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Abstract
Aim: The scale of environmental data is often defined by their extent (spatial area, 
temporal	duration)	and	resolution	(grain	size,	temporal	interval).	Although	describing	
climate data scale via these terms is appropriate for most meteorological applications, 
for ecology and biogeography, climate data of the same spatiotemporal resolution and 
extent may differ in their relevance to an organism. Here, we propose that climate 
proximity, or how well climate data represent the actual conditions that an organism 
is exposed to, is more important for ecological realism than the spatiotemporal resolu-
tion of the climate data.
Location: Temperature comparison in nine countries across four continents; ecologi-
cal	case	studies	in	Alberta	(Canada),	Sabah	(Malaysia)	and	North	Carolina/Tennessee	
(USA).
Time Period: 1960–2018.
Major Taxa Studied: Case studies with flies, mosquitoes and salamanders, but con-
cepts relevant to all life on earth.
Methods: We	compare	 the	accuracy	of	 two	macroclimate	data	 sources	 (ERA5	and	
WorldClim)	and	a	novel	microclimate	model	 (microclimf) in predicting soil tempera-
tures.	We	 then	 use	 ERA5,	WorldClim	 and	microclimf to drive ecological models in 
three case studies: temporal (fly phenology), spatial (mosquito thermal suitability) and 
spatiotemporal (salamander range shifts) ecological responses.
Results: For predicting soil temperatures, microclimf had 24.9% and 16.4% lower 
absolute	 bias	 than	 ERA5	 and	WorldClim	 respectively.	 Across	 the	 case	 studies,	we	
find	 that	 increasing	 proximity	 (from	 macroclimate	 to	 microclimate)	 yields	 a	 247%	
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1  |  INTRODUC TION

Explorations of scale are fundamental to understanding patterns 
and	processes	in	the	natural	world	(Wiens,	1989). Given that most 
urgent issues of global change involve phenomena that occur across 
spatial and temporal scales, it is crucial to understand how drivers of 
ecological responses shift across scales, and how a process that is 
shaped at one scale plays a role at another scale (Levin, 1992).

Climate is an omnipresent environmental component that is no-
tably scale dependent. For instance, at the synoptic (or continental) 
spatial scale, across thousands of kilometres, climate is principally de-
termined by latitude, elevation, distance to large bodies of water and 
ocean dynamics. In ecology and biogeography, climate at this scale is 
often referred to as macroclimate (Geiger et al., 2009). Locally (one 
hundred meters or less), however, climate varies substantially due to 
variation in vegetation, terrain, and soil conditions—climate at this 
scale has been referred to as microclimate (Geiger et al., 2009). Climate 
is also scale dependent in the temporal domain, as the processes that 
shape climate differ between seasonal, decadal and geological periods 
(Clark, 1985). Unsurprisingly, how climate drives ecological responses 
also differs across scales. For instance, thermal variation over the 
course of a day may determine periods of an organism's foraging ac-
tivity or its exposure to stressful extremes, while annual fluctuations 
influence phenology or development (Kefford et al., 2022).

In classic macroecological studies, climate has been considered 
to be more important for distributions of species and communities 
at	broad,	rather	than	local,	spatiotemporal	scales	(Woodward,	1987). 
Yet,	 both	 time-	honoured	 and	 recent	 work	 have	 revealed	 the	 many	
roles of microclimate in ecology and evolution (Helmuth, 1998; 
Huey, 1991; Kearney & Porter, 2009; Lembrechts et al., 2019;	Maclean	
& Early, 2023; Potter et al., 2013). Given that climate and its ecological 
effects are both scale dependent, the source of climate data, and the 
structure of such data in a modelling workflow, may critically impact 
the detection of ecological signals (Buckley et al., 2023a).

For much work in spatial ecology—especially related to spe-
cies' distributions and diversity—researchers use macroclimate 

maps generated from mechanistic or statistical models (e.g. Fick & 
Hijmans, 2017; Hersbach et al., 2020).	As	with	all	model	predictions,	
these climate maps are imperfect. In an effort to improve climate 
data for ecological applications, many studies have explored the 
impact of increasing either spatial or temporal resolution of climate 
data, and occasionally both in tandem, on the accuracy of ecological 
predictions (see review by Lembrechts et al., 2019). Yet, increasing 
spatiotemporal resolution of climate data alone does not necessarily 
increase the likelihood of capturing the relevant microclimates for 
a given organism or process, and may indeed result in lower pre-
diction	accuracy	of	ecological	responses	(Abdulwahab	et	al.,	2022). 
Macroecological	studies	rarely	measure	how	well	climate	data	rep-
resent the actual exposure of an organism or system, independent 
of	the	data's	spatiotemporal	resolution.	We	call	this	the	‘proximity’	
of climate data, which we define in further detail below (Box 1). By 
focusing on climate data resolution rather than proximity, many 
large-	scale	 studies	 tend	 to	 overlook	 an	 established	 legacy	 in	 eco-
physiology of understanding climate as experienced by organisms 
(Huey, 1991; Kearney & Porter, 2009). Unfortunately, this concept 
of climate proximity is rarely incorporated into macroecology or bio-
geography, and thus its importance for spatiotemporal ecological 
modelling has not yet been systematically explored and quantified.

Here, we investigate how climate spatial resolution, temporal reso-
lution and proximity each influence the accuracy of temperature esti-
mates	and	performance	of	climate-	driven	ecological	models	(Figure 1). 
We	employ	a	set	of	temperature	data	sources	that	differ	in	these	di-
mensions of scale, and perform spatial and temporal aggregation/dis-
aggregation, to evaluate the importance of spatial resolution, temporal 
resolution and proximity of temperature data in each of three case 
studies: crop pest emergence, mosquito thermal suitability and sala-
mander distribution changes. These case studies correspond to a spa-
tial, temporal, and spatiotemporal ecological response, respectively, 
and exemplify common applications of climate data via disparate mod-
els,	ecosystems	and	organisms.	We	expect	 to	 find	 that	climate	data	
of high proximity will predict ecological responses better than climate 
data that are of higher spatial or temporal resolution yet low proximity 

improvement in performance of ecological models on average, compared to 18% and 
9%	improvements	from	increasing	spatial	resolution	20-	fold,	and	temporal	resolution	
30-	fold	respectively.
Main Conclusions: We	propose	that	increasing	climate	proximity,	even	if	at	the	sac-
rifice of finer climate spatiotemporal resolution, may improve ecological predictions. 
We	emphasize	biophysically	informed	approaches,	rather	than	generic	formulations,	
when quantifying ecoclimatic relationships. Redefining the scale of climate through 
the lens of the organism itself helps reveal mechanisms underlying how climate 
shapes ecological systems.

