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A B S T R A C T

Environmental managers face substantial uncertainty when deciding on management actions. To reduce this
uncertainty prior to decision-making, collecting new data may help arrive at more informed decisions. Whether
any resulting improvement in the decision will outweigh the cost of collecting the data, and thus make
investing in the acquisition of the information worthwhile, is an intricate question. The concept of the value
of information (VoI) is a convenient tool to address this problem. We use the VoI framework to analyse a
decision problem in water quality management. Based on real-world monitoring data, we calculate the VoI
of monitoring nitrogen, which is used as an indicator of the ecological state of water body. We find that
the VoI is significant in our case and we further investigate the dependency of the VoI in a similar setting
on the management cost, the assumed value of a good state and on the level of uncertainty regarding the
ecological state. In addition, we observe a negative relation between the relative management cost and the
prior probability that maximises VoI. These insights may help decide on information acquisition in the presence
of substantial uncertainties and sparse data.
1. Introduction

Eutrophication is one of the main problems in the North Sea’s
coastal waters (OSPAR, 2017). It is caused by increased enrichment of
the water with nutrients and can disturb the composition of organisms
and eventually reduce the overall quality of the water. Managing
aquatic systems threatened by eutrophication is challenging, since there
are many inherent uncertainties about its exact causes and effects.
Consequently, environmental managers face a high degree of uncer-
tainty when deciding on management actions, but interventions often
do not take these uncertainties into account. They may therefore be
ineffective or even counterproductive (Cook et al., 2010; Bennett et al.,
2018). To reduce anthropogenic stressors and to mitigate eutrophi-
cation, legislation, such as the European Marine Strategy Framework
Directive (MSFD) and the European Water Framework Directive (WFD),
has been enacted (European Parliament, 2000, 2008; Desmit et al.,
2020). The WFD requires EU member states to obtain and maintain
a ‘‘good ecological status’’ (GES) by 2027, based on a range of bio-
logical quality elements that are used to classify the state of a water
body as either high, good, moderate, poor or bad. Although the GES
target was initially set to be achieved by 2015, only about 40% of
European water bodies reached that goal by 2018 (Carvalho et al.,
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2019; European Environment Agency, 2018). For the coastal waters
of the North Sea, the riverine nutrient influx is seen as a reason for
eutrophication (Desmit et al., 2020) and hence a cause for the qualities
of water bodies falling short of the GES target. These high riverine
nutrient concentrations are predominantly due to non-point sources of
pollution, from agricultural and other land use activities, or derive from
uncontrolled and untreated discharge from sealed surfaces after storm
events or heavy rainfall (Carvalho et al., 2019).

In this study, we evaluate the need for monitoring or taking direct
actions to manage the water quality in the Weser River basin in
Northern Germany. As most of Germany’s water bodies still fail to reach
the GES, many de-eutrophication measures focus on nitrogen reduction.
For rivers entering the North Sea, a special target for nitrogen concen-
trations has been established in the limnic–marine transition zone to
reduce eutrophication in coastal waters and therefore meet the GES
targets (BLMP, 2011). Although the ecological and chemical devel-
opments of German rivers are closely monitored, few of these rivers
have met the GES targets. A thorough assessment of the ecological
state is the prerequisite for any recommendation and implementation
of restoration measures. However, such an assessment requires reliable
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data (Koski et al., 2020). The acquisition of a sufficient amount of
information through monitoring is therefore essential to evaluate the
system’s state and to decide whether interventions are necessary or the
desired good state of the ecosystem has already been reached. Monitor-
ing activities are at the core of understanding the state of the system
and its response to stressors (Nygård et al., 2016). Although monitor-
ing data do not directly solve any environmental problem, they may
help facilitate targeted management and policy interventions (Bouma
et al., 2011). At the same time, monitoring and data collection involve
many resources, while conservation budgets are often limited (Bennett
et al., 2018). Additionally, postponing the decision to act may result in
missed opportunities for management (Martin et al., 2012) and could
result in further degradation of the ecosystem. WFD regulations require
extensive monitoring programs, which in turn require significant fi-
nancial resources, for which governments must find cost-effective, yet
qualitatively sufficient solutions (Carvalho et al., 2019). In this context,
acquiring new information is only worthwhile if it can be expected
to change the choice of the decision maker and, in this way, lead
to more effective management. It is therefore mandatory to carefully
evaluate whether or not, and if so, to what extent, monitoring – or
more broadly, an information service – will be useful for providing
valuable information. For this purpose, we can use the Value of infor-
mation (VoI) analysis. VoI is a decision-analytic tool to determine the
value of additional information for decision-making: it computes how
much a (rational) decision maker’s expected payoff would increase if
uncertainty is, at least partially, reduced before the decision is made.
The uncertainty here is represented by a probability distribution over
possible states of the system (Pannell and Glenn, 2000). VoI gives the
value of an information service, i.e. the expected value of acquiring
information before any specific information or data have been received.
That is, VoI represents the willingness-to-pay (in terms of payoff or
utility) of the decision maker for the acquisition of new data, while not
yet knowing what this data will look like. This implies that before the
decision-making, more data will only be collected if it is expected to
be beneficial. In this way, VoI helps the decision maker enhance their
decision through means of a well-judged acquisition of information.
Specifically, the expected value of perfect information gives the payoff

hen uncertainty is entirely eliminated, i.e. when complete knowledge
bout the true state of the world (clairvoyance) is achieved; while in
ontrast, the expected value of sample (or imperfect) information gives
he increase in the payoff on obtaining some, even though imperfect,
nformation.

