm,M. R. et al. TheSource andEvolutionaryHistory of aMicrobial
Contaminant Identified Through Soil Metagenomic Analysis.mBio
8, e01969–16 (2017).

114. Coghlan, A., Coghlan, A., Tsai, I. J. & Berriman, M. Creation of a
comprehensive repeat library for a newly sequenced parasitic
wormgenome.Protoc. Exch. https://doi.org/10.1038/protex.2018.
054 (2018).

115. Kofler, R., Schlötterer, C. & Lelley, T. SciRoKo: a new tool forwhole
genome microsatellite search and investigation. Bioinformatics
23, 1683–1685 (2007).

116. Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A Fast and
Symmetric DUST Implementation to Mask Low-Complexity DNA
Sequences. J. Comput. Biol. 13, 1028–1040 (2006).

117. Gao, Y., Liu, B., Wang, Y. & Xing, Y. TideHunter: efficient and
sensitive tandem repeat detection from noisy long-reads using
seed-and-chain. Bioinformatics 35, i200–i207 (2019).

118. Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction
of full-length LTR retrotransposons. Nucleic Acids Res. 35,
W265–W268 (2007).

119. Ou, S. & Jiang, N. LTR_FINDER_parallel: parallelization of LTR_FIN-
DER enabling rapid identification of long terminal repeat retro-
transposons. Mob. DNA 10, 48 (2019).

120. Ellinghaus, D., Kurtz, S. &Willhoeft, U. LTRharvest, an efficient and
flexible software for de novo detection of LTR retrotransposons.
BMC Bioinforma. 9, 18 (2008).

121. Ou, S. & Jiang, N. LTR_retriever: A Highly Accurate and Sensitive
Program for Identification of Long Terminal Repeat Retro-
transposons. Plant Physiol. 176, 1410–1422 (2018).

122. Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0. (2013).
123. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for

clustering the next-generation sequencing data. Bioinforma. Oxf.
Engl. 28, 3150–3152 (2012).

124. Wicker, T. et al. A unified classification system for eukaryotic
transposable elements. Nat. Rev. Genet. 8, 973–982 (2007).

125. Flynn, J. M. et al. RepeatModeler2 for automated genomic dis-
covery of transposable element families. Proc. Natl Acad. Sci. 117,
9451–9457 (2020).

126. Zhang, R.-G. et al. TEsorter: an accurate and fast method to clas-
sify LTR-retrotransposons in plant genomes. Hortic. Res. uhac017
https://doi.org/10.1093/hr/uhac017 (2022).

127. Novák, P., Neumann, P., Pech, J., Steinhaisl, J. & Macas, J. Repea-
tExplorer: a Galaxy-based web server for genome-wide char-
acterization of eukaryotic repetitive elements from next-
generation sequence reads. Bioinforma. Oxf. Engl. 29, 792–793
(2013).

128. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new gen-
eration of protein database search programs. Nucleic Acids Res
25, 3389–3402 (1997).

129. Schäffer, A. A. et al. Improving the accuracy of PSI-BLAST protein
database searches with composition-based statistics and other
refinements. Nucleic Acids Res 29, 2994–3005 (2001).

130. Llorens, C. et al. The Gypsy Database (GyDB) of mobile genetic
elements: release 2.0. Nucleic Acids Res 39, D70–D74 (2011).

131. Goubert, C. et al. De Novo Assembly and Annotation of the Asian
Tiger Mosquito (Aedes albopictus) Repeatome with dnaPipeTE
from Raw Genomic Reads and Comparative Analysis with the
Yellow Fever Mosquito (Aedes aegypti). Genome Biol. Evol. 7,
1192–1205 (2015).

132. Riehl, K., Riccio, C., Miska, E. A. & Hemberg, M. TransposonUlti-
mate: software for transposon classification, annotation and
detection. Nucleic Acids Res 50, e64 (2022).

133. Lu, S. et al. CDD/SPARCLE: the conserved domain database in
2020. Nucleic Acids Res 48, D265–D268 (2020).

134. Marchler-Bauer, A. & Bryant, S. H. CD-Search: protein domain
annotations on the fly. Nucleic Acids Res 32, W327–W331 (2004).

135. Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq
alignments with StringTie2. Genome Biol. 20, 278 (2019).

136. Iwata, H. & Gotoh, O. Benchmarking spliced alignment programs
including Spaln2, an extended version of Spaln that incorporates
additional species-specific features. Nucleic Acids Res 40, e161
(2012).

137. Sales, G. et al. KrillDB: A de novo transcriptome database for the
Antarctic krill (Euphausia superba).PLOSONE 12, e0171908 (2017).

138. Pertea, G. & Pertea, M. GFF Utilities: GffRead and GffCompare
[version 2; peer review: 3 approved]. F1000Research 9, 304
https://doi.org/10.12688/f1000research.23297.2 (2020).

139. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein
alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

140. Hart, A. J. et al. EnTAP: Bringing faster and smarter functional
annotation to non-model eukaryotic transcriptomes. Mol. Ecol.
Resour. 20, 591–604 (2020).

141. Huerta-Cepas, J. et al. eggNOG 4.5: a hierarchical orthology fra-
mework with improved functional annotations for eukaryotic,
prokaryotic and viral sequences. Nucleic Acids Res 44,
D286–D293 (2016).

142. Larkin, A. et al. FlyBase: updates to the Drosophila melanogaster
knowledge base. Nucleic Acids Res 49, D899–D907 (2021).

143. Lechner, M. et al. Proteinortho: Detection of (Co-)orthologs in
large-scale analysis. BMC Bioinforma. 12, 124 (2011).

144. R Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. (2022).

145. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment
software version 7: improvements in performance and usability.
Mol. Biol. Evol. 30, 772–780 (2013).

146. Katoh, K. & Standley, D. M. A simple method to control over-
alignment in the MAFFT multiple sequence alignment program.
Bioinformatics 32, 1933–1942 (2016).

147. Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of
protein sequence alignments into the corresponding codon
alignments. Nucleic Acids Res 34, W609–W612 (2006).

148. Zhang, Z. et al. KaKs_Calculator: calculating Ka and Ks through
model selection and model averaging. Genomics Proteom.
Bioinforma. 4, 259–263 (2006).

149. Yang, Z. & Nielsen, R. Estimating synonymous and nonsynon-
ymous substitution rates under realistic evolutionarymodels.Mol.
Biol. Evol. 17, 32–43 (2000).

150. Gouy, M., Guindon, S. & Gascuel, O. SeaView Version 4: A Multi-
platform Graphical User Interface for Sequence Alignment and
Phylogenetic Tree Building. Mol. Biol. Evol. 27, 221–224 (2010).

Article https://doi.org/10.1038/s41467-024-50239-7

Nature Communications |         (2024) 15:6297 27

https://doi.org/10.1101/2019.12.19.882506
https://doi.org/10.1101/2019.12.19.882506
https://doi.org/10.1038/protex.2018.054
https://doi.org/10.1038/protex.2018.054
https://doi.org/10.1093/hr/uhac017
https://doi.org/10.12688/f1000research.23297.2


151. Siegel, V. Krill (Euphausiacea) life history and aspects of popula-
tion dynamics. Can. J. Fish. Aquat. Sci. 57, 130–150 (2000).

152. Castresana, J. Selection of Conserved Blocks from Multiple
Alignments for Their Use in Phylogenetic Analysis.Mol. Biol. Evol.
17, 540–552 (2000).

153. Minh, B. Q. et al. IQ-TREE 2: NewModels and Efficient Methods for
Phylogenetic Inference in the Genomic Era.Mol. Biol. Evol. 37,
1530–1534 (2020).

154. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh,
L. S. UFBoot2: Improving the Ultrafast Bootstrap Approximation.
Mol. Biol. Evol. 35, 518–522 (2018).

155. Sanderson, M. J. r8s: inferring absolute rates of molecular evolu-
tion and divergence times in the absence of a molecular clock.
Bioinformatics 19, 301–302 (2003).

156. Mendes, F. K., Vanderpool, D., Fulton, B. & Hahn, M. W. CAFE 5
models variation in evolutionary rates among gene families.
Bioinformatics 36, 5516–5518 (2020).

