

Model calculations of the contribution of $SO₂$ to the stratospheric aerosol layer

Ingo Wohltmann¹, Stefanie Kremser², Ralph Lehmann¹, Markus Rex¹

¹ Alfred Wegener Institute for Polar and Marine Research, Potsdam 2^{2} Bodeker Scientific, Alexandra, New Zealand

> Stratoclim Meeting Oct 26–30, 2015

Stratospheric aerosol layer is important for

- Radiative balance of earth and climate change
- Stratospheric chemistry
- **•** Geo-engineering

Many processes in the stratospheric aerosol layer are not well known

 \bullet E.g. Contribution of tropospheric species like COS and SO₂ to stratospheric aerosol layer poorly quantified

K ロ ▶ | K 伊 ▶ | K ヨ ▶

 Ω

- **•** Chemical box model on backward trajectories
- \bullet Examine chemistry of $SO₂$ and its transport to the stratosphere
- Numerous sensitivity runs to assess range of uncertainty

- **Backward trajectories from the ATLAS model**
- **•** Driven by GEOS-5 analysis data
- Start at 400 K between 30° N/S on 2° x 2° grid
- **Start on 31 Jan 2010 back for 4 months**
- Only trajectory parts between 800 hPa and the Local Cold Point are used in the chemistry calculations

Reactions:

- $SO_2 + OH + M \rightarrow$ Products (gas phase) uptake of $SO₂$ into liquid phase is considered
- DMS + OH \rightarrow SO₂ + Products (gas phase) Two reaction pathways (addition, abstraction)
- $SO_2 \cdot H_2O + H_2O_2 \rightarrow$ Products (liquid phase)
- $S(IV) + O_3 \rightarrow$ Products (liquid phase) $S(IV) = HSO_3^- + SO_2 \cdot H_2O$

plus Henry constants for SO_2 , O_3 , H_2O_2 and equilibrium constant between HSO^-_3 and $\mathsf{SO}_2 \cdot \mathsf{H}_2\mathsf{O}$

Initial values for $SO₂$ and DMS at 800 hPa from GEOS-Chem CTM

Precalculated background fields taken from the GEOS-Chem CTM (not interactive):

- OH
- \bullet H₂O₂ (only outside cloud)
- \bullet O₃

- Cloud water from GEOS-Chem CTM
- Mixing ratios of $SO₂$ and $H₂O₂$ calculated separately inside and outside cloud
- \bullet SO₂ inside and outside cloud nudged to mean SO₂ value with a time constant of 1 h
- \bullet H₂O₂ inside cloud nudged to outside cloud H₂O₂ climatology from GEOS-Chem with a time constant of 1 h
- Mixing ratios of $SO₂$ and $H₂O₂$ are corrected for changing cloud size in mass-conserving way
- Cloud pH is 4.5
- Parameterization for unresolved convection not implemented so far (work in progress)

 $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$ $(1 - 1)$

 Ω

Which airmasses do we see?

Density of all trajectory points between 800 hPa and LCP (over all altitudes, contours: factor 1–8 relative to uniform contribution) Next plots: Means over all trajectory points (as function of z)

∢ ロ ▶ 〈 何

つへへ

Mean SO_2 : Sensitivity to DMS and Comparison with GEOS-Chem

Mean SO_2 : Sensitivity to OH

Mean SO_2 : Sensitivity to H_2O_2

Mean SO_2 : Sensitivity to cloud water

[Intro](#page-1-0) Results Conclusions ([Model](#page-3-0) [Results](#page-7-0) [Conclusions](#page-13-0) Conclusions Results Conclusions Conclusions Conclusions (

Mean SO_2 : Sensitivity to pH

- \bullet SO₂ values at tropical tropopause (16–17 km) 1–5 ppt according to our runs.
- Difference between our reference run and full GEOS-Chem CTM due to convection (only implemented in GEOS-Chem) and different transport schemes (Eulerian vs. Lagrangian).
- Large sensitivity at the tropopause in run with 50 % of OH reference values. Negative correlation between OH and $SO₂$ caused by DMS + OH (and not by $SO_2 + OH$): Less OH \rightarrow less DMS loss in lower troposphere \rightarrow more DMS is transported upward \rightarrow overcompensates for the lower OH values there \rightarrow more SO₂ in the upper troposphere.
- • Only if conditions are much drier than assumed by GEOS-Chem, higher $SO₂$ at tropopause expected since $SO₂ + H₂O₂$ not effective then.

K ロ ⊁ K 伊 ⊁ K ミ ⊁

 Ω