Initially formulated by economists (Raiffa and Schlaifer, 1961; Hir-
hleifer and Riley, 1979), VoI has been widely applied in a variety
f fields: for example, in health economics (Yokota and Thompson,
004a; Fenwick et al., 2020), engineering (Bratvold et al., 2009),
isheries (Clark and Kirkwood, 1986; Costello et al., 2010; Kuikka
t al., 2011), water management (Borisova et al., 2005), or invasive
pecies management (Moore and Runge, 2012; Johnson et al., 2017;
i et al., 2021).1 In spite of VoI being a well-established theory and
ts apparent benefits, not many applications exist for conservation
anagement (Runge et al., 2011; Williams et al., 2011; Moore and
unge, 2012) and environmental monitoring (Nygård et al., 2016;
oski et al., 2020; Venus and Sauer, 2022). Even though water manage-
ent and VoI analysis have a long history and some early applications

xist (Slack et al., 1975; Moore and Morzuch, 1982), VoI applications
sing monitoring data are rare. The reasons for this lack of application
ay include the difficulty of quantifying the value of an ecological

ystem (Koski et al., 2020) or the high computational costs with the
ncreasing complexity of the decision problem (Canessa et al., 2015;
olam et al., 2019). Furthermore, the calculation of VoI requires explic-

tly defining a decision framework: the probabilities of the states of the

1 For an overview on the fields of application of VoI, the reader may
onsult Yokota and Thompson (2004b), Keisler et al. (2014) and Bolam et al.
2019).
2

world, the set of available management actions, and the consequences
of each management action, all of which may represent challenging
tasks for environmental decision problems. The calculation typically
relies on decision-analytic techniques, such as decision trees, Bayesian
networks or the use of simulation or other numerical approximation
methods, to simulate the anticipated results of various monitoring and
information-gathering activities (Yokota and Thompson, 2004b).

Our analysis contributes to the application of VoI in water manage-
ment. We make use of Monte Carlo sampling techniques, which are
widely employed to propagate uncertainty in the parameters through-
out the decision model and to estimate VoI (Bates et al., 2014, 2016;
Marchese et al., 2018). This method entails drawing samples from the
parameter distributions and executing the model with these values to
derive an estimate for the outcomes. Through iterative repetitions of
this process, a distribution is produced for each outcome, reflecting
a potential realisation of the truth. The average of these distributions
serves as the expected value for each outcome.

For our specific context, we use a VoI framework similar to the
one used by Koski et al. (2020) to solve this ecological management
problem with available real-world monitoring data. We simplify a
complex decision problem on water quality management to a binary
system with two possible states of the water body and two management
actions. The usage of a binary problem is a wide-spread approach
serving as an intuitive starting point for the analysis (see, for example
Giordano et al., 2022; Malings and Pozzi, 2016), allowing us to obtain
a clear understanding of the problem and the role of VoI. Building on
this model, we extend the analysis by performing a sensitivity analysis
and showing the interaction between the management cost and the
probability distribution of the ecological state. Specifically, we identify
the prior probabilities for which VoI is a maximum over a range of
management costs. Lastly, transcending our concrete case study, we
provide generic results on VoI for all two-state, two-action decision
problems under uncertainty with respect to two crucial determinants
of VoI: the prior probability distribution and the management costs in
relation to the good state.

The remainder of this article is structured as follows: In the next
section, we provide information regarding the data and methods used
in our investigation. Section 3 provides the results of our VoI analysis
along with a detailed sensitivity analysis showing how the VoI depends
on the management cost and the prior distribution in Section 4. This is
followed by a discussion of the results in Section 5 and a conclusion in
Section 6.

2. Data and methods

2.1. Decision problem and data

According to the WFD, the state of a water body is determined
by several elements of biological quality and supporting chemical–
physical parameters. In the case of Germany, coastal waters are prone
to high riverine input of nutrients, leading to eutrophication (BLMP,
2011; Desmit et al., 2020) and thus leading to a failure to meet the
GES target (BLMP, 2011). Due to a correlation between nitrogen and
chlorophyll-𝑎, it is frequently hypothesised that the overall nitrogen
concentration in the water body affects the biological quality element
phytoplankton (BLMP, 2011). Consequently, water quality manage-
ment predominantly targets a reduction of nitrogen concentrations
to reach the GES in coastal waters. In accordance with this policy
focus, we restrict our assessment to total nitrogen because it serves as
an indicator of the state of a water body. Our goal is to assess the
VoI of monitoring nitrogen data for rivers of the Weser River basin
that enter the German Wadden Sea. We use the official and open-

source monitoring data provided by Niedersächsischer Landesbetrieb
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für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN)2 and of the
Flussgebietsgemeinschaft Weser (FGG Weser).3

We consider a sample of water bodies within the case study area and
differentiate between water bodies within the target state, i.e. fulfilling
the criteria of the GES according to the WFD, and those that fail
to meet the target state. We consider data for the WFD assessment
periods 2000–2018. Since little data is available on water bodies in
a good state, we used the raw data and disregarded temporal or
spatial differentiation. We acknowledge that in this way, the analysis
is biased towards water bodies with a high frequency of measurements
or with many measurement stations; also, spatial differences, as well
as different river types, cannot be taken into account. However, this
approach is still suitable for highlighting the value of monitoring data
for environmental management. To base the VoI analysis on empirical
data, we assume that total nitrogen is a proxy for the state of the water
body. Since the main target of the WFD is that water bodies either
maintain or reach the GES, the threshold between the categories GES
and non-GES becomes essential; at the same time, subcategories within
GES and non-GES are inessential. Consequently, the threshold between
GES and non-GES determines whether management interventions must
be taken. We, therefore, disregard the original division of the state of
a body of water into five categories and consider only two: those that
meet the target state (GES) and those that do not (non-GES). We will
refer to the latter as bad state (𝑥0) and the former as good state (𝑥1).
Accordingly, the state 𝑋 of a water body may be seen as a random
variable taking either of two values: 𝑋 ∈ 𝛺 = {𝑥0, 𝑥1}, with a prior
probability 𝑝𝑋 (𝑥) for state 𝑥 ∈ 𝛺 being true. We assume that for any
section of a river, two management alternatives 𝑎 ∈ 𝐴 = {𝑎0, 𝑎1} can
be considered: either no action is taken 𝑎 = 𝑎0 (default), or a specified
action is taken 𝑎 = 𝑎1. The resulting payoff then depends on both the
action and the state: 𝑣 ∶ 𝐴 × 𝛺 → R, as shown in Table 1. We next
determine the value of actions, costs and prior probabilities.

