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Abstract
Predation	 shapes	 marine	 benthic	 communities	 and	 affects	 prey	 species	 popula-
tion	dynamics	in	tropic	and	temperate	coastal	systems.	However,	information	on	its	
magnitude	 in	 systematically	 understudied	Arctic	 coastal	 habitats	 is	 scarce.	 To	 test	
predation	effects	on	the	diversity	and	structure	of	Arctic	benthic	communities,	we	
conducted	caging	experiments	in	which	consumers	were	excluded	from	plots	at	two	
intertidal	sedimentary	sites	in	Svalbard	(Longyearbyen	and	Thiisbukta)	for	2.5	months.	
Unmanipulated	areas	served	as	controls	and	partial	(open)	cages	were	used	to	esti-
mate	potential	cage	effects.	At	the	end	of	the	experiment,	we	took	one	sediment	core	
from	each	plot	 and	quantified	 total	 biomass	 and	 the	number	of	 each	encountered	
taxon.	At	both	sites,	the	experimental	exclusion	of	predators	slightly	changed	the	spe-
cies	composition	of	communities	and	had	negligible	effects	on	biomass,	total	abun-
dance,	species	richness,	evenness,	and	Shannon	Index.	In	addition,	we	found	evidence	
for	cage	effects,	and	spatial	variability	in	the	intensity	of	the	predation	effects	was	
identified.	Our	study	suggests	 that	predators	have	 limited	effects	on	the	structure	
of	 the	 studied	 intertidal	macrobenthic	Arctic	 communities,	which	 is	 different	 from	
coastal	soft-	bottom	ecosystems	at	lower	latitudes.
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1  |  INTRODUC TION

A	 key	 question	 in	 ecology	 is	 which	 factors	 control	 the	 diversity	
and	 structure	 of	 communities.	 Research	 on	 community	 dynamics	
is	 of	 great	 interest	 and	 has	 practical	 scope,	 for	 example,	 for	 eco-
system	conservation	and	management,	preservation	of	ecosystem	
services,	and	the	prediction	of	the	response	of	ecological	commu-
nities	to	climate	change	(Paine	et	al.,	2018;	Thompson	et	al.,	2020).	
Past	 research	 showed	 that	 both	 abiotic	 and	biotic	 factors	 are	 im-
portant	drivers	of	 community	 structure	 and	 function	 (Wallingford	
&	Sorte,	2019),	and	knowledge	of	these	drivers	is	especially	needed	
for	polar	ecosystems,	as	climate	change	is	predicted	to	be	strongest	
at	high	latitudes	(IPCC,	2019).

For	 coastal	Arctic	 habitats,	 a	 number	of	 studies	has	 evaluated	
the	role	of	abiotic	factors	in	shaping	spatial	and	temporal	patterns	in	
taxa	distributions,	community	structure,	and	taxonomic	composition	
(reviewed	in	Molis	et	al.,	2019).	Ice	scouring	(Conlan	&	Kvitek,	2005; 
Laudien	et	al.,	2007),	meltwater	discharge	(Jerosch	et	al.,	2018),	and	
sedimentation	(Veit-	Köhler	et	al.,	2008)	have	received	considerable	
attention.	However,	biotic	interactions	known	to	affect	the	dynam-
ics	 and	 structuring	 of	 temperate	 soft-	bottom	 communities,	 such	
as	 bioturbation,	 facilitation,	 and	 consumption	 (Ambrose	 Jr,	 1984; 
Wilson,	1990),	have	been	rarely	addressed	experimentally	at	higher	
latitudes.	In	this	context,	Poore	et	al.	(2012)	showed	that	herbivore	
impact	 assessment	 experiments	 are	 not	 conducted	 at	 latitudes	
north	of	60°N.

Predation	can	strongly	modify	population	dynamics,	distribution,	
and	diversity	of	prey	(Guzman	et	al.,	2019),	and	its	role	in	shaping	in-
tertidal	soft-	bottom	communities	in	temperate	and	tropical	regions	
is	well-	documented	(Freestone	et	al.,	2011;	Reise,	1985).	However,	
information	 regarding	 the	 role	of	 consumers	on	community	 struc-
ture	in	the	Arctic	is	scarce	and	cannot	be	inferred	from	experiments	
that	were	run	in	the	temperate	zone.	In	one	of	the	few	experimen-
tal	 field	 studies	 of	 predator	 effects	 on	 Arctic	 benthos,	 Petrowski	
et al. (2016)	 showed	 that	 the	 community	 structure	 of	 a	 subtidal	
soft-	bottom	community	in	Kongsfjorden	(western	Svalbard)	was	less	
affected	by	the	consumption	of	epibenthic	predators	than	by	biotur-
bation	of	the	sediment-	reworking	lugworm	Arenicola marina.

The	 lack	 of	 information	 calls	 for	 empirical	 and	 experimental	
studies	that	have	to	be	conducted	in	Arctic	coastal	regions	because	
most	knowledge	on	interactions	and	population	dynamics	in	benthic	
Arctic	 coastal	 systems	 is	 hitherto	 based	 on	 observational	 studies	
(reviewed	in	Molis	et	al.,	2019).	However,	manipulative	field	exper-
iments	are	crucial	and	necessary	 to	 investigate	underlying	mecha-
nisms	of	observed	community	patterns	(Molis	et	al.,	2019;	Petrowski	
et	al.,	2016;	Volkenborn	&	Reise,	2007).

Changes	 in	 environmental	 conditions	 due	 to	 climate	 warming	
may	alter	the	strength	and	direction	of	biotic	interactions	(Monaco	
et	al.,	2016;	Silliman	&	He,	2018;	Wallingford	&	Sorte,	2019).	This	
may	also	be	the	case	for	predator–	prey	relationships	in	Arctic	coastal	
ecosystems	(Molis	et	al.,	2019).	The	current	predation	pressure	from	
epibenthic	 predators	 might	 change	 in	 a	 warmer	 Arctic	 due	 to	 an	

increase	in	the	abundance	and	activity	of	resident	predators	and	the	
northward	expansion	of	predatory	fish	(Eriksen	et	al.,	2012;	Fagerli	
et	al.,	2014).	For	example,	Eriksen	et	al.	(2012)	show	that	small	arc-
tic	fish	such	as	Myoxocephalus quadricornis	 (Linnaeus,	1789),	which	
feeds	on	small	fish,	bottom	crustaceans,	and	worms,	moved	north-
wards	from	the	area	of	occupancy	in	warm	years	in	the	Arctic	Sea	
during	29 years	(1980–	2009).	Continued	warm	periods	in	the	Arctic	
may	promote	a	changing	role	 for	consumers,	and	ecosystem	func-
tioning	may	be	modified.	To	predict	how	the	ecosystem	will	react	to	
a	warmer	Arctic,	more	information	on	the	current	role	of	consumers	
in	Arctic	communities	is	essential.