K E Y W O R D S
biophysical ecology, climate change, ecophysiology, macroclimate, microclimate, nonlinearity, 
resolution, species distribution model
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(‘distal’).	Such	findings	would	 improve	our	understanding	of	 the	role	
of scale in bioclimatic relationships and would call for revision to our 
methods for quantifying such processes.

2  |  METHODS

2.1  |  Temperature data

We	used	three	sources	of	global	climate	data	that	each	differ	for	two	
of the three studied dimensions (spatial resolution, temporal resolu-
tion and/or proximity; Figure 2). The proximity of these climate data 

is	gauged	according	to	the	microhabitat	requirements	and	life-	cycle	
processes of three case study organisms below. For these organisms 
(fly larvae, mosquitoes and salamanders), proximal climate is near 
and below the ground as well as underneath vegetation, which we 
represent using a microclimate model (see below).

The	first	climate	product,	ERA5,	is	an	assimilation	of	numerical	
weather	model	 predictions,	 satellite	 imagery	 and	 free-	air	weather	
station measurements (Hersbach et al., 2020).	ERA5	data	are	avail-
able at several spatiotemporal resolutions and heights; here, we 
used	 hourly	measurements	 (i.e.	 fine	 temporal	 resolution)	 at	 0.25°	
resolution	(c.	27.75 × 27.75 km	at	the	equator	or	770 km2; i.e. coarse 
spatial	resolution)	at	2-	m	height	above	ground.

BOX 1 The proximity of climate data

Scientists have traditionally grounded the definition of scale based upon extent (spatial area, temporal duration) and resolution (grain 
size,	temporal	interval)	(Wiens,	1989). However, for climate data, resolution and extent are not comprehensive in describing their 
scale, as data of the same resolution and extent may differ in their ecological relevance to different organisms or processes. Here, we 
define	‘climate	proximity’	as	the	degree	to	which	climate	data	represent	the	actual	conditions	that	an	organism	or	system	is	exposed	
to, as a third dimension of scale distinct from the spatiotemporal resolution of the climate data (Figure 1).	While	resolution	describes	
the quantity or frequency of data, proximity describes how well climate data capture radiation, water and heat exchange relevant to 
a	given	species	for	a	time	and	location.	When	estimating	distributions	of	a	forest-	dwelling	species,	a	1-	km2 temperature product that 
closely	represents	forest	understory	conditions	is	more	proximal	than	a	100-	m2	product	that	represents	free-	air	conditions	as	meas-
ured by weather stations and without accounting for the effects of vegetation. Similarly, mean monthly soil temperatures are more 
proximal	for	belowground	organisms	than	daily	air	temperatures.	We	call	the	opposite	of	proximal	climate,	‘distal’	climate,	that	is,	only	
indirectly	related	to	ecological	responses	(Austin,	2002; Gardner et al., 2019).	Proximity	is	evaluated	in	a	context-	specific	manner,	
which entails that although it can be qualified (e.g. one climate measurement is more proximal for a given species than another climate 
measurement) it is challenging to quantify in general terms (e.g. a 20% increase in proximity). Key to increasing climate proximity for 
a given organism is knowledge of the organism's microhabitats, physiology and ecology, nested within the broader habitat and land-
scape (Figure 1). For a gridded climate dataset, high proximity may not always involve representing the same heights or microhabitats 
across space or time. For ants, proximal climate might be air temperatures in forests, but soil temperatures in barren environments; 
for many amphibians, proximity entails aquatic conditions for tadpoles, and terrestrial conditions for adults.

Although	proximity	is	distinct	from	spatial	or	temporal	resolution,	highly	proximal	climate	typically	varies	at	fine	spatial	and	temporal	
scales. For instance, across horizontal space, topographic heterogeneity will determine how much local temperatures differ from 
macroclimate;	vertically,	soil	temperatures	can	decouple	considerably	from	air	temperatures;	and	temporally,	high-	frequency	wind	
turbulence drives thermal gradients near the ground (see Figure 2 for other mechanisms). Yet, there are also aspects of climate prox-
imity that do not align well within the spatial or temporal dimensions, as proximity also depends upon the biotic context and how 
organisms	‘construct’	their	environments	through	their	physical	properties	and	behaviour	(Kearney	&	Porter,	2009; Pincebourde & 
Woods,	2020). Understanding the ecophysiology of tree frogs inhabiting epiphytic ferns in forest canopies requires measuring or 
simulating fern microclimates (Scheffers et al., 2014), which are nested within the canopy microclimate. Or for many parasites, the 
spatial location of climate data may matter less than accounting for host body temperatures (Thomas & Blanford, 2003). Furthermore, 
not	all	climate-	forcing	processes	contribute	to	proximity	for	a	given	context;	the	attenuation	of	heat	exchange	by	snow	creates	an	
important	subnivium	microclimate	for	small-	bodied	species,	but	less	so	for	many	large	mammals	or	birds	(Pauli	et	al.,	2013).

Climate proximity should also be considered for understanding ecological processes for which there may be many relevant species, 
such as soil carbon sequestration. Given the impracticality of delineating proximal conditions for many taxa across regions, distal 
macroclimate	may	occasionally	be	useful	as	a	‘mean	field	approximation’	of	climate	exposure	across	ecological	communities	(Bennie	
et al., 2014). Yet oftentimes, this approximation is inadequate given heterogeneous microclimates and nonlinear responses to climate 
(Martin	&	Huey,	2008). Ultimately, operative conditions of organisms (body temperatures) are the broker between climate exposure 
and biological responses. Yet, given the challenge of estimating body conditions across space and time, generating or selecting highly 
proximal climate data serves as a useful surrogate for understanding bioclimatic relationships.
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To	 complement	 ERA5's	 coarse	 spatial	 yet	 fine	 temporal	 res-
olution, we also included monthly (coarse temporal resolution) 
macroclimatic	 data	 from	 the	 WorldClim	 database	 (v2.1,	 Fick	 &	
Hijmans, 2017), which are global interpolations derived from 
weather station measurements (i.e. low proximity, or distal, for most 
taxa).	Relative	to	other	global	gridded	products,	WorldClim	has	finer	
spatial resolution (30″	or	c.	1 km2 at the equator)—although we note 
that	1 km2 can still contain high microclimate variability that is rele-
vant to physiology and ecology.