The estimated cost of action 𝑎1 is retrieved from reports by LAWA
2020) and Flussgebietsgemeinschaft Weser (FGG) (2021) (section
‘cost for management of pollution from diffuse sources’’) and is set to
UR 90 million per year. The cost of action 𝑎0 is set to zero. The value of

a water body in good state is estimated from a report by the European
Commission (2019). The cost of not reaching GES for Germany, i.e. the
benefit forgone, is estimated to range between EUR 820–3304 million
per year. Scaled down to the area of the Weser River basin area, this
results in a value within the range of roughly EUR 115–450 million
per year. We set the value at EUR 200 million per year for our initial
analysis. Therefore, the value of a river in good state (𝑥1), without
management cost, is set to EUR 200 million per year.

The payoff for each action is then calculated by subtracting the
management cost – 𝑐(𝑎0) = 0 in case of action 𝑎0, and 𝑐(𝑎1) = 90 in case
of action 𝑎1 – from the value of the water body after the action became
effective, which is either 0 or 200. We assume that after performing the
action 𝑎1, the water body will always reach or maintain the good state,
and thus provides a high value; intuitively, 𝑎1 serves as a perfect hedge
against a possible bad state of the water body, becoming an unnecessary
action in case of a good state. Therefore, the value of the ecological
state after management, which we refer to as the payoff, is given by

𝑣(𝑎, 𝑥) =

⎧

⎪

⎨

⎪

⎩

0 if (𝑎, 𝑥) = (𝑎0, 𝑥0)
200 if (𝑎, 𝑥) = (𝑎0, 𝑥1)
200 − 𝑐(𝑎1) if 𝑎 = 𝑎1,

with 𝑐(𝑎1) = 90. The prior probabilities for each state are derived
from a recent report, highlighting that less than 10% of German water
bodies are currently in a good state (Bundesministerium für Umwelt,
Naturschutz und nukleare Sicherheit, 2017). Hence, we set the prior

2 Lower Saxony Water Management, Coastal Protection and Nature
onservation Agency.

3 River Basin District Weser.
3

l

Table 1
Payoff matrix for the river management problem.

Ecological state 𝑋 Action 𝑎 Prior belief

𝑎0 𝑎1 𝑝𝑋
𝑋 = 𝑥0: bad state 𝑣(𝑎0 , 𝑥0) 𝑣(𝑎1 , 𝑥0) 𝑝𝑋 (𝑥0)
𝑋 = 𝑥1: good state 𝑣(𝑎0 , 𝑥1) 𝑣(𝑎1 , 𝑥1) 𝑝𝑋 (𝑥1)

Table 2
The value of the ecological state after action 𝑎0 or 𝑎1 without additional information.

Actions Cost of actions Payoff 𝑣(𝑎, 𝑥)

𝑥0 𝑥1
𝑎0 𝑐(𝑎0) = 0 0 200
𝑎1 𝑐(𝑎1) = 90 110 110

Prior belief 𝑝𝑋 (𝑥) 0.9 0.1

Table 3
Value of perfect and imperfect information for the case of the Weser River.

Prior 𝑝𝑋 (𝑥) Prior value Perfect information Imperfect information

𝑥1 𝑥0 𝑃𝑉 𝑃𝑜𝑉 ◦ 𝑉 ◦ 𝑃𝑜𝑉 𝑉

0.1 0.9 110 119 9 112.21 2.21
𝐶𝐼(2.06, 2.84)

belief for a water body to be in a good state to 𝑝𝑋 (𝑥1) = 0.1 and for
a water body to be in a bad state to 𝑝𝑋 (𝑥0) = 0.9. The four possible
situations are summarised in Table 2 (costs are given in million Euros
per year).

2.2. Concept of the value of information

In this section, we outline the theory behind the VoI at a more
abstract level, to present the general idea behind our approach. As
we mentioned already, VoI is used in the case of revisiting a decision
via determining whether it is worth investing in more information to
reduce the uncertainty or the decision should be based on the current
information. This uncertainty about the true state of the system is
modelled by the random variable 𝑋 ∶ 𝛺 → R+, with 𝛺 being the state
space, which we assume to be discrete, and corresponding probability
measures 𝑝𝑋 on 𝛺. The decision maker can choose any action 𝑎 ∈ 𝐴.
The payoff (profit or utility) of the decision maker resulting from state
𝑥 ∈ 𝛺 and action 𝑎 ∈ 𝐴 is denoted by 𝑣 ∶ 𝐴 ×𝛺 → R ∶ (𝑎, 𝑥) ↦ 𝑣(𝑎, 𝑥).

One of the key measurements of VoI, the expected value of perfect
information or the expected value of clairvoyance about the true state of
the world is calculated by

𝑉 ◦ ∶= 𝑃𝑜𝑉 ◦ − 𝑃𝑉 ,

where the prior value (𝑃𝑉 ) describes the maximum expected out-
come under current information; i.e. the expected utility resulting from
adopting the action which produces the highest expected utility:

𝑃𝑉 = max
𝑎∈𝐴

E [𝑣(𝑎, 𝑥)] = max
𝑎∈𝐴

[

∑

𝑥∈𝛺
𝑣(𝑎, 𝑥)𝑝𝑋 (𝑥)

]

,

where the expectation is taken with respect to 𝑋. In our case, we
explicitly calculate the PV by

𝑃𝑉 = max
𝑎∈𝐴

[

𝑣(𝑎, 𝑥0)(1 − 𝑝) + 𝑣(𝑎, 𝑥1)𝑝
]

= max
[

𝑣(𝑎0, 𝑥0)(1 − 𝑝) + 𝑣(𝑎0, 𝑥1)𝑝, 𝑣(𝑎1, 𝑥0)(1 − 𝑝) + 𝑣(𝑎1, 𝑥1)𝑝
]

= max(200𝑝, 200 − 𝑐(𝑎1))