Therefore,	this	study	assessed	the	effects	of	predation	on	diver-
sity,	 community	 structure,	 and	 functional	 characteristics	 in	 Arctic	
marine	 soft-	bottom	 intertidal	 habitats	 through	 manipulative	 field	
experiments.	 In	 detail,	 we	 measured	 benthic	 taxa	 richness,	 total	
abundance,	 and	biomass	with	 and	without	experimental	 exclusion	
of	predators.

2  |  MATERIAL S AND METHODS

2.1  |  Study sites

We	 used	 two	 study	 sites	 on	 the	 west	 coast	 of	 Svalbard	 for	 our	
investigations.	One	 study	 site	was	 near	 Longyearbyen	 located	 in	
Adventfjorden	 (78.21°	 N,	 15.6°	 E;	 Figure 1).	 Adventfjorden	 is	 a	
marine	 inlet	 (8.3	 km	 long,	 3.4	 km	wide),	which	 is	 also	 influenced	
by	 the	water	 bodies	 of	 Isfjorden	 and	 two	 rivers	 (Adventelva	 and	
Longyearelva)	 that	 cause	 salinity	 variations	 (Zajączkowski,	 2008)	
and	 an	 increase	 in	 organic	 matter	 during	 summer	 (Zajączkowski	
&	 Włodarska-	Kowalczuk,	 2007).	 Mobile	 scavenging	 amphipods,	
nematodes,	and	polychaetes	belong	 to	 the	dominating	 taxonomic	
groups	occurring	in	the	intertidal	sedimentary	habitat	of	this	fjord	
(Nygård	 et	 al.,	 2012;	 Pawłowska	 et	 al.,	 2011),	 and	 some	 of	 the	
shorebirds	present	 in	the	 intertidal,	 for	example,	Somateria mollis-
sima,	Larus marinus,	Sterna paradisaea,	and	Cepphus grylle,	are	shore-
birds	that	prey	in	the	internareal	zones	of	Longyearbyen	(Fauchald	
et	al.,	2015).

The	second	study	site	called	Thiisbukta	is	located	in	Kongsfjorden,	
a	30-	km-	long	fjord	(78.92°	N,	11.9°	E;	Figure 1).	Drainage	of	several	
rivers	into	the	fjord	causes	an	input	of	organic	material	and	sediment	
but	also	salinity	variations	from	10	to	33 psu	(Svendsen	et	al.,	2002).	
The	 intertidal	 soft-	bottom	 of	 Thiisbukta	 is	 dominated	 by	 oligo-
chaetes,	the	polychaetes	(Scoloplos armiger	and	Euchone analis)	and	
bivalves	(Liocyma fluctuosa	and	Macoma	sp.)	(McMahon	et	al.,	2006).	
In	terms	of	potential	predators	in	the	study	area,	common	fish	spe-
cies	on	the	soft-	bottoms	of	the	Svalbard	coast	are	Anisarchus medius 
and	Lumpenus lampraeteformis	(Wienerroither	et	al.,	2011),	they	feed	
on	benthic	invertebrates	such	as	amphipods,	bottom-	dwelling	crus-
taceans,	polychaetes,	and	larval	stages	of	fish	(Eriksen	et	al.,	2012; 
Wienerroither	et	al.,	2011).	Juvenile	Myoxocephalus scorpius are also 
considered	potential	predators	on	benthic	invertebrates	on	shallow	
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bottoms	in	Arctic	marine	waters	(Berge	&	Nahrgang,	2013).	Although	
the	information	on	abundance	and	composition	is	scarce,	M. scorpius 
was	 found	 to	be	one	of	 the	most	abundant	 species	 (74.9%)	 in	 the	
shallow	waters	of	Kongsfjorden,	Svalbard	(Brand	&	Fischer,	2016)

2.2  |  Experimental design, setup, and sampling

To	 investigate	 the	 effects	 of	 consumption	 on	 the	 infaunal	 mac-
robenthic	community,	identical	predator	exclusion	experiments	with	
randomized	block	design	were	conducted	at	each	site.	The	design	in-
cluded	“predator	exclusion”	as	a	fixed	factor	with	three	treatments:	
“full	cage,”	“partial	cage,”	and	“unmanipulated	area.”	A	random	factor	
“block”	with	three	levels	was	used	to	quantify	whether	the	effects	
of	 predator	 exclusion	 varied	 in	 space	 (Figure 2a).	 The	 treatments	
“full	cage”	and	“unmanipulated	area”	were	replicated	four	 times	 in	
each	block,	while	the	“partial	cage”	treatment	was,	due	to	logistical	
constraints,	replicated	twice	in	each	block.	This	experimental	design	
yielded	a	total	of	30	experimental	units	(EUs)	at	each	site.	Predator	
exclusion	treatments	were	randomly	assigned	to	10	EUs	per	block.	
Each	block	covered	an	area	of	about	5	m2,	where	EUs	were	located	
at	a	minimum	distance	of	50 cm	 (Figure 2b).	Each	experiment	was	
installed	during	one	low	tide	at	about	1	m	above	mean	low	tide	level;	
plots	stayed	emerged	during	each	low	tide	for	approx.	4 h.

