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Abstract The importance of salinity experienced during
embryonic development and initial larval biomass on
larval growth was studied in the South American es-
tuarine crab Chasmagnathus granulata. Ovigerous fe-
males were maintained at three salinities (15, 20, and
32%,) from egg laying to hatching of zoea 1. Larvae
from all treatments were reared under constant condi-
tions of photoperiod (12:12), temperature (18°C), and
salinity (first instar at 209, subsequent instars at 329,).
Biomass was measured as dry weight, carbon, and ni-
trogen content per individual at egg laying, hatching of
zoea 1, premoult zoea 1, and zoea 4, and in 8-day-old
megalopa. From hatching to premoult zoea 4, biomass
was higher for larvae from prehatching salinities of 15
and 329, There was a significant positive correlation
between biomass at hatching and at premoult zoea 1
and zoea 4. Accumulated biomass during zoeal stages
tended to be higher for larvae from broods with higher
biomass at hatching, although this trend was not al-
ways significant. Zoea 4 either directly metamorphosed
to megalopa or moulted to zoea 5, following, respec-
tively, a short or long developmental pathway. The
proportion of zoea 4 that followed the long pathway
was negatively correlated with biomass of zoeal stages.
Biomass at hatching was correlated with biomass of
megalopae developed through the short pathway, al-
though it was not correlated with the accumulated
biomass at this stage. Megalopae developed through
the long pathway (i.e. metamorphosed from zoeae 5)
had higher biomass than those from the short pathway.
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The present results suggest that prehatching salinity
and initial egg and larval biomass can be very impor-
tant for larval growth.

Introduction

Larval development of marine organisms is character-
ised by important changes in organic and inorganic
constituents during growth and morphogenesis. Patterns
of growth and morphogenesis depend on phylogeny and
are affected by environmental factors (Pechenik 1987;
Anger 1990, 1991, 1998; George 1996, 1999). In decapod
crustaceans with conspicuous metamorphic changes (e.g.
brachyuran crabs) growth is species and stage dependent
(Anger 1990, 1998). Food availability and quality
(Anger and Dawirs 1982; Dawirs 1986, 1987, Harms
et al. 1991, 1994), temperature (Dawirs and Dietrich
1986; Anger 1987), and salinity (Anger et al. 1998, 2000)
stress can have detrimental effects on growth, decreasing
the rate of accumulation of biomass.

In coastal waters, osmotic stress due to low and
variable salinities may reduce growth rates and then
fitness of larvae. Low salinities lead to a decrement in
growth rates or even loss of weight in larval instars of
several marine and estuarine crustaceans (Johns 1982;
Pfaff 1997, Anger et al. 1998, 2000); instars with osm-
oregulatory abilities seem to be less sensitive to low sa-
linity (G. Torres et al., in press). Effects of salinity on
larval growth may also depend on initial larval reserves
or acclimation history, especially in estuarine crabs. For
example, zoeae 1 of the South American estuarine crab
Chasmagnathus granulata survive and successfully moult
to the second zoea at low salinities (5-109,) if previous
embryos developed at 15 or 209, instead of 32%,
(Giménez 2000). This acclimation process also favours
larval tolerance to short starvation periods at 209,
through an increment in the rate of accumulation in
carbon (C) and nitrogen (N; Giménez 2002). In this es-
tuarine species, embryos are expected to develop under
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the variable conditions of salinity. Additionally, as
populations occupy different types of estuarine habitats
of south Brazil, Uruguay, and Argentina (Boschi 1964)
it should be expected that larvae from different
populations hatch from embryos developed under dif-
ferent salinities. C. granulata exhibits an export strategy
(Anger et al. 1994): zoeae 1 hatch in the estuarine water
and are transported to the open sea where they develop
through four or five zoeal stages and a megalopa (Boschi
et al. 1967; Pestana and Ostrensky 1995). Biomass of
freshly hatched zoea 1 depends on initial egg biomass
and salinity experienced during embryogenesis (Giménez
and Anger 2001). Besides, biomass affects larval survival
and duration of development (Giménez 2000).