To represent proximal climate data, we employed micro-
climf	 (Maclean,	2023), a recently developed grid version of a pre-
viously	 published	 mechanistic	 microclimate	 model	 (Maclean	 &	
Klinges, 2021). In brief, microclimf	estimates	near-	ground	air	and	soil	
temperatures principally based upon the net energy flux density 
absorbed by surfaces (vegetation/soils) by emulating a Lagrangian 
localized	near-	field	model	(see	Table S1 and Supporting Information 
for details). Using microclimf, we generated spatiotemporal predic-
tions	 of	 below-	canopy	 topsoil	 temperature	 (5-	cm	depth),	which	 is	
proximal	 for	 the	 case	 study	organisms	as	detailed	below,	 at	1 km2 
and	hourly	resolution.	While	estimating	microclimate	can	be	better	
achieved at the meter scale (Briscoe et al., 2023), here we matched 
microclimf	predictions	to	the	1 km2	spatial	resolution	of	WorldClim	

and	hourly	resolution	of	ERA5	to	compare	climate	data	of	the	same	
resolution yet different proximity.

We	assessed	how	closely	ERA5,	WorldClim	and	microclimf tem-
perature	 predictions	matched	 371	 time	 series	 of	 in	 situ	 soil	 tem-
perature measurements (proximal microclimate for our case study 
organisms) from across four continents (Lembrechts et al., 2020; see 
Figure S1 and Supporting Information for details).

2.2  |  Case study 1: Temporal crop pest emergence

Temporal models with climate as input are commonly employed 
for modelling population dynamics, tracking phenology and 
ecological forecasting. To illustrate a biological process using a 
temporally explicit model, we predicted the emergence rates of 
fossorial larvae for two fly species: the cabbage maggot (Delia 
radicum; Linnaeus, 1758) and the seedcorn maggot (Delia platura; 
Meigen,	1826).	As	 two	prominent	pests	 that	 feed	on	crop	roots,	
these	flies	cause	massive	damage,	such	as	up	to	a	$73	million	an-
nual loss in Canada (Broatch et al., 2006).	 Accurate	 predictions	
of fly phenology are useful for informing management practices, 
such as the timing of planting new crops or of pesticide treatments 

F I G U R E  1 Top:	the	three	dimensions	
of climate data resolution used for 
ecological modelling, none of which are 
true characteristics of climate in nature, 
but constructs for describing data. 
The proximity of climate describes its 
relevance to a given organism, process or 
system. For example, the soil temperature 
surrounding a fossorial mouse is more 
proximal (i.e. directly impacts operative 
body temperatures) than the forest 
understory microclimate, which, in turn, 
is	more	proximal	than	ambient	free-	air	
conditions. Bottom: the benefits of 
increasing each of these dimensions of 
climate data may then depend on the 
domains predicted by the ecological 
model: a process that is spatial, temporal 
or spatiotemporal.
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(Dent, 2000). Given that larval survival and growth of both spe-
cies is suspected to be more sensitive to soil temperatures than air 
temperatures (Lepage et al., 2012), phenological predictions may 
diverge when calculated from temperature sources of different 
proximity	(e.g.	ERA5	or	WorldClim	macroclimate	vs.	microclimf soil 
microclimate).

We	 derived	 rates	 of	 insect	 emergence	 from	 topsoil	 as	 pre-
dicted	by	ERA5,	WorldClim	and	microclimf, during 2002 averaged 
across	 five	 locations	 in	Alberta,	Canada,	matching	 locations	 and	
days of observations of these two species by Broatch et al. (2006), 
who reported the proportion of a larval population that emerged 
as	 a	 winged	 adult	 per	 day.	 We	 extracted	 hourly	 temperature	
predictions	 from	 ERA5	 and	microclimf for the year 2002, while 
for	 WorldClim	 we	 extracted	 the	 average	 monthly	 means,	 min-
ima and maxima for the corresponding decade (2000–2009), as 
1-	km2	WorldClim	does	not	 include	hourly	data,	nor	data	 for	 just	
2002.	We	also	temporally	aggregated/disaggregated	each	climate	
data source (hourly to monthly) to isolate the effects of spatial 
resolution, temporal resolution and proximity (see Supporting 
Information	 for	 details).	 We	 then	 converted	 temperature	 data	
into growing degree days (GDDs). GDDs are indices for the ac-
cumulation of heat units above a minimum (base) temperature for 
organismal development, and are frequently used for predicting 
insect	 and	 plant	 phenology	 (Arnold,	 1960).	 Per	 Arnold	 (1960), 
we calculated GDDs as the cumulative sum of the deviations of 
the	 average	 of	 daily	 minima	 and	maxima	 above	 species-	specific	

base	 temperature	 thresholds:	 4.0°C	 for	 D. radicum (Collier & 
Finch, 1985),	3.9°C	for	D. platura (Sanborn et al., 1982).	We	then	
used	GDDs	from	ERA5,	WorldClim	and	microclimf to drive a sim-
ple mathematical model for emergence rates of each fly species. 
We	used	the	model	originally	developed	by	Pearl	and	Reed	(1920) 
and parameterized by Broatch et al. (2006), which estimates the 
proportion of insect emergence per day using a logistic function 
driven by GDDs (see Supporting Information for model specifica-
tion). Given that this model was developed to inform the timing of 
pesticide application, it does not necessitate, nor provide, absolute 
values of adult abundance, only proportions of adults emerging 
over time for identifying the timing of peak emergence. To validate 
predictions	from	each	temperature-	driven	emergence	model,	we	
measured	the	absolute	error	of	species-	specific	predictions	from	
the observed emergence rates (error measured as the number of 
days between predicted timing of an emergence threshold, e.g. 
50% emergence by day of year 180, and the observed day of year 
when that threshold was actually crossed).

2.3  |  Case study 2: Spatial bioclimate and 
mosquito thermal performance

To examine whether the spatial, temporal and proximal dimen-
sions of climate data may differentially change estimates of 
bioclimate and organismal thermal performance, we generated 

F I G U R E  2 Climate	data	can	be	described	in	spatial,	temporal	and	proximal	domains,	as	illustrated	by	the	contrasting	scales	of	the	data	
products	employed	in	this	study:	ERA5,	WorldClim	and	microclimf (a). The proximity of climate describes its relevance to the actual exposure 
of a given organism, process or system. To categorize the proximity of climate data, one must consider the meteorological and geographical 
mechanisms that such data adequately represent, which drive how radiation, moisture and heat exchange (latent and sensible) determine the 
temperature	of	a	time	and	location.	In	(b),	we	present	a	nonexhaustive	ordered	list	of	temperature-	forcing	mechanisms	and	categorize	which	
are	represented	by	each	climate	data	product,	either	explicitly	(for	the	process-	based	ERA5	and	microclimf) or implicitly (through covariates 
used	in	the	statistical	interpolation	employed	by	WorldClim).