To	exclude	epibenthic	predators	(“full	cage”	treatment),	cylindri-
cal	 cages	 (25 cm	 in	diameter,	11 cm	high)	were	 constructed	with	 a	
polyethylene	mesh	(mesh	size	0.5	cm),	fully	covering	cage's	side	and	
top (Figure 2c).	Two	PVC	 rings	at	 the	upper	and	 lower	end	of	 the	
cages	were	used	 for	 fixing	 the	mesh.	The	bottom	rings	were	 fully	
pushed	into	the	sediment	(about	5	cm)	to	limit	horizontal	movements	
of	organisms,	including	predatory	infauna.	To	test	for	cage	effects,	
partial	 (open)	 cages	were	 constructed	by	 cutting	 away	half	 of	 the	
mesh	at	the	top	and	four	holes	(4	cm × 10	cm)	into	the	cage	side	to	

F I G U R E  1 Map	of	the	Svalbard	archipelago,	with	the	study	sites,	
Longyearbyen	and	Thiisbukta,	marked	with	black	dots	(Norwegian	
Polar	Institute/https://geokart.npolar.no/).

F I G U R E  2 Experimental	design	and	
set-	up.	(a)	Example	of	one	block	with	
randomised	allocation	of	treatments.	
(b)	Dimensions	and	distribution	of	
the	experimental	units	in	the	blocks;	
grey	circles	(full	cage),	white	circles	
(unmanipulated	area),	and	dotted	circles	
(partial	cage).	(c)	Full	cage	to	test	for	
“exclusion	predator”	treatment.	(d)	
Partial	cage	to	test	for	“cage	artefact”,	
white	arrows	indicate	openings	in	lid	and	
sidewall.
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allow	consumers	to	enter	and	exit	the	cages	(Figure 2d).	Each	par-
tial	 and	 full	 cage	was	 fixed	with	 three	35 cm	 iron	 rods	 to	 the	sea-
floor.	Unmanipulated,	that	is,	cage-	free,	areas	served	as	the	control	
treatment.

Eighty	 days	 after	 the	 experiment	 started	 (May	 23,	 2017,	 in	
Thiisbukta	and	June	1,	2017,	 in	Longyearbyen),	a	 transparent	PVC	
corer	(5.4	cm	diameter)	was	pushed	10	cm	deep	into	the	sediment	
in	the	center	of	each	EU	(=	total	of	30	samples	per	site).	All	samples	
were	kept	at	4	°C	as	intact	sediment	cores	until	they	were	processed	
in	the	laboratory	of	the	University	Centre	in	Svalbard	(Longyearbyen)	
or	the	Marine	Laboratory	 in	Ny	Ålesund	(Thiisbukta)	within	4 days	
after	the	sampling.	Each	sample	was	sieved	with	a	0.5 mm	sieve.	All	
organisms	 remaining	 in	 the	 sieve	were	 identified	 to	 lowest	 possi-
ble	 taxonomic	 level	 using	 a	 stereomicroscope,	 and	 the	 number	 of	
individuals	of	each	taxon	was	counted.	Pielou's	evenness	(J),	which	
describes	 how	 evenly	 individuals	 are	 distributed	 across	 taxa	 in	 a	
sample	(Pielou,	1966),	was	calculated	as:	J	=	H′/log	S,	where	H′	is	the	
Shannon	index	(to	natural	logarithm)	and	S	is	taxon	richness	(number	
of	species).	For	each	sediment	core,	the	biomass	of	all	organisms	per	
taxon	was	measured	 to	 the	nearest	0.001 g	with	a	 laboratory	bal-
ance	(Mettler-	Toledo)	after	drying	the	organisms	in	an	oven	at	60°C	
to	constant	weight.

2.3  |  Statistical analyses

We	followed	the	advice	of	Wasserstein	et	al.	(2019)	to	report	the	
p-	value	for	all	values	and	considered	it	as	a	continuous	metric	of	
the	 probability	 that	 the	 calculated	 value	 of	 a	 test	 statistic	 (or	 a	
larger	 value)	 occurs	 by	 chance,	 given	 that	 the	 null	 hypothesis	 is	
correct	(Crawley,	2013,	p.	753).	Hence,	we	neither	used	the	level	
of	 α ≤ 0.05	 as	 a	 dichotomous	 threshold	 at	 which	 to	 determine	
whether	a	trend	is	significant	nor	to	label	effects	as	“statistically	
significant.”

Using	 the	 R	 package	 “GAD”	 version	 1.1.1	 (Sandrini-	Neto	 &	
Camargo,	2012),	 we	 tested	with	mixed	models	 ANOVAs	whether	
predation	effects	(full	cages	vs.	unmanipulated	areas)	were	indepen-
dent	 of	 position	within	 a	 study	 site	 (see	 ‘E × B’	 in	 Table	A1	of	 the	
Appendix	 A	 for	 predation	 effect).	 Furthermore,	we	 quantified	 for	
each	 univariate	 response	 variable	 the	 effect	 size	 (as	 log	 response	
ratio)	 of	 the	 predation	 effect	 using	 data	 of	 fully	 caged	 plots	 and	
unmanipulated	areas,	and	of	the	cage	effect	using	data	of	partially	
caged	plots	and	unmanipulated	areas.	We	calculated	for	each	uni-
variate	 response	 variable	 five	 statistical	 metrics	 to	 evaluate	 the	
likelihood	of	an	effect.	(i)	With	a	Student's	t-	test,	we	estimated	the	
value	 of	 the	 test	 statistic	 t	 and	 its	 probability	 (p),	 using	 the	 func-
tion	 “t.test”	of	 the	R	package	 “stats”	v3.5.1	 (Pinheiro	et	al.,	2018).	
(ii)	The	power	of	t-	tests	was	quantified	with	the	“pwr.t.test”	function	
of	the	R	package	“pwr.2”	v1.0	(Lu	et	al.,	2017).	(iii)	The	Bayes	factor	
(BF)	as	the	ratio	between	the	likelihood	of	data	given	the	alternative	
hypothesis	divided	by	the	likelihood	of	data	given	the	null	hypoth-
esis	 (Beard	et	al.,	2016).	The	Bayes	factor	was	calculated	with	the	
function	“ttest.tstat”	from	the	R	“BayesFactor”	package	v0.9.12–	4.2	

(Morey	&	Rouder,	2018).	For	the	interpretation	of	the	Bayes	factor,	
the	categories	established	using	the	factor	ranks	determined	by	Lee	
and	Wagenmakers	 (2014)	were	used.	 (v)	The	average	 log	response	
ratio	(LRR)	was	calculated	as	the	decimal	logarithm	of	the	quotient	of	
the	mean	treatment	(either	fully	caged	or	partially	cage)	versus	the	
mean	 control	 (unmanipulated	 area),	 subsequently	 plotted	 with	 its	
95%	confidence	interval	(CI)	using	the	“forest”	and	“scalc”	functions	
of	the	R	package	“metafor"	v2.4–	0	(Viechtbauer,	2019).