The previously described patterns of larval survival
and development may be due to changes in the osm-
oregulatory capacity and effects of individual biomass at
hatching on the amount of reserves existing at subse-
quent larval instars. Changes in osmoregulatory capac-
ity during larval development of C. granulata have been
recently studied (Charmantier et al. 2002). In the present
article, we explored in laboratory experiments the effect
of prehatching salinity and initial egg and larval biomass
on the amount of reserves at all larval instars of
C. granulata. In particular, we evaluated the effect of (1)
prehatching salinity (i.e. the salinity experienced during
embryonic development), and (2) initial individual larval
biomass [i.e. individual dry weight (DW), C, and N
content at hatching] on larval growth of C. granulata
from the first instar to the megalopa.

Materials and methods

All experiments were conducted under controlled conditions of
temperature (18°C) and photoperiod (12:12). Seawater (329,) for
experiments was filtered (Orion, mesh size: 1 um); water of lower
salinities was obtained by diluting appropriate quantities of sea-
water with artificially desalinated water. Three groups of ovigerous
females (ten females/broods per group) were maintained, isolated
from egg laying to hatching of larvae, in individual aquaria at three
prehatching salinities (15, 20, and 329,,), respectively; that is, there
were ten aquaria per prehatching salinity. Embryonic development
takes about 30 days and it is not significantly influenced by salinity
(Giménez and Anger 2001). Ovigerous females maintained at 159,
during embryogenesis laid eggs at 159, other females at 329, (see
Giménez and Anger 2001 for details). Females were fed isopods;
water and food were changed every day. Freshly hatched larvae were
mass reared at 209, during the first zoea, and at 329, from zoea 2 to
premoult megalopa, simulating presumed natural conditions of ex-
port strategy. Individual larval biomass was measured as DW, C,
and N content at egg laying (initial egg biomass), hatching of zoea 1
(initial larval biomass), premoult zoeae 1 and 4, and at about 70% of
total development duration of the megalopa (i.e. on day 8 from
metamorphosis of the last zoeal instar, when C and N reach their
maximum levels: Anger and Ismael 1997). Three to five samples per
brood were rinsed in distilled water for a few seconds, dried on filter
paper, transferred to tin cartridges and dried for 48 h in a vacuum
drier (Finn-Aqua Lyovac GT2E), weighed on a microbalance
(Mettler UMT?2, precision: 0.1 pg), and analysed in a Carlo Erba
Elemental Analyser (EA 1108). The number of individuals per
sample depended on larval stage: 40 for egg and zoea 1 at hatching,
35 for premoult zoea 1, 5 for premoult zoea 4, and 2 for megalopa.

Rearing of zoeal instars 1-4 was done in bottles (10 1), with gentle
aeration. Freshly moulted zoea 4, zoea 5, or metamorphosed

megalopa were sorted after the day of moulting to obtain homo-
geneous groups (i.e. individuals with the same age counting from the
last moulting or metamorphosis). Zoeae 4 were reared in beakers
(0.5-51) at a density of one individual per 10 ml. Megalopae were
reared in aquaria, at a density of one individual per 30 ml, with a
nylon gauze on the bottom as artificial substrate. Larvae were fed
with Artemia sp.; water and food was changed every day.