157. Giribet, G. & Edgecombe, G. D. The Phylogeny and Evolutionary
History of Arthropods. Curr. Biol. 29, R592–R602 (2019).

158. Bracken-Grissom, H. D. et al. The Emergence of Lobsters: Phylo-
genetic Relationships, Morphological Evolution and Divergence
Time Comparisons of an Ancient Group (Decapoda: Achelata,
Astacidea, Glypheidea, Polychelida). Syst. Biol. 63, 457–479
(2014).

159. Hu, X. & Friedberg, I. SwiftOrtho: A fast, memory-efficient, multi-
ple genome orthology classifier. GigaScience 8, giz118 (2019).

160. Zwaenepoel, A. & Van de Peer, Y. wgd—simple command line
tools for the analysis of ancient whole-genome duplications.
Bioinformatics 35, 2153–2155 (2019).

161. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a
tool for discovery andvisualization of enrichedGOterms in ranked
gene lists. BMC Bioinforma. 10, 48 (2009).

162. Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set
enrichment tool for animals and plants. Bioinformatics 36,
2628–2629 (2020).

163. Vanneste, K., Van de Peer, Y. & Maere, S. Inference of Genome
Duplications from Age Distributions Revisited.Mol. Biol. Evol. 30,
177–190 (2013).

164. Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient
algorithm for large-scale detection of protein families. Nucleic
Acids Res. 30, 1575–1584 (2002).

165. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2 – Approximately
Maximum-Likelihood Trees for Large Alignments. PLoS ONE 5,
e9490 (2010).

166. Yang, Z. PAML 4: Phylogenetic Analysis by Maximum Likelihood.
Mol. Biol. Evol. 24, 1586–1591 (2007).

167. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J.
Mach. Learn. Res. 12, 2825–2830 (2011).

168. Schwager, E. E. et al. The house spider genome reveals an ancient
whole-genome duplication during arachnid evolution. BMC Biol.
15, 62 (2017).

169. Serano, J. M. et al. Comprehensive analysis of Hox gene expres-
sion in the amphipod crustacean Parhyale hawaiensis. Dev. Biol.
409, 297–309 (2016).

170. Zhong, Y. & Holland, P. W. H. HomeoDB2: functional expansion of
a comparative homeobox gene database for evolutionary devel-
opmental biology. Evol. Dev. 13, 567–568 (2011).

171. Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of
animal, plant, fungal, protist, bacterial and viral genomes for
evolutionary and functional annotations of orthologs. Nucleic
Acids Res. 47, D807–D811 (2019).

172. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally
and phylogenetically annotated orthology resource based on
5090 organisms and 2502 viruses. Nucleic Acids Res. 47,
D309–D314 (2019).

173. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a
tool for automated alignment trimming in large-scale phyloge-
netic analyses. Bioinformatics 25, 1972–1973 (2009).

174. Waterhouse, A. et al. SWISS-MODEL: homology modelling of
protein structures and complexes. Nucleic Acids Res. 46,
W296–W303 (2018).

175. Mirdita, M. et al. ColabFold: making protein folding accessible to
all. Nat. Methods 19, 679–682 (2022).

176. Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein
sequence searching for the analysis of massive data sets. Nat.
Biotechnol. 35, 1026–1028 (2017).

177. Jumper, J. et al. Highly accurate protein structure prediction with
AlphaFold. Nature 596, 583–589 (2021).

178. Simpson, J. T. et al. Detecting DNA cytosine methylation using
nanopore sequencing. Nat. Methods 14, 407–410 (2017).

179. Gamaarachchi, H. et al. GPU accelerated adaptive banded event
alignment for rapid comparative nanopore signal analysis. BMC
Bioinforma. 21, 343 (2020).

180. Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and
structural variant read extraction. Bioinformatics 30,
2503–2505 (2014).

181. Garrison, E. & Marth, G. Haplotype-based variant detection from
short-read sequencing. ArXiv12073907 Q-Bio (2012).

182. Garrison, E. et al. A spectrum of free software tools for processing
the VCF variant call format: vcflib, bio-vcf, cyvcf2, hts-nim and
slivar. PLoS Comput. Biol. 18, e1009123 (2022).