Shapiro–	Wilks	 test	 and	 quantile–	quantile	 plots	 were	 used	 to	
check	 for	 normality	 of	 residuals.	 Furthermore,	 Cochran's	 test	 and	
standardized	residual-	vs-	fit	values	were	used	to	test	for	homogene-
ity	of	variances,	using	the	“C.test”	function	of	the	R	package	“GAD”	
v1.1.1	 and	 graphical	 exploration	 of	 residuals-	vs.-	adjusted-	values	
plots	(Crawley,	2012;	Sandrini-	Neto	&	Camargo,	2012),	respectively.	
The	data	were	fourth	root-	transformed	when	heteroscedasticity	of	
the	residuals	was	registered.	Heteroscedasticity	increases	the	type	
II	error	rate	and	therefore	should	only	be	taken	into	account	when	
treatment	effects	occur	(Underwood,	1997).

To	test	the	effects	of	manipulations	on	community	structure,	we	
analyzed	separately	for	each	site	relative	abundances	of	macrofauna	
using	Permuted	Multivariate	Analyses	 of	Variance	 (PERMANOVA;	
Anderson,	 2001)	 based	 on	 Bray–	Curtis	 dissimilarities.	 The	 use	
of	 relative	 abundances	 provides	 an	 unbiased	 measure	 on	 com-
positional	 differences	 by	 excluding	 differences	 in	 overall	 counts	
(Greenacre,	2018).	The	factors	were	Treatment	(fixed,	three	levels),	
Block	(random,	three	levels),	and	the	Treatment	×	Block	interaction.	
The	analyses	used	9999	permutations	 to	calculate	 the	p-	value	 for	
each	model	term.	Permuted	Multivariate	Analyses	of	Variances	were	
conducted	with	the	“adonis"	function	of	the	R	package	“vegan”	v2.	
5–	6	(Oksanen	et	al.,	2018).	When	the	p-	value	of	Treatment × Block	
was >.25,	the	analysis	was	repeated	after	pooling	the	variance	of	the	
interaction	term	with	the	residual	variance	of	the	full	model	(Quinn	
&	Keough,	2002).	We	generated	 a	Principal	Components	Analysis	
(PCA)	that	were	plotted	with	the	“plot”	function	of	R	“base”	package	
to	illustrate	(i)	treatment	effects	along	the	first	two	principal	com-
ponents	explaining	most	of	the	variation	of	the	data	and	(ii)	values	
for	the	most	influential	taxa.	All	analyses	were	conducted	in	the	R	
environment,	version	3.6.1	(R	Core	Team,	2019).

3  |  RESULTS

3.1  |  Characterization of the soft- bottom 
community

In	 total,	 25	 taxa	 were	 identified	 (11	 at	 Longyearbyen	 and	 24	 at	
Thiisbukta).	 Both	 sites	 had	 several	 taxa	 in	 common,	 although	
Thiisbukta	 reported	 more	 individuals	 in	 almost	 all	 taxa	 than	
Longyearbyen.	Taxon	 richness	 in	Thiisbukta	was,	on	average,	52%	
greater	than	in	Longyearbyen.	At	both	sites,	the	soft-	bottom	fauna	
was	 dominated	 by	 polychaetes.	 In	 total,	 six	 (55%	 of	 total	 species	
number)	and	13	(54%	of	total	species	number)	polychaete	taxa	were	
encountered	at	Longyearbyen	and	Thiisbukta,	respectively	(Table 1).



    |  5 of 12DÍAZ et al.

TA
B

LE
 1
 
To
ta
l	a
bu
nd
an
ce
	(n
),	
m
ea
n	
to
ta
l	p
lo
t	a
bu
nd
an
ce
	(M
ea
n)
,	p
ro
po
rt
io
na
l	a
bu
nd
an
ce
	(P
RO
P)
	o
f	e
ac
h	
ta
xo
n	
fo
un
d	
in
	th
e	
sa
m
pl
es
	(2
1 
cm

2 	a
re
a)
	ta
ke
n	
fr
om
	th
e	
fu
lly
	(f
ul
l	c
ag
e)
	a
nd
	p
ar
tia
lly
	

ca
ge
d	
(p
ar
tia
l	c
ag
e)
	p
lo
ts
	a
s	
w
el
l	a
s	
fr
om
	th
e	
un
m
an
ag
ed
	(c
on
tr
ol
)	a
re
as
	a
t	t
he
	e
nd
	o
f	t
he
	8
0-
	da
y	
ex
pe
rim
en
t	i
n	
Lo
ng
ye
ar
by
en
	a
nd
	T
hi
is
bu
kt
a.
	E
m
pt
y	
ce
lls
	in
di
ca
te
	a
n	
ab
se
nc
e	
of
	o
rg
an
is
m
s.
	

n 
=

 1
2.

Ph
yl

um
/c

la
ss

Ta
xo

n

Lo
ng

ye
ar

by
en

Th
iis

bu
kt

a

Co
nt

ro
l

Fu
ll 

ca
ge

Pa
rt

ia
l c

ag
e

Co
nt

ro
l

Fu
ll 

ca
ge

Pa
rt

ia
l c

ag
e

n
M

ea
n

PR
O

P
n

M
ea

n
PR

O
P

n
M

ea
n

PR
O

P
n

M
ea

n
PR

O
P

n
M

ea
n

PR
O

P
n

M
ea

n
PR

O
P

N
em
at
od
a

N
em
at
od
a	
in
de
t.

5
0.

42
0.

03
2

0.
33

0.
03

9
0.

75
0.

01
15

1.
25

0.
02

4
0.

67
0.

01

N
em
er
te
a

N
em
er
te
a	
in
de
t.

1
0.

08
0.

01
7

0.
58

0.
04

1
0.

17
0.

01
5

0.
42

0.
00

3
33

2.
75

0.
04

7
1.

17
0.

02

Pr
ia
pu
lid
a

Pr
ia

pu
lu

s c
au

da
tu

s
3

0.
25

0.
00

3
8

0.
67

0.
01

5
0.

83
0.