Spatial

Proximal
(for case study 

organisms)

100km

hourly

macro

Temporal

10m 100m 1km 110km

daily monthly annual decadal

mesomicrooperative

Proximal Mechanisms
Solar Latitude (solar radiation angle)
Solar Season (axial tilt)
Solar Earth’s rotation
Air Sensible heat flux (convective exchange)
Air Vapour pressure gradient (latent heat exchange)
Air Cloud cover (radiation scattering/interception)

Water Coastal effects (latent heat exchange)
Terrain Altitudinal lapse rate
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maps of (1) mean temperature, (2) extreme temperature and (3) 
temperature-	dependent	fecundity	for	the	mosquito	Aedes aegypti 
(Linnaeus, 1762)	 in	 Sabah	within	Malaysian	 Borneo	 (45,785 km2). 
Aedes aegypti is a prominent vector of several human diseases, in-
cluding dengue and yellow fever, which causes millions of infec-
tions and deaths per year (Bhatt et al., 2013).	We	chose	this	tropical	
region given its widespread land use change from primary forest 
to plantation forest (e.g. oil palm), which may facilitate mosquito 
establishment (Saager et al., 2023). Aedes aegypti rests under veg-
etation or in urban microhabitats, where it deposits eggs in water 
(Cheong et al., 2014). Therefore, microclimate predictions that rep-
resent vegetative shading (e.g. microclimf) are more proximal than 
free-	air	macroclimate	for	adult	mosquitoes.	Across	Sabah,	we	ex-
tracted	hourly	temperature	predictions	from	ERA5	and	microclimf 
for	the	year	2018,	while	for	WorldClim	we	extracted	the	monthly	
means,	minima	and	maxima	estimated	at	1 km2 for the correspond-
ing decade (2010–2019). From each temperature product, we then 
calculated spatial layers of mean annual temperature (BIO1), maxi-
mum temperature of the warmest month (BIO5), and average fe-
cundity of A. aegypti using a thermal reaction norm (see Supporting 
Information for details). This reaction norm was developed by 
Mordecai	 et	 al.	 (2017) using air temperatures, rather than water 
temperatures, although the latter more proximally represents ex-
posure of larval mosquitoes (Paaijmans et al., 2013). To validate 
fecundity predictions, we averaged A. aegypti fecundity measure-
ments across temperature from several laboratory studies (Braks 
et al., 2006; Day et al., 1994)	 to	 generate	 a	 normally-	distributed	
range	of	fecundity	values.	We	then	measured	the	area	of	integra-
tion	 (overlap)	 between	 lab-	derived	 fecundity	 observations	 with	
ERA5,	WorldClim	and	microclimf fecundity predictions (see Klinges 
& Scheffers, 2021 and Supporting Information for details).

2.4  |  Case study 3: Spatiotemporal salamander 
prevalence shifts

Given	 the	 widespread	 interest	 in	 climate	 change-	induced	 range	
shifts (Lenoir et al., 2020), we tested how the spatial resolution, 
temporal resolution and proximity of climate data affect predictions 
of	 spatiotemporal	 changes	 in	 prevalence	 of	 Jordan's	 red-	cheeked	
salamander (Plethodon jordani; Blatchley, 1901) across its range. 
Plethodon jordani is a fossorial salamander, endemic to the Great 
Smoky	Mountains	National	Park	(GSMNP,	2090 km2) in the eastern 
United States, and relies upon cool, moist subsurface microhabitats 
(i.e. under rocks, logs or in burrows). Given that such microclimates 
are	better	represented	by	soil	temperatures	than	free-	air	tempera-
tures, microclimf	 is	more	proximal	 than	either	ERA5	or	WorldClim	
for P. jordani.	 Across	 GSMNP's	 wide	 elevation	 range	 (267–2025	
masl), P. jordani	is	climatically	constrained	to	above	600 m	(Gifford	&	
Kozak, 2012).	With	climate	change,	this	mountain-	dwelling	species	
may either shift towards higher elevations and/or experience abun-
dance changes (Feeley et al., 2012).

To explore the impact of climate data resolution and proximity 
on spatiotemporal salamander prevalence change predictions, we 
conducted two steps, as detailed below. First, we fitted species 
distribution	models	(SDMs)	separately	for	the	1960s	and	1990s	but	
without using any climate covariates (i.e. only using observer bias 
and topographic variables). Then, we compared how generalized 
additive	 models	 (GAMs)	 with	 climate	 covariates	 built	 from	 ERA5,	
WorldClim	or	microclimf	were	able	to	predict	changes	in	SDM	prev-
alence estimates over time.

For	 SDMs,	 we	 collated	 georeferenced	 occurrence	 (presence-	
only)	 data	 from	 two	 primary	 survey	 periods:	 1961–1970	 (‘1960s’,	
975	 surveys)	 and	1991–2000	 (‘1990s’,	704	 surveys)	 (IRMA,	2021). 
Separately for the 1960s and 1990s, we fitted inhomogeneous 
Poisson	point	process	models	 (IPPMs,	Renner	et	al.,	2015) to esti-
mate relative prevalence of P. jordani on a 0–1 scale. The topographic 
predictors used in each of these models included elevation, slope and 
aspect	(measured	in	radians)	at	1-	km2 resolution (obtained from the 
Amazon	Web	Services	Terrain	Tiles).	An	additional	spatial	predictor,	
distance from the closest trail on which salamander surveys were 
conducted, was also included in each model to control for observer 
bias.	The	quality	of	fit	was	determined	through	five-	fold	cross	valida-
tion	and	model	performance	was	assessed	using	CBI,	AUC	and	TSS	
criteria	 (Allouche	et	al.,	2006). CBI results, which are most appro-
priate	for	presence-	only	data	paired	with	pseudo-	absences	 (Boyce	
et al., 2002), are presented in the main text. Salamander prevalence 
changes	were	 then	 considered	 as	 the	differences	 in	 SDM-	derived	
prevalence from the 1960s to the 1990s (see Supporting Information 
for	details	on	model	calibration,	tuning,	pseudo-	absence	point	selec-
tion, and validation).

Next, we aimed to understand how prevalence shifts over time, 
as	 predicted	 by	 our	 SDMs,	 were	 explained	 by	 climatic	 changes	
expressed by different temperature products. For this, we fitted 
a	set	of	GAMs	using	bioclimatic	 layers	 from	one	of	either	ERA5,	
WorldClim	or	microclimf as predictors, and changes in salamander 
prevalence as the response variable assuming a Gaussian distri-
bution. For bioclimatic variables, we used the only two variables 
with	 historic	 decadal	WorldClim	 data	 at	 1	 km2—annual thermal 
maximum (BIO5) and minimum (BIO6)—which have been shown to 
correlate with distributions of salamanders in this region (Baken 
et al., 2021).	For	each	climate	source,	we	calculated	the	per-	pixel	
change in each bioclimatic variable between the 1960s and 1990s, 
and	used	 these	climate	change	estimates	as	GAM	predictors.	To	
further explore how the spatial resolution of climate data influ-
ences predictions independent of the temperature product used, 
we spatially aggregated (averaged across cells) and disaggregated 
(bilinear interpolation) temperatures from microclimf,	WorldClim	
and	ERA5—each	at	1-	km,	3-	km,	10-	km	and	27.75-	km	 resolution.	
We	 then	 fitted	 GAMs	 for	 each	 temperature	 product	 at	 each	 of	
these spatial resolutions, corresponding to 12 models in total (see 
Supporting Information for more details on climate data process-
ing,	fitting	GAMs	and	measures	taken	to	control	for	survey	effort	
and initial prevalence).
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2.5  |  Software

All	analyses	were	conducted	in	R	v4.2	(R	Core	Team,	2022); all pack-
ages used for data access, processing and analysis are provided in 
the Supporting Information.