183. Tan, A., Abecasis, G. R. & Kang, H. M. Unified representation of
genetic variants. Bioinformatics 31, 2202–2204 (2015).

184. Browning, S. R. & Browning, B. L. Rapid and Accurate Haplotype
Phasing and Missing-Data Inference for Whole-Genome Associa-
tion Studies By Use of Localized Haplotype Clustering. Am. J.
Hum. Genet. 81, 1084–1097 (2007).

185. Cingolani, P. et al. A program for annotating and predicting the
effects of single nucleotide polymorphisms, SnpEff: SNPs in the
genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly.
(Austin) 6, 80–92 (2012).

186. Stajich, J. E. et al. The Bioperl Toolkit: Perl Modules for the Life
Sciences. Genome Res. 12, 1611–1618 (2002).

187. Tajima, F. Statistical Method for Testing the Neutral Mutation
Hypothesis by DNA Polymorphism. Genetics 123, 585–595
(1989).

188. Schiffels, S. & Wang, K. MSMC and MSMC2: The Multiple
Sequentially Markovian Coalescent. in Statistical Population
Genomics (ed. Dutheil, J. Y.) 147–166 (Springer US, New York, NY,
2020). https://doi.org/10.1007/978-1-0716-0199-0_7.

189. Santiago, E. et al. Recent Demographic History Inferred by High-
Resolution Analysis of Linkage Disequilibrium. Mol. Biol. Evol. 37,
3642–3653 (2020).

190. Huson, D. H. & Bryant, D. Application of phylogenetic networks in
evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006).

191. Chang, C. C. et al. Second-generation PLINK: rising to the
challenge of larger and richer datasets. GigaScience 4, 7
(2015).

192. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based
estimation of ancestry in unrelated individuals. Genome Res. 19,
1655–1664 (2009).

193. Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. &
Mayrose, I. Clumpak: a program for identifying clustering modes
and packaging population structure inferences across K. Mol.
Ecol. Resour. 15, 1179–1191 (2015).

194. Reynolds, J., Weir, B. S. & Cockerham, C. C. Estimation of the
Coancestry Coefficient: Basis for a Short-Term Genetic Distance.
Genetics 105, 767–779 (1983).

195. Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the
Analysis of Population Structure. Evolution 38, 1358–1370 (1984).

Article https://doi.org/10.1038/s41467-024-50239-7

Nature Communications |         (2024) 15:6297 28

https://doi.org/10.1007/978-1-0716-0199-0_7


196. Rousset, F. Genetic Differentiation and Estimation of Gene Flow
from F-Statistics Under Isolation by Distance. Genetics 145,
1219–1228 (1997).

197. Hudson, R. R. Generating samples under a Wright-Fisher neutral
model of genetic variation. Bioinformatics 18, 337–338 (2002).

198. Szpiech, Z. A. & Hernandez, R. D. selscan: An Efficient Multi-
threaded Program to Perform EHH-Based Scans for Positive
Selection.Mol. Biol. Evol.msu211 https://doi.org/10.1093/molbev/
msu211 (2014).

199. Barroso, G. V., Puzović, N. & Dutheil, J. Y. Inference of recombi-
nation maps from a single pair of genomes and its application to
ancient samples. PLOS Genet 15, e1008449 (2019).

200. Yang, Z. & Nielsen, R. Codon-Substitution Models for Detecting
Molecular Adaptation at Individual Sites Along Specific Lineages.
Mol. Biol. Evol. 19, 908–917 (2002).

201. Tsirigos, K. D., Peters, C., Shu, N., Käll, L. & Elofsson, A. The TOP-
CONS web server for consensus prediction of membrane protein
topology and signal peptides.Nucleic Acids Res. 43, W401–W407
(2015).

202. Lomize, A. L., Todd, S. C. & Pogozheva, I. D. Spatial arrangement of
proteins in planar and curvedmembranes by PPM3.0. Protein Sci.
Publ. Protein Soc. 31, 209–220 (2022).

203. Teufel, F. et al. SignalP 6.0predicts allfive types of signal peptides
using protein language models. Nat. Biotechnol. 40, 1023–1025
(2022).