01

H
ol
ot
hu
ro
id
ea

Ch
iri

do
ta

 la
ev

is
1

0.
08

0.
00

1

Bi
va

lv
ia

A
xi

no
ps

id
a 

or
bi

cu
la

ta
3

0.
25

0.
00

3
2

0.
17

0.
00

2
2

0.
33

0.
00

5

Li
oc

ym
a 

flu
ct

uo
sa

21
1.

75
0.

02
15

1.
25

0.
01

7
1.

17
0.

02

M
ac

om
a 

sp
.

6
0.

50
0.

01
6

0.
50

0.
01

3
0.

50
0.

01

M
al

ac
os

tr
ac

a
A
m
ph
ip
od
a	
in
de
t.

1
0.

08
0.

02
5

0.
42

0.
01

1
0.

17
0.

00
2

1
0.

17
0.

00
2

Ca
pr

el
la

 li
ne

ar
is

6
0.

50
0.

01

H
ex
an
au
pl
ia

C
op
ep
od
a	
in
de
t.

1
0.

08
0.

02
2

0.
17

0.
01

9
0.

75
0.

01
28

2.
33

0.
02

10
1.

67
0.

02

C
lit

el
la

ta
O
lig
oc
ha
et
a	
in
de
t.

13
1.

08
0.

08
25

2.
08

0.
14

7
1.

17
0.

09
19

2
16

0.
19

84
7

0.
07

21
3.

50
0.

05

Po
ly
ch
ae
ta

Br
ad

ab
ys

sa
 v

ill
os

a
3

0.
5

0.
02

3
0.

50
0.

01

Ca
pi

te
lla

 c
ap

ita
ta

38
3.

17
0.

30
32

2.
67

0.
18

12
2.

00
0.

16
74

6.
17

0.
08

84
7

0.
09

29
4.

83
0.

07

Ch
ae

to
zo

ne
 se

to
sa

12
1

0.
01

6
0.

5
0.

01
2

0.
33

0.
00

5

Eu
ch

on
e 

an
al

is
53

8
44

.8
3

0.
49

61
8

51
.5

0.
49

25
9

40
.6

7
0.

62

H
ar

m
ot

ho
e 

im
br

ic
at

e
1

0.
08

0.
00

1

M
al

da
ni

da
e 

sp
.

12
1

0.
01

16
1.

33
0.

02
2

0.
33

0.
00

5

M
ar

en
ze

lle
ria

 w
ire

ni

O
ph

el
ia

 ra
th

ke
i

2
0.

17
0.

00
1

2
0.

17
0.

00
1

Ph
ol

oe
 a

ss
im

ili
s

1
0.

08
0.

00
1

Ph
yl

lo
do

ce
 

gr
oe

nl
an

di
ca

1
0.

01
0.

01

Po
ly

do
ra

 s
p.

3
0.

25
0.

01
2

0.
33

0.
03

86
7.

17
0.

09
11

7
9.

75
0.

11
30

5.
00

0.
07

Py
go

sp
io
	c
f.	

el
eg

an
s

43
3.

58
0.

31
66

5.
5

0.
34

33
5.

50
0.

43
2

0.
17

0.
00

2
12

1
0.

01
7

1.
17

0.
02

Sc
ol

op
lo

s a
rm

ig
er

2
0.

17
0.

00
4

2
0.

33
0.

03
58

4.
83

0.
06

36
3

0.
04

11
1.

83
0.

03

Sp
io

 a
rm

at
a

35
2.

92
0.

26
48

4
0.

25
18

3.
00

0.
23

7
0.

58
0.

01
50

4.
17

0.
05

12
2.

00
0.

03

Tr
av

isi
a 

fo
rb

es
ii

5
0.

42
0.

01
5

0.
42

0.
01

N
ot

e:
	T
hi
is
bu
kt
a.
	E
m
pt
y	
ce
lls
	in
di
ca
te
	a
n	
ab
se
nc
e	
of
	o
rg
an
is
m
s.
	n

 =
 1

2.



6 of 12  |     DÍAZ et al.

3.2  |  Predator effects

Longyearbyen:	 Four	 taxa,	 Pygospio	 sp.,	 Capitella capitata,	 Spio ar-
mata,	and	oligochaetes,	accounted	for	more	than	90%	of	 the	total	
abundance.	The	exclusion	of	predators	increased	the	abundance	of	

oligochaetes,	Pygospio	sp.,	and	S. armata	on	average	by	200,	54,	and	
37%,	respectively,	compared	with	unmanipulated	areas.	By	contrast,	
partially	caged	plots	in	the	same	taxa	resulted	in	an	average	decrease	
of	50,	23,	and	51%,	respectively,	compared	with	unmanaged	areas.	
The	abundance	of	C. capitata	decreased	strongly	in	partially	caged	
areas	compared	with	unmanaged	areas	(Table 1).

The	high	probability	of	the	F-	statistic	for	the	“Exclusion × Block”	
interaction	of	all	response	variables	measured	in	Longyearbyen	sug-
gests	 that	 the	main	effects	of	predator	exclusion	were	unlikely	 to	
depend	on	the	location	of	plots	(Table	A1).	The	effects	of	the	pred-
ator	exclusion	treatment	were	negligible	because	the	magnitude	of	
the	exclusion	effect	was	similar	to	that	we	found	in	open	cages	for	
most	response	variables	(Figure 3).	Predator	exclusion	negatively	af-
fected	plot	evenness	to	a	slight	magnitude	(Figure 3).	This	effect	was	
supported	by	a	low	probability	of	the	t-	statistic	(p =	.015),	a	high	test	
power =	0.512,	and	the	Bayes	factor	suggested	that	evenness	data	
occurred	3.417	times	more	likely	in	a	model	that	includes	predator	
exclusion	(Figure 3; Table 2).