Statistical analyses were run following Day and Quinn (1989),
Zar (1996), and Underwood (1997). The effect of prehatching sa-
linity on larval biomass was evaluated with one-factor analyses of
variance (ANOVAs). The effect of initial larval biomass was added
as a covariate to the ANOVAs (e.g. initial DW of zoea 1 as a
covariate of DW at premoult zoea 1) and evaluated with Pearson
correlation. The significance of correlations was adjusted by the
sequential Bonferroni method (Rice 1989) for DW, C, and N
content separately. The number of broods (=replicates) was 30
(n=10 for each prehatching salinity 15, 20, and 329%,) for eggs and
zoea 1; 26 for zoea 4 (n=7, 9, and 10 for 15, 20, and 32%,, re-
spectively); and 24 for the megalopae (n=9, 6, 9). This occurred
because for some broods there was an insufficient number of zoea 4
for analyses, or because a considerable proportion of zoea 4 mo-
ulted to zoea 5 (see Results). The effect of prehatching salinity and
initial larval biomass on biomass of megalopae was evaluated only
for those larvae that followed the short larval pathway (i.e. those
originated directly from the metamorphosis of a zoea 4). We also
investigated possible correlations between the proportion of larvae
that followed the long pathway (i.e. those originated from the
metamorphosis of a zoea 5), and individual biomass at previous
instars. Individual biomasses of larvae that followed the short and
long pathways were compared with Student’s z-test for paired
samples. Before analyses, normality was checked with normal plots
of residuals and heterogeneity of variance with Cochran’s test; data
were normally distributed and the variances were always homo-
geneous.

Results

Changes in biomass from egg laying
to premoult zoea 4

Initial egg biomass was maximum for those laid at 159,
(Fig. 1); eggs from broods incubated at 20 and 329, had
similar biomass. After hatching, the highest C and N
content were observed for larvae from prehatching sa-
linities 15 and 329, although significant differences were
found only between 15 and 209/, (Fig. 1, Table 1). At
premoult zoea 1 differences in biomass were significant
only for DW, although for C and N content they were
marginally significant (0.05<P<0.10). At premoult
zoea 4 significant differences were found for C and N:
larvae from 15 and 329, showed a significantly higher
biomass than those from 209,. For this stage, differences
in DW were marginally significant (Table 1). The in-
troduction of the initial larval biomass as a covariate
gave the same results as described above.

Accumulated biomass, measured as DW, from
hatching to premoult zoea 1 was higher for larvae from
the prehatching salinity 159, (Fig. 2; Table 2); there
were, however, no significant differences for C and N
content. This pattern did not change when the initial
larval biomass was used as a covariate. The highest ac-
cumulated biomass from hatching to premoult zoea 4
was for larvae from the prehatching salinities 15 and
329, (Fig. 2). However, significant differences were
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Fig. 1 Chasmagnathus granulata. Changes in biomass from egg
laying to premoult zoea 4 in larvae from different prehatching
salinities. Error bars Standard deviation. Different letters indicate
significant differences (P <0.05) among prehatching salinities

Table 1 Chasmagnathus granulata. One-factor ANOVA to evalu-
ate the effect of prehatching salinity on individual biomass [as dry
weight (DW), carbon (C), and nitrogen (N) content] at various
stages of zoeal development. MSF and MSE Mean squares of
factors and error, respectively; dfe degrees of freedom of error;
degrees of freedom of factors=2 in all cases. Significant effects
(P<0.05) are in bold

MSF dfe MSE F P
Zoea 1
(initial)
DW 0.42 27 0.70 0.60 0.55
C 0.36 27 0.08 4.18 <0.05
N 0.02 27 0.004 3.97 <0.05
Zoea 1
(premoult)
DW 8.99 28 1.96 4.59 <0.05
C 1.36 28 0.50 2.69 0.08
N 0.05 28 0.02 2.93 0.07
Zoea 4
(premoult)
DW 1109.1 24 347.0 3.19 0.06
C 227.24 24 60.11 3.78 <0.05
N 9.50 24 2.79 3.40 <0.05

879

Cumulative dry weight ( g/ind)

£=)
[ =
b
o
3
8
8
2
®
=
£
=
o
Zoea 1 Zoea 4
15+
k=)
S
S 10"
[ =
(]
g .5+
= 1.0‘{
(3]
=
©
=
€
=
o

Fig. 2 C. granulata. Cumulative biomass from hatching to
premoult zoeae 1 and 4 of larvae from different prehatching
salinities. Error bars Standard deviation. Different letters indicate
significant differences (P <0.05) among prehatching salinities