3  |  RESULTS

Across	371	time	series	of	in	situ	soil	temperature	data	globally,	mi-
croclimf	had	8.2%	and	25.2%	lower	root	mean	square	error	(RMSE)	
than	ERA5	and	WorldClim,	respectively,	and	24.9%	and	16.4%	lower	
absolute	 bias	 than	 ERA5	 and	 WorldClim	 respectively	 (Figure 3, 
Table S2, Figure S2).

In	case	study	1,	temperature	predictions	by	ERA5,	WorldClim	
and microclimf	 in	 Alberta,	 Canada	 were	 similar	 (Figure 4a). Yet, 
marginal differences among the three temperature products 
yielded disparate calculations of growing degree days (Figure 4b), 
thereby resulting in divergent estimates of insect emergence 
(Figure 4c, Table S3). Emergence models driven by microclimf 
(proximal climate) at hourly resolution were most accurate, with 
an	average	error	of	6.57 days,	 followed	by	ERA5	at	hourly	 reso-
lution	 (17.0 days)	and	all	other	models	descending	with	 temporal	
resolution except monthly microclimf	(17.6 days),	which	performed	
better	than	daily	WorldClim	(20.42 days;	Figure S3).	Average	error	
reported here is the mean error across all proportion emergence 
thresholds for both species.

In case study 2, microclimf predictions of A. aegypti mos-
quito	 fecundity	 were	 the	 most	 accurate,	 with	 6.22-	fold	 and	
7.76-	fold	 increases	 in	 overlap	 with	 the	 empirical	 fecundity	 dis-
tribution	 as	 compared	 to	 those	 of	 ERA5	 and	WorldClim	 respec-
tively (Table S4). microclimf fecundity predictions were also higher 
(x̄  = 6.96	 eggs	 laid	 /	 day)	 than	 fecundity	 derived	 from	 ERA5	 or	
WorldClim	(x̄  = 5.30	and	x̄  = 4.92	respectively;	Figure 5, Table S5). 
Contrasting with fecundity predictions, BIO1 calculated from 
ERA5,	WorldClim	and	microclimf all had similar distributions that 
overlapped	considerably	 (mean	overlap = 70.1%),	while	BIO5	dis-
tributions diverged between temperature products (mean over-
lap = 16.9%,	Table S4).

In case study 3, the three temperature products yielded dif-
ferent predictions of changes in the prevalence of P. jordani sal-
amanders between the 1960s and the 1990s (Figure 6b,c). The 
microclimf-	driven	 GAM	 performed	 best,	 explaining	 58.1%	 of	 all	
deviance	 compared	 to	 only	 39.1%	 and	 17.2%	 for	 GAMs	 using	
WorldClim	and	ERA5	respectively	(Tables S6 and S7). Furthermore, 
the predicted rate of historic warming differed considerably across 
climate data products (Figure 6a). For instance, the increase in 
BIO5	computed	from	WorldClim	was	0.597°C	per	decade,	which	
was 84% and 88% faster than the rate at which BIO5 was warming 
based	on	ERA5	and	microclimf respectively. Such warming corrob-
orates upslope shifts of salamanders as predicted by species dis-
tribution	models	(SDMs):	the	elevations	of	pixels	with	at	least	80%	
salamander	prevalence	on	average	shifted	up	by	136 m.	SDMs	had	

good fit to hold out validation data as indicated by their CBI (CBI: 
0.963 for 1960s model, 0.988 for 1990s model; see Supporting 
Information for further validation).

4  |  DISCUSSION

Measuring	 the	role	of	scale	 in	biological	and	environmental	pro-
cesses requires proper definition of scale itself. In our study, we 
defined climate proximity (Box 1) and explored its importance as 
an	ecologically	relevant	component	of	climate	scale.	We	incorpo-
rated several temperature data products into a suite of ecological 
models to evaluate the benefits of increasing spatial resolution, 
temporal resolution or proximity of climate data relative to the 
focal	 species.	We	 found	via	our	 case	 studies	 that	 the	predictive	
power	 of	 climate-	driven	 ecological	 models	 is	 maximized	 when	
temporal resolution, spatial resolution and proximity are all high. 
Yet, increasing climate proximity (i.e. from macroclimate to micro-
climate while the spatiotemporal resolution remained constant) 
resulted	in	a	247%	mean	improvement	in	ecological	models	across	
case studies, relative to only an 18% improvement from a mean 
20-	fold	increase	in	spatial	resolution,	and	a	9%	improvement	from	
a	mean	30-	fold	 increase	 in	 temporal	 resolution.	This	entails	 that	
when selecting or processing climate data, prioritizing higher 
proximity, yet coarser spatiotemporal resolution, may increase 
data quality (for ecological prediction) and also decrease quantity 
(i.e. data density in space and time), and therefore, possibly en-
tail less computational demand or storage space. Here, we discuss 
how treating proximity separately from spatiotemporal scale is not 
just a change of semantics, but it advances theory by helping to 
identify the mechanisms of organismal responses to climate. By 
considering climate proximity, one emphasizes biophysically in-
formed approaches rather than generic formulations when match-
ing climate data to an ecological system.

4.1  |  Modelling temporal ecological processes

In our first case study, we found that temperature data with both 
fine temporal resolution and high climate proximity yielded the 
most accurate predictions of the emergence rates of two fossorial 
insect species, D. platura and D. radicum (Figure 4). Prediction errors 
varied	across	 temperature	products	 from	6.57 days	 (hourly	 topsoil	
temperatures from microclimf)	 to	 33.25 days	 (ERA5	 macroclimate	
aggregated to monthly, Table S3).	Given	 that	75%	of	 all	 individual	
D. platura and D. radicum emerged within windows of just 22.8 and 
15.3 days,	respectively,	predictions	from	temperature	data	with	low	
proximity	and	coarse	temporal	 resolution	 (e.g.	monthly	WorldClim	
and	monthly	 ERA5)	 almost	 entirely	 missed	 the	 emergence	 event.	
Noteworthy is that even when microclimf predictions were aggre-
gated to monthly resolution, they yielded more accurate emergence 
predictions	than	WorldClim	disaggregated	to	daily,	and	were	com-
parable	in	performance	to	hourly	ERA5.	These	findings	suggest	that,	
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8 of 16  |     KLINGES et al.

for this system, the proximity of climate data may be more important 
than their temporal resolution.