Thiisbukta:	 Seven	 taxa,	 that	 is,	 Euchone analis,	 oligochaetes,	
Polydora	 sp.,	 C. capitata,	 Scoloplos armiger,	 Liocyma fluctuosa,	 and	
copepods	 comprised	 >80%	 of	 the	 total	 abundance.	 Predator	 ex-
clusion	 resulted	 in	an	 increase	 in	abundance	of	C. capitata, E. ana-
lis,	 and	Polydora	 sp.	 by	 an	 average,	 13,	 15,	 and	36%,	 respectively,	
relative	to	unmanipulated	areas.	Contrarily,	the	abundance	of	these	
taxa	decreased	 in	partially	caged	plots	by,	on	average,	61,	52,	and	

F I G U R E  3 Longyearbyen.	Summary	of	statistical	analyses	of	univariate	responses.	t-	test	=	statistic	of	Student's	t-	test,	p-	
value	=	probability	of	test	statistic	t,	power	=	probability	of	making	a	type	II	error	(Student's	t-	test),	BF	=	Bayes	factor	as	evidence	for	the	
alternative	hypothesis.	Mean	(square)	and	95	%	confidence	interval	(horizontal	whiskers)	of	log	effect	ratios	(LRR)	for	quantifying	the	effect	
of	(i)	predator	exclusion	(full	cage	vs	unmanipulated	area),	(ii)	cage	(partial	cage	vs	unmanipulated	area),	for	five	(A–	E)	responses.	Dashed	
line	=	level	of	no	effect,	n = 12.

TA B L E  2 Longyearbyen.	Summary	of	statistical	analyses	of	
univariate	responses.

Response Effect Shap Coch

Taxon	Richness Exclusion 0.012 0.086

Cage	effect 0.104 0.591

Abundance Exclusion	(T) 0.005 0.009

Cage	effect 0.270 0.221

Biomass Exclusion	(T) 0.025 0.018

Cage	effect	(T) <0.001 <0.001

Evenness Exclusion	(T) 0.027 0.018

Cage	effect	(T) <0.001 0.007

Shannon	Index Exclusion 0.129 0.235

Cage	effect 0.467 0.440

Note: n = 12.
Abbreviations:	(T),	square	root	transformed	data;	Coch,	p-	value	of	
Cochran's	test;	Shap,	p-	value	of	Shapiro–	Wilks	test	for	normality.
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65%,	respectively,	compared	with	unmanipulated	areas.	Moreover,	
the	abundance	of	L. fluctuosa, S. armiger,	and	oligochaetes	was,	on	
average,	29,	38,	and	56%,	respectively,	lower	in	areas	where	preda-
tors	were	excluded	than	in	unmanipulated	areas.	Likewise,	the	abun-
dances	of	these	taxa	decreased	by	67,	81,	and	89%,	respectively,	in	

the	partially	 caged	plots	 compared	with	 the	unmanipulated	areas.	
Copepod	 abundance	 increased	 in	 fully	 and	 partially	 caged	 areas	
compared	with	unmanipulated	areas	(Table 1).

In	 Thiisbukta,	 the	 low	 probabilities	 of	 the	 F-	statistic	 of	 the	
“Exclusion × Block”	 interaction	 for	 both	 evenness	 and	 Shannon	
index	suggest	 that	 the	effects	of	predator	exclusion	on	these	two	
response	variables	depend	on	the	location	of	plots	within	the	study	
area	(Table	A1).	The	effect	sizes	of	predator	exclusion	and	the	cage	
effect	on	taxon	richness,	abundance,	evenness,	and	Shannon	index	
were	minor	(Figure 4).	In	Figure 4,	it	can	be	seen	that	the	variables	
mentioned	above	show	similar	trends	between	plots	with	exclusion	
treatment,	 cage	effect,	 and	unmanipulated	plots.	Statistical	 analy-
ses	for	these	four	response	variables	concerning	predation	effects	
showed	 nonrelevant	 results,	 the	 probability	 was	 >20%	 for	 the	
chance-	only	t-	statistic	if	the	null	hypothesis	was	true	(“p”	in	Figure 4)	
and	a	low	test	power	(“power”	in	Figure 4).	Only	in	the	case	of	bio-
mass	 was	 a	 considerable	 negative	 predator	 exclusion	 effect	 ob-
served (LRR =	0.66);	this	was	supported	by	a	low	probability	of	the	
t-	statistic,	together	with	a	test	power	of	85%	(Figure 4).	In	addition,	
the	Bayes	factor	indicated	that	the	data	were	5.7	times	more	likely	
under	the	alternative	hypothesis	than	the	null	hypothesis	(Figure 4).	
As	for	the	effect	of	the	cage	on	biomass,	the	trend	was	in	the	same	
direction	and	even	slightly	more	substantial	than	the	effect	of	pred-
ator	exclusion	(Figure 4; Table 3).

F I G U R E  4 Thiisbukta.	Summary	of	statistical	analyses	of	univariate	responses.	t-	test	=	statistic	of	Student's	t-	test,	p	value	=	probability	
of	test	statistic	t,	power	=	probability	of	making	a	type	II	error	(Student's	t-	test),	BF	=	Bayes	factor	as	evidence	for	the	alternative	
hypothesis.	Mean	(square)	and	95	%	confidence	interval	(horizontal	whiskers)	of	log	effect	ratios	(LRR)	for	quantifying	the	effect	of	(i)	
predator	exclusion	(full	cage	vs	unmanipulated	area),	(ii)	cage	(partial	cage	vs	unmanipulated	area),	for	five	(A–	E)	responses.	Dashed	
line	=	level	of	no	effect,	n = 12.

TA B L E  3 Thiisbukta.	Summary	of	statistical	analyses	of	
univariate	responses.

Response Effect Shap Coch

Taxon	richness Exclusion 0.130 0.434

Cage	effect 0.376 0.593

Abundance Exclusion 0.151 0.361

Cage	effect 0.978 0.081

Biomass Exclusion	(T) 0.005 0.011

Cage	effect 0.215 0.819

Evenness Exclusion 0.761 0.356

Cage	effect 0.964 0.391

Shannon	index Exclusion 0.313 0.641

Cage	effect 0.065 0.935

Note: n = 12.
Abbreviations:	(T),	square	root	transformed	data;	Coch,	p-	value	of	
Cochran's	test;	Shap,	p-	value	of	Shapiro–	Wilks	test	for	normality.
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3.3  |  Predator exclusion effects on 
community structure

The	low	probability	of	the	F-	statistic	for	the	Exclusion × Block	inter-
action	term	suggests	that	effects	of	predator	exclusion	on	species	
composition	depended	on	the	location	within	the	study	site	where	
manipulations	were	applied,	for	both,	Longyearbyen	and	Thiisbukta	
(Table 4).	In	Longyearbyen,	the	main	predation	effect	was	accounted	
for	by	the	increase	in	abundance	of	Pygospio	sp.,	oligochaetes,	nema-
todes,	and	S. armata	between	unmanipulated	areas	and	fully	caged	
plots (Table 1	 and	Figure 5A).	 In	Thiisbukta,	 the	 increase	 in	abun-
dance	of	Macoma	sp.,	C. setosa,	Nemertea,	and	B. villosa	accounted	

for	 most	 of	 the	 predator-	removal	 effect	 on	 species	 composition	
(Table 1	and	Figure 5B).

