

Model calculations of the contribution of SO_2 to the stratospheric aerosol layer

Ingo Wohltmann¹, Stefanie Kremser², Ralph Lehmann¹, Markus Rex¹

 $^1\mathrm{Alfred}$ Wegener Institute for Polar and Marine Research, Potsdam $^2\mathrm{Bodeker}$ Scientific, Alexandra, New Zealand

Stratoclim Meeting Oct 26–30, 2015

Intro	Model	Results	Conclusions
Motivation			

Stratospheric aerosol layer is important for

- Radiative balance of earth and climate change
- Stratospheric chemistry
- Geo-engineering

Many processes in the stratospheric aerosol layer are not well known

• E.g. Contribution of tropospheric species like COS and SO₂ to stratospheric aerosol layer poorly quantified

Intro	Model	Results	Conclusions
Approach			

- Chemical box model on backward trajectories
- Examine chemistry of SO₂ and its transport to the stratosphere
- Numerous sensitivity runs to assess range of uncertainty

Intro	Model	Results	Conclusions
Model I [.] Tr	ansport		

- Backward trajectories from the ATLAS model
- Driven by GEOS-5 analysis data
- Start at 400 K between 30° N/S on 2° \times 2° grid
- Start on 31 Jan 2010 back for 4 months
- Only trajectory parts between 800 hPa and the Local Cold Point are used in the chemistry calculations

Intro	Model	Results	Conclusions
Model II [.]	Chemistry		

Reactions:

- $SO_2 + OH + M \rightarrow Products$ (gas phase) uptake of SO_2 into liquid phase is considered
- DMS + OH \rightarrow SO₂ + Products (gas phase) Two reaction pathways (addition, abstraction)
- $SO_2 \cdot H_2O + H_2O_2 \rightarrow Products$ (liquid phase)
- $S(IV) + O_3 \rightarrow Products$ (liquid phase) $S(IV) = HSO_3^- + SO_2 \cdot H_2O$

plus Henry constants for SO2, O3, H2O2 and equilibrium constant between HSO_3^- and $SO_2\cdot H_2O$

Intro	Model	Results	Conclusions
Model III:	Chemistry		

Initial values for SO_2 and DMS at 800 hPa from GEOS-Chem CTM

Precalculated background fields taken from the GEOS-Chem CTM (not interactive):

- OH
- H_2O_2 (only outside cloud)
- O₃

Intro	Model	Results	Conclusions
Model IV:	Clouds		

- Cloud water from GEOS-Chem CTM
- $\bullet\,$ Mixing ratios of SO_2 and H_2O_2 calculated separately inside and outside cloud
- \bullet SO_2 inside and outside cloud nudged to mean SO_2 value with a time constant of 1 h
- H_2O_2 inside cloud nudged to outside cloud H_2O_2 climatology from GEOS-Chem with a time constant of 1 h
- Mixing ratios of SO₂ and H₂O₂ are corrected for changing cloud size in mass-conserving way
- Cloud pH is 4.5
- Parameterization for unresolved convection not implemented so far (work in progress)

・ロト ・ 戸 ・ ・ ヨ ・ ・

Intro	Model	Results	Conclusions

Which airmasses do we see?

Density of all trajectory points between 800 hPa and LCP (over all altitudes, contours: factor 1–8 relative to uniform contribution) Next plots: Means over all trajectory points (as function of z)

Mean SO₂: Sensitivity to DMS and Comparison with GEOS-Chem

Intro

Mean SO₂: Sensitivity to OH

Intro

Mean SO₂: Sensitivity to H_2O_2

Т	2	÷	r	0
		L	н.	U

Mean SO₂: Sensitivity to cloud water

Intro

Mean SO₂: Sensitivity to pH

Intro	Model	Results	Conclusions
Conclusions			

- SO₂ values at tropical tropopause (16–17 km) 1–5 ppt according to our runs.
- Difference between our reference run and full GEOS-Chem CTM due to convection (only implemented in GEOS-Chem) and different transport schemes (Eulerian vs. Lagrangian).
- Large sensitivity at the tropopause in run with 50 % of OH reference values. Negative correlation between OH and SO₂ caused by DMS + OH (and not by SO₂ + OH): Less OH \rightarrow less DMS loss in lower troposphere \rightarrow more DMS is transported upward \rightarrow overcompensates for the lower OH values there \rightarrow more SO₂ in the upper troposphere.
- Only if conditions are much drier than assumed by GEOS-Chem, higher SO₂ at tropopause expected since $SO_2 + H_2O_2$ not effective then.