𝑉 =

⎧

⎪

⎨

⎪

⎩

200 − 𝑐(𝑎1) if 𝑝 < 200−𝑐(𝑎1)
200

200𝑝 if 𝑝 ≥ 200−𝑐(𝑎1)
200

Note that PV is not differentiable at the point 𝑝 = (200−𝑐(𝑎1))∕200. This
ack of differentiability in the function will impact the behaviour of the
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variable of interest, which will be introduced later, and can be visually
observed in Figs. 4 and 7. On the other hand, the posterior value under
perfect information (𝑃𝑜𝑉 ◦) represents the expected utility after being
nformed about the realisation of 𝑋: it gives the expected utility when
aking the optimal action for each state of the world 𝑥 ∈ 𝛺 (Yokota and
hompson, 2004a):

𝑜𝑉 ◦ = E
[

max
𝑎∈𝐴

𝑣(𝑎, 𝑥)
]

=
∑

𝑥∈𝛺
𝑝𝑋 (𝑥) max

𝑎∈𝐴
𝑣(𝑎, 𝑥).

ere, 𝑃𝑜𝑉 ◦ represents the probability-weighted sum of the utilities of
he optimal actions. Then, the difference between the expected utility
nder perfect information and under current information gives 𝑉 ◦, the
xpected value of perfect information.4 If perfect information can be
btained, and the value of the perfect information exceeds the cost of
cquiring it, then it is worthwhile to acquire this information prior to
aking a decision.

Calculating the expected value of perfect information is useful for
xploring the upper bound of the value of eliminating uncertainty.
owever, in real-world problems, obtaining perfect information about

he state of the world (here, the state of the water body) is almost
lways impossible (Canessa et al., 2015). Therefore, instead of obtain-
ng perfect information on the realisation of 𝑋, the decision maker
an reduce, but not entirely eliminate, uncertainty by observing some
nformation (or message) 𝑦, which may thus be viewed as specific infor-
ation about the probability distribution of 𝑋. Since the information

eing received is not known in advance, it represents a realisation of
(continuous) random variable 𝑌 with probability distribution 𝑝𝑌 . In

his way, any realisation of 𝑌 provides some specific indication of the
robability distribution of 𝑋; we denote this conditional probability
istribution of 𝑋 by 𝑝𝑋|𝑌 , and specifically, write 𝑝𝑋|𝑌 (⋅|𝑦) if 𝑌 = 𝑦.

Intuitively, we may interpret the probability distribution of the possible
message 𝑝𝑌 as an information service, which induces the conditional
information 𝑝𝑋|𝑌 on the distribution of 𝑋. It is the acquisition of this
information service about which the decision maker has to decide
before deciding on the action itself.

The VoI concept can be adapted to this situation as well: Yokota
and Thompson (2004a) define the value of information, more precisely
the value of an information service, as the difference between the
expected payoff under current information and the expected payoff
when new information is obtained. Specifically, the expected value of
imperfect information is the difference between the expected value of
the best action based on the posterior probability distribution (𝑃𝑜𝑉 )
on 𝑋 induced by the, ex-ante unknown, information 𝑌 , and the 𝑃𝑉 :

𝑉 ∶= 𝑃𝑜𝑉 − 𝑃𝑉 .

Here, a realisation of the random variable 𝑌 and the associated proba-
bility density 𝑝𝑌 represents some, yet imperfect, information about the
state 𝑝𝑋|𝑌 . This information might be obtained, for example, by means
of monitoring or by conducting an experiment (Raiffa and Schlaifer,
1961). Given the probability density 𝑝𝑌 , 𝑃𝑜𝑉 is given by

𝑃𝑜𝑉 ∶= ∫ max
𝑎∈𝐴

E [𝑣(𝑎, 𝑥)|𝑦] 𝑝𝑌 (𝑦) d𝑦

= ∫ max
𝑎∈𝐴

(

∑

𝑥∈𝛺
𝑣(𝑎, 𝑥)𝑝𝑋|𝑌 (𝑥|𝑦)

)

𝑝𝑌 (𝑦) d𝑦,

where the expected value of the best outcome is taken over all possible
messages (or monitoring results) 𝑦 weighted by their probabilities of
observing 𝑝𝑌 (𝑦).5

4 In the literature, the expected value of perfect information is frequently
enoted by EVPI (see, e.g. Raiffa and Schlaifer, 1961; Yokota and Thompson,
004a), we prefer the shorter notation 𝑉 ◦, though.

5 Since 𝑃𝑜𝑉 depends on the realisation of some experiment (or a message)
is frequently referred to as the expected value of sample information EVSI (see
4

aiffa and Schlaifer, 1961; Yokota and Thompson, 2004a).
Since any received message (or information) 𝑦 provides information
n the distribution of 𝑋, the probabilities for realisations of 𝑋 need to
e updated accordingly. Bayesian updating reflects the belief-updating
rocess of the probability of 𝑋 for all possible sample information 𝑦:

𝑝𝑋|𝑌 (𝑥|𝑦) =
𝑝𝑋 (𝑥) 𝑝𝑌 |𝑋 (𝑦|𝑥)

𝑝𝑌 (𝑦)
,

with 𝑝𝑌 |𝑋 (𝑦|𝑥) representing the likelihood function of observing 𝑦 when
the state of the world is 𝑥, and 𝑝𝑌 (𝑦) representing the marginal density
of 𝑦:

𝑝𝑌 (𝑦) =
∑

𝑥∈𝛺
𝑝𝑋 (𝑥)𝑝𝑌 |𝑋 (𝑦|𝑥).

3. VoI analysis for the Weser River basin

We now continue with the VoI analysis for our management prob-
lem described in Section 2 where we consider two states of a water
body 𝑋 ∈ 𝛺 = {𝑥0, 𝑥1} and two actions 𝑎 ∈ 𝐴 = {𝑎0, 𝑎1}. For
this simplified case, the (prior) probability distribution 𝑝𝑋 can be
represented by a single probability 𝑝 ∶= 𝑝𝑋 (𝑥1) = 1−𝑝𝑋 (𝑥0). Our initial
analysis exemplifies the value of monitoring information based on the
prior 𝑝 and the management cost 𝑐.