204. Schrödinger, L. L. C. The PyMOL Molecular Graphics System,
Version 2.3.0. (2015).

205. Pettersen, E. F. et al. UCSF ChimeraX: Structure visualization for
researchers, educators, and developers. Protein Sci. Publ. Protein
Soc. 30, 70–82 (2021).

Acknowledgements
We thank Stéphane Plourde, Geneviève Perrin, Jon Rønning, Monica B.
Martinussen and Katharina Michael for providing samples, the staff at
Kristineberg Center for Marine Research and Innovation, Zhen Li for
constructive discussion and Jessica Heinze, Sarah Demirkale and Ylva
Jondelius for lab assistance. The computations were enabled project
SNIC 2022/5-472 provided by the National Academic Infrastructure for
Supercomputing in Sweden (NAISS) and the Swedish National Infra-
structure for Computing (SNIC) at UPPMAX and the PDC Center for
High Performance Computing partially funded by the Swedish
Research Council through grant agreements no. 2022-06725 and no.
2018-05973. This research was supported by a Future research leaders
grant awarded by the Swedish Research Council Formas 2017-00413
(A.W.) and by NSF OCE grants 1316040 and 1948162 (L.B.B.). PU was
supported by the Knut and Alice Wallenberg Foundation as part of the
National Bioinformatics Infrastructure Sweden at SciLifeLab, grant id
KAW 2017.0003.

Author contributions
Conceptualization: A.W. Data curation: A.W., P.U., I.B. Formal analysis:
A.W., P.U., M.L., I.B. Funding acquisition: A.W. Investigation: A.W., A.O.,
A.P., O.W.; Methodology: A.W., P.U., A.P.; Project administration: A.W.,
O.V.P.; Resources: A.W., O.V.P., E.E., A.G., H.G., J.C., L.B.B.; Software:
A.W., P.U.; Supervision: A.W.; Visualization: A.W., P.U., M.L.; Writing –

original draft: A.W., P.U.; Writing – review & editing: A.W., P.U., B.M.,
L.B.B., E.E., A.G., H.G., J.C., C.P.

Funding
Open access funding provided by Uppsala University.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-50239-7.

Correspondence and requests for materials should be addressed to
Andreas Wallberg.

Peer review information Nature Communications Geraint Tarling and
the other, anonymous, reviewer(s) for their contribution to the peer
review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

1Department of Cell andMolecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, UppsalaUniversity, Uppsala, Sweden.
2Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden. 3Department of Pharmaceutical
Biosciences, Uppsala University, Uppsala, Sweden. 4Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University,
National Genomics Infrastructure hosted by SciLifeLab, Uppsala, Sweden. 5Biology Department, University of Padova, Padova, Italy. 6Marine and Freshwater
Research Institute, Pelagic Division, Reykjavik, Iceland. 7Department of Biological Sciences, University of Bergen, Bergen, Norway. 8Center for Macroecology,
Evolution and Climate Globe Institute, University of Copenhagen, Copenhagen, Denmark. 9Instituto de Ciencias del Mar (ICM-CSIC), Barcelona, Spain.
10Bermuda Institute of Ocean Sciences, Arizona State University, St. George’s, Bermuda. 11Institute of Marine Research (IMR), Bergen, Norway. 12Section Polar
Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany. 13Institute for Chemistry and
Biology of theMarine Environment, CarlvonOssietzky University of Oldenburg, Oldenburg, Germany. 14Helmholtz Institute for Functional Marine Biodiversity
(HIFMB), University of Oldenburg, Oldenburg, Germany. e-mail: andreas.wallberg@imbim.uu.se

Article https://doi.org/10.1038/s41467-024-50239-7

Nature Communications |         (2024) 15:6297 29

https://doi.org/10.1093/molbev/msu211
https://doi.org/10.1093/molbev/msu211
https://doi.org/10.1038/s41467-024-50239-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:andreas.wallberg@imbim.uu.se

	Ecological genomics in the Northern krill uncovers loci for local adaptation across ocean basins
	Results
	A highly repeated genome
	Expansion of cuticular and opsin gene families
	An active DNA methylation system
	Genome-scale variation is shaped by linked selection and pervasive gene flow
	Signatures of ancient adaptive divergence across hundreds of genes
	Candidate genes for ecological adaptation associated with ecophysiological functions