Table 2 C. granulata. One-factor ANOVAs to evaluate the effect
of prehatching salinity on growth, measured as accumulation of
DW, C, and N during the first zoea (Z1i-Z1f) and fourth zoeal
instars (Z1i-Z4f). Symbols and other details as in Table 1

MSF dfe MSE F P

Z1i-Z1f

DW 7.34 27 1.09 6.70 <0.01

C 0.41 27 0.31 1.32 0.28

N 0.01 27 0.01 1.14 0.33
Z1i-74f

DW 1154.6 23 335.14 3.44 <0.05

C 210.54 24 57.66 3.65 <0.05

N 9.25 23 2.73 3.39 0.05
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found only between 15 and 209, for DW and C; for N
they were marginally significant (Table 2). When bio-
mass of freshly hatched zoea 1 was used as a covariate
all significant differences disappeared (P >0.05).

In general, biomasses of premoult zoeae 1 and 4
were correlated with those of freshly hatched zoea 1
(r>0.60, P<107%) and freshly laid eggs (Table 3):
larger premoult zoeae 1 and 4 developed from broods
with larger eggs and hatched zoea 1. The highest cor-
relation coefficients were found when the independent
variable was the biomass of freshly hatched larvae.
There was no significant correlation between DW of
eggs and that of premoult zoea 4 (Table 3). Correla-
tions between biomass of eggs and that accumulated
during zoeal development were positive, although not
always significant (Table 4). C content at hatching
correlated significantly with that accumulated during
the zoea 1 (r=0.43 P<0.05) and all zoeal stages
(r=0.61, P<107), showing that larger larvae accu-
mulated more carbon. N content at hatching correlated
significantly with that accumulated during all zoeal
stages (r=0.64, P<10") but not with that accumulated
during the zoea 1 (r=0.31, P=0.09); the same pattern
occurred for DW (r=0.58, P<0.01 for all stages;
r=0.14, P=0.47 for zoea 1). Accumulated biomass,
expressed as a proportion of initial larval biomass, was
independent of initial larval biomass (P>0.05 for all
correlations).

Table 3 C. granulata. Correlation coefficients between initial egg
biomass and those of zoeae 1 and 4. Significant correlations (P
adjusted by sequential Bonferroni method at k=2) are in bold

Growth after zoea 4

A variable proportion (0-70%) of zoea 4 followed the
long pathway (i.e. they moulted to zoea 5 instead of
metamorphosing to megalopa). This proportion was
negatively correlated with DW, C, and N of zoeae 1
and 4. The highest correlations were found in C
content (Fig. 3) followed by those in N content (r=
—0.47 or lower, always P<0.01) and DW (r=-0.42,
P<0.05 for the DW of freshly hatched zoea I; r=
—0.52 or lower, P<0.01 for DW of premoult zoeae 1
and 4).

r P

DW

Zoea | 0.64 <107

Zoea 0.32 0.11
C

Zoea 1 0.52 <0.01

Zoea 4 0.54 <0.01
N

Zoea 1 0.56 <0.01

Zoea 0.44 <0.05

Table 4 C. granulata. Correlation coefficients between initial egg
DW, C and N, and that accumulated during zoea 1 (Z1i-Z1f) and
fourth zoeal (Z1i—Z4f) instars. Significant correlations (P adjusted
by sequential Bonferroni method at k=2) are in bold

r P

DW

Z1i-Z1f 0.44 <0.025

Z1i-74f 0.31 0.14
C

Z1i-Z1f 0.26 0.17

Z1i-74f 0.53 <0.01
N

Z1i-Z1f 0.25 0.19

Z1i-74f 0.42 0.03
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Fig. 3 C. granulata. Relationships between proportion of zoea 4
that moulted to zoea 5 and carbon content at hatching, premoult
zoea 1, and premoult zoea 4. Circles 159,; squares 20%,; triangles
329, Significance levels were corrected by sequential Bonferroni
method at k=3



The effect of prehatching salinity on biomass of the
megalopae was only evaluated for those from the short
pathway, since not all broods had larvae that followed
the long pathway. The highest biomass and accumulat-
ed biomass were found for the megalopae from 15%,
prehatching salinity, followed by those from 209,
(Table 5), although the differences were not significant
(always P>0.05).