4  |  DISCUSSION

In	 this	 study,	 predator	 exclusion	 resulted	 in	 weak	 effects	 on	 all	
tested	univariate	 response	variables.	This	 indicates	 that	predation	
has	only	a	limited	regulatory	impact	on	the	studied	Artic	 intertidal	
soft-	bottom	communities.	In	Thiisbukta,	the	biomass	response	was	
similar	in	direction	and	magnitude	between	the	predator	exclusion	
treatment	and	the	cage	effect,	 suggesting	 that	 the	cage	 itself	and	
not	predation	was	the	cause.	Predator	exclusion	slightly	affected	the	

TA B L E  4 Summary	of	PERMANOVA	results	based	on	9999	permutations	of	Bray–	Curtis	similarities	calculated	of	relative	abundances	of	
taxa.

Longyearbyen Thiisbukta

Source of variance Df MS F p MSden MS F p MSden

Exclusion	(E) 1 0.09 1.22 .315 E × B 0.19 3.03 .017 E × B

Block	(B) 2 0.10 1.36 .222 E × B 0.06 1.03 .409 E × B

Exclusion	×	Block 2 0.16 2.15 .029 Resid 0.25 3.98 <.001 Resid

Residual 18 0.08 0.06

Note:	Mixed	model	two-	way	analyses	(predator	exclusion)	were	reanalyzed	if	the	respective	treatment × block	interaction	showed	p ≥ .25,	by	pooling	
residual	variance	and	that	of	the	interaction	term	of	the	full	model.	MSden	indicates	MS	of	the	source	of	variance	used	as	denominator	to	calculate	the	
F-	value.	n = 12.
Abbreviation:	Resid,	Residuals.

F I G U R E  5 Principal	Components	Analysis	(PCA)	showing	two	principal	components	explaining	in	(a)	Longyearbyen	43.6%	and	in	(b)	
Thiisbukta	27.2	%	of	the	total	variation	in	Bray-	Curtis	similarity	of	relative	taxon	abundances	among	communities	sampled	in	unmanipulated	
areas	(squares)	to	partial	cages	(circles)	to	full	cages	(triangles).	Loading	vectors	(black	arrows)	indicate	the	four	taxa	contributing	strongest.	
BRA,	Bradabyssa	villosa;	CHA,	Chaetozone	setosa;	MAC,	Macoma	sp.;	NEM,	Nemertea;	NMA,	Nematodes;	OLI,	Oligochaeta;	PYG,	Pygospio	
sp.;	SPI,	Spio	armata.
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multivariate	community	structure	at	both	sites;	however,	this	effect	
was	block-	dependent.

In	our	study,	the	results	of	the	biomass	variable	show	the	effect	
of	 the	 cage	 on	 the	 intertidal	 benthic	 community,	 underestimating	
the	exclusive	effect	of	predation	on	 the	 infaunal	macrobenthos	 in	
soft-	bottom	communities.	Ecologists	have	used	cages	 for	decades	
in	manipulative	experiments	evaluating	predation	effects.	In	assess-
ing	the	structural	effects	of	cages	in	intertidal	environments,	Miller	
and	Gaylord	(2007)	found	a	drastic	decrease	in	water	flow	velocity	
within	cages	compared	with	the	velocity	of	the	surrounding	water.	
Due	 to	 reduced	water	 flow,	 the	 sedimentation	 rate	may	 increase	
within	the	cage,	affecting	settlement,	feeding,	or	other	elements	of	
species	performance,	thus	leading	to	impacts	on	benthic	community	
structure	(Como	et	al.,	2006;	Reise,	1985;	Schmidt	&	Warner,	1984; 
Smale	&	Barnes,	2008).	Another	possible	 impediment	to	detecting	
the	effect	of	predation	on	the	benthic	community	is	the	size	of	the	
cages.	The	cages	were	25 cm	in	diameter,	which	may	be	insufficient	
to	see	an	effect	on	the	macrobenthic	community,	particularly	for	mo-
bile	organisms	such	as	crustaceans	and	snails	that	live	and	move	on	
the	surface.	In	addition,	the	sampling	core	(5.4	cm	diameter)	may	be	
sufficient	to	determine	the	effect	of	predation	on	the	sessile	infauna	
and	meiofauna	 community.	 Furthermore,	 a	 reduced	diameter	may	
be	sufficient	to	determine	the	impact	of	predators	on	the	macroben-
thic	community	 in	a	 sample.	However,	 the	 results	obtained	 in	 this	
research	correctly	determine	the	impacts	of	predation	on	the	minor	
infaunal	and	sessile	macrobenthic	community,	excluding	the	 larger	
and	mobile	infaunal	macrobenthic	organisms	(e.g.,	Onisimus littoralis,	
Gammarus setosus,	Orchomenella minuta,	and	Harpacticoida).

Theoretical	 models	 predict	 that	 the	 effects	 of	 predation	 and	
other	biotic	 interactions	are	highly	dependent	on	prevailing	 levels	
of	environmental	stress.	Thus,	predator	activity	 is	expected	to	de-
crease	when	subjected	to	high	environmental	stress,	such	as	harsh	
abiotic	conditions	(Menge	&	Sutherland,	1987;	Scrosati	et	al.,	2011).	
In	 intertidal	polar	coastal	 regions,	 the	prevalence	of	 ice	cover,	 the	
abrasive	 action	 of	 icebergs/drift-	ice,	 and	 factors	 such	 as	 extreme	
diurnal	and	seasonal	changes	 in	temperature,	 light	and	salinity	are	
considered	 hostile	 to	 most	 marine	 taxa	 (Barnes	 &	 Conlan,	 2007; 
Gutt,	2001;	Hansen	&	Haugen,	1989;	Wȩsɫawski	et	al.,	1997).	This	
supports	 the	contention	 that	polar	 intertidal	 zones	are	among	 the	
most	physically	disturbed	marine	environments	in	the	world	(Bick	&	
Arlt,	2013;	Wȩsɫawski	et	al.,	1997)	and	organisms	living	in	this	area	
have	to	deal	with	these	conditions.