.1. Computing conditional and posterior distributions

VoI analysis relies on Bayesian updating to compute conditional
robabilities, therefore one key aspect is to determine the likelihood
f the data. In our case, we fit distributions to the empirical data to
imulate monitoring activity by randomly sampling values from these
istributions. To choose the best fit for the data, we first compute the
escriptive parameters of the empirical data. We use the Cullen and
rey plot – a skewness–kurtosis plot – for a visualisation of the pos-
ible best distribution. We then choose from the proposed theoretical
istribution consistent with the skewness and kurtosis of the empirical
ata and conduct a goodness-of-fit analysis. We choose the best fit by
omparing the maximum likelihood estimators (MLE), log-likelihood,
ayesian Information Criterion (BIC) and Akaike Information Criterion
AIC). For the bad state data, the Cullen and Frey graph, in addition to
he MLE, suggests a gamma distribution as the best fitting distribution,
hile the best fit for good state data based on the same criteria is a
eta distribution. However, for the fitting process, the data has to be
e-scaled to the support of a beta distribution, i.e. rescaled to [0, 1]. This

is problematic, as there is no way to ‘‘scale back’’ after conducting the
VoI analysis. We avoid the need to scale the data by choosing a four-
parameter beta distribution, a highly flexible bounded distribution,
where the lower and upper limits can be set based on the data. Fitting
the best possible distribution to the data is an important part of our VoI
analysis as it requires sampling from the distribution and refitting the
sampled values.

In order to estimate the posterior value of imperfect information
from the available data, that is from sampling values for 𝑌 , we estimate
𝑝𝑌 |𝑋

(

𝑦𝑖|𝑥
)

from the distributions fitted to the empirical data using a
Monte Carlo approach. Random samples (𝑛 = 10000) are drawn from
the fitted distribution and the distributions are refitted to the random
samples. Then, using the estimator 𝑝𝑌 |𝑋

(

𝑦𝑖|𝑥
)

, we approximate 𝑃𝑜𝑉 by

𝑃𝑜𝑉 = 1
𝑛

𝑛
∑

𝑖=1
max
𝑎∈𝐴

E
[

𝑣 (𝑥, 𝑎) |𝑦𝑖
]

= 1
𝑛

𝑛
∑

𝑖=1
max
𝑎∈𝐴

(

∑

𝑥∈𝛺
𝑣(𝑥, 𝑎)𝑝𝑋|𝑌

(

𝑥|𝑦𝑖
)

)

,

with 𝑛 being the number of observations. The corresponding confidence
intervals (CI) for 𝑃𝑜𝑉 are estimated using a Monte Carlo bootstrapping
approach, for which the procedure is repeated 1000 times and the
confidence intervals are obtained by subtracting the value of 𝑃𝑉 from

the calculated 𝑃𝑜𝑉 in each step (see Fig. 1).
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Fig. 1. Histograms of the empirical data (total nitrogen in mg/l = TN) with fitted four-parameter-beta and gamma distributions. The empirical data is divided into two categories
for the ecological state: good ecological status and bad ecological status.
3.2. Value of perfect and imperfect information

We conduct the initial VoI analysis with the estimated prior prob-
abilities and monetary values as given in Table 2. We consider the
prior belief 𝑝 ∶= 𝑝𝑋 (𝑥1) = 0.1 (see Section 2.1) for the water body
being in a good state, meaning that, a priori, the decision maker is
fairly certain that the water body is not meeting the desired state
𝑋 = 𝑥1. In view of the prevailing uncertainty and without additional
information, the strategy with the highest expected benefit would be to
choose the specified action 𝑎1 for the water body. Under current infor-
mation, this action would result in a maximum expected payoff of 110
million EUR/year. In contrast, the value of perfect information yields
a maximum expected value of 119 million EUR/year. If the decision
maker could obtain perfect information, it would be worthwhile to pay
up to 9 million EUR/year and postpone the decision-making until after
additional information is acquired. Lastly, the value of imperfect infor-
mation, meaning that new information may reduce but not eliminate
completely the uncertainty, is 112.21 million EUR/year. In this case,
the decision maker is willing to pay up to 2.21 million EUR/year (with
a 95% CI [2.06, 2.84]) for acquiring information through monitoring
in order to be more certain about the true state of the water body, see
Table 3.

4. Dependence on costs and prior probabilities

In real-world applications, the monetary values, management costs
and prior probabilities are estimates and are thus themselves subject
to uncertainty. A careful sensitivity analysis may help to reduce the
uncertainty incorporated in these parameters and to examine the ro-
bustness of the VoI analysis with respect to these data. In this section,
we, therefore, compute 𝑉 for different management costs 𝑐 and prior
probabilities (for the good state) 𝑝 ∶= 𝑝 (𝑥 ), and explore the sensitivity
5

𝑋 1
of 𝑉 to these two crucial parameters. We assume that the manage-
ment costs are non-negative and do not exceed the increase in utility
achieved from the water body being in the good compared to the bad
state.6 Formally

𝑉 ∶ [0, 1] × [0, 𝑣] → R ∶ (𝑝, 𝑐) ↦ 𝑉 (𝑝, 𝑐).

Among other things, this formalisation helps us to find the priors for
which 𝑉 is maximised in relation to management costs. Since in the
course of our analysis, we vary (𝑝, 𝑐) over its domain, we will pro-
vide qualitatively generic results for all two-state, two-action decision
problems under uncertainty.

Before we present and discuss the properties of 𝑉 for its full pa-
rameter range, we begin with computing 𝑉 for specific values of the
management cost. Fig. 2 displays the values of perfect and imperfect
information for low (𝑐 = 50), medium (𝑐 = 100), and high (𝑐 = 150)
management costs (all in million EUR/year), along with 95% CI. If the
action has a medium cost, 𝑉 reaches its maximum when uncertainty is
highest, i.e. at a prior probability of 𝑝 = 0.5, see Fig. 2b. In this case,
the value of perfect information reaches up to 50 million EUR/year,
and the value of imperfect information is up to 30 million EUR/year.
In contrast, in the absence of uncertainty, i.e. for either 𝑝 = 0 or 𝑝 = 1,
the values of perfect and imperfect information are both zero, as the
decision maker already has full knowledge about the true state of the
water body.