Biomass of megalopa and that accumulated from
hatching were higher for broods with higher initial larval
biomass at hatching, especially when measured as C
(r=0.61, P<0.01) and N (r=0.60, P<0.01). Lower but
significant correlations were found for DW (r=0.55,
P <0.01). The biomass of the megalopa was additionally
correlated with that of the egg (DW: r=0.52, P<0.05;
C: r=0.68, P<1073; N: r=0.61, P<0.01). The accu-
mulated biomass at the megalopa from premoult zoea 4
was not significantly correlated with the biomass at
hatching (P>0.05).

Biomass of megalopae from the long and short
pathways was measured for 12 broods. Those from the
long pathway had higher levels of DW, C, and N (paired
Student’s r-test: DW: 1=8.01, P<10°; C: t=7.01,
P<10% N: 1=9.23, P<10>; Fig. 4).

Discussion

Biomass and growth of C. granulata, measured in terms
of DW, C, and N, has been previously studied by
Anger and Ismael (1997) using similar methodology to
that used in this study. The values of DW, C, and N
found by these authors are comparable to those
reported in our study. For example, mean DWs esti-
mated in their study (freshly hatched zoea 1=28.45 g/
individual; premoult zoea 1=16.0 pg/individual; pre-
moult zoea 4=16.0 pg/individual; 8-day-old megalop-
a=260 pg/individual) were in the range reported here
(Fig. 1, Table 5). Additionally, we show a certain
degree of interspecific variability and discuss possible
causes.

Table 5 C. granulata. Biomass at the megalopal stage (age=38
days) and growth (as accumulated DW, C, and N from premoult
zoea 4) for larvae from different prehatching salinities

Biomass (pg) Growth (pg)

Mean SD Mean SD
DW
15%, 237.04 31.12 103.05 15.16
20%, 231.51 52.15 104.81 40.21
329, 221.28 25.14 96.76 30.26
15%, 99.48 15.33 43.21 7.29
20%, 95.17 22.11 42.78 17.37
32%, 90.77 13.43 39.79 11.76
15%, 19.84 2.79 7.75 1.53
20%, 19.57 4.59 8.32 4.04
329, 19.02 2.45 7.54 2.21
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Our results showed that for the estuarine crab
C. granulata, biomass at various stages of the larval
development can be affected by factors operating before
hatching (i.e. prehatching factors). Variability in larval
biomass among broods took place as a consequence of
a series of processes affected by variability in (1) egg
biomass and (2) prehatching salinity (Fig. 5). Possible
causes of variability in initial egg biomass were discussed
by Giménez and Anger (2001). Significant correlations
between egg and larval biomass evidence the influence of
parental investment per offspring: this influence was
noted even at the megalopa. Prehatching salinity must
have acted on the rate of C and N loss during embryo-
genesis, as previously established (Giménez and Anger
2001): embryos maintained at 15 and 209, lost more C
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Origin of megalopa