Several mechanisms might explain why climate data of both 
high temporal resolution and high proximity accurately predict 
ecological time series. First, given that many ecological responses 
to temperature are nonlinear, the mean ecological response to ther-
mal variation over time (what is typically of interest) does not 
necessarily equal the ecological response to the mean tempera-
ture	(Martin	&	Huey,	2008). This mathematical principle, known as 
Jensen's	 inequality,	 explains	why	 the	predicted	emergence	 rates	
in	response	to	coarse	temporal	data	(e.g.	monthly	WorldClim	and	
ERA5)	differed	considerably	from	average	true	emergence	rates,	
which	 are	 likely	 sensitive	 to	 short-	term	 fluctuations	 in	 tempera-
ture (e.g. across hours; Denny, 2019).

Second, individual organisms are exposed not only to instan-
taneous temperature but also to cumulative thermal variation at 

the scale of hours to months and beyond (Kefford et al., 2022). 
Even if differences between climate products are minimal at any 
given timestep (Figure 4a), small thermal deviations accumulate 
over time (e.g. divergence in GDDs, Figure 4b), rendering distal 
macroclimate unsuitable for capturing the collective climate ex-
posure of organisms and their phenological responses (Figure 4c). 
Only proximal climate data of fine temporal resolution will ade-
quately capture the cumulative effect of such intraseasonal vari-
ability. Yet, temporal variation can be irrelevant when the climate 
data are not proximal to the ecological responses of interest. 
Therefore, distal, yet fine temporal resolution, climate data may 
have	a	low	‘signal-	to-	noise’	ratio.	Increasing	proximity	entails	rep-
resenting ecologically relevant climate variation (i.e. signal), while 
increasing resolution of distal climate data can introduce irrele-
vant climate variation (i.e. noise; for instance, the hot extreme air 
temperature	of	hourly	free-	air	macroclimate	that	is	not	relevant	to	

F I G U R E  3 Comparison	of	temperature	predictions	from	ERA5,	WorldClim	and	microclimf using empirical temperature measurements 
from	in	situ	loggers.	(a–f)	panels	display	time	series	from	six	example	locations	(from	371	in	total)	representing	different	vegetation	
categories from four continents (see Figure S1 for all locations). Vegetation categories are 2015 estimates from the Copernicus Global Land 
Service Land Cover product. Black lines indicate empirical observations of soil temperature, coloured lines indicate temperature predictions 
from	each	temperature	product.	(g–i)	scatter	plots	of	the	root	mean	square	error	(RMSE)	between	predictions	from	each	temperature	
product	and	empirical	temperature	data	(RMSE	calculated	from	monthly	resolution	predictions	for	comparisons	against	WorldClim,	and	
hourly	resolution	predictions	for	the	ERA5-	microclimf	comparison).	Each	point	corresponds	to	RMSE	from	measurements	of	one	logger	
during	1 year,	and	black	lines	represent	the	lines	of	equality	(equal	error	between	the	two	temperature	products).	The	microclimf model 
performed	best	(lowest	RMSE),	followed	by	ERA5	and	then	WorldClim	(also	see	Table S2).
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    |  9 of 16KLINGES et al.

a fossorial organism; see also Dillon et al., 2016). This may explain 
why	WorldClim	disaggregated	to	daily	intervals	performed	worse	
than monthly microclimf predictions.

4.2  |  Modelling spatial ecological processes

In our second case study, we illustrated that the method by which 
climate data are summarized from a time series and mapped into a 
single spatial index may either enhance or mitigate the variability 
and	utility,	of	fine-	resolution	proximal	data.	For	the	tropical	region	
of	Sabah	in	Malaysian	Borneo,	microclimate	and	macroclimate	prod-
ucts yielded similar spatial distributions of mean annual tempera-
tures (BIO1, Figure 5a), which may lead the modeller to conclude 
that microclimates reflect macroclimate in this region. However, 
when we calculated the maximum temperature of the warmest 
month (BIO5, Figure 5b) from each temperature product, there were 
larger differences in spatial profiles than for BIO1. Furthermore, 
when	we	calculated	temperature-	sensitive	fecundity	rates	of	A. ae-
gypti,	 microclimate-	derived	 estimates	 diverged	 considerably	 from	
macroclimate-	derived	estimates,	and	were	more	accurate	(Figure 5c). 
Of note is that even microclimate still underpredicted mosquito fe-
cundity, perhaps because microclimf predictions were imperfect at 
representing conditions of both airborne adult mosquitoes and wa-
terborne larvae. Given that Aedes mosquitoes are sensitive to micro-
climatic gradients across land uses (Saager et al., 2023) and respond 

to temperature in a nonlinear fashion (Kearney et al., 2009), spatial 
and temporal patterns of thermal suitability for this species are likely 
more complex than what a simple annual mean (BIO1) can capture 
(see	also	Jensen's	inequality	as	described	above).	Our	results,	there-
fore, showcase the importance of carefully selecting bioclimatic var-
iables deemed most relevant to the ecological response in question.

Many	species	distribution	models	(SDMs)	use	climate	data	that	
have been aggregated into a set of particular bioclimatic variables 
(BIO1–BIO19), first established by Nix (1986) and adopted in many 
commendable climate databases (Fick & Hijmans, 2017; Haesen 
et al., 2023; Karger et al., 2017). These sets of bioclimatic variables 
are convenient as (1) they are sometimes useful indices for repre-
senting climate suitability, (2) they can match the temporal resolu-
tion of some ecological observations, such as seasonal or annual 
occurrence records and (3) their generality enables standardization 
of methods across species, studies and systems. Yet, the popularity 
of standard bioclimatic variables may also be at their peril, as many 
modellers default to using these same simple approaches rather than 
seek to identify the biophysically relevant exposure that bioclimatic 
variables attempt to represent (Gardner et al., 2019). Comparing 
average temperatures (e.g. BIO1) across systems may mask eco-
logically important differences (Körner & Hiltbrunner, 2018); for 
instance, mean annual temperatures may not deviate substantially 
between degraded and unmodified forests, even though thermal 
buffering across the same vegetation gradient is clear when mea-
sured via other indices (De Frenne et al., 2019). Using maps of the 