For low management costs (50 million EUR/year), see Fig. 2a, 𝑉 is
highest when the ecological state is believed to be likely to meet the
target (𝑝 = 0.75), and the decision maker is therefore relatively confi-
dent that there is no need for any action. Intuitively, if the management

6 The utility function may be transformed by any monotonously increasing
function without affecting the DM’s preferences and thus the (qualitative)
results, as this transformation only scales 𝑉 .
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Fig. 2. The value of perfect and imperfect information (with 95% confidence intervals) for 𝑐 = 50, 100, 150 and 𝑝 ∈ [0, 1].
cost is low, the decision maker is willing to undertake the action 𝑎1
even if the water body is quite likely to be in a good state; only if
this probability is sufficiently high does the decision maker omit taking
action. It follows that there is a (relatively high) level of this probability
at which the decision maker is indifferent between undertaking the
action (because its cost is low) and omitting it (because it is seemingly
not necessary). But 𝑉 reaches its maximum exactly at the level of 𝑝
where the decision maker is indifferent between actions 𝑎0 and 𝑎1,
because any additional piece of information may flip the decision to
either side. Specifically, for 𝑐 = 50, 𝑉 is maximised at 𝑝 = 0.75 with
perfect information attaining a value of more than 40 million EUR/year
and imperfect information more than 20 million EUR/year. In this
case, it is worth getting more information to either confirm or reject
the hypothesis that the water body is in good state so that an action
can either be justifiably disregarded or undertaken. In this way, the
decision maker avoids the risk that either an unnecessary action will be
performed, or a beneficial and relatively cheap action will be omitted.

The reverse line of argument holds if the cost of the action is high
(here 150 million EUR/year). Then, the action will not be undertaken
unless the probability of the water body’s being in good state is quite
low. The value of 𝑝 at which the decision maker is indifferent between
actions 𝑎0 and 𝑎1 is therefore relatively low – and it is here that 𝑉
reaches its maximum, for any additional indication of the water body’s
being in the good or in the bad state means changing the decision to
one side or the other. Specifically, for 𝑐 = 150, 𝑉 reaches its maximum
at 𝑝 = 0.25, see Fig. 2c.

Moreover, we infer from Fig. 2 that 𝑉 is strictly quasi-concave in
𝑝. While 𝑉 depends on 𝑝 and 𝑐, it is true, by the construction of the
VoI concept, that the value of perfect information exceeds the value of
imperfect information, irrespective of 𝑝 and 𝑐. Yet, for any fixed level
of 𝑐 the location of the maximum, i.e. the prior probability for which
𝑉 is maximum, is the same for both perfect and imperfect information,
again see Fig. 2. More formally, let us define

𝑝∗(𝑐) ∶= argmax
𝑝

𝑉 (𝑝, 𝑐).

Then, for any value of 𝑐, 𝑉 has a maximum at 𝑝∗(𝑐) with the value of
𝑉 amounting to 𝑉 ∗(𝑐) ∶= 𝑉 (𝑝∗(𝑐), 𝑐).

We now construct the image of 𝑉 ∗ step by step. In Fig. 2, we
display 𝑉 (⋅, 50), 𝑉 (⋅, 100) and 𝑉 (⋅, 150), identifying the corresponding
maximisers 𝑝∗(50), 𝑝∗(100) and 𝑝∗(150), and their respective values of
𝑉 : 𝑉 (𝑝∗(50), 50), 𝑉 (𝑝∗(100), 100) and 𝑉 (𝑝∗(150), 150). Proceeding in a
similar way, we calculate 𝑝∗(𝑐) and 𝑉 ∗(𝑐) for all 𝑐 ∈ [0, 𝑣]. The
maximiser 𝑝∗(⋅) is shown in Fig. 3a., while the maximised function 𝑉 ∗(⋅)
is shown in Fig. 3b. Finally, we display the graph of the mapping 𝑐 ↦

(𝑝∗(𝑐), 𝑉 (𝑝∗(𝑐), 𝑐)), i.e. a parametric plot of 𝑐, in Fig. 3c. Fig. 3a shows
∗ ∗ ∗ ∗
6

that 𝑝 (⋅) decreases linearly, with 𝑝 (0) = 1 and 𝑝 (200) = 𝑝 (𝑣) = 0,
while Fig. 3b shows that 𝑉 ∗(⋅) is strictly concave, with 𝑉 ∗(0) = 0 =
𝑉 ∗(𝑣). Lastly, along the path 𝑐 ↦ (𝑝∗(𝑐), 𝑉 ∗(𝑐)), 𝑉 ∗ is maximum for
(𝑝∗(𝑐), 𝑐) = (0.5, 100), which can be seen from Fig. 3b and c. Intuitively,
if management can be performed at zero cost, the decision maker will
undertake the action in any case and is only indifferent between 𝑎0 and
𝑎1 if the water body will be in good state with probability 1. In contrast,
if the management cost is equal to the value of the water body in the
good state, which happens at 𝑐 = 𝑣 = 200, the action will never be
undertaken, and the decision maker is indifferent between 𝑎0 and 𝑎1
only if the probability of the water body’s being in the good state is 0,
i.e. the water body is in a bad state almost surely. Reversely, the value
of reducing uncertainty as to which is the best decision, 𝑎0 or 𝑎1, is
highest when the monitoring costs are neither negligible nor excessive,
and a prior uncertainty regarding the state of the water body is high
(i.e. 𝑝 = 0.5). In such a situation, any additional data that may give an
indication as to what to do best is very valuable.

To summarise our findings, which are valid generically for all two-
state, two-actions decision problems under uncertainty: When the cost
of management is high, the decision maker does not undertake the
action unless the prior probability is quite low (i.e. when the bad state
is likely to hold). Therefore, when the cost and the probability of good
state are both high, the arrival of new information is unlikely to reverse
the decision maker’s decision. Yet, when the prior probability is low,
there is a significant risk that the actual state is bad, and thus the
decision needs to be revised. Hence, given a high cost for management,
𝑉 is largest when the prior probability is low, and therefore the prior
probability for which 𝑉 is maximised, 𝑝∗, is small. Conversely, when the
management cost is low, the decision maker is likely to undertake the
protective action. This is especially the case when the prior probability
is low, i.e. when the water body is likely to be in a bad state. When the
prior probability is high, implying that good state is the probable result,
undertaking a costly action, even if relatively cheap, may represent a
waste of resources. Given a low value for the management cost, a high
probability of good state tends to make the decision to undertake action
needless. Consequently, for low management cost, 𝑉 is the largest when
the prior probability is high. This explains why there is a negative
relation between 𝑐 and 𝑝∗.