Fig. 4 C. granulata. Mean biomass (dry weight, carbon, and
nitrogen) of 8-day-old megalopae that moulted directly from
zoeae 4 or zoeae S. Error bars Standard deviation. Different letters
indicate significant differences (P <0.05)
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Fig. 5 C. granulata. Model of
effect of variability in the initial
egg biomass (circles of different
size) and prehatching salinity
on variability among broods in
biomass at hatching, and sub-
sequent propagation or rever-
sion of early variability to other
larval stages (squares of different
size). Among-brood differences
in initial egg biomass and ex-
posure to different prehatching
salinities set the early variability
in larval biomass among
broods. This early variability is
propagated to the subsequent
stages. After zoea 4, larvae ei-
ther follow the long or short
pathway. Considering only the
short pathway, early variability
is further propagated to the
megalopa. Considering both
pathways, there is a reversion of
early variability, as larger
megalopa are more frequently
originated from broods with
larvae of lower biomass
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and N than those at 329,,. Thus, while at egg laying the
highest levels of biomass were found at 15%, and the
lowest at 329, the lowest C and N at hatching occurred
for individuals from the prehatching salinity 20%,, and
those from 15 and 329/, had the highest levels. The fact
that DW depends partly on the inorganic fraction ex-
plains why it increased from eggs to freshly hatched
zoea 1. Accumulation of biomass depended partly on
the initial larval biomass, although correlations were not
always significant. The best correlations were found
when biomass was measured as C content, followed by
N. Since in decapod crustacean larvae C content reflects
total lipid and N content reflects the protein fraction
(Anger 2001), the lipid rather than protein fraction of
advanced stages may depend on the fraction existing in
early stages.

The fact that correlations were always positive con-
tributed to significant differences among treatments even
at premoult zoea 4, especially in C content. Differences

initially set at hatching ‘“‘propagated” to subsequent
stages (i.e. there was a propagation of early variability:
see Fig. 5). The fact that the percentage of biomass
accumulated by larvae from different broods was
independent of initial larval biomass suggests that larg-
er and smaller larvae tended to accumulate the same
proportion of reserves. Differences in biomass of larvae
may reflect differences in size and, thus, ability to move
and capture prey or other abilities that allow them a
differential accumulation of reserves. Increased abilities
must have enhanced differences among treatments,
contributing to significant correlations between biomass
at hatching and at premoult zoea 1 or zoea 4, and to
partial conservation of differences among broods.
Differences in initial larval biomass, especially in C
content, were responsible for variability of biomass
among broods before larvae followed either the long or
the short developmental pathway. The significant nega-
tive correlation between the proportion of zoea 4 that



followed the long pathway and DW, C, and N content at
previous larval instars suggests that biomass levels
affect the switching to a given pathway. Thus, switching
in C. granulata must take place as hypothesised by
Knowlton (1974) for other decapods: under certain
threshold of reserves, larvae should follow an alternative,
longer developmental pathway, to prioritize maintenance
and growth over morphogenesis (L. Giménez and
K. Anger, in preparation). A high correlation between
developmental pathway and biomass of premoult zoea 4
could partly be a consequence of sampling a differential
proportion of zoea 4b in respect to zoea 4a. The zoea 4b
is smaller than zoea 4a and moults to zoea 5; zoea 4a
metamorphoses to the megalopa (Pestana and Ostrensky
1995). Zoeae 4a and 4b could not be morphologically
distinguished without being killed, so we had to distin-
guish them following their subsequent development.
However, in most cases moulting of zoea 4b to zoea 5
occurred earlier than the metamorphosis of zoea 4a to
megalopa. For determination of biomass we waited for
the first zoea 4a to metamorphose, to take samples from
the remaining zoeae. Thus, differences among broods in
biomass of premoult zoea 4 must reflect differences in
average biomass of each substage (zoeae 4a and 4b)
rather than a different proportion of substages in our
samples. Therefore, significant correlations between
developmental pathway and biomass at hatching suggest
that the development to a zoea 4a or 4b is related to
larval reserves in earlier stages.

In addition, we show some consequences of larvae
following different pathways on the megalopa: those
from larvae developed through the long pathway had
significantly the highest DW, C, and N contents. As
larger megalopae tended to originate from smaller zo-
eae, early variability in biomass existing previously was
reversed. Therefore, the wvariability in biomass at
hatching was reflected in the megalopae through either
propagation or reversion of early variability. The
propagation of early variability was as for zoeal stages
and led to a significant correlation between biomass at
hatching and that of the megalopae that followed the
short pathway. The reversion of early variability was a
consequence of having smaller larvae developing more
frequently through an additional instar, the zoea 5, that
accumulated biomass and led to larger megalopae.