	Discussion
	Methods
	Biological materials
	Processing of samples

	Overview of library preparation & sequencing
	High-molecular weight DNA extraction for long-read and linked-read libraries
	PromethION long-read sequencing
	10X linked-read sequencing
	RNA extraction from multiple tissues for long-read and short-read RNA libraries
	Short-read RNA sequencing
	Long-read cDNA sequencing
	Salt-isopropanol DNA extraction of multiple specimens for population-scale whole-genome resequencing
	Short-read DNA libraries and resequencing

	A preliminary mitochondrial assembly
	Pre-processing of long-read DNA data
	RNA processing and transcriptome assembly
	Long-read cDNA processing
	Short-read RNA-seq processing and transcriptome assembly

	Mitochondrial re-assembly
	Genome assembly
	Genome assembly
	Assessment of genome assembly quality and completeness
	Assembly v1: Production of a preliminary assembly with the wtdbg2 assemble
	Assembly v2: Long-read polishing with Racon
	Assembly v3: Long-read polishing with Medaka
	Assembly v4: Short-read polishing with Pilon
	Assembly v5: Purging haplotigs with Purgehaplotigs
	Assembly v6: Mixed-read polishing with HyPo
	Assembly v7: Scaffolding the contigs with Trinity transcripts using LRNAScaffolder
	Assembly v8: Scaffolding with short-read RNA-seq data with a first pass of BESSTRNA
	Assembly v9: Scaffolding with long-read DNA data using FAST-SG+ScaffMatch
	Assembly v10: Scaffolding with linked-read DNA data using Scaff10x
	Assembly v11: Scaffolding with short-read RNA-seq data with a second pass of BESSTRNA
	Assembly v12: Short-read polishing with Pilon using high-coverage RNA-seq data
	Assembly v13: Finishing the assembly by removing contaminants and re-inserting contigs
	Reintroduction of krill genes in to the main assembly
	Detection of contaminants
	Flagging residual mitochondrial sequence

	Genome annotation
	Repeat annotation
	Detection of simple repeats and low complexity regions
	Detection and characterization of LTRs using structural searches with LTRFinder and LTRharvest
	Detection of diverse transposon domains using TransposonPSI
	Detection of transposable elements through de novo repeat assembly with dnaPipeTE
	Detection of transposable elements from high-frequency motifs using RepeatModeler2
	Evaluation and validation of the repeat library
	Annotation of repeats across the krill genome with RepeatMasker

	Gene annotation
	RNA-based data
	Comparative data
	Consolidation of gene models
	Gene set size and completeness
	Functional and evolutionary annotations
	Gene region masking

	Evolutionary analyses of protein coding genes
	Inference and comparison of orthologs between krill and other species
	Estimating divergence between the Northern krill and the Antarctic krill
	Inferences of phylogenetic interrelationships
	Analysis of gene family evolution
	Preparing the krill gene set
	Analyses with SwiftOrtho to cluster genes into families
	Analyses with CAFE to trace gene family expansions or contractions
	Gene ontology (GO) enrichment analysis of expanded gene families
	Analyses with wgd to test for signatures of whole-genome duplication (WGD)
	Characterization of the opsin repertoire
	Characterization of the Hox gene complement
	Characterization of genes involved in DNA methylation
	Predicting protein structures

	Analysis of DNA methylation levels
	Population genetic data processing and analyses
	Processing resequencing data
	Mapping, read-group tagging and duplicate marking datasets
	Mapping-depth profiles and masking of inaccessible sites

	Calling and phasing single-nucleotide polymorphisms (SNPs) across the genome
	Calling and processing variants
	Imputing and phasing SNPs
	Annotating SNPs

	Estimating patterns of variation
	Levels of variation
	Effective population size (NE) and its historical demographic trends
	Counting alleles and estimating allele frequency divergence, population structure and selection
	Simulations of divergence
	Signatures of selective sweeps
	Enrichment analyses
	Estimation of haplotype ages

	Assessment of molecular evolution in nrf-6 and the topology of its encoded protein
	Inclusion & Ethics
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