This negative relation between 𝑐 and 𝑝∗ is also shown in the contour
plot in Fig. 4, displaying the iso-level curves of 𝑉 for 𝑝 ∈ [0, 1] and 𝑐 ∈
[0, 𝑣] = [0, 200]. When the decision maker is a priori quite certain about
the state of the water body, i.e. 𝑝 is either close to 0 or to 1, the value of
additional information is relatively low. Even more pronounced is the
case when both 𝑝 and 𝑐 are simultaneously either low or high. In both
of these cases, 𝑉 is low, because of a low [high] probability of the good
state, i.e. a high [low] probability of the bad state, together with low

[high] management cost makes the decision maker perform [abandon]
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Fig. 3. (a) Plot of maximum prior probability for which 𝑉 has a maximum, i.e. 𝑝∗(𝑐) versus the management cost 𝑐; (b) Maximum 𝑉 ∗(𝑐) versus the management cost 𝑐; (c)
Parametric plot of 𝑉 ∗(𝑐) and 𝑝∗(𝑐).
Fig. 4. Contour plot of the value of imperfect (monitoring) information 𝑉 as a function of the prior probability 𝑝 and the management cost 𝑐.
the action – and the arrival of new information is very unlikely to
reverse this decision. In both of these polar cases, it is pretty evident
that the action should be performed immediately (when both 𝑝 and 𝑐
are small), respectively that the action can be dispensed with (when
both 𝑝 and 𝑐 are high), so that the arrival of new information is very
unlikely to reverse this decision – and thus the value of information
is low. On the contrary, 𝑉 is high when the management decision is
close, which happens when the state of the water body is very unclear
and management costs are moderate. Specifically, 𝑉 is maximised when
uncertainty is highest (𝑝 = 0.5) and when at the same time the action
7

costs are half of the gain in the value of the good over the bad state of
the water body (𝑐 = 𝑣∕2 = 100).

5. Discussion and general insights

Acquiring more information through monitoring can have substan-
tial value, as additional data may improve environmental decision-
making. VoI analysis makes this economic benefit of data collection
and monitoring activities explicit (Bouma et al., 2009). Decision makers
may thereby improve the allocation of resources in monitoring and
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Fig. 5. Effect of changing management cost on the maximum value of information 𝑉 . The values of both the management cost and the 𝑉 have been normalised with respect to
the value of the good state (𝑣).
management and thus enhance returns on investments. Here, VoI rep-
resents the decision maker’s willingness-to-pay (in terms of payoff or
utility) for additional information. Our study aimed at demonstrating
how to support an environmental decision problem by means of a VoI
analysis. We applied the VoI framework using real-world monitoring
data to a simple decision problem with two states of a water body and
two decision options, using one variable (total nitrogen concentrations)
as an indicator for the state of the water body. We calculated the value
of additional monitoring data (or information) for a decision maker de-
ciding on an environmental management action. Improved information,
even when imperfect, yields a positive value and may lead to a higher
payoff for the decision maker. VoI analysis can be a valuable tool in the
light of monitoring being frequently criticised for being too expensive.
The fact that these monitoring data may enhance decision making, and
may thus have an additional value, is often ignored (Caughlan and
Oakley, 2001; Lovett et al., 2007). VoI analysis focuses on this kind of
extra value that data may have for environmental management, where
investment decisions may be conditional on the collected data.

With our analyses, we obtained interesting methodological and
general insights. From a methodological point of view, we see that it
is especially difficult to calculate the value of imperfect information
when the sample space is continuous. Simplifying a complex decision
problem to a binary system with two states and two alternatives is
helpful to allow for a clear and intuitive understanding of the problem.
Using real-world monitoring data to formulate the likelihood function
can be a useful approach and put the analysis in a realistic context.
The proposed framework is scalable and not limited to binary systems
– it can be applied to systems with any number of states and actions to
highlight more realistic scenarios. However, it might not be possible to
derive generic insights if the system gets too complex. We showed that
a Monte Carlo approach used in conjunction with Bayesian decision
theory appears to be suitable for calculating an approximate value for
imperfect information. To account for uncertainty incorporated in the
estimated prior probabilities and the monetary values, we performed a
sensitivity analysis. This method is also beneficial for providing further
guidance to decision makers and environmental managers on the value
of information for a range of combinations of prior probabilities and
management costs. Moreover, this gives insight into the behaviour
of VoI in relation to prior probabilities and management costs and
highlights the importance of a sensitivity analysis.
8

Irrespective of the fact that the exact values that result from a
VoI analysis are essentially case-specific, there are still some general
findings that are worth emphasising: Since 𝑉 crucially depends on the
prior probability 𝑝 and the monitoring cost 𝑐, we investigate for which
combinations of 𝑝 and 𝑐 𝑉 is maximum. To answer this, we calculate,
for any value of 𝑐, the level of 𝑝 for which 𝑉 is maximal. Denoting this
maximising prior by 𝑝∗ = 𝑝∗(𝑐), we show that 𝑝∗ is a decreasing function
of 𝑐; moreover, 𝑉 is, at least in our decision context, quasi-concave,
which is illustrated in Fig. 4. We recognise the inherent uncertainties
with regard to estimating prior probabilities, management costs, and
the value of the state of the ecosystem. Improving these estimates
leads to more confident estimates of the VoI. Intuitively, more informed
priors, i.e. 𝑝 close to either 0 or 1, results in a smaller VoI. The more
certain the decision maker is about the state prior to making their
choice, the lower the effect of additional information on their choice.
However, the highest uncertainty (a prior probability 𝑝 equal or close to
0.5) does not necessarily imply that 𝑉 is maximal (Canessa et al., 2015)
because 𝑝∗ depends negatively on the management cost 𝑐. This finding
is in line with Giordano et al. (2022) who discuss the dependence of
VoI on management cost and the point of indifference of the decision
maker.