There is scarce information on variability in larval
growth for decapod crustaceans or other taxa. Vari-
ability in crustacean larval development (i.e. the exis-
tence of alternative developmental pathways) is common
in non-brachyuran decapods but also occurs in grapsid
and portunid crabs (Costlow 1965; Criales and Anger
1986; Montt et al. 1990) and has been related to envi-
ronmental stress and genetic and maternal factors
(Anger 2001). Concerning environmental factors, only
those operating during larval stages have been studied.
For instance, in C. granulata, larvae follow the long
pathway if zoeae 1-3 are under food or osmotic stress
(Ostrensky et al. 1997; Giménez 2000). The present
study additionally shows that the probability of a zoea
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following the long pathway is partially determined
before hatching. In C. granulata salinity experienced by
embryos in combination with the initial reserves may be
a key factor determining the subsequent developmental
pathway. Initial egg reserves may be determined by
salinity (Giménez and Anger 2001), but also by maternal
factors. Effects of egg biomass (DW, C, and N, proteins
and lipids) on larval developmental pathways have been
found also in the shrimp Crangon crangon, where larvae
that hatched from the larger winter eggs had higher
biomass levels and developed through a shorter pathway
than those from smaller summer eggs (Linck 1995;
Paschke 1998). In this species, prehatching temperature
affects initial larval biomass (Paschke 1998), so it may
also affect the larval developmental pathway. On the
other hand, to our knowledge no studies are available on
consequences of alternative developmental pathways for
advanced larval instars. The fact that larger advanced
stages are the outcome of smaller initial stages is inter-
esting if fitness depends on larval biomass. Biomass of
the megalopa could indeed have important conse-
quences for fitness, as it would affect the ability to find
food or available substrate for settlement and to escape
predators. Interspecific comparisons showed a positive
correlation between swimming velocity and size of
megalopae (Valero et al. 1999), and this could also occur
intraspecifically. This hypothesis as well as other possi-
ble relationships between biomass and survival of the
megalopae under food or salinity stress remain to be
tested in future experiments.

Considering other taxa, intraspecific variability in egg
quality and consequences for larval development have
been studied in echinoderms. Females under food stress
lay eggs with lower biomass (George 1996, 1999;
Bertram and Strathmann 1998). To a certain degree,
differences in egg quality are maintained during the
larval development (George 1996; Bertram and Strath-
mann 1998; Meidel et al. 1999), so that early variability
is propagated. Food stress during early larval develop-
ment of some echinoderms and bivalves leads to a higher
allocation of growth to feeding structures at the expense
of the development of postlarval structures (Strathmann
et al. 1993; George 1994, 1999). This type of plasticity
may have the same effect on size of late stages as an
additional larval stage of some decapod crustaceans:
they may (1) prioritize maintenance and growth at a cost
of morphogenic changes, and (2) buffer environmental
effects on size at the expense of a lengthening of the
larval phase. Thus, regardless of different body plans,
some general patterns may emerge in different taxa of
marine invertebrates.

In summary, our study shows that for C. granulata
life history characters of different life phases and stages
are correlated. Variability in biomass during larval de-
velopment of C. granulata occurred through a combined
effect of prehatching salinity and initial egg and larval
biomass. Prehatching salinity regulated the amount of
reserves invested per egg and lost during embryogenesis
(Giménez and Anger 2001) and affected the osmoregu-
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latory capacity and starvation tolerance of the first zoea
(Charmantier et al. 2002; Giménez 2002). Differences in
salinity experienced as embryos and initial larval bio-
mass acted on a set of physiological and developmental
processes taking part in the propagation or reversion of
initial variability in biomass. Variability in larval bio-
mass may have consequences for survival and growth at
advanced larval or early juvenile stages. Future studies
should address these topics in C. granulata, as well as in
other species.
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