F I G U R E  4 Case	study	1:	temperature	predictions	(a),	growing	degree	days	(GDDs,	b)	and	emergence	rate	predictions	(c)	for	the	soil-	
dwelling	larvae	of	two	crop	pest	insects	in	Alberta,	Canada,	all	calculated	separately	from	ERA5,	WorldClim	and	microclimf. GDDs are 
indices for the cumulative sum of temperatures above a minimum (base) temperature for organismal development, and we predicted 
emergence rates using a logistic model driven by GDDs. Black points in panel (c) indicate empirical observations for the two species (no 
empirical data for 10% and 95% emergence for Delia platura).	Although	all	three	temperature	products	had	similar	temporal	patterns	in	
temperature	(a;	average	difference	in	daily	means	across	climate	sources = 0.49°C)	and	growing	degree	days	(b;	average	difference	across	
climate	sources = 200.0	GDDs;	displayed	here	are	GDDs	just	for	Delia radicum), even such small differences yielded divergent predictions of 
nonlinear biological responses (c; Table S3). High proximity (microclimf) yielded the most accurate biological predictions. See Figure S3 for 
results with temporally aggregated/disaggregated climate data.
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annual warmest and coldest temperatures (e.g. BIO5 and BIO6) for 
habitat suitability modelling may also have its caveats: BIO5 and 
BIO6 maps can be sensitive to just the most extreme values, which 
may be anomalous or physiologically inconsequential. If an ecological 
process is sensitive to a particular threshold (e.g. freezing of water 
at	0°C),	the	extremity	of	values	is	trivial	if	well	beyond	the	thresh-
old value (Buckley, Carrington, et al., 2023).	When	annual	averages,	
extremes or others in the BIO1–BIO19 set do not covary with more 
relevant climatic variables (e.g. hours below freezing), as they often 
do not, relying on such averages or extremes can lead to poor habi-
tat suitability prediction and result in misguided conclusions.

4.3  |  Modelling spatiotemporal ecological  
processes

Most	processes	in	nature	vary	in	space	and	time	and	are	best	mod-
elled as such (Levin, 1992). In our spatiotemporal case study, using 
the highly proximal microclimf microclimate predictions instead of 
ERA5	or	WorldClim	dramatically	 improved	 the	explanatory	power	
of our models of prevalence shifts of a fossorial salamander species, 
P. jordani (Figure 6). The microclimf-	driven	statistical	model	of	preva-
lence shifts explained 1.5×	 more	 variation	 than	 the	 WorldClim-	
driven model, and 3.5×	 more	 variation	 than	 the	 ERA5-	driven	

F I G U R E  5 Case	study	2:	estimates	of	mean	annual	temperature	(BIO1,	column	a),	maximum	temperature	of	the	warmest	month	(BIO5,	
column b) and average fecundity as a metric of thermal performance for Aedes aegypti	mosquitoes	(column	c),	derived	from	ERA5,	WorldClim	
and microclimf	predictions	across	Sabah	in	Malaysian	Borneo.	Differences	in	spatial	resolution,	temporal	resolution	and	proximity	can	result	
in shifts in thermal profiles (density plots at top), depending on what bioclimatic variable is calculated. Column (a) as an annual average, 
BIO1 was not sensitive to differences in temporal variability between microclimate and macroclimate, and therefore, thermal distributions 
across	temperature	products	were	similar	(mean	overlap = 70.1%).	Column	(b)	maximum	temperatures	of	the	warmest	month	(BIO5)	diverge	
more	among	the	three	temperature	products	(mean	overlap = 16.9%),	with	hourly	resolution	products	(ERA5	and	microclimf) yielding higher 
warmest	extremes	than	the	monthly	resolution	WorldClim.	Column	(c)	estimates	of	fecundity	rates	from	a	temperature-	driven	reaction	
norm empirically parameterized for A. aegypti	were	fairly	similar	between	the	two	macroclimate	products	(overlap = 47.2%),	but	higher	and	
more accurate when derived from microclimf microclimate predictions. Dashed grey density plot indicates a distribution generated from 
empirical fecundity measurements, which overlapped more with microclimf	predictions	(37.8%)	than	ERA5	(6.1%)	or	WorldClim	(4.9%).	
Averaging	climate	(e.g.	to	BIO1)	suppresses	the	variability	that	characterizes	high-	resolution	or	proximal	climate	data,	while	biophysically	
informed summaries (e.g. average fecundity from a thermal reaction norm) are more sensitive to such variability, and therefore, result in 
greater divergence between macroclimate and microclimate.
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model. Furthermore, microclimf	 still	 outperformed	WorldClim	 and	
ERA5	even	when	at	coarser	spatial	resolution	than	them	(Figure 6c, 
Table S6).	Warming	rates	predicted	by	the	highly	proximal	microclimf 
model	were	 also	 slower	 than	 those	of	 either	 ERA5	or	WorldClim.	
These results, in tandem, suggest that climate proximity may influ-
ence findings of climate change velocity or its ecological implications: 
coarse-	resolution,	distal	climate	data	commonly	used	in	macroecol-
ogy	may	exaggerate	predictions	of	climate	change-	induced	species'	
extinctions and range shifts (Colwell, 2021;	Maclean	&	Early,	2023).

Microclimate	 data	 provide	 several	 benefits	 for	 spatiotempo-
ral analyses, with one benefit concerning drivers of climate, and 
a second concerning how organisms respond to climate. First, the 
relative	 importance	 of	 microclimate-	forcing	 variables	 changes	
across the same spatial and temporal scales at which most organ-
isms live. For instance, across space, atmospheric turbulence and 
wind	 speeds	 drive	 near-	surface	 temperature	 in	 barren	 environ-
ments but can have a negligible effect on understory tempera-
tures	within	nearby	forests.	Across	time,	soil	surface	temperatures	