To complement our analysis and to obtain more generic results,
Fig. 5 shows 𝑉 ∗ as a function of the ratio of the management cost 𝑐 and
the value of the good state 𝑣, i.e. on the relative management cost 𝑐∕𝑣; it
shows that 𝑉 ∗ is maximal when 𝑐 = 𝑣∕2. This generalisation provides us
with some interesting and somewhat counter-intuitive insights: Let us
assume that both 𝑐 and 𝑝 are fixed. If we now vary the value of the good
state of the ecosystem, it turns out that increasing the value of the good
state may lead to a decrease in the value of information. Intuitively, one
might assume that the more relative value the ecosystem has, the more
one would be willing to invest in monitoring. Yet, the analysis shows
that a higher value leads to the fact that it is more useful to directly
invest in actions instead of risking spending resources on monitoring
and missing opportunities to act. Hence, the value of the information
is relatively low.

So far, our discussion mostly focused on how the value of informa-
tion is influenced by the key parameters 𝑐, 𝑣 and 𝑝. Let us remember
that from a decision-making perspective, whether or not the acquisition
of additional data is actually worthwhile before a management decision
is made, depends on the difference between the VoI and the cost of
collecting the data (information acquisition). If the former exceeds the
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Fig. 6. Value of information 𝑉 in comparison to monitoring cost 𝐾. The black dotted line shows the maximising function 𝑝∗(𝑐∕𝑣). Example points A and B for parameter
combinations where 𝑉 is smaller than 𝐾 (point A) and 𝑉 is higher than 𝐾 (point B). The decision maker would decide based on the results of the VoI analysis and the cost for
monitoring if investing in additional information is worthwhile (𝑉 > 𝐾) or not (𝑉 < 𝐾).
Fig. 7. Results of two VoI analyses with different distributions of the data. The shape of the ellipse differs depending on the posterior probabilities which is obtained from sampled
values from the fitted distributions. Qualitatively, the results of the analyses are generic.
latter, new data should be collected before a decision is made. This is
illustrated in Fig. 6. It shows the results of a VoI analysis for a case
with two states of the world and two actions, similar to our previous
example. The vertical axis gives the ratio between the management
cost 𝑐 and the value 𝑣 of the system. The horizontal axis is the prior
probability 𝑝 of the targeted state of the system. 𝑉 is calculated over
the full parameter range ([0, 1]) and a fixed cost for monitoring (or
information acquisition) 𝐾 is given. This simple figure exemplifies
under which conditions it is worthwhile for the decision maker to invest
in monitoring. For a given constellation of parameters, such as in point
A, the decision maker would decide against investing in information,
as 𝑉 is less than the cost 𝐾 for monitoring. For another combination
of values of the parameters, as in point B, 𝑉 is larger than 𝐾 and
therefore the results suggest that investing in monitoring is welfare
enhancing. This figure gives guidance to decision makers under which
circumstances information acquisition is valuable. Further, it provides
us with a certain amount of sensitivity information: As an example,
9

since point B is relatively far in the interior of the green area, minor
variations of parameter values 𝑐, 𝑣 and 𝑝 do not immediately change
the decision to collect additional data.

Finally, we would like to emphasise that the generic results and
insights from this discussion regarding the relation between the VoI
and the management costs, the value of the good state and the prior
probability are not restricted to our case study but apply to decision
problems with the same structure. It should be noted, however, that
the shape of the ellipse displayed in Figs. 4 and 6 not only depends on
the parameters mentioned before but also on the posterior probability
distributions which have to be fitted to the data of the specific decision
problem under consideration (see Fig. 7 for an example).

6. Conclusion

In our study, we demonstrated how value of information (VoI)
analysis can serve as a valuable tool to enhance decision-making in
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environmental management as it may help to arrive at more well-
judged decisions. We apply the VoI concept to a decision problem
in water quality management in northern Germany. Our case study
highlights that the VoI reaches substantial positive values. Even though
acquiring data through monitoring may be costly, it may nevertheless
be cost efficient to do so if the VoI outweighs the cost of monitoring. As
the values and prior probabilities in our case study are estimates and
are thus subject to uncertainty – which is the case for most decision
problems – a careful and thorough sensitivity analysis is recommend-
able if not indispensable. Calculating the VoI for a suitable range of
costs and prior probabilities enables the decision maker to place the
results of the VoI analysis in the specific context and to highlight the
specific conditions under which the collection of more data is, in fact,
worthwhile. Our approach helps to expand the applications of VoI
analysis to environmental management decision problems, especially
to the value of imperfect information and monitoring. Even though
the numerical results of the VoI analysis are case-specific, important
general insights can still be obtained: The VoI has a maximum when
the decision maker is indifferent between two alternative policies. In
this case, a piece of new information may induce the optimal decision
to switch from one action to another; the decision is sensitive to new
information, so the VoI is high. Moreover, with a prior for which the
maximum VoI is decreasing in the monitoring cost, the maximum VoI
is reached when both the prior and the monitoring cost have moderate
values. With our analysis, we arrive at qualitatively generic insights
that are valid for all management decision problems under uncertainty
with two states of the world and two actions.
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ppendix

In our analysis, we arrive at qualitatively generic results for all
wo-state and two-action decision problems. However, the shape of
he ellipse (Fig. 4) not only depends on the management cost 𝑐 and
he prior probability 𝑝 but also depends on the posterior probability.

e obtain the posterior probability by sampling random values from
istributions fitted to the empirical data. To display this change in
hape, we calculate 𝑉 using different distributions. We can see that the
hape of the ellipse varies and becomes rounder or narrower depending
n the posterior probability (see Fig. 7). The maximising function 𝑝∗
nd the structural components remain the same for all decision contexts
ith two states and two actions. Further, the results displayed in Fig. 7

an be interpreted the same way as explained in Section 4.
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