Under	such	abiotic	stress,	predation	may	not	be	expected	to	struc-
ture	marine	 communities	 at	 high	 latitudes	 (Schemske	et	 al.,	2009)	
and	predation	 is	generally	concluded	to	play	a	minor	role	 in	struc-
turing	Arctic	soft-	bottom	communities	(Molis	et	al.,	2019;	Petrowski	
et	al.,	2016;	Quijon	&	Snelgrove,	2005),	although	few	studies	have	
actually	been	performed.	Our	research	also	indicates	a	low	impact	
of	 predation	 on	 community	 regulation	 at	 two	 Svalbard	 intertidal	
soft-	substrate	sites.	Similarly,	manipulative	studies	conducted	in	the	
White	Sea	subtidal	reveal	that	predation	plays	a	minor	role	in	struc-
turing	the	benthic	community	(e.g.,	Petrowski	et	al.,	2016;	Yakovis	&	
Artemieva,	2015).

Ocean	warming	and	decreasing	ice	coverage	in	the	Arctic	are	pre-
dicted	to	result	in	range	expansion	(spatial	and	depth)	of	resident	and	
immigrant	taxa,	which	may	have	important	direct	and	indirect	impli-
cations	 for	 interactions	 among	 taxa	 (Josefson	 &	Mokievsky,	 2013; 
Renaud	 et	 al.,	 2015).	 For	 example,	 sea	 ice	 serves	 as	 habitat	 and	
modulates	 access	 and	 life	 histories	 of	 both	 predators	 and	 prey.	 Its	
loss	can,	thus,	impact	broad	elements	of	the	food	web	via	its	effects	
on	 trophic	 interactions	 (Aronson	 et	 al.,	 2007;	 Renaud	 et	 al.,	 2015; 
Schachtl,	2013).	 In	the	Arctic,	warming	 is	expected	that	boreal	con-
geners	of	resident	intertidal/subtidal	predators,	hermit	crabs	(Pagurus 
sp.)	and	spider	crabs	(Hyas	sp.),	will	expand	northward	and	be	recorded	
more	frequently	in	the	Svalbard	Archipelago	(Balazy	et	al.,	2015; Berge 
et	al.,	2009).	Increased	density	and	diversity	of	crustacean	predators	
could	lead	to	a	higher	predation	pressure	on	the	benthic	community.	
This	was	demonstrated	by	Bender	 (2014)	 in	a	manipulative	study	at	
a	subtidal	site	 in	the	Svalbard	Archipelago,	 in	which	densities	of	the	
crustacean	Hyas araneus	were	experimentally	increased	by	a	factor	of	
three	in	comparison	with	natural	crab	densities.	At	higher	crab	den-
sities,	species	richness	and	density	of	soft-	bottom	fauna	decreased.	
Additionally,	the	community	structure	was	modified.

Our	experiments	suggest	a	small	spatially	variable	effect	of	pred-
ator	exclusion	on	taxonomic	composition.	In	particular,	taxa	such	as	
Nemertea	indet.,	nematodes,	and	S. armata	increased	in	abundance,	
while	polychaetes	such	as	E. analis	and	C. setosa	decreased	in	den-
sity	 in	predator	exclusion	plots	 relative	 to	controls,	 indicating	 that	
some	 species	 benefited	 from	predator	 exclusion	while	others	 suf-
fered	 from	 this	manipulation.	This	 could	 explain	why	multivariate,	
but	not	univariate,	community	response	variables	were	affected	by	
predator	exclusion.	Our	 results	were	consistent	between	sites	 (no	
effect	on	univariate,	block × treatment	 interaction	on	species	com-
position).	Therefore,	this	is	an	indication	that	predation	effects	at	in-
tertidal	sites	on	the	west	coast	of	Svalbard	appear	to	be	weak	for	the	
soft-	bottom	microbenthic	 infaunal	 community.	 As	 global	warming	
continues	apace	in	the	Arctic,	further	field	research	on	biotic	inter-
actions	is	needed	to	assess	the	functional	consequences	of	possible	
range	shifts	in	high-	latitude	consumer	and	prey	species.
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APPENDIX A

TA B L E  A 1 Longyearbyen	and	Thiisbukta.	Summary	of	ANOVA	results	on	separate	and	interactive	effects	of	predator	exclusion	(fixed)	
and	blocks	(random)	at	the	end	of	the	experiment.

Response variable Source

Longyearbyen Thiisbukta

E B E × B Res E B E × B Res

Taxon	richness df 1 2 2 18 1 2 2 18

MS 1.50 0.17 1.50 1.28 7.04 7.13 1.30 5.43

F 1.17 0.13 1.17 1.30 1.31 0.24

p .293 .879 .332 .270 .294 .791

Abundance df 1 2 2 18 1 2 2 18

MS 117 52.17 24.67 62.29 392 7473 457 795

F 1.88 0.84 0.40 0.493 9.41 0.58

p .187 .449 .679 .491 .002 .573

Biomass df 1 2 2 18 1 2 2 18

MS 2.7 e-	5 5.4 e-	6 9.1 e-	6 1.0 e-	5 0.14 0.02 0.01 0.02

F 2.65 0.54 0.91 9.40 1.42 0.45

p .121 .594 .421 .007 .267 .648

Evenness df 1 2 2 18 1 2 2 18

MS 0.02 0.01 0.01 0.00 0.01 0.11 0.03 0.01

F 9.96 2.91 2.86 1.41 14.20 4.47

p .006 .081 .084 .251 .000 .027

Shannon	index df 1 2 2 18 1 2 2 18

MS 0.01 0.04 0.12 0.07 0.16 0.34 0.26 0.06

F 0.07 0.63 1.74 3.00 6.32 4.74

p .791 .545 .204 .101 .008 .022

Note: n = 12.
Abbreviations:	B,	block;	df,	degrees	of	freedom;	E,	exclusion;	MS,	mean	square;	Res,	residual.
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