F I G U R E  6 Case	study	3:	incorporating	microclimate	results	in	improved	prediction	accuracy	of	spatiotemporal	prevalence	shifts,	as	
indicated	by	predicted	changes	in	salamander	prevalence	in	Great	Smoky	Mountains	National	Park.	(a)	Estimates	of	warming	(slopes	of	lines)	
between	the	1960s	and	1990s	were	higher	for	WorldClim	(0.597°C	per	decade)	than	either	ERA5	or	microclimf. Furthermore, microclimf—
which	predicted	topsoil	temperatures	both	below	canopies	and	exposed	to	full	sun,	as	opposed	to	just	free-	air	temperatures	from	ERA5	and	
WorldClim—expressed	greater	spatial	variability	in	maximum	temperature	than	the	macroclimate	products.	(b)	During	the	same	four-	decade	
timespan, areas of high salamander prevalence shifted towards higher elevations in the centre of the park (top map). Predictions of changes 
in	salamander	prevalence	from	generalized	additive	models	(GAMs)	driven	by	the	three	temperature	products	had	vastly	different	patterns,	
with microclimf-	driven	predictions	(bottom	map)	visually	and	quantitatively	capturing	the	spatial	signal	of	empirical	prevalence	shifts	(top	
map).	(c)	The	GAM	driven	by	1-	km	resolution	microclimf predictions performed best as indicated by the proportion of variance explained (R2), 
and this advantage was held by microclimf	until	spatially	aggregated	to	10-	km	resolution.
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are largely a function of solar radiation during the day, yet are 
more dependent on cold air drainage and soil composition at night 
(Geiger et al., 2009). Such heterogeneous microclimate forcing 
makes it difficult to compress a microclimatic dataset—of suffi-
cient extent and duration to be ecologically relevant—into static 
spatial layers or single time series that adequately represent the 
climate history across an area. Conversely, the forcing of macro-
climate, although complex, primarily operates at scales broader 
than any single organism is normally exposed to. This results in 
spatiotemporally smoother distributions of macroclimate that can 
be	summarized	to	two-		or	one-	dimensional	data	across	kilometres	
and months. Second, organisms directly respond to proximal con-
ditions (microclimates) rather than distal conditions but realized 
exposure to microclimates can change in both space and time. For 
instance, mobile species can move between microclimates to be-
haviourally thermoregulate (Kearney & Porter, 2009). In concreto, 
when the structures of both climate data and ecological models 
are such to allow variability in both space and time, then climate 
data of high proximity will become dramatically more useful for 
accurate ecological predictions.

4.4  |  Leveraging climate data for ecological 
predictions

When	generating,	accessing	or	processing	climate	data,	researchers	
should consider not just spatiotemporal resolution, but also climate 
proximity: how well such data represent the conditions that organ-
isms actually experience within their habitats. In our case studies, 
we found that increasing proximity can yield far greater improve-
ments in ecological predictions than increasing either spatial or tem-
poral	 resolution.	Accordingly,	 a	 unified	definition	of	 ‘microclimate’	
should be couched in terms of proximity for a given organism or pro-
cess, rather than just the spatial and temporal resolution of climate 
observation or prediction.

Re-	evaluating	climate	scale	in	this	manner	questions	the	use	of	
some generic formulations of the relationship between climate and 
ecology	 as	 often	 employed	 in	 large-	scale	 biogeographical	 studies.	
For any individual organism, actual exposure is best represented 
with physiologically informed predictors (Gardner et al., 2019). 
Such predictors can range from simple sums of the cumulative time 
beyond a threshold (e.g. the critical thermal maximum), to calcu-
lating average performance based upon a thermal reaction norm 
(Figure 5c), or fully embracing a biophysical model to link energy 
exchange between an organism and its environment to the corre-
sponding physiological impacts (Briscoe et al., 2023).	When	possi-
ble, employing spatiotemporally explicit data and models will also 
better capture the diverse processes that shape climate and its roles 
in	ecology	and	biogeography,	and	will	best	leverage	high-	resolution	
proximal climate data.

Microclimate	 datasets	 and	 models	 make	 different	 trade-	offs	
to represent proximal microclimates that may serve certain appli-
cations better than others. The microclimf model employed here 

spatially predicts subcanopy and soil microclimate in a computation-
ally efficient manner by simplifying treatment of some physical pro-
cesses; NicheMapR (Kearney & Porter, 2017) trades computational 
speed for greater fidelity to physical processes; microclimc	(Maclean	
& Klinges, 2021) includes more detail on canopy effects and TrenchR 
(Buckley et al., 2023b) trades complexity for accessibility. Gridded 
microclimate datasets are also becoming increasingly available 
across broad expanses (Haesen et al., 2023; Kearney et al., 2014; 
Lembrechts et al., 2022).	When	selecting	between	models	and	data-
sets to represent proximal microclimate, we advise ecologists to es-
pecially consider the home range size (for animals), phenology and 
activity windows, and an organism's morphology, all of which deter-
mine climate exposure (Kearney & Porter, 2009; Potter et al., 2013). 
Body size, in particular, can be used to quantitatively define micro-
climates for a given organism (Kearney et al., 2021; Pincebourde & 
Woods,	 2020). Using several tools in tandem may also represent 
multi-	scale	 microclimates	 relevant	 to	 a	 species,	 such	 as	 variable	
tree bark surface temperatures nested within forest understories 
(Pincebourde	&	Woods,	2020).

Our case studies are inherently limited in scope (e.g. all are ec-
tothermic animals with restricted mobility), as they serve only as 
illustrative examples of several ecoclimatic relationships worth ex-
ploring (phenology, thermal suitability and range shifts). Similar to 
much of the climate change ecology literature, we focused primarily 
on temperature, yet climate consists of many other relevant vari-
ables (Stocker et al., 2014). Furthermore, the spatial resolution of 
climate data explored here matches that of many studies of species' 
distributions,	but	is	coarser	than	that	of	data	collected	in	most	field-	
based ecological studies (Estes et al., 2018). Yet, while increasing 
climate proximity is useful across scales, even down to operative or 
body conditions (including leaf surface or phyllospheric tempera-
tures; Pincebourde & Casas, 2019), finer resolution data can some-
times decrease prediction accuracy due to overfitting or bias from 
a scale mismatch (also see Box 1).	We	recommend	modellers	to	per-
form	 scale-	of-	effect	 analyses	 (e.g.	 van	de	Pol	 et	 al.,	2016), which 
identify the temporal periods and/or spatial extents that are most 
correlated to a chosen ecological response, and therefore do not as-
sume that finer resolution entails higher accuracy. By doing so, one 
may find that the spatiotemporal density of climate measurements 
and estimates may matter less than how those data were collected 
or derived, and how they are integrated into models.

Both climate and its ecological responses are multifaceted 
and scale dependent. Here, we have highlighted some of the in-
adequacies	 of	 coarse	 or	 even	 fine-	resolution	 climate	 data,	 and	
demonstrate the importance of proximity for spatial, temporal 
and spatiotemporal processes. By redefining climate scale with an 
emphasis on proximity to a target application, we not only bet-
ter distinguish the language used to express climate's impact on 
ecology and improve modelling practices, but also advance theory. 
Considering climate proximity uncovers important mechanisms by 
exploring how climate drives biology through the lens of the or-
ganism itself. Rather than relying on analytical shortcuts that may 
be easily generalizable (e.g. standard bioclimatic variables derived 
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from distal data), it is every ecologist's duty to identify what con-
ditions are most proximal for their study system and species. 
Using available data and tools that measure and model biologically 
relevant	climate,	ecologists	can	gain	a	more	refined	and	process-	
focused understanding of